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Herein, exact algebraic expressions for the non-circulatory (added-mass) forces on elliptic
airfoils are derived for any two-dimensional motion — including simultaneous rectilinear
acceleration and rotation — embedded in a steady free-stream flow. Despite the lengthy
history of the added-mass concept and its widespread application to cylinders of various
cross-sections, such closed-form expressions for elliptic cylinders, in terms of kinematic
and geometric parameters alone, have remained absent from the literature until now.
Inspection of the derived equations reveals that for pure pitching about a point on the
chord-line, increasing thickness always decreases the added-mass force magnitude. For
any given motion of the chord-line, the difference in force between thick and thin airfoils
is proportional to the square of the thickness, although this difference may be positive
or negative for the general three-degree-of-freedom case. In the special case of zero
thickness and small pitch angles, Theodorsen’s added-mass lift force on rigid thin airfoils
is recovered; for large pitch angles, an exact generalization of Theodorsen’s expression,
applicable to the chord-normal direction, is given.

Key words: aerodynamics

1. Introduction

The decomposition of force into circulatory and non-circulatory components is widely
used in aerodynamic modelling. This decomposition heralds back to the pioneers of
thin-airfoil theory in the first half of the twentieth century, e.g. Theodorsen (1935) and
von Kédrmin & Sears (1938). The circulatory component is related to the evolution
of the surrounding vorticity field, and the non-circulatory component is derived
from the hypothetical acyclic (i.e. single-valued) potential flow around the body. The
non-circulatory force is often referred to as the added-mass force because, in the special
case of rectilinear translation, it is proportional to instantaneous acceleration, manifesting
‘as if” additional mass were accelerated with the body (Brennen 1982). For more general
motions, this analogy breaks down; in coupled translation and rotation, for example,
forces normal to the translational direction arise. Somewhat confusingly, the totality of
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non-circulatory force contributions is referred to in the literature as ‘added-mass forces’,
and herein this nomenclature is perpetuated, with some reservation, to ensure that the work
reaches the intended audience.

The confusion surrounding added mass goes deeper still, owing to the existence of two
competing definitions of the added-mass force. Limacher (2019) distinguished between
the classical added-mass force, as described in the previous paragraph, and the empirical
added-mass force. Empirical added-mass coefficients are derived from experiments in
which a body is oscillated at various frequencies, and the force response is fitted to a
second-order ordinary differential equation, treating the combined fluid—body system as
a mass-spring-damper analogue, e.g. Fackrell (2011). The coefficient on the second-order
term is then designated the added mass (or added-mass coefficient).

The overarching goal to which this work contributes is the rigorous extension of
unsteady airfoil theory to account for large-amplitude oscillations and airfoils of any
cross-section. Accordingly, the classical added-mass force is treated herein, which can be
superimposed onto the circulatory force to give the total force exactly. This superposition
was originally derived for potential flows with embedded vortex singularities, but was
recently shown to hold for viscous, incompressible flows as well (Limacher, Morton &
Wood 2018).

The primary contribution of the present work is the derivation of an exact algebraic
expression for the added-mass force on elliptic airfoils undergoing any two-dimensional
motion, immersed in a steady free-stream flow. From there, in the special case of
zero airfoil thickness, an exact generalization of Theodorsen’s added-mass expression
is derived, valid for any pitch angle. Then, for a few canonical harmonic motions —
pure pitching, pure plunging, and combined pitching and plunging — the effect of airfoil
thickness on the added-mass force is discussed.

The present derivation approach starts with the known classical added-mass forces on
an ellipse in rectilinear motion (Brennen 1982) and presents a framework to generalize
to any motion whatsoever. This framework is applicable to other rotationally symmetric
two-dimensional bodies for which the added-mass force is known in response to two
orthogonal components of linear acceleration. It must be emphasized, however, that
this method of generalization takes strictly non-circulatory forces as inputs. Empirical
added-mass coefficients may implicitly contain both circulatory and non-circulatory
contributions (Williamson & Govardhan 2004). Even added-mass forces derived from
potential flow analysis may contain a circulatory component if they are derived with
vortex singularities inside or along the airfoil surface. La Mantia & Dabnichki (2012),
for example, derive forces on symmetric airfoils from numerically obtained potential flow
solutions, but they introduce a circulatory component by enforcing the Kutta condition at
the trailing edge. Of course, it is not immediately clear how to avoid this contamination, as
solving for the acyclic potential flow around an airfoil with a sharp trailing edge would be
numerically challenging. The consideration of elliptic airfoils in the present work avoids
this complication while still offering preliminary insight into the effect of airfoil thickness.

Recently, Fernandez-Feria (2019) derived expressions for the total aerodynamic force
and moment on elliptic bodies using the force decomposition method developed by
Quartapelle & Napolitano (1983) and Chang (1992). Fernandez-Feria groups the resulting
force terms into what he labels ‘vortical’ and ‘added-mass’ components. Although
these groupings differ in form from the circulatory and non-circulatory forces derived
using vortical impulse theory (Limacher eral. 2018), Fernandez-Feria’s work does
treat the scalar potential field surrounding the body, and so falls squarely within the
classical category of added-mass treatments. Even within that category, subtle definitional
differences remain to be resolved, as will be briefly discussed herein. In any case, the
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present work complements Fernandez-Feria’s efforts by presenting an (arguably) more
accessible derivation; by including the effect of a non-zero free-stream velocity; and by
expressing the classical added-mass force entirely in terms of geometric and kinematic
parameters.

2. Derivation

The general expression of the classical added-mass force, F, for any two-dimensional
body with a piecewise-continuous outer contour, S, undergoing arbitrary motion in an
unbounded incompressible fluid is given as (Limacher et al. 2018)

d
F=—p(Py+Py), 2.1

where p is the fluid density, d/dr denotes differentiation with respect to time, and Py and
Py, are the potential impulse and the body-volume impulse, respectively. They are defined
as

Py =— f ng' ds, 2.2)
S

P, =—ucA, (2.3)

where n is the outward-facing normal on S (pointing into the fluid), u, is the instantaneous
velocity of the body centroid and A is the cross-sectional area of the body.

The quantity ¢’ is the scalar potential describing the irrotational component of the
velocity field according to ”;s = V¢', where u/¢ is defined in a frame of reference
relative to the body centroid (prime superscripts denote the body-fixed frame of reference,
consistent with the notation of Limacher er al. (2018)). Although (2.2) only requires ¢’
to be known on S, it must be obtained as the solution to the Laplace equation on a
two-dimensional domain. When solving for V2¢’ = 0 on the fluid domain outside the
body, the solution is subject to the boundary condition V¢’ = U, — u, at infinity, where
U is the steady free-stream velocity far from the body, and the impermeable boundary
conditionn - V¢ =0on S.

An equivalent added-mass formulation is given by Saffman (1992), although he treats
the scalar potential describing the velocity in the absolute frame of reference. Of course,
the choice of reference frame used in the derivation is immaterial to the final results, but a
useful aspect of the approach of Limacher et al. (2018) is in the comparison it facilitates to
the seminal work of Wu (1981). Wu’s exact and general expression of aerodynamic force in
terms of body motion, body geometry and vorticity-field evolution has instigated decades
of intervening interest in what we now call vortical impulse theory, for which Wu, Ma &
Zhou (2015) is recommended as an authoritative reference.

One further note on boundary conditions is warranted, highlighting definitional
differences within the category of classical added-mass analyses. In Limacher et al. (2018),
and above, the boundary condition for ¢’ on S does not include the surface-normal velocity
component due to body rotation, in contrast to other treatments of the classical added-mass
force and moment, e.g. La Mantia & Dabnichki (2012), Fernandez-Feria (2019). The
reason for this difference in treatment is explained in the Appendix, where it is also shown
to have no effect on the force expressions derived for elliptic airfoils (or for any other
rotationally symmetric body).

Two coordinate systems will be employed in the present analysis: an inertial coordinate
system (X, Y), with the X- and Y-directions aligned stream-wise and stream-normal,
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Figure 1. Inertial (X, Y) and body-fixed (x, y) coordinate systems used in the present analysis. Here, c is airfoil
chord length (major axis length), b is airfoil thickness (minor axis length), 8 is the pitch angle (positive in the
sense shown) relative to the free stream, U, and u, is the velocity of the airfoil centroid (i.e. the mid-chord).

respectively; and a body-fixed coordinate system (x, y), with the x- and y-directions aligned
with the major and minor axes of the ellipse, respectively (see figure 1). Throughout the
paper, uppercase subscripts (X or Y) refer to vector components in the inertial frame, and
lowercase subscripts (x or y) to the body-fixed frame. At any instant in time, the angle from
the x-axis to the X-axis is 6 (positive counterclockwise).

Now, it would be possible to solve for the potential impulse on the ellipse as a function
of u. and 0 using standard potential flow techniques. One could, for example, take the
known complex potential around a circle and relate it to the domain around an ellipse
by means of a conformal map (Milne-Thomson 1968). Or, for any body of interest, the
potential flow could be solved computationally, thereafter numerically approximating the
integral in (2.2). Fortunately, such efforts can be avoided for the ellipse case, as the known
added-mass forces for linear acceleration yield sufficient information when combined with
(2.1)—(2.3). These known forces are as follows (Brennen 1982):

J't,ob2 ducy
F,=— R 2.4
* 4 dt 24)
2
pc” dugy
Fr=———— 2.5
) 4 dt 2.5)

where c is the airfoil chord (ellipse major axis length), b is the airfoil thickness (ellipse
minor axis length), and du../dr and du,/dt are the chord-wise and chord-normal
components of the mid-chord acceleration, respectively.

Before making use of these expressions, let us further clarify how the components of
impulse are related to the components of force. The stream-normal and stream-wise forces

are
— = _— - , 2.6
P |:FYj| dt [P¢Y T @ e (2.6)

where the area of an ellipse A = 1tbc/4 has been substituted. It will prove more convenient

to treat the chord-wise and chord-normal forces, related to the stream-normal and
stream-wise forces by a rotation matrix, R(0):

sin 6 cos 6 2.7)

R(O) = [cos@ —sin91| ‘
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This allows us to write

1[F, _ i _ . Py :IT_bC Ucx
sp]-roglro (] [E])l e

If we apply the product rule and note that

dR(-6) _ do [ 0 1]

R(6
©) dt dt |—-1 O

(2.9)

then (2.8) becomes

ITF] . 0[Py ] d[Psl, 7he [d0T uy ] . d [ue
— =—— - — — — , 2.10
P |:Fyi| dr |:_P¢x dt [ Poy + 4 dr | —Ucex * dr | Uey ( )

demonstrating how rotation causes the impulse components to contribute perpendicular
force components.

For rectilinear motion in still fluid, d9/dr = 0, and we can solve for the potential
impulse by substituting the force expressions in (2.4) and (2.5) into (2.10) and taking the
antiderivative with respect to time, yielding

T T
Por= gblb+ e Py = Zelb+ ey, 2.11a,b)

To generalize these expressions in the presence of a free-stream flow, and to allow for a
variable pitch angle relative to that flow, recall that the scalar potential in (2.2) is solved
for the boundary condition V¢’ = Uy, — u, at infinity. Accordingly, we replace u., and
Uey With ey — Uso c0s 0 and uey — U sin 6, respectively, yielding

Py = ;b(b 4 0) (thex — Uno c08 6), (2.12)
Poy = b+ )tey = Usc sin0). (2.13)
Substituting (2.12) and (2.13) back into (2.10), and assuming the free-stream velocity to

be steady, i.e. dU/dt = 0, we obtain the following after differentiation and algebraic
manipulation:

T, do b*\ | do 5% ducy
FXIZpC {Uooa (1—6—2 Sln@—ucya—c—zw s (214)
P b? o p?do  dugy 2.15)
= — — — — ] cos - — . .
LS Ry 2 Yedar T

Note that when d6/dtr = 0, these expressions collapse to the original ones given in (2.4)
and (2.5), even when Uy #0. When normalized by 1 /2,ocUgo, the force coefficients
become

x (do _ d6 du*
=1 {@ (1 — b*z) sin — iy~ — b*szjf} , (2.16)

7 [ do *2 * k2 do dujy
V=2 E(l—b ) cos +ut,b et 2.17)

where * = tUs/c, b* = b/c and the velocities have been normalized by Ux.
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Equations (2.16) and (2.17) provide the promised general expressions for the added-mass
force on an elliptic airfoil. One colleague has remarked (and I agree) that it is surprising
not to find this result long established. It is of wide applicability and seems unlikely to have
escaped the interest of the early pioneers of aerodynamics. One might speculate that it had
to await the tidy expression of the added-mass force in terms of a surface integral, as in
(2.2) and in the monograph of Saffman (1992). Earlier derivations of the added-mass force
have treated the changing kinetic energy in the unbounded fluid domain, calculating the
work done on the fluid to determine the force, e.g. Brennen (1982) and Lighthill (1986).
That approach suffers from the non-convergence of the energy integral when the velocity
is non-zero in the far field, and thus the general effects of rotation would be difficult to
capture in closed form.

In the following section, it will be shown how (2.16) and (2.17) recover Theodorsen’s
(1935) non-circulatory lift on thin airfoils as a special case.

3. Generalizing the non-circulatory lift of Theodorsen (1935)

Theodorsen (1935) derived the lift on an oscillating thin airfoil using potential flow theory.
He assumed small-amplitude motions consisting of pitching about a fixed point on the
chord line, located at x,, relative to the mid-chord (x, < O for a pivot point ahead of the
mid-chord), and plunging of the pivot point transversely to the free-stream direction. (He
also considered a third degree of freedom with which we are not herein concerned: a
pitching aileron mounted to the trailing edge.) The vertical velocity of the pivot point is
denoted by V;,, normalized as V;; = V),/Usc.

Theodorsen’s non-circulatory component of the lift coefficient, Cy, expressed in the
notation of the present work, is

CL=

=5 (3.1)

— = - X
drt dr P drx2

m {d@ vy d% }
When attempting to generalize for large 0, recent literature has suggested that
Theodorsen’s expression is rightly applied to the chord-normal rather than stream-normal
direction (Polet, Rival & Weymouth 2015; Otomo et al. 2021), which is now corroborated.
Setting ujy = V; cos O + x;de /dr*, and b* = 0 in (2.17), we obtain the general expression
for chord-normal force coefficient on a thin airfoil:

T @ .. do dV; d’e
Cy=— cos@——{—Vpst——

— 2
2 dr* drt dr P drx2 (3-2)

Invoking the small-angle approximations sinf ~ 6 and cosf = 1, we recover something
similar to (3.1):
Cy~ (3.3)

dre P dre dr+

mfdo .40 dv; _x*dze
2 Pap2 |

The second term above is absent in Theodorsen’s formulation, but an order-of-magnitude
analysis justifies its neglect. For harmonic motions with a pitch amplitude of 6y, we have
the first term of order O(df/dt*) ~ O(kBy), where k is the reduced frequency. The second
term is of order O(kzhgég), where hy is the chord-normalized plunge amplitude, such that

this term may have a magnitude similar to or greater than that of the first if O(h;) > 1 or
O(k) > 1. However, the third term is of order O(kzhg), which will always be greater than
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K b @ X f*

3/8 {15°, 35°,55°,75°} /2 —1/2 0.32
Table 1. Parameters of harmonic motion for thin-airfoil (b* = 0) test cases to be compared in figures 2(a) and

2(b): hf; is chord-normalized plunge amplitude, 6 is pitch amplitude, @ is the phase difference between the
plunge and pitch motions, x7, is chord-normalized pivot point location and f* is normalized frequency.

(@) CLby=15° ———-C,05=15° () CLO5=15° ———-Cp05=15°
Cpt;=35° ———-C,0;=35 CLb5=35° — — — C,01=35°
Cy, 05=55° C, 05=55° C,, 05 =55° Cpu ;=55
6
2 4l
=}
g )
3 t Ty A 1
e oS S
fam| _ .
7
o e
5 -2 =" <{j
o
3
= 4 -4
-6 . . . . 6 . . . .
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
4T 4T

Figure 2. (a) Chord-normal added-mass force (Cy) for thin airfoils from (3.2) and Theodorsen’s C;, from
(3.1) versus period-normalized time /T for the pitching and plunging motions characterized in table 1.
(b) Stream-normal added-mass force (Cy) from (3.6), and Cy, versus ¢/T for the same airfoil motions.

that of the second term so long as 6y < 1. Thus, for any plunge amplitude and frequency,
Theodorsen’s expression is a good approximation for small pitch angles.

Remarkably, at least for some cases, Theodorsen remains an adequate approximation of
the chord-normal added-mass force even at high pitch angles. As an example, we take the
motion of a high-efficiency flapping-wing propulsion experiment from Van Buren, Floryan
& Smits (2019) and increase the pitch amplitude from 15° to 75° in increments of 20°. The
combined pitching and plunging motion is characterized by the following five normalized
parameters: chord-normalized plunge amplitude, A7 ; pitch amplitude, 8p; pivot location
lying on the chord-line, x*; normalized frequency, f* = fc/Uxo; and the phase difference

between the plunging and pitching motions, @, defined such that if the plunge position is
Y; = h§ sin(2nf*r"), (3.4)

then

0 = Op sinQ2nf*t* + D). (3.5)

The kinematic parameters for these test cases are given in table 1.

Figure 2(a) shows that the chord-normal force trend over one period of motion, 7', is well
captured by Theodorsen, although instantaneous deviations are notable; for the extreme
case of 0y = 75°, the maximum instantaneous difference between Cy and Cp, is 23 % of
the root-mean-square value of Cy.
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Qualitative and quantitative agreement between Theodorsen and the stream-normal
added-mass force,

Cy = Cycos® — Cysinf, (3.6)

is poorer for these same pitch amplitudes, as shown in figure 2(b). This is due to the
chord-wise component of the added-mass force, Cy, which is often overlooked but does
appear in some general treatments, e.g. Sedov (1965), Limacher ef al. (2018) and Van
Buren et al. (2019). With the same substitutions and simplifications as were made to obtain
C, for thin airfoils, (2.16) yields

ndd | . N , do
Cx:Ed? sm9—Vpcose—xp§ , 3.7

which vanishes as expected for d9/dr* = 0.

4. Recovering the circular cylinder case

For the limiting case of b* = 1, our general force equations must reduce to the well-known
added-mass force on a circular cylinder. Because of its rotational symmetry, the force on a
circular cylinder, expressed in the inertial frame, can have no dependence on df/dr*; that
is, a rotation of the cylinder about its centre has no effect on the surrounding irrotational
flow. Setting b* = 1, the first rotation-dependent terms in (2.16) and (2.17) vanish, and we

are left with
C, mdo | ug T d [y
=—=— - . 4.1
|:Cyi| 2 dr* | —ugy T ar Ucy ¢

The remaining dependence on df/dr* is due only to the rotation of the reference frame.
Reversing the procedure carried out in (2.6)—(2.10), (4.1) becomes

C, T d u*
=—_RWO)— {R(—0)| ¢|t. 4.2
6] =m0 {eo [} @
from which, after rotation, we recover the expected force coefficients expressed in the
inertial frame:
Cx T d fugy
- . 4.3
|:CY] 2 dr [uz‘y )

5. The effect of thickness for pitching and plunging airfoils

The general expressions given in (2.16) and (2.17) allow us to discuss the effect of airfoil
thickness on the added-mass force for some canonical harmonic motions within a steady
free-stream flow: pure pitching, pure plunging, and combined pitching and plunging.

Pure plunging is merely a subset of rectilinear translation, for which d9/dr* = 0 and
(2.16) and (2.17) reduce to normalized equivalents of the previously known added-mass
forces given in (2.4) and (2.5). Thickness has no effect on the chord-normal added-mass
force in this case, and gives rise to a chord-wise component that grows as b*2.

For pure pitching about the mid-chord, xj =0 and u;, = u;, =0, and the force
coefficients reduce to the first terms on the right-hand sides of (2.16) and (2.17). This
reveals that increasing thickness will reduce both Cy and Cy by the same factor, and the
greatest force magnitude for any given 6 = 6(r*) will be achieved when b* = 0.

For pure pitching about a point lying on the chord-line at x; #0, uey #0 but ueex =
ducy/dt* = 0. Accordingly, we once again find that increasing thickness can only decrease
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Study b* hg 6o (] x, f*
Kinsey & Dumas (2008) {0,0.1,0.2, 0.3} 1 75° /2 -1/6 0.15
Van Buren et al. (2019) {0,0.1,0.2, 0.3} 3/8 15° /2 —-1/2 0.32

Table 2. Airfoil thicknesses to be considered, and chosen kinematic parameters for pitching and plunging test
cases from recent studies to be compared in figures 3(a) and 3(b).

the force magnitude in both directions by modifying the first terms on the right-hand sides
of (2.16) and (2.17) .

For the general three-degree-of-freedom case, increasing thickness can either increase
or decrease the instantaneous forces, but, for any given motion of the chord-line, the
difference in force between a thin and a thick airfoil will always be proportional to b*2.
That is, if we express the force coefficients for a given motion as a function of b*, i.e.
Cy = C(b"), Cy = C,(b"), then the instantaneous thickness effects can be stated as

Co(b*) — C,(0) = —gb*z (% $in 6 + ci;f) : (5.1)
Cy(b*) — Cy(0) = —gbﬂj%(cose — ). (5.2)
In the static coordinate system, the thickness effects take the form
Cx(b*) — Cx(0) = —b**fx (0, s % CZ;) , (5.3)
Cy(b*) — Cy(0) = —b*fy <9, Uy, %’ (sz> ; (5.4)

where the functions fy and fy can yield positive or negative values depending on the
instantaneous values of the independent kinematic parameters u), = u} (*) and 6 = 6(r*)
and their derivatives. Interestingly, thickness effects are independent of u7 in general.

To give an idea of the possible relative magnitude of the thickness effects, two practical
example cases of pitching and plunging airfoils are presented: a high-efficiency case
from the propulsion study of Van Buren ef al. (2019), and the best-performing case from
the flapping-wing turbine study of Kinsey & Dumas (2008). The kinematic parameters
of these harmonic motions, as previously introduced in § 3, are listed in table 2. In
the design of flapping-wing propulsors and flapping-wing turbines, the stream-wise and
stream-normal forces (Cx and Cy) are often the most relevant, and these are plotted
in figure 3. The effect of thickness can be characterized by the ratios of peak force
magnitudes, defined as

__ max(JCx (b)) o, max(Cy (D)
max(ICx(* =0))’ " max(ICy(b* = 0)])’

(5.5a.,b)

These ratios are plotted against b* in figure 4. For the thickest airfoil considered (b* = 0.3),
the most significant effect was a 21 % decrease in peak Cy for the Kinsey & Dumas (2008)
case.

The above results suggest that thickness effects are of secondary importance compared
to the effect of airfoil motion on force, and the expressions in (5.1) and (5.2) may
serve adequately as approximate corrections for finite-thickness effects for airfoils of
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(a) Cp =00 ———-Cy.b"=00 (b) Crb =00 ———-Cp.6'=00
Cy, b*=0.1 ———-Cy, b*=0.1 Cy, b*=0.1 ———-Cy, b*=0.1
Cy, b*=02 Cy, b*=02 Cy, b*=02 Cy b*=02
Cy, b*=03 Cy, b*=03 Cy, b*=03 Cy b*=03
Case: Van Buren et al. (2019) Case: Kinsey & Dumas (2008)
2 22\
/
Lt /—\
L)>~ = \\ P
b « ’
O |/ ~—
Z1t
) | | | I J
0 0.2 0.4 0.6 0.8 1.0 . .
4T T
Figure 3. Stream-wise and stream-normal added-mass forces, Cy and Cy, versus ¢/7T for the test cases listed
in table 2.
1.1
N LO - S —— 1y, Kinsey & Dumas (2008)
K 7y, Kinsey & Dumas (2008)
5 7y, Van Buren et al. (2019)
09+t 7y, Van Buren et al. (2019)
0.8 . .
0 0.1 0.2 0.3

b*
Figure 4. Peak added-mass force magntiude ratios, ry and ry, as defined in (5.5a,b), versus b* for the test
cases listed in table 2.

other cross-sections. If more exact expressions are desired, the procedure outlined in
§ 2 can be applied to any rotationally symmetric two-dimensional body; take the known
added-mass forces in response to orthogonal components of the body’s acceleration, and
follow the steps presented in (2.10)—(2.15) to account for body rotation and the presence
of a non-zero free-stream flow. To extend this approach to airfoils that do not exhibit
rotational symmetry, as is the case with most practical airfoils possessing a sharp trailing
edge, definitional differences amongst classical added-mass force analyses must first be
addressed, as explained in the Appendix.

6. Conclusion

Exact algebraic expressions for the non-circulatory (added-mass) forces on elliptic airfoils
were derived herein for any two-dimensional motion — including one rotational and two
linear degrees of freedom — embedded in a steady free stream; see (2.16) and (2.17). These
tidy closed-form equations, expressed in terms of geometric and kinematic parameters
alone, have wide applicability — covering thin airfoils, circular cylinders and everything in
between — but have remained absent from the literature despite the lengthy history of the
added-mass concept.
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As airfoil thickness tends to zero, a generalized form of Theodorsen’s added-mass
force for rigid thin airfoils is recovered in (3.2), applicable to the chord-normal direction;
for small pitch angles, this equation collapses to Theodorsen’s original expression. The
generalized added-mass force for thin airfoils includes a component aligned with the
chord — equation (3.7) — which has been established in the literature but is sometimes
overlooked. It was shown that, in at least one case, Theodorsen’s original expression
captures the chord-normal added-mass force trend surprisingly well even at pitch angles up
to 75° (although instantaneous deviations are notable), but the chord-wise force becomes
a significant contributor to the stream-normal force that cannot be neglected.

Inspection of (2.16) and (2.17) elucidates the effect of airfoil thickness. For purely
pitching airfoils with a pivot point lying on the chord-line, increasing thickness always
decreases the instantaneous force magnitude in both the chord-wise and chord-normal
directions, with the reduction proportional to the square of the chord-normalized thickness,
b*2. For combined pitching and plunging, non-zero thickness may either increase or
decrease the instantaneous forces relative to a thin airfoil, but the difference remains
proportional to »*2. In considering example pitching and plunging test cases from previous
flapping-airfoil studies, the most significant observed effect was a decrease of 21 % in the
peak stream-normal added-mass force when airfoil thickness was increased from zero to
0.3c, where c is the chord length.
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Appendix. Boundary conditions used in defining the classical added-mass force

In Limacher et al. (2018), a Helmholtz decomposition was applied to the continuous
velocity field of a viscous, incompressible flow. Using vortical impulse theory, it was
shown that the rotational component of the velocity field gives rise to a so-called
circulatory force, while the irrotational component is associated with the classical
added-mass force.

In the decomposition chosen by Limacher et al. (2018), the kinematic effect of body
rotation was incorporated into the rotational component of the velocity field, so that the
irrotational component did not need to satisfy a boundary condition on S that included the
surface-normal velocity due to body rotation. This convention stands in contrast to works
such as La Mantia & Dabnichki (2012) and Fernandez-Feria (2019), the latter citing the
earlier work of Newman (1977) within the marine literature. Fortunately, this definitional
difference does not affect the added-mass force expressions derived in the body of the
present paper, as is now proven.

The local velocity of any point on the solid body is expressible as u. + £ x x, where £2
is the body rotation rate and x is the position vector relative to the body centroid. The scalar
potential in the body of the paper includes the effect of translation, so let us define a second
potential describing the flow induced by rotation only, which can be linearly superimposed
onto the first. This second potential, ¢, must satisfy the boundary conditions V¢ = 0
atinfinity andn - Voo = n - (£2 x x) on S.
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Fortunately, we need not solve for this potential flow field to see that its effect on the
added-mass force on elliptic airfoils is nil. The potential ¢, will contribute

y{ 1o dS (A1)
S

to the potential impulse in (2.2), whose time derivative will yield a force, but this integral
vanishes by symmetry: for any point on S, the value of ¢, will be equal to its value on
the point directly opposite (i.e. the point mirrored across both the major and minor axes of
the ellipse), while the normal vectors at these two points will be of opposite signs. Even
more generally, for bodies exhibiting n-fold rotational symmetry (n > 2), every point on §
belongs to a set of n points for which this cancellation holds, causing the integral in (A1)
to vanish.

Going forward, as one seeks to extend the approach presented herein to other airfoils that
do not exhibit rotational symmetry, the appropriate definition of the classical added-mass
force, and the corresponding boundary conditions, must be clarified in the context of total
force decompositions.
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