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In this paper we show how the expressive power of a language for the description of timed

processes strongly affects the discriminating power of urgent and patient actions. In a sense,

it studies the interplay between syntax and semantics of time-critical systems.

1. Introduction

In recent years several well-known formalisms that are suitable for the specification

and verification of concurrent systems (logics, process algebras, Petri nets, etc.) have

been extended to cope with time-critical systems. The correctness of time-critical systems

depends not only on which actions these systems can perform but also on when such actions

are performed. The problem is that they may enter an incorrect state if a particular action

is performed too early or too late.

In this paper we present a study of the relationships between the syntax and semantics of

time-critical systems. In more detail, we show how the expressive power of the language for

the description of time-critical systems strongly affects their timing/performance aspects.

The (CCS-like) language we consider is quite expressive. It has durational actions as in

Aceto and Murphy (1996) and Gorrieri et al. (1995), and facilities for delaying processes

as in Hennessy and Regan (1995), Moller and Tofts (1990) and Yi (1990) (still focusing on

timed CCS-like languages). Processes are compared according to performance congruence.

This equivalence was introduced in Corradini (1998) and discriminates processes according

to their functionality (which actions they can perform) and performance (a measure of the

time consumed during their execution). Three kinds of basic actions naturally reside within

the above-mentioned framework: eager actions (those that are performed as soon as they

can – these are also called urgent actions), lazy actions (those that can be delayed before

their execution) and busy-waiting actions (those which denote synchronisations between

two system components). These kinds of action emerge as classes of tests (experiments)

to exercise our processes in order to decide on their equivalence (performance/time-

sensitivity, in the present setting).

† Research supported by Murst progetto ‘Saladin: Software Architectures and Languages to Coordinate

Distributed Mobile Components’.
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We show how the discriminating power of urgent, lazy and busy-waiting actions changes

depending on the expressiveness of the language for the description of time-critical systems.

This study is conducted by showing how three bisimulation-based equivalences relate when

the language changes according to four significant features. The three equivalences are†:

— performance congruence (Corradini 1998), which is obtained by carrying out eager, lazy

and busy-waiting tests,

— eager equivalence (Gorrieri et al. 1995), which is obtained by carrying out eager and

busy-waiting tests, and

— lazy equivalence, which is obtained by carrying out lazy and busy-waiting tests.

The four language features have to do with non-deterministic composition, relabelling

functions (Milner 1989), the number of actions a process can perform at a given time and

the nature of actions (visible/invisible). We show how the three equivalences are related

when:

— The language allows choices at the same time or, also, at different times. In other words,

we are distinguishing between ‘timed alternative compositions’ and ‘alternative timed

compositions’. In the former case, the non-deterministic composition only involves

the functionality of the process, while in the latter it involves both functionality

and timing. For example, I can choose at time t between a snack and a full lunch

((snack+lunch)@t) or I can choose between a snack at noon and a dinner eight hours

after ((snack@t) + (dinner@t′), where t′ > t).

— The language allows relabelling functions that preserve the duration of the actions

(that is, they rename actions having the same duration) or, also, rename actions with

(possibly) different durations.

— The language allows the description of processes that can perform finitely many

actions (though of unbounded number) at a fixed time or, also, infinitely many‡.

— The language allows only visible actions or, also, internal ones (such as synchronis-

ations).

Note that these different languages do not constitute a hierarchy but a classification of

specific language features that are significant when comparing the discriminating power

of the urgent and patient actions.

It turns out that if the language allows:

(a) only visible actions,

(b) only processes that can perform finitely many actions at a fixed time,

(c) only choices at the same time, and

(d) only duration preserving relabelling functions,

then eager tests and lazy tests have the same discriminating power. In such languages,

performance congruence, eager equivalence and lazy equivalence coincide.

† We do not consider equivalences without busy-waiting tests since they would lead to unwanted identifications.
‡ This permits the construction of processes that can do infinitely many actions in a finite interval of time –

these are also called Zeno-machines.
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If the language allows invisible actions and (b), (c), and (d) as above, then lazy tests are

more discriminating than eager ones or, in other words, discriminating enough to capture

the same equalities of performance congruence. As a consequence, in the definition of

performance congruence, the lazy tests are the significant ones while the eager tests are

superfluous.

If the language allows the description of processes that can perform infinitely many

actions at a fixed time, choices at different times or relabelling functions that do not

preserve the duration of the actions, then we only have the obvious implications; namely,

performance congruence implies the two other equivalences.

It has to be noted that if eager equivalence and/or lazy equivalence do not coincide

with performance congruence (and the language permits process synchronisation), then

eager equivalence and lazy equivalence are not even congruences (they are not preserved

by parallel composition with synchronisation), while performance congruence remains a

congruence.

We now discuss our main motivations for this work:

— From a foundational point of view, it provides some insight into the relationships

between syntax and semantics in a time-critical setting by showing how the discrim-

inating power of timed actions may change according to the features of the base

language. We explain, in a sense, how the semantics of time-critical systems change

when their syntax changes. This should help in the design of new languages for the

description of time-critical systems. The present work says, indeed, which semantics

should (and should not) be coupled with the language being designed.

— It provides more confidence in the definition of a new performance-sensitive equi-

valence, namely performance congruence. It permits the removal of redundancy in

its definition (by fixing the class of tests over processes strictly needed to decide

their equivalence). For instance, if lazy tests together with eager tests are not more

discriminating than just lazy tests, we could simply exercise our systems over the latter

ones to deduce the same equivalences.

— In addition, it studies the relationships between three important timed equivalences.

Recently (Bérard et al. 2000), the equivalence that we have called eager equivalence

has been proved to be decidable in polynomial time over a process algebra with only

visible durational actions. Using the same process algebra, we prove that eager equi-

valence, lazy equivalence and performance congruence coincide. Hence, we also have

a polynomial time algorithm for deciding both lazy equivalence and performance

congruence.

The rest of the paper is organised as follows. The next section contains the required back-

ground for our study, and Section 3, the core of the paper, relates the three equivalences

over the different languages. Concluding remarks are given in Section 4. Detailed proofs

of two main results (Theorem 3.1 and Theorem 3.2) are given in appendices, allowing you

to skip their technical development if you wish. Note, however, that some intermediate

results are interesting in their own right (for example, the decomposition result for parallel

timed systems stated in Lemma B.7).
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2. A theory of timed processes

The process algebra we consider follows the same descriptive style as those in Aceto and

Murphy (1996), Ferrari and Montanari (1995) and Gorrieri et al. (1995). We now briefly

discuss its main assumptions and contrast them with those behind a different approach

to the specification of timed system; namely, the two-phase functioning principle (see

Hennessy and Regan (1995), Moller and Tofts (1990) and Yi (1990), to cite a few timed

CCS-like languages). This should clarify our design decisions (see Corradini (2000) for a

more comprehensive comparison).

Actions are durational. Basic actions take time to be performed (that is, actions have

a duration) and time passes in a system only due to the execution of these actions.

This contrasts with the approach taken in Hennessy and Regan (1995), Moller and

Tofts (1990) and Yi (1990), where basic actions are instantaneous events. The passage of

time is explicitly modelled by a special ‘tic’ action upon which all components of a global

system must synchronise.

Time is absolute. During a system execution, time stamps are associated with the observed

events. These time stamps are referred to the starting time of the system execution; that

is, time features as absolute time. In Hennessy and Regan (1995), Moller and Tofts (1990)

and Yi (1990), the (passage of) time refers to the execution time of the previous observed

action. In this case time features as relative time.

Functional behaviour is timed. The description of the functional behaviour (that is, which

actions a system can perform) and the description of time and time passing are given

by integrating these two different aspects into a single framework. This framework takes

the form of (a single) labelled transition system. In Hennessy and Regan (1995), Moller

and Tofts (1990) and Yi (1990), functional behaviour and temporal behaviour are kept

separate, using two orthogonal observation mechanisms (two labelled transition systems:

one describing the functional bahaviour and the other describing the time and time

passing). This is known in the literature as the two-phase functioning principle: a phase

in which a system asynchronously evolves via execution of actions is followed by a phase in

which conceptually time progresses.

Local clocks. A local clock is associated with each of the parallel components of a global

system. These local clocks elapse independently of each other, although they define a

unique notion of global time. In Hennessy and Regan (1995), Moller and Tofts (1990)

and Yi (1990), the notions of global time and unique global clock are made explicit.

We also consider several extensions to the theory of timed processes in Aceto and

Murphy (1996), Ferrari and Montanari (1995) and Gorrieri et al. (1995). First of all

we allow process delay. Delays are not permitted in Aceto and Murphy (1996), Ferrari

and Montanari (1995) and Gorrieri et al. (1995), though they are the most significant

operation for modelling time and time passing within the category of process algebras

with durationless actions, relative time, global clock, functional and timed behaviours

described in two separate semantic framework (Hennessy and Regan 1995; Moller and
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Tofts 1990; Yi 1990). As expected, indeed, the addition of delay operators to our language

causes very interesting effects for our study. Also, infinite versions of non-deterministic

composition and parallel composition are of interest.

In the rest of this section we give the formal description of our CCS-like process

description language, its operational semantics and performance congruence.

— We assume a set of actions A (ranged over by α, β, . . .) from which we obtain the set of

co-actions Ā = {ᾱ | α ∈ A} . Act (ranged over by a, b, . . .) stands for A∪ Ā and denotes

the set of visible actions with the convention that a ∈ Act implies ¯̄a = a.

— The invisible action is denoted by τ �∈ Act. We use Actτ (ranged over by µ, µ′, . . .) as

the set of all actions Act ∪ {τ}.
— � and �+ (ranged over by n, n′, . . .), respectively, denote the set of natural numbers

and the set of positive ones.

— Durational functions (ranged over by f, g, . . .) associate to each action the time units

needed for its execution. In the rest of the paper a durational function f : Act → �+

is chosen simply to fix this parameter. We assume f(a) = f(ā), for each a ∈ Act .

— For each n ∈ �+ , Act(n) = {a ∈ Act | f(a) = n} defines the set of all visible actions

with duration n.

— Relabelling functions (ranged over by Φ,Φ′, . . .) are used to rename actions in Actτ . We

assume a relabelling function Φ : Actτ → Actτ with the convention that Φ(τ) = τ

and Φ(a) = Φ(ā) for each a ∈ Act .

— Var denotes the set of process variables (ranged over by x, y, . . .) used for recursive

definitions.

Let Q (ranged over by q, q′, . . .) denote the set of terms generated by the following

grammar:

q ::= nil a.q (n)q
∑
i∈I

qi
∏
i∈I

qi q \B q[Φ] x rec x.q

where n ∈ �+ , I ⊆ �, B ∪ {a} ⊆ Act , x ∈ Var and Φ is a relabelling function. We

assume the usual notions of free variables and bound variables in a term. Given q ∈ Q,

F(q) denotes its set of free variables. The set of closed Q terms, also called processes,

is denoted by P. In the rest of the paper we concentrate on P terms (ranged over by

p, p′, . . .) unless we specify otherwise.

Process nil denotes a terminated process. By prefixing a process p with an action a,

we get a process a.p, which performs an action a and then behaves like p. (n)p denotes

a process that delays the execution of p by n time units.
∑

i∈I pi denotes the alternative

composition of pi, namely term p1 + . . . + pi + . . . where i ∈ I .
∏

i∈I pi denotes the parallel

composition of pi, namely term p1| . . . |pi| . . . where i ∈ I . In both cases, we require |I | � 2.

p \B is a process that behaves like p, except that actions in B, and their complements,

are not allowed. p[Φ] behaves like p but its actions are relabelled according to relabelling

function Φ. Finally, rec x.p is used for recursive definitions. For the sake of simplicity,

terminal nils can be omitted; for example, a + b.c stands for a.nil + b.c.nil.
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Table 1. Clock Distribution Equations.

t + n ⇒ p = t ⇒ (n)p

t ⇒ (p1 | p2) = (t ⇒ p1) | (t ⇒ p2)

t ⇒ (p1 + p2) = (t ⇒ p1) + (t ⇒ p2)

t ⇒ (p \B) = (t ⇒ p) \B
t ⇒ (p[Φ]) = (t ⇒ p)[Φ]

2.1. The operational semantics

P is equipped with an SOS semantics in terms of labelled transition systems. The states of

these systems are terms of a syntax extending that of processes with a local clock prefixing

operator (t ⇒ ) that records the evolution of the various parts of a distributed state.

More precisely, the set of states (denoted by D and ranged over by d1, d2, . . .) contains

terms generated by the following syntax:

d ::= t ⇒ nil t ⇒ a.p t ⇒ (n)p t ⇒ rec x.p
∑
i∈I

di
∏
i∈I

di d \B d[Φ]

where (n)p, rec x.p ∈ P, t ∈ � and B ∪ {a} ⊆ Act .

In order to define a simple transition relation, the shorthand expression t ⇒ p is used to

mean that t distributes over the operators, until the sequential components. The equations

in Table 1, called clock distribution equations, show that a term t ⇒ p can be reduced to a

canonical state when we interpret these equations as rewrite rules from left to right.

The set of labels for the transition relation is Actτ × � × �. Each transition is of the

form d
〈µ,t,r〉
−−→ d′ with the intuitive meaning that state d can become state d′ by performing

an action µ at completion time t. r is the execution delay meaning that the execution

of action µ is started r time units after the last performed action by the sub-process

responsible for the execution of µ. The transition relation d
〈µ,t,r〉
−−→ d′ is defined by the

axioms and inference rules given in Table 2. It is worthwhile observing that these rules

are parameterised on the chosen durational function f. Hence, we should write →f , but

for the sake of simplicity, the subscript will always be omitted whenever it is clear from

the context.

A few comments on the rules in Table 2 are now in order. The rule for action prefixing

Act states that process a.p with local clock t can complete the execution of action a at

any time t + f(a) + r, where r � 0 is the delay before the execution of action a is started.

Note that it may be that (t + f(a) + r) ⇒ p is not a state; in such a case, applications

of the clock distribution equations will eventually transform (t + f(a) + r) ⇒ p into a

state. Rule Del states that process (n)p with local clock t can complete the execution

of action µ at time t′ and delay r � 0 if process p with local clock t + n can do the

same. In the premise of this rule, the term n + t ⇒ p may need applications of the clock

distribution equations to become a state. Rules Sum1, Sum2, Rec, Par1, Par2, Res and Rel

for alternative composition, recursion, asynchronous execution of a parallel composition,

restriction and relabelling are as usual. Only note that in the premise of rule Rec, the
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Table 2. The Structural Rules for the Operational Semantics.

Act

r � 0

t ⇒ a.p
〈a,t+f(a)+r,r〉
−−−−−−−→ (t + f(a) + r) ⇒ p

Del

t + n ⇒ p
〈µ,t′ ,r〉
−−−→ d

t ⇒ (n)p
〈µ,t′ ,r〉
−−−→ d

Sum1

d1

〈µ,t,r〉
−−−→ d′

1

d1 + d2

〈µ,t,r〉
−−−→ d′

1

Sum2

d2

〈µ,t,r〉
−−−→ d′

2

d1 + d2

〈µ,t,r〉
−−−→ d′

2

Rec

t ⇒ p[rec x.p/x]
〈µ,t′ ,r〉
−−−→ d

t ⇒ rec x.p
〈µ,t′ ,r〉
−−−→ d

Par1

d1

〈µ,t,r〉
−−−→ d′

1

d1 | d2

〈µ,t,r〉
−−−→ d′

1 | d2

Par2

d2

〈µ,t,r〉
−−−→ d′

2

d1 | d2

〈µ,t,r〉
−−−→ d1 | d′

2

Synch

d1

〈a,t,r1〉
−−−→ d′

1, d2

〈ā,t,r2〉
−−−→ d′

2, (r1 = 0 or r2 = 0)

d1 | d2

〈τ,t,0〉
−−−→ d′

1 | d′
2

Res

d
〈µ,t,r〉
−−−→ d′

d \B
〈µ,t,r〉
−−−→ d′ \B

µ, µ̄ �∈ B Rel

d
〈µ,t,r〉
−−−→ d′

d[Φ]
〈Φ(µ),t,r〉
−−−−→ d′[Φ]

term t ⇒ p[rec x. p/x] may also need applications of the clock distribution equations to

become a state. Rule Synch, however, needs more explanation. It implements the so-called

busy-waiting synchronisation mechanism according to which two parallel components can

synchronise if they can perform communicating actions at the same time: if one of the two

is able to execute such an action before the other, then a form of busy-waiting is allowed.

However, when both partners are ready to synchronise, the handshaking immediately

happens. Intuitively, this permits the modelling of the situation in which a faster process

can wait for a slower partner. More formally, assume the left component d1 completes the

execution of action a at time instant t and with execution delay r1 and the right component

d2 completes action ā at time t and with execution delay r2. Then, a synchronisation step

is possible if and only if (at least) one of the two delays is 0, namely (at least) one of the

two transitions is eager. The resulting transition is an invisible one, completing at time t

and with execution delay 0†.

† A different rule is used instead of this one in Aceto and Murphy (1996). Two processes can synchronise if

they are ready to do so exactly at the same time instant: if a process P1 can perform an action a at time n
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2.2. Performance congruence

Performance congruence (Corradini 1998) has been proposed in the field of semantics

for process description languages as an equivalence notion that discriminates processes

according to their functionality and performance. It refines performance equivalence, which

had previously been proposed by Gorrieri and his co-authors (Gorrieri et al. 1995). Indeed,

performance equivalence is not a congruence with respect to parallel composition with

synchronisation. Performance congruence is preserved by every operator of the language

and coincides with the largest congruence within performance equivalence.

Performance congruence is a bisimulation-based equivalence relation defined on top

of the transition relation d
〈µ,t,r〉
−−→ d′ given in Table 2. It relies on the same busy-waiting

synchronisation mechanism of performance equivalence. In order to prove that two states

d1 and d2 are performance congruent, it is required that if d1 (and similarly for d2) performs

a visible action a at completion time t and with execution delay r, then d2 can perform

the same action at the same completion time and with arbitrary execution delay r′. This

is called the lazy condition (Item (ii) in Definition 2.1). If r = 0, meaning that d1 urgently

performs action a, then d2 is also forced to perform the same action in an eager way, that

is, r′ = 0. This is called the eager condition (Item (iii) in Definition 2.1). Invisible actions

are always urgent as ‘global actions’; namely, their execution delay is always 0 though

(see Rule Synch in Table 2) a synchronisation can hide some delay.

Definition 2.1 (Performance congruence).

(1) A binary relation � over D is a PC-bisimulation if and only if for each (d1, d2) ∈ �:

(i) (Busy-Waiting)

d1

〈τ,t,0〉
−−→ d′

1 implies d2

〈τ,t,0〉
−−→ d′

2 for some d′
2 ∈ D such that (d′

1, d
′
2) ∈ �.

(ii) (Laziness)

d1

〈a,t,r〉
−−→ d′

1 implies d2

〈a,t,r′〉
−−→ d′

2 for some d′
2 ∈ D, r′ � 0 such that (d′

1, d
′
2) ∈ �.

(iii) (Eagerness)

d1

〈a,t,0〉
−−→ d′

1 implies d2

〈a,t,0〉
−−→ d′

2 for some d′
2 ∈ D such that (d′

1, d
′
2) ∈ �.

(2) We say that two states d1 and d2 are performance congruent, d1 ∼c d2, if and only if

there exists a PC-bisimulation � such that (d1, d2) ∈ �.

(3) We say that two processes p1 and p2 are performance congruent, p1 ∼c p2, if and only

if 0 ⇒ p1 ∼c 0 ⇒ p2.

The lazy and eager conditions in Definition 2.1 are needed to deal with invisible and

visible actions in a consistent way. Invisible actions model synchronisations between two

parallel components of the same global process (‘internal’ synchronisations). According

to the busy-waiting synchronisation mechanism, a faster process can wait for a slower

partner and no further delay is allowed when the two partners are ready to synchronise.

and a process P2 can perform an action ā at the same time, then the parallel composition of P1 and P2 can

perform a synchronisation at time n. In this setting actions cannot be delayed – they must be performed as

soon as they become available. Thus, this rule is suitable for modelling urgency in timed systems.
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Thus, as already remarked, a form of execution delay is possible to allow a synchronisation

between two parallel components of the same global process. On the other hand, visible

actions model synchronisations with the external environment (‘external’ synchronisations).

They can be performed with an arbitrary delay before their execution (lazy transitions,

Item (ii) in Definition 2.1) or with null execution delay (eager transitions, Item (iii) in

Definition 2.1). The former executions model the situation in which the process responsible

for their execution is faster with respect to a hypothetical external slower partner. The

latter model the inverse situation, in which the process responsible for their execution is

slower with respect to a faster external partner†.

To study the discriminating power of eager, lazy and busy-waiting actions in our timed

calculi, we consider two other equivalence relations:

— Eager equivalence (Gorrieri et al. 1995), denoted ∼e, is obtained by removing item

(ii) from Definition 2.1.

— Lazy equivalence, denoted ∼l , is obtained by removing item (iii) from Definition 2.1.

3. Discriminating power of eager, lazy and busy-waiting actions

Consider the following restrictions over the base language P (similar restrictions and

notation apply for Q):

Pc – The language that contains processes where choices are made at the same time,

Pr – The language that contains processes where relabelling functions are duration pre-

serving,

Pa – The language that contains processes that can perform finitely many actions at a fixed

time,

Pv – The language that contains processes that can perform visible actions.

For any sequence w = x1x2x3 . . . ∈ {c, r, a, v}+, Pw denotes Px1
∩ Px2

∩ Px3
. . . and Dw

denotes the set of timed states of processes in Pw .

In the remainder of this section we will prove that the violation of one of these

restrictions makes eager, lazy and busy-waiting actions more or less discriminating. This

study is conducted by contrasting performance congruence, eager equivalence and lazy

equivalence over the four different languages.

One result is simple. Performance congruence is always finer than both eager equivalence

and lazy equivalence (see their definitions).

Proposition 3.1. Let p1, p2 ∈ P. Then p1 ∼c p2 implies p1 ∼l p2 and p1 ∼e p2.

In the following three subsections we show that lazy equivalence and eager equivalence

are unrelated when the language takes into account choices at different time or non-

duration preserving relabelling functions or processes that can perform infinitely many

† A similar distinction between ‘lazy and eager observations’ is also present in (the rather different) setting of

the TCSP-based ‘Time Stability Model’ proposed in Reed and Roscoe (1988). In this timed model the basis

actions are observed in two different ways: a denotes the communication of action a at any time while â

denotes the communication of action a at the moment it becomes available.
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Table 3. Delay Distribution Equations.

(n + m)p = (n)(m)p

(n)(p1 | p2) = (n)p1 | (n)p2

(n)(p1 + p2) = (n)p1 + (n)p2

(n)(p \B) = (n)p \B
(n)(p[Φ]) = (n)p[Φ]

rec x.(n)s = (n)(s{rec x.(n)s/x})

actions at the same time. In such cases, lazy equivalence and eager equivalence are strictly

weaker than performance congruence by Proposition 3.1.

3.1. Choosing at the same time

We distinguish between languages that allow different alternatives to be chosen at different

times or only at the same time. More precisely, if p1 and p2 are processes without delay

operators at the top level, ‘alternative timed compositions’ are of the form

(t1)p1 + (t2)p2,

where t1 and t2 can be different†. ‘Timed alternative compositions’ are, by contrast, of

the form

(t)(p1 + p2)

(possibly with applications, from right to left, of the rules in Table 3).

These two choice operators are conceptually different. They can be distinguished from

a timing point of view. In (t)(p1 + p2) the choice only involves the functionality of the

system (the choice between p1 and p2), whereas in (t1)p1 + (t2)p2, the choice involves

timed alternatives (timed functionalities) of the system.

Let ∼= be the least congruence that holds the laws in Table 3, and S ⊆ P (ranged

over by s1, s2, . . .) be the set of closed terms generated by the following grammar (terms

without delays operators at the top level):

s ::= nil a.q
∑
i∈I

si
∏
i∈I

si s \B s[Φ] x rec x.s

Then, we say that a choice
∑

i∈I pi is at the same time when either
∑

i∈I pi ∈ S or∑
i∈I pi

∼= (n)
∑

i∈I si for some n ∈ �+ ; otherwise,
∑

i∈I pi is at different times.

The next propositions show that lazy equivalence and eager equivalence are unrelated

when choices at different times are taken into account.

Proposition 3.2. If processes with choices at different times are allowed, there are p1 and

p2 in P such that p1 ∼l p2 does not imply p1 ∼e p2.

† This non-deterministic choice operator behaves as the weak non-deterministic choice ⊕ in TCCS (Moller

and Tofts 1990).
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Proof. Consider the following pair of processes:

p1 = a+ (k)a and p2 = a

where k ∈ �+ . They are lazy equivalent since each transition out of the right-hand

side addend of p1 can be matched by delayed transitions out of p2. They are not eager

equivalent, since p1 can perform an eager transition at time k + f(a) while p2 cannot.

More generally, p1 = a +
∑

i∈�+ (i)a is ∼l -equivalent, but not ∼e -equivalent, to p2.

Proposition 3.3. If processes with choices at different times are allowed, there are p1 and

p2 in P such that p1 ∼e p2 does not imply p1 ∼l p2.

Proof. Consider the following pair of states:

p1 = : (a | (k)b) + a.b and p2 = a | (k)b

where k ∈ �+ is such that k = f(a). They are eager equivalent since each transition out

of the left-hand side addend of p1 can be matched by a corresponding transition out of

p2. Moreover, they are not lazy equivalent. Choose r > 0. Then it is easy to convince

oneself that lazy transition

(0 ⇒ p1)
〈a,f(a)+r,r〉
−−−−−→ (f(a) + r ⇒ b)

cannot be matched by p2.

3.2. Relabelling by preserving action duration

We distinguish between languages with relabelling functions that do not preserve the

duration of the actions (for example, Φ(a) = b with f(a) �= f(b) is allowed), and languages

with duration preserving relabelling functions (that is, f(a) = f(Φ(a)) for every a ∈ Act ).

If non-duration preserving relabelling functions are taken into account, lazy equivalence

and eager equivalence are unrelated.

Proposition 3.4. If processes with non-duration preserving relabelling functions are al-

lowed, there are p1 and p2 in P such that p1 ∼l p2 does not imply p1 ∼e p2.

Proof. Consider two actions a, b ∈ Act such that f(a) < f(b), and a relabelling function

Φ (non-duration preserving such that Φ(a) = a, Φ(b) = a). Moreover, let

p1 = (a+ b)[Φ] and p2 = a.

Clearly, p1 ∼l p2. However, p1 �∼e p2 since p1 can perform an eager a-action at time f(b)

whereas p2 can only perform the same action at time f(a) < f(b).

Proposition 3.5. If processes with non-duration preserving relabelling functions are al-

lowed, there are p1 and p2 in P such that p1 ∼e p2 does not imply p1 ∼l p2.

Proof. Consider actions a, b, c ∈ Act such that f(c) = f(a) + f(b), and a relabelling

function Φ such that Φ(a) = a, Φ(b) = b, Φ(c) = b. Let p1 and p2 be the pair of processes
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defined by

p1 = (a.b+ (a | c))[Φ] and p2 = (a | c)[Φ].

In order to prove p1 ∼e p2 the critical case is when the left-hand side addend of (0 ⇒ p1)

performs an a-action. Transition (0 ⇒ p1)
〈a,f(a),0〉
−−−−→ (f(a) ⇒ b)[Φ] can only be matched by

(0 ⇒ p2) performing (0 ⇒ p2)
〈a,f(a),0〉
−−−−→ (f(a) ⇒ nil | 0 ⇒ c)[Φ].

These two target states are clearly eager equivalent. If these two transitions are delayed

(r > 0),

(0 ⇒ p1)
〈a,f(a)+r,r〉
−−−−−→ (f(a) + r ⇒ b)[Φ]

and

(0 ⇒ p2)
〈a,f(a)+r,r〉
−−−−−→ (f(a) + r ⇒ nil | 0 ⇒ c)[Φ]

we obtain two target states that are not lazy congruent. Indeed, the former can perform

a b-action at time f(a) + r + f(b), whereas the latter can only perform the same action at

time f(c) = f(a) + f(b). Hence, p1 �∼l p2.

3.3. Performing finitely many actions at the same time

We distinguish between languages with processes that are able to perform infinitely many

visible actions at a fixed time and languages with processes that are able to perform only

finitely many visible actions at a fixed time (in the rest of the paper we will drop the word

‘visible’). As an example, consider processes

p =
∏
i∈�

{pi = a} and q =
∑
i∈�

a| . . . |a︸ ︷︷ ︸
i times

,

and note that, when starting at time 0, process p can perform an infinite sequence of

a-actions at time f(a), whereas process q can only perform finite sequences of a-actions

(although of unbounded length) at the same time.

Processes with infinitely many actions at a given time can be defined in two ways:

(a) Unguarded Recursion. That is, a variable x in a rec x.p term can appear outside the

scope of an a.( ) prefix operator. For instance, process rec x.(x|a.nil) uses unguarded

recursion to generate infinite concurrent a-actions at time f(a) by assuming that the

execution starts at time 0.

(b) Infinite Parallel Composition. That is, processes of the form
∏

i∈I pi, where I can be

infinite.

We now prove that lazy equivalence and eager equivalence are unrelated when

unguarded recursion or infinite parallel composition are allowed.

Note that the proofs rely strongly on the fact that processes can perform infinitely many

actions at a given time, independent of the fact that they are generated by unguarded

recursion or infinite parallel composition. Thus, we will use p∞ to denote a generic process

that can generate infinitely many actions labelled with a at time f(a), when starting at

time 0. It can be either process pr = rec x.(x | a.nil) (in the case of unguarded recursion) or

process ps =
∏

i∈I{pi = a} with I infinite set (in the case of infinite parallel composition).
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Proposition 3.6. If processes with infinitely many actions at a given time are allowed, there

are p1 and p2 in P such that p1 ∼l p2 does not imply p1 ∼e p2.

Proof. Processes p1 and p2 defined as

p1 = b.a | p∞ and p2 = b | p∞

are lazy equivalent, but not eager equivalent. To prove p1 ∼l p2, the only critical case is

just when a b-action is performed. Suppose

(0 ⇒ p1)
〈b,f(b)+r,r〉
−−−−−→ d1 = (f(b) + r ⇒ a) | (0 ⇒ p∞).

This transition can be matched by performing

(0 ⇒ p2)
〈b,f(b)+r,r〉
−−−−−→ d2 = (f(b) + r ⇒ nil) | (0 ⇒ p∞).

States d1 and d2 are lazy equivalent. Again, the only critical case is when the left most

component of d1 performs the a-action. This move is easily matched by a delayed transition

out of d2. In particular, if the a-action performed by d1 is eager, transition

d1

〈a,f(b)+r+f(a),0〉
−−−−−−−−→ (f(b) + r + f(a) ⇒ nil) | (0 ⇒ p∞)

cannot be matched by a corresponding eager transition out of d2. Hence, p1 �∼e p2.

Proposition 3.7. If processes with infinitely many actions at a given time are allowed, there

are p1 and p2 in P such that p1 ∼e p2 does not imply p1 ∼l p2.

Proof. Processes p1 and p2 defined as

p1 = (b+ b.p∞) | b.p∞ and p2 = b | b.p∞

are eager equivalent, but not lazy equivalent.

In order to prove that p1 ∼e p2, the only critical case is when the sub-component b.p∞
of (b + b.p∞) in p1 performs the b-action – namely,

(0 ⇒ p1)
〈b,f(b),0〉
−−−−→ d1 = (f(b) ⇒ p∞) | (0 ⇒ b.p∞).

Then p2 matches this transition with the following move:

(0 ⇒ p2)
〈b,f(b),0〉
−−−−→ d2 = (0 ⇒ b) | (f(b) ⇒ p∞).

It is easy to prove that d1 and d2 are eager equivalent. However, if p1 performs the same

action in a lazy way,

(0 ⇒ p1)
〈b,f(b)+r,r〉
−−−−−→ d′

1 = (f(b) + r ⇒ p∞) | (0 ⇒ b.p∞)

with r > 0, then the only reasonable transition p2 can perform is

(0 ⇒ p2)
〈b,f(b)+r,r〉
−−−−−→ d′

2 = (0 ⇒ b) | (f(b) + r ⇒ p∞).

States d′
1 and d′

2 cannot be lazy equivalent since after matching

d′
1

〈b,f(b),0〉
−−−−→ d′′

1 = (f(b) + r ⇒ p∞) | (f(b) ⇒ p∞)
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with

d′
2

〈b,f(b),0〉
−−−−→ d′′

2 = (f(b) ⇒ nil) | (f(b) + r ⇒ p∞),

target state d′′
1 can perform an eager a-action at time f(b) + f(a), but d′′

2 cannot.

If unguarded recursion and infinite parallel composition are forbidden, our processes

can only perform finitely many actions at a fixed time. The rest of this section is devoted

to proving that if the language allows only

— finitely many actions to be performed at a given time,

— choices at the same time, and

— duration preserving relabelling functions,

then lazy equivalence coincides with performance congruence†, while eager equivalence

still remains weaker than performance congruence. Thus, over the actual language, the

lazy experiments have more discriminating power than the eager ones.

Theorem 3.1. Let p1, p2 ∈ Pcra . Then p1 ∼l p2 if and only if p1 ∼c p2.

Proof. We will just give a sketch of the proof here – see Appendix A for a detailed

proof. The if implication follows simply by Proposition 3.1. To prove the only if implication

we show that every ∼l -bisimulation is also a PC-bisimulation. The only critical case is

eagerness of transitions, item (iii), since the laziness and the busy-waiting items, (i) and

(ii), are common requirements of both ∼l -bisimulation and PC-bisimulation. Hence, we

have to prove that every transition with null execution delay out of a timed state can be

matched by a transition with null execution delay out of the corresponding ∼l -bisimilar

timed state. The proof relies on the following two steps:

(a) Define a new bisimulation equivalence, called (n, t)-performance congruence and de-

noted ∼n
t . This equivalence concentrates on visible actions with duration n and

equates processes if and only if they can perform the same actions at time t. Its formal

definition is similar to that of performance congruence when transitions are of the form

d
〈a,t,r〉
−−→ d′, where a is such that f(a) = n. In the current language ∼n

t holds the following

properties:

(1) (n, t)-performance congruence is a congruence;

(2) ∀n ∈ �+ and ∀t ∈ �, d1 ∼l d2 implies d1 ∼n
t d2;

(3) d1

〈a,t,r〉
−−→ d2 and r > 0 imply d1 �∼n

t−r d2;

(4) d1

〈a,t,0〉
−−→ d2 implies d1 ∼n

t∗ d2, for every t∗ < t.

(b) Prove that if d1 ∼l d2, then d1

〈a,t,0〉
−−→ d′

1 implies d2

〈a,t,0〉
−−→ d′

2 (and symmetrically for d2) and

d′
1 ∼l d

′
2. Since d1 ∼l d2, we certainly have d1

〈a,t,0〉
−−→ d′

1 implies d2

〈a,t,r〉
−−→ d′

2 and d′
1 ∼l d

′
2. For

a contradiction, assume r > 0. Then, item (2) implies d1 ∼n
t−r d2 and d′

1 ∼n
t−r d

′
2 implies

d1 ∼n
t−r d

′
1 by item (4). Item (1) (and, in particular, transitivity) implies d2 ∼n

t−r d
′
2. This

contradicts item (3), which, instead, states d2 �∼n
t−r d

′
2.

† This result was proved in Corradini and Di Cola (2001) over a language without delay operators.
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Proposition 3.8. Let p1, p2 ∈ Pcra . Then p1 ∼e p2 does not imply p1 ∼c p2.

Proof. Consider the pair of processes p1 and p2 defined as

p1 = (c.a | ā | b.ā) \ {a} and p2 = (c.a | ā | b) \ {a},

where each action has the same duration, k say. They are eager equivalent but not

performance congruent. The more involved case when proving p1 ∼e p2 is when p1 and p2

perform the b-action followed by the c-action or vice versa. After these transitions the

target states are d1 = (k ⇒ a | 0 ⇒ ā | k ⇒ ā)\{a} and d2 = (k ⇒ a | 0 ⇒ ā | k ⇒ nil)\{a},
respectively. Both d1 and d2 can only perform a τ-move at time 2k. Hence, p1 and p2 are

eager equivalent. One can easily see that p1 and p2 cannot be performance congruent by

performing the b-action with delay.

From the previous result and the coincidence between performance congruence and

lazy equivalence (Theorem 3.1), we have that eager equivalence does not imply lazy

equivalence.

3.4. Performing visible actions

We distinguish between languages where process synchronisation is allowed and languages

where process synchronisation is forbidden.

The language presented in Section 2 allows process synchronisation. To avoid process

synchronisation, we can either remove the rule Synch or restrict the set of basic actions

Act to A (in this way prefixes of the form ā.( ) are not allowed and the rule Synch in

Table 2 never applies when one derives the transitional semantics of a process term). In

both cases, the restrictions on the syntax of states and the transitional semantics are as

expected.

Since the proofs given in the previous sections do not depend on invisible actions (apart

from Proposition 3.8 for which we will get a surprising result when invisible actions are

forbidden), they can be exploited when the actual language allows visible actions only.

Thus, the main result of this section states that when the language allows only

— visible actions,

— finitely many actions to be performed at a given time,

— choices at the same time, and

— duration preserving relabelling functions,

performance congruence, eager equivalence and lazy equivalence coincide. Hence, in this

case, testing for both eagerness and laziness (as performance congruence does) does

not add any new insight compared with just testing for either eagerness or laziness

separately. Similarly, since eager equivalence and lazy equivalence coincide, eager and

lazy experiments have the same discriminating power. This latter result says, in other

words, that when experimenting over processes we have two ‘equivalent’ ways to proceed:

step-by-step (eager experiments) or jumping through time (lazy experiments).

We state the coincidence between performance congruence and eager equivalence

(the coincidence between performance congruence and lazy equivalence was proved in

Theorem 3.1).
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Theorem 3.2. Let p1, p2 ∈ Pcrav . Then p1 ∼e p2 if and only if p1 ∼c p2.

Proof. We will just give a sketch of the proof here – see Appendix B for a detailed

proof. The if implication follows by Proposition 3.1. The only if implication follows from

proving that a suitable ∼e -bisimulation is also a PC-bisimulation. This means we have to

prove that every transition with execution delay greater than 0 out of a timed state has to

be matched by a transition with arbitrary execution delay out of the corresponding ∼e

-bisimilar timed state. This is the only critical case since eagerness of transitions, item (iii),

is a common requirement of both ∼e -bisimulation and PC-bisimulation. The proof relies

on the following main, more involved, statements:

(a) If two D states, d′ and d′′, are eager equivalent, then there exists a pairwise

eager equivalent decomposition of their parallel components. In other words, let ≡
denote the congruence induced by the commutative and associative properties, the

existence of unit object of parallel composition and the distribution of relabelling and

restriction over parallel composition (remember that this language does not allow

synchronisation). Then we have d′ ≡ (Πi∈I (ti ⇒ pi)), d
′′ ≡ (Πi∈I (ti ⇒ qi)) and for each

i ∈ I it is ti ⇒ pi ∼e ti ⇒ qi (where the various pi and qi are in S)†.

(b) Let t ⇒ p∼e t ⇒ q for some t > 0. Then, for every t∗ > t, it is t∗ ⇒ p∼e t
∗ ⇒ q.

(c) ∼e is preserved by every operator of the actual language.

The above statements are enough to prove that the relation

� = {(d′, d′′) | d′ ≡ (Πi∈I (ti ⇒ pi)), d
′′ ≡ (Πi∈I (ti ⇒ qi)), I = {1, . . . , n}

such that n ∈ �+ and, for each i ∈ I, (ti ⇒ pi) ∼e (ti ⇒ qi),

ti ∈ �, pi, qi ∈ S}

is a PC-bisimulation.

It is worth noting that eager equivalence is not preserved by parallel composition with

synchronisation when invisible actions are taken into account.

Remark 3.1. Consider the pair of processes

p1 = (c.wait 3.a.b | c.wait 3.a.b | ā)\{a}‡

and

p2 = (c.wait 3.a.b | c.(wait 3.a.b + a.wait 3.b) | ā)\{a},

and assume that the duration of a, b and c is 3 (as well as the duration of co-actions

ā and c̄). In Corradini (1998) it was proved that p1 ∼e p2 and that p1 | c̄.c̄ �∼e p2 | c̄.c̄.

We conclude this section by showing that lazy equivalence is not preserved by parallel

composition with synchronisation when the language allows, respectively, only choices at

† A similar decomposition lemma has been fruitful in Bérard et al. (2000) for deciding eager equivalence in

polynomial time.
‡ wait t. p is an abbreviation for a process that evolves into p after performing an internal action taking t

time units. It is possible to think of wait t. p as an abbreviation for (a|ā.p)\{a} (where a is not free in p and

f(a) = t).
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different times (Remark 3.2), relabelling functions non-duration preserving (Remark 3.3)

and infinitely many actions at a fixed time (Remark 3.4).

Remark 3.2. Consider the pair of processes p1 = a+ (k)a and p2 = a given in

Proposition 3.2 (k ∈ �+). It has been shown that p1 ∼l p2. Now consider a third process

p3 = ā. The parallel compositions p1 | p3 and p2 | p3 are not lazy equivalent since the former

can perform a τ-action at time k+ f(a) while the latter can only do the same at time f(a).

Remark 3.3. Consider the pair of processes p1 = (a+ b)[Φ] and p2 = a where actions

a, b ∈ Act are such that f(a) < f(b). Moreover, assume that Φ(a) = a, Φ(b) = a. In

Proposition 3.4 we have shown that they are such that p1 ∼l p2. However, p1 | p3 and

p2 | p3, where p3 = ā are such that p1 | p3 �∼l p2 | p3, since the former can perform a τ-action

at time f(b) or at time f(a), while the latter can only perform τ at time f(a) < f(b).

Remark 3.4. Consider the pair of processes p1 = b.a | p∞ and p2 = b | p∞ given in

Proposition 3.6. They are such that p1 ∼l p2. Now, consider process p3 = ā and the parallel

compositions p1 | p3 and p2 | p3. We have p1 | p3 �∼l p2 | p3. Indeed, consider the b-transitions

0 ⇒ (p1 | p3)
〈b,f(b),0〉
−−−−→ d1 = (f(b) ⇒ a) | (0 ⇒ p∞) | (0 ⇒ ā)

0 ⇒ (p2 | p3)
〈b,f(b),0〉
−−−−→ d2 = (f(b) ⇒ nil) | (0 ⇒ p∞) | (0 ⇒ ā).

The target states d1 and d2 are such that d1 �∼l d2 since the former can perform a τ-action

at time f(a) + f(b), while the latter cannot.

The intuition behind these negative congruence results is that when busy-waiting process

synchronisation is allowed but either item (ii) or item (iii) is removed from the definition of

performance congruence, the resulting equivalences deal with ‘internal’ synchronisations

and ‘external’ synchronisations in a non-consistent way (recall the discussion after

Definition 2.1). Because of this inconsistent treatment of internal and external syn-

chronisations, eager equivalence (performance equivalence) and lazy equivalence have

the unfortunate effect of losing compositionality. They are not preserved by parallel

composition with synchronisation, as the above remarks have shown.

4. Concluding remarks and related work

We have investigated the discriminating power of timed actions in timed computation.

Such power depends on the language for the description of time-critical systems. We

have detected four significant language features that give rise to different languages and

make three performance-sensitive equivalences (performance congruence, lazy equivalence

and eager equivalence) behave differently over these languages. Table 4 summarises our

results.

Note that if process synchronisation is allowed and eager equivalence and/or lazy

equivalence do not coincide with performance congruence, they are not even composi-

tional. In particular, besides being unrelated equivalences, they are not even congruences

for parallel composition with synchronisation. Of course, congruence properties of process

equivalences are of great benefit during the verification phase of concurrent and distributed
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Table 4. Relationships among the three equivalences.

Performing

Relabelling finitely many

Choosing at the by preserving actions at the Performing only

same time action duration same time visible actions Results

∼c � ∼l

No Yes/No Yes/No Yes/No ∼c � ∼e

∼e �= ∼l

∼c � ∼l

Yes/No No Yes/No Yes/No ∼c � ∼e

∼e �= ∼l

∼c � ∼l

Yes/No Yes/No No Yes/No ∼c � ∼e

∼e �= ∼l

∼c = ∼l

Yes Yes Yes No ∼c � ∼e

∼l � ∼e

Yes Yes Yes Yes ∼l = ∼c = ∼e

systems. Thus, our work also shows how congruence properties of performance-sensitive

equivalences may depend on the expressive power of the language. As a general result,

we have that the three items in the definition of performance congruence are the required

ingredients for capturing the coarsest congruence within the performance equivalence in

Gorrieri et al. (1995) (Corradini 1998).

The present work is related to Corradini et al. (to appear) and Corradini and Di

Cola (2001). The former develops a mathematical framework for describing and reasoning

about semantic theories for processes with durational actions. The comparison, however,

only involves the semantic theories in the sense that a common language is considered for

all of them. The latter mainly proves Theorem 3.1, which, in turn, solves a conjecture in

Corradini (1998). Here, we have extended that work by adding eager equivalence to the

comparison between lazy equivalence and performance congruence, facilities for process

delay and some more significant language features. In general, the addition of delayed

processes complicates the proofs of our statements considerably.

Appendix A. A proof of Theorem 3.1

The proof of Theorem 3.1 requires some new notions and technical results. For the sake

of comprehensiveness, this section is divided into three subsections.

Recall that in this section the current language is Pcra ; the set of P processes that

allow finitely many actions to be performed at a given time, choices at the same time and

duration preserving relabelling functions. Invisible actions are taken into account. Since
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the language in Appendix B is a sublanguage of Pcra , some results stated here will be

exploited to prove Theorem 3.2 (in Appendix B).

Remark A.1. We say that a choice
∑

i∈I pi is at the same time when either
∑

i∈I pi ∈ S
or

∑
i∈I pi

∼= (n)
∑

i∈I si for some n ∈ �+; otherwise,
∑

i∈I pi is at different times (see

Section 3.1). Anyway, in this section (and Appendix B) we will only deal with summations

of the form
∑

i∈I pi ∈ S. Summations of the form
∑

i∈I pi
∼= (n)

∑
i∈I si can be dealt with in

the usual way. Note that the rules in Table 3 are sound with respect to all the equivalences

we consider, and these equivalences are congruences over the actual languages. Thus we

can assume that every occurrence of a summation
∑

i∈I pi is replaced in a process term

with the ∼=-equivalent one (n)
∑

i∈I si. Then every (n)
∑

i∈I si term can be thought of as

the composition of a delay operator (n) and a summation
∑

i∈I si (where every si does

not have delay operators at the top level). Both of them are primitive operators in the

language and will be dealt with separately in inductive proofs.

A.1. Infinite computations

First we prove that when unguarded recursion and infinite parallel composition are

removed from the calculus, no state can perform infinite computations at a given time.

Actually, we can prove more: each state cannot start the execution of infinitely many

concurrent actions at the same time. The following definition makes this latter claim more

precise.

We start by defining the derivatives of a state.

Definition A.1. We say that d′ ∈ Dcra is a derivative of d ∈ Dcra if and only if either

d′ = d or there exists a set of states {d0, . . . , dk} (di ∈ Dcra ) such that d0 = d, dk = d′ and

di−1

〈µi,ti ,ri〉−−−→ di for some ti, ri ∈ � and µi ∈ Actτ (0 < i � k).

Then, we formalise when a Dcra state, or, equivalently, a Pcra process, has an infinite

computation at (starting) time t.

Definition A.2. Let t ∈�.

— A state d ∈ Dcra has an infinite computation at t time if and only if there exist a

derivative d′ of d and an infinite set of states {d0, . . . , di, . . .} such that d0 = d′, and for

every i � 0 we have di
〈ai,t,ri〉−−→ di+1, for some ai ∈ Act and ri � 0.

— A state d ∈ Dcra has an infinite computation at t starting time if and only if there exist

a derivative d′ of d and an infinite set of states {d0, . . . , di, . . .} such that d0 = d′, and

for every i � 0 we have di
〈ai,ti ,ri〉−−−→ di+1 and ti − f(ai) − ri = t for some ai ∈ Act and

ti, ri � 0.

— A process p ∈ Pcra has an infinite computation at t (starting) time if and only if 0 ⇒ p

has an infinite computation at t (starting) time.

Terms in Dcra do not have infinite computations at t (starting) time. For standard

reasons, we prove it for open terms. In the following lemma, given q, q1, . . . , qk ∈ Qcra and

https://doi.org/10.1017/S0960129503004018 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503004018


F. Corradini and D. Di Cola 638

x1, . . . , xk ∈ Var, we use q[q1/x1, . . . , qk/xk] to denote term q where every occurrence of xi
is replaced by qi.

Lemma A.1. Let q ∈ Qcra such that every free variable is guarded. Then, for every

set {x1, . . . , xk} ⊇ F(q), ∀px1
, . . . , pxk ∈ Pcra and ∀t, t′ ∈ �, we have that the state

t′ ⇒ q[px1
/x1, . . . , pxk/xk] does not have infinite computations at t (starting) time.

Proof. Assume q ∈ Qcra such that each free variable is guarded, {x1, . . . , xk} ⊇ F(q),

px1
, . . . , pxk ∈ Pcra , t, t

′ ∈ �, and prove that state t′ ⇒ q[px1
/x1, . . . , pxk/xk] does not have

infinite computations at t time by induction on the syntactic structure of q (the case

of infinite computations at t starting time follows by similar reasoning). Moreover,

assume different names from {x1, . . . , xk} for variables appearing within q. Otherwise,

apply alpha-conversion to avoid collision of names. This does not change the possibility

of having infinite computations at t time. Let t′ < t, since otherwise the proof is simple,

indeed, t′ ⇒ q[px1
/x1, . . . , pxk/xk] cannot perform any action in Act at time t.

The more involved case is when q is a recursive process. We only prove this case in

detail because all the others are simpler and follow by simple inductive reasoning.

Assume q = rec x.q1. Because we have assumed that q has different variable names from

{x1, . . . , xk} , we can suppose x �∈ {x1, . . . , xk} . Moreover, in spite of the fact that recursion

is guarded, x is a free guarded variable for q1. Hence, {x1, . . . , xk, x} ⊇ F(q1). For each

p ∈ Pcra , by the induction hypothesis we have that t′ ⇒ q1[px1
/x1, . . . , pxk/xk, p/x] does

not have infinite computations at t time. Note that t′ ⇒ q[px1
/x1, . . . , pxk/xk] coincides

with

t′ ⇒ rec x.(q1[px1
/x1, . . . , pxk/xk]).

Thus, if by contradiction this state had infinite computations at t time, state

t′ ⇒ (q1[px1
/x1, . . . , pxk/xk])[rec x. (q1[px1

/x1, . . . , pxk/xk])/x],

which coincides with

t′ ⇒ q1[px1
/x1, . . . , pxk/xk, rec x.(q1[px1

/x1, . . . , pxk/xk])/x],

would also have infinite computations at t time.

By taking p = rec x.q1[px1
/x1, . . . , pxk/xk], we contradict the induction hypothesis.

As a corollary of the previous lemma, we have a similar result in the class of closed

Dcra states (and, hence, Pcra processes also).

Proposition A.1. Let d ∈ Dcra . Then, for every t ∈ �, state d does not have infinite

computations at t (starting) time.

A.2. Parallel contexts

A parallel context, denoted by C[], is a term with a single ‘hole’ (single occurrence of [])

of the following grammar:

C[] ::= [] C[] | d d |C[] C[] \B C[][Φ],

where d is a Dcra term.
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Given a state d and a parallel context C[], we use C[d] to denote the state obtained by

replacing [] with d in C[]. We use C to denote the state C[0 ⇒ nil].

The following lemma proves that whenever a state can perform a lazy (eager) transition

at time t and delay r > 0 (r = 0), it can also perform a corresponding eager (lazy with

arbitrary delay k) transition at time t − r (t + k). Its proof follows by simple inductive

reasoning.

Lemma A.2. Let d1, d2 ∈ Dcra , a ∈ Act , t, r ∈ �, k ∈ �+ and d1

〈a,t,r〉
−−→ d2. Then, there are

a parallel context C[] and a process p ∈ Pcra such that d2 = C[t ⇒ p] and:

(1) d1

〈a,t−r,0〉
−−−→ C[t − r ⇒ p], if r > 0 (laziness vs. eagerness)

(2) d1

〈a,t+k,k〉
−−−→ C[t + k ⇒ p], if r = 0 (eagerness vs. laziness).

A.3. The main results

We now define a new bisimulation equivalence, called (n, t)-performance congruence and

denoted ∼n
t . This equivalence concentrates on visible actions with duration n, and equates

processes whenever they can perform the same actions at time t.

Definition A.3 ((n, t)-performance congruence).

(1) Let n ∈ �+ and t ∈ �. The functional PCn
t : Rel → Rel is defined, for each � ∈ Rel,

as follows: (d1, d2) ∈ PCn
t (�) if, for each a ∈ Act(n),

— d1

〈a,t,r〉
−−→ d′

1 implies d2

〈a,t,r′〉
−−→ d′

2 for some d′
2 ∈ Dcra and r′ � 0 such that (d′

1, d
′
2) ∈ �.

(2) A relation � ∈ Rel will be called PCn
t -bisimulation if � ⊆ PCn

t (�).

(3) We say that two states d1 and d2 are (n, t)-performance congruent, d1 ∼n
t d2, if and only

if there exists a PCn
t -bisimulation � such that (d1, d2) ∈ �.

(4) We say that two processes p1 and p2 are (n, t)-performance congruent, p1 ∼n
t p2, if and

only if (0 ⇒ p1) ∼n
t (0 ⇒ p2).

Clearly, lazy equivalence is strictly finer than (n, t)-performance congruence, and ∼n
t

is preserved by all operators of the language. The former statement follows by their

definitions, while the latter follows on standard lines.

Proposition A.2. Let p1, p2 ∈ Pcra such that p1 ∼l p2. Then, p1 ∼n
t p2 for each n ∈ �+ and

t ∈ �.

A key lemma of this section states that the target state of a transition at time t over

an action a out of a state d cannot be (f(a), t)-performance congruent to d. It will exploit

the fact that states, in the current language, cannot perform infinite computations at time

t (Proposition A.1).

Lemma A.3. Let d1, d2 ∈ Dcra , a ∈ Act , t ∈ � and d1

〈a,t,r1〉
−−→ d2 with r1 � 0. Then, d1 �∼f(a)

t d2.

Proof. Assume d1, d2 ∈ Dcra , a ∈ Act , t, r1 ∈ � such that d1

〈a,t,r1〉
−−→ d2. Moreover, to

facilitate the notation, consider f(a) = n. For a contradiction, suppose d1 ∼n
t d2. Then,
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there exists a set of states {d1, d2, . . . , di, . . .} such that

d1

〈a,t,r1〉
−−→ d2 and d1 ∼n

t d2 ⇒ d2

〈a,t,r2〉
−−→ d3 and d2 ∼n

t d3

d2

〈a,t,r2〉
−−→ d3 and d2 ∼n

t d3 ⇒ d3

〈a,t,r3〉
−−→ d4 and d3 ∼n

t d4

...
...

...

di
〈a,t,ri〉−−→ di+1 and di ∼n

t di+1 ⇒ di+1

〈a,t,ri+1〉
−−−→ di+2 and di+1 ∼n

t di+2

...
...

...

where ri are proper execution delays. By Proposition A.1, there must exist k ∈ � such that

state dk cannot perform any action a at time t. Otherwise, d1 would have an infinite compu-

tation at time t. However, k leads to a contradiction with the hypothesis because we would

have dk−1

〈a,t,rk−1〉
−−−→ dk and dk−1 ∼n

t dk , while, from the hypothesis, dk cannot perform any

action a at time t. Thus, states dk−1 and dk cannot be (n, t)-performance congruent.

On the other hand, if the transition out of d at time t over the action a is eager, the

corresponding target state is (f(a), t∗)-performance congruent to d, provided that t∗ < t.

Lemma A.4. Let d1, d2 ∈ Dcra , n ∈ �+ , a ∈ Act(n) and t ∈ � such that d1

〈a,t,0〉
−−→ d2. Then,

d1 ∼n
t∗ d2 for each t∗ < t.

Proof. Assume d1, d2 ∈ Dcra , n ∈ �+ , a ∈ Act(n) , t ∈ � and t∗ < t such that d1

〈a,t,0〉
−−→ d2.

We proceed by induction on the depth of transition d1

〈a,t,0〉
−−→ d2 by case analysis on the

structure of state d1.

(a) Case d1 = t′ ⇒ nil is impossible, for each t′ ∈ �.

(b) Case d1 = t′ ⇒ b.p with b �= a and t′ �= t − n is impossible. Assume b = a with states

d1=t − n ⇒ a.p and d2 = t ⇒ p. Neither state can perform any action in Act(n) at

time t∗ < t. Hence, d1 ∼n
t∗ d2.

(c) Case d1 = t′ ⇒ (m)p with t′ �= t − m − n is impossible. Assume d1=t − m − n ⇒ (m)p.

By the operational rules, d1

〈a,t,0〉
−−→ d2 is derivable if and only if t′ + m ⇒ p

〈a,t,0〉
−−→ d2. By

the induction hypothesis, t′ + m ⇒ p∼n
t∗ d2. By considering the Clock Distribution

Equations in Table 1, this also means d1 ∼n
t∗ d2.

(d) Let d1 = d3 | d4 and assume d3 | d4

〈a,t,0〉
−−→ d′

3 | d4 if d3

〈a,t,0〉
−−→ d′

3 (the other case is similar). By

the induction hypothesis, d3 ∼n
t∗ d

′
3. Because (n, t)-performance congruence is preserved

by parallel composition, we also have d3 | d4 ∼n
t∗ d

′
3 | d4.

(e) Cases d1 = d′
1 \B and d1 = d′

1[Φ] follow by similar reasoning to the previous one.

(f) Let d1 = t′ ⇒
∑

i∈I pi. Assume
∑

i∈I pi ∈ S and t′ = t − f(a) (otherwise the proof

would be trivial). By the operational rules, d1

〈a,t,0〉
−−→ d2 is derivable if and only if ∃j ∈ I

such that t′ ⇒ pj
〈a,t,0〉
−−→ d2. By the induction hypothesis, we must have that t′ ⇒ pj ∼n

t∗ d2.

By the transitivity of ∼n
t∗ , it is then sufficient to prove that (t′ ⇒ pj) ∼n

t∗ (t′ ⇒
∑

i∈I pi)

to conclude (t′ ⇒
∑

i∈I pi) ∼n
t∗ d2. Indeed, since t′ is the local clock of both (t′ ⇒ pj)

and (t′ ⇒
∑

i∈I pi), each transition performing actions in Act(n) out of these two

states is visible at completion time t′ + n = t. By hypothesis, t∗ <t, and they are
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(n, t∗)-performance congruent just because they cannot perform any action in Act(n)

at time t∗.

(g) Case d1 = (t′ ⇒ rec x.p) is similar to the previous one.

The next lemma is related to lazy transitions. If the transition out of d at time t

over the action a is lazy with delay r > 0, the corresponding target state cannot be

(f(a), t − r)-performance congruent to d.

Lemma A.5. Let d1, d2 ∈ Dcra , a ∈ Act, and t ∈ � be such that d1

〈a,t,r〉
−−→ d2 with r > 0.

Then, d1 �∼f(a)
t−r d2.

Proof. Assume d1, d2 ∈ Dcra , a ∈ Act, and t ∈ � such that d1

〈a,t,r〉
−−→ d2 with r > 0. By

Lemma A.2 applied to transition d1

〈a,t,r〉
−−→ d2, there exist a parallel context C[] and a process

p′ such that d2 = C[t ⇒ p′] and d1

〈a,t−r,0〉
−−−→ d3 = C[t − r ⇒ p′]. By Lemma A.3 applied to this

latter transition, d1 �∼f(a)
t−r d3. To conclude the proof, we just have to show that d2 ∼f(a)

t−r d3 (if

for a contradiction, d1 ∼f(a)
t−r d2, then by the transitivity of (n, t)-performance congruence,

we also would have d1 ∼f(a)
t−r d3). Hence, to show d2 ∼f(a)

t−r d3, consider

� = {(C ′[t ⇒ p], C ′[t − r ⇒ p]) | C ′
[] is a parallel context and p ∈ P}.

Clearly, (d2, d3) ∈ �. It remains to prove that � is a PC(t−r)
f(a) -bisimulation. Consider pair

(d′
1, d

′
2) ∈ � such that (d′

1, d
′
2) = (C ′[t ⇒ p], C ′[t − r ⇒ p]) for some parallel context C ′

[]

and process p. Assume d′
1

〈b,t−r,r∗〉
−−−−→ d′′

1 for some b ∈ Act(f(a)) and r∗ � 0 (the other case

is similar). Because d′
1 = C ′[t ⇒ p] and t > t − r, we must have d′′

1 = C ′′[t ⇒ p] with

C ′ 〈b,t−r,r∗〉
−−−−→ C ′′, that is, component t ⇒ p cannot perform any action in Act(f(a)) at time

t − r. By similar reasoning, d′
2

〈b,t−r,r∗〉
−−−−→ d′′

2 = C ′′[t − r ⇒ p] also. Hence, (d′′
1 , d

′′
2) ∈ �.

Theorem 3.1. Let p1, p2 ∈ Pcra . Then p1 ∼l p2 if and only if p1 ∼c p2.

Proof. Assume p1, p2 ∈ Pcra . The fact that p1 ∼c p2 implies p1 ∼l p2 immediately follows

by Proposition 3.1. Now, suppose p1 ∼l p2 and prove p1 ∼c p2. By hypothesis, there exists

a ∼l -bisimulation � such that (0 ⇒ p1, 0 ⇒ p2) ∈ �. To conclude the proof it is sufficient

to show that � is also a PC-bisimulation. Consider pair (d1, d2) ∈ �. The laziness and

busy-waiting items immediately follow by the fact that � is a ∼l -bisimulation. Let us

prove the eagerness item. By hypothesis, d1 ∼l d2, and if d1

〈a,t,0〉
−−→ d′

1 (the symmetric case

is similar), we can derive d2

〈a,t,r〉
−−→ d′

2 with r � 0 and (d′
1, d

′
2) ∈ �. We show that it must

necessarily be r = 0. For a contradiction, suppose r > 0. By Lemma A.4 applied to

transition d1

〈a,t,0〉
−−→ d′

1 with t∗ = t− r < t, we have d1 ∼f(a)
t∗ d′

1. Moreover, by d1 ∼l d2, d
′
1 ∼l d

′
2

and the fact that ∼l implies ∼n
t (Proposition A.2), we have d1 ∼f(a)

t∗ d2 and d′
1 ∼f(a)

t∗ d′
2.

Hence, we obtain

d2 ∼f(a)
t∗ d1 ∼f(a)

t∗ d′
1 ∼f(a)

t∗ d′
2,

and, by the transitivity of ∼f(a)
t∗ , we have d2 ∼f(a)

t∗ d′
2. This contradicts Lemma A.5 applied

to transition d2

〈a,t,r〉
−−→ d′

2 with r > 0.
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Appendix B. A proof of Theorem 3.2

The proof of Theorem 3.2 also requires some new notions and technical results. We follow

a similar scheme to that of Appendix A by grouping related results/definitions into four

subsections.

The language we consider in this section is Pcrav ; the set of P processes that allow only

visible actions, finitely many actions to be performed at a given time, choices at the same

time, and duration preserving relabelling functions. Since the current language does not

have invisible actions, we can exploit the results stated in Appendix A without problem.

In particular, Proposition A.1 will be useful.

B.1. Over-timing relation

Consider �� = � ∪ {+∞, −∞} and the ordering on natural numbers extended by −∞ <

n < +∞ (∀n ∈ �).

Let d ∈ Dcrav and Y ∈ Act be a set of actions. Define function minclk that, given a

state d ∈ Dcrav and a set of actions Y ⊆ Act , returns the minimum local clock associated

with the components of d that are able to perform at least an action in Y . A local clock

with such a property will be called active.

Definition B.1. Let minclk : Dcrav × 2Act → �� be the least relation that satisfies the

following inference rules (where t ∈ �, a∈Act , Y ⊆ Act , d, d1, d2 ∈ Dcrav and pj , rec x.p ∈
Pcrav ):

minclk (t ⇒ nil, Y ) = +∞

minclk (t ⇒ a.p, Y ) =

{
t if a ∈ Y

+∞ otherwise

minclk (t ⇒ (n)p, Y ) = minclk (t + n ⇒ p, Y )

minclk (t ⇒
∑

i∈I pi, Y ) =

{
t′ if ∃ j ∈ I | minclk (t ⇒ pj , Y ) = t′

+∞ otherwise

minclk (t ⇒ rec x.p, Y ) = minclk (t ⇒ p[rec x.p/x], Y )

minclk (d1 | d2, Y ) = min{minclk (d1, Y ), minclk (d2, Y )}
minclk (d \B, Y ) = minclk (d, X), X = {a ∈ Y | a, ā �∈ B}
minclk (d[Φ], Y ) = minclk (d, X), X = {a ∈ Act | Φ(a) ∈ Y }.

The only rule worthy of note is the one regarding summation. Since we are dealing

with choices at the same time, we have that either minclk (t ⇒ pj , Y ) = ∞ for every j ∈ I ,

or, whenever j, k ∈ I such that minclk (t ⇒ pj , Y ) = t′ and minclk (t ⇒ pk, Y ) = t′′, we have

t′ = t′′. Note that if d cannot perform any action in Y (for example, when Y = �), we

have minclk (d, Y ) = +∞.

A similar definition can be given to detect the maximum active local clock in a state.

This function, denoted maxclk, is given by replacing minclk with maxclk, min with max

and +∞ with −∞ in Definition B.1.

minclk (d, Y ) and maxclk (d, Y ) are introduced to give a new relation over the set of

states, called over-timing, which, given two states d1, d2 ∈ Dcrav , says when d1 is over-timing
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Table 5. Over-Timing Relation.

minclock(d1) maxclock(d2) d1 �>d2

+∞ −∞ yes

+∞ n2 yes

n1 −∞ yes

n1 n2 if and only if n1 > n2

d2, that is, when every active local clock in d1 is strictly greater than any active local clock

in d2.

Definition B.2. Let d1 and d2 be Dcrav states. d1 is over-timing d2 (denoted d1 �>d2) if and

only if minclk (d1, Act ) > maxclk (d2, Act ).

Table 5 also says when two Dcrav states are in the over-timing relation. Note that every

pair of states d1 and d2 such that at least one cannot perform any action are in the

relation.

Over-timing is not a symmetric relation: states d1 = (3 ⇒ a+ b) | (5 ⇒ nil) and d2 =

(4 ⇒ b) are such that d2 �>d1 and d1 ��> d2. Regarding d3 = (2 ⇒ nil), we have d1 �>d3,

d2 �>d3 and d3 �>d1, d3 �>d2.

Remark B.1. The statement maxclk (d, Act ) � minclk (d, Act ) is false in general. Consider

d = (0 ⇒ nil) and note that minclk (d, Act ) = +∞ > −∞ = maxclk (d, Act ).

B.2. Transitions and the over-timing relation

In this section we relate over-timing between states and their transitions.

When minclk (d, Y ) = t, we have that d can perform a transition at starting time t with

null execution delay. Of course, a similar statement also holds when maxclk (d, Y ) = t, as

the following lemma shows.

Lemma B.1. Let d ∈ Dcrav , t ∈ � and Y ⊆ Act . minclk (d, Y ) = t (maxclk (d, Y ) = t,

respectively) implies

∃a ∈ Y and ∃d′ ∈ Dcrav such that d
〈a,t+f(a),0〉
−−−−−→ d′.

Proof. The proof is by induction on the depth of the proof of minclk (d, Y ) = t

(respectively, maxclk (d, Y ) = t).

The minclock function applied to a timed state t ⇒ p is greater than or equal than t. To

prove this statement, we focus on open terms as in Lemma A.1.

Lemma B.2. Let q ∈ Qcrav be such that every free variable is guarded. Then, for every set

{x1, . . . , xk} ⊇ F(q), ∀px1
, . . . , pxk ∈ P, ∀ t ∈ � and ∀Y ⊆ Act , we have

minclk (t ⇒ q[px1
/x1, . . . , pxk/xk], Y ) � t.
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Proof. The proof proceeds by structural induction on q and is similar in all respects

to that of Lemma A.1. Again we will only prove the more involved case when q is a

recursive process. The others are simpler and follow by simple inductive reasoning.

Assume q = rec x.q1. As in Lemma A.1, we can assume that the variables in q are

in {x1, . . . , xk} and that x �∈ {x1, . . . , xk}. By the hypothesis, x is free and guarded in q1.

Hence, {x1, . . . , xk, x} ⊇ F(q1). By the induction hypothesis,

minclk ((t ⇒ q1[px1
/x1, . . . , pxk/xk, p/x]), Y ) � t, ∀p ∈ P.

The state t ⇒ q[px1
/x1, . . . , pxk/xk] coincides with

d = t ⇒ rec x.(q1[px1
/x1, . . . , pxk/xk]).

Thus,

minclk (d, Y )

= minclk (t ⇒ rec x.(q1[px1
/x1, . . . , pxk/xk]), Y )

= minclk (t ⇒ (q1[px1
/x1, . . . , pxk/xk])[rec x.(q1[px1

/x1, . . . , pxk/xk])/x], Y )

= minclk (t ⇒ q1[px1
/x1, . . . , pxk/xk, rec x.(q1[px1

/x1, . . . , pxk/xk])/x], Y ).

By the induction hypothesis (let p = rec x.q1[px1
/x1, . . . , pxk/xk]), minclk (d, Y ) � t.

As a corollary to the previous lemma, we have a similar result in the class of closed

Dcrav states (and, hence, Pcrav processes also).

Proposition B.1. Let t ∈ �, Y ⊆ Act . Then:

(i) p ∈ Pcrav implies minclk (t ⇒ p, Y ) � t.

(ii) p ∈ S, a ∈ Y and (t ⇒ p)
〈a,t′ ,0〉
−−→ d imply minclk (t ⇒ p, Y ) = t.

Proof. Item (i) follows by Lemma B.2. Just note that since p is a process, we have

F(p) = �. Item (ii) follows by induction on the depth of the proof of (t ⇒ p)
〈a,t′ ,0〉
−−→ d.

Hypothesis p ∈ S is essential. As a counterexample, consider p = (3)a.nil( �∈ S), and note

that minclk (t ⇒ (3)a.nil, Y ) = t + 3(> t).

The next lemma states an invariant property of process transitions regarding the

minimum active clock.

Proposition B.2. Let d1, d2 ∈ Dcrav , t ∈ �, t� ∈ �� , Y ⊆ Act and a ∈ Y be such that

d1

〈a,t,0〉
−−→ d2. Then, minclk (d1, Y ) > t� implies minclk (d2, Y ) > t�.

Proof. Consider d1, d2 ∈ Dcrav , t ∈ �, t� ∈ �� , Y ⊆ Act , a ∈ Y , d1

〈a,t,0〉
−−→ d2 and

minclk (d1, Y ) > t�. The proof is by induction on the depth of the proof of derivation

d1

〈a,t,0〉
−−→ d2. We proceed by case analysis on the structure of d1. When d1 = t′ ⇒ p for

t′ ∈ � and p ∈ P, we assume t′ = t − f(a).

(a) d1 = (t′ ⇒ nil). This case is impossible.

(b) d1 = (t′ ⇒ b.p). If b �= a, the case is impossible. Let d1 = (t′ ⇒ a.p) and d2 =

(t′ + f(a) ⇒ p). By the definition of minclock, we have minclk (d1, Y ) = t′ and, by the
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hypothesis minclk (d1, Y ) > t�, we have t′ > t�. By Proposition B.1, it follows that

minclk (d2, Y ) � t′ + f(a). Hence, we have minclk (d2, Y ) � t′ + f(a) > t� + f(a) > t�.

Thus, minclk (d2, Y ) > t�.

(c) d1 = t′ ⇒ (n)p. Then t′ ⇒ (n)p
〈a,t,0〉
−−→ d2 if t′ + n ⇒ p

〈a,t,0〉
−−→ d2.

Moreover, minclk (t′ ⇒ (n)p, Y )>t� implies minclk (t′ + n ⇒ p, Y )> t�. By the in-

duction hypothesis, minclk (d2, Y )>t�.

(d) d1 = (t′ ⇒
∑

i∈i pi). By the operational rules, transition d1

〈a,t,0〉
−−→ d2 is derivable if and

only if j ∈ I such that (t′ ⇒ pj)
〈a,t,0〉
−−→ d2. Transition (t′ ⇒ pj)

〈a,t,0〉
−−→ d2 and Lemma B.1(ii)

imply minclk (t′ ⇒ pj , Y ) = t′. Thus minclk (t′ ⇒
∑

i∈i pi, Y ) = t′, since ∃j ∈ I such that

minclk (t′ ⇒ pj , Y ) = t′. Moreover, t′ > t�. Therefore, by minclk (t′ ⇒ pj , Y ) > t� and

transition (t′ ⇒ pj)
〈a,t,0〉
−−→ d2, we can conclude that minclk (d2, Y ) > t�.

(e) d1 = d3 | d4. Then d1

〈a,t,0〉
−−→ d2 is derivable if d3

〈a,t,0〉
−−→ d′

3 and d2 = d′
3 | d4 (the sym-

metric case is similar). By the definition of minclock, by minclk (d3 | d4, Y )> t�,

we have minclk (d3, Y )>t� and minclk (d4, Y )>t�. Then, by the induction hypo-

thesis, d3

〈a,t,0〉
−−→ d′

3 and minclk (d3, Y )>t� gives minclk (d′
3, Y )>t�. Then minclk (d2, Y ) =

minclk (d′
3 | d4, Y )>t�.

(f) Cases d1 = d \B, d1 = d[Φ] and d1 = (t′ ⇒ rec x.p) follow by simpler inductive

reasoning.

Remark B.2. Condition a ∈ Y in Proposition B.2 is strictly needed. For a ∈ Act(1),

t� =4 and d1 =(3⇒a.b | 5⇒b)
〈a,4,0〉
−−→ d2 =(4⇒b |5 ⇒b), we have minclk (d1, {b}) = 5 > t� =

minclk (d2, {b}).

The following corollary generalises Proposition B.2.

Corollary B.1. Let d1, d2, d3 ∈ Dcrav , t ∈ � and a ∈ Act be such that d1

〈a,t,0〉
−−→ d2. Then,

d1 �>d3 implies d2 �>d3.

Proof. Assume d1, d2, d3 ∈ Dcrav , t ∈ �, a ∈ Act and d1 �>d3. Moreover, assume

d1

〈a,t,0〉
−−→ d2. From the definition of over-timing, d1 �>d3 implies minclk (d1, Act ) >

maxclk (d3, Act ). By fixing t� = maxclk (d3, Act ), transition d1

〈a,t,0〉
−−→ d2 and Proposition B.2

imply minclk (d2, Act )>t�. Thus, minclk (d2, Act )>maxclk (d3, Act ) implies d2 �>d3.

The following lemma states that the starting time of a transition is between the minimum

and maximum active local clocks of the source state.

Lemma B.3. Let d, d′ ∈ Dcrav , Y ⊆ Act , a ∈ Y and t, t� ∈ �. If d
〈a,t,0〉
−−→ d′ and t� = t−f(a),

then maxclk (d, Y ) � t� � minclk (d, Y ).

Proof. Assume d, d′ ∈ Dcrav , Y ⊆ Act , a ∈ Y , t, t� ∈ � such that d
〈a,t,0〉
−−→ d′ and

t� = t − f(a). By induction on the depth of the transition d
〈a,t,0〉
−−→ d′. We proceed by case

analysis on the syntactic structure of d.

(a) d = t′ ⇒ nil is impossible.
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(b) d = t′ ⇒ b.p is possible if and only if b = a. Thus, d = t′ ⇒ a.p and d′ = t′ + f(a) ⇒ p.

Then minclk (t′ ⇒ a.p, Y ) = maxclk (t′ ⇒ a.p, Y ) = t′.

(c) d = t′ ⇒ (n)p. Transition d
〈a,t,0〉
−−→ d′ is derivable if t′ + n ⇒ p

〈a,t,0〉
−−→ d′. By the in-

duction hypothesis on the latter transition, we have maxclk (t′ + n ⇒ p, Y ) � t� �
minclk (t′ + n ⇒ p, Y ). Then note that minclk (t′ + n ⇒ p, Y ) = minclk (d, Y ) and

maxclk (t′ + n ⇒ p, Y ) = maxclk (d, Y ).

(d) d = d1 | d2. From the operational rules, we have the transition d
〈a,t,0〉
−−→ d′ is derivable if

d1

〈a,t,0〉
−−→ d′

1 and d′ = d′
1 | d2 (the symmetric case is similar). By the induction hypothesis,

we have maxclk (d1, Y ) � t� � minclk (d1, Y ).

The statement then follows by minclk (d1, Y ) � minclk (d, Y ) and maxclk (d1, Y ) �
maxclk (d, Y ).

(e) d = d1\B. From the operational rules, we have the transition d
〈a,t,0〉
−−→ d′ is derivable if

d1

〈a,t,0〉
−−→ d′

1 with a, ā �∈ B and d′ = d′
1 \B. By the induction hypothesis, by letting X =

{c ∈ Y | c, c̄ �∈ B}, we have maxclk (d1, X) � t� � minclk (d1, X). The statement follows

by noting that minclk (d1, X) = minclk (d, Y ) and maxclk (d1, X) = maxclk (d, Y ).

(f) Cases d = t′ ⇒
∑

i∈I pi, d = t′ ⇒ rec x.p and d = d1[Φ] follow as in the previous cases.

Proposition B.3. Let a ∈ Act , ti ∈ �, di, d
′
i ∈ Dcrav , d1 �>d2 and di

〈a,ti,0〉
−−→ d′

i for each

i ∈ {1, 2} . Then, t1 > t2.

Proof. Let a ∈ Act , ti, t
′
i ∈ � and di, d

′
i ∈ Dcrav for each i ∈ {1, 2} . By the over-timing

hypothesis, d1 �>d2, we have minclk (d1, Act ) > maxclk (d2, Act ). Lemma B.3 applied to

transitions d1

〈a,t1 ,0〉
−−→ d′

1 and d2

〈a,t2 ,0〉
−−→ d′

2 gives maxclk (d1, Act ) � t1 − f(a) � minclk (d1, Act )

and maxclk (d2, Act ) � t2−f(a) � minclk (d2, Act ). By minclk (d1, Act ) > maxclk (d2, Act ),

we have t1 − f(a) > t2 − f(a), from which we can conclude t1 > t2.

B.3. Only parallel contexts

An only parallel context, denoted O[], is a term with a single ‘hole’ of the grammar

O[] ::= [] O[] | d d |O[],

where d is a state.

Transitions with null execution delay out of states d and O[d] are strictly related.

Lemma B.4. Let d1, d2 ∈ Dcrav , a ∈ Act , t ∈ � and O[] be an only parallel context. Then,

d1

〈a,t,0〉
−−→ d2 if and only if O[d1]

〈a,t,0〉
−−→ O[d2].

Proof. Assume d1 ∈ Dcrav , a ∈ Act , t ∈ � and O[] be an only parallel context. We

proceed by induction on the syntactical structure of O[].

(a) O[] = []. This case is simple because O[dj] = dj , for every j ∈ {1, 2} .
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(b) O[] = d |O′
[], d ∈ Dcrav . In this case we have that O[d1]

〈a,t,0〉
−−→O[d2] if and only

if d |O′[d1]
〈a,t,0〉
−−→d |O′[d2] if and only if O′[d1]

〈a,t,0〉
−−→ O′[d2], and, by the induction

hypothesis, if and only if d1

〈a,t,0〉
−−→ d2.

(c) Case O[] = O′
[] | d, with d ∈ Dcrav , is similar to the previous one.

The above lemma cannot be extended to deal with parallel contexts (see Section B)

instead of only parallel ones. In the former case, indeed, the occurrence of [] may appear

within the scope of a restriction or relabelling operator. This might prevent some actions

out of d from happening in C[d].

The following Lemma states an intuitive result. When two states are eager equivalent

they necessarily have the same minimum active local clock.

Lemma B.5. Let d1, d2 ∈ Dcrav . If d1 ∼e d2, then minclk (d1, Act ) = minclk (d2, Act ).

Proof. Assume, for a contradiction, two states d1, d2 ∈ Dcrav such that d1 ∼e d2 and

minclk (d1, Act ) > minclk (d2, Act ) (case minclk (d1, Act ) < minclk (d2, Act ) follows by

similar reasoning). The case minclk (d1, Act ) = +∞ and minclk (d2, Act ) ∈ � is im-

possible, since otherwise d1 �∼e d2. By Lemma B.1, a transition d2

〈a,t,0〉
−−→ d′

2 with t =

minclk (d2, Act ) + f(a) is derivable. By d1 ∼e d2, we also have d1

〈a,t,0〉
−−→ d′

1. By hypothesis

t − f(a) < minclk (d1, Act ). This contradicts Lemma B.3.

As in the previous section, we need a new bisimulation equivalence called (t)-Eager

Equivalence and denoted ∼(t)
e . It plays a similar role to ∼n

t . (t)-Eager Equivalence

concentrates on visible actions and relates processes able to perform the same actions at

the same starting time t.

Definition B.3 ((t)-Eager Equivalence).

(1) Let t ∈ �. The functional E(t) : Rel → Rel is defined, for each � ∈ Rel, as follows:

(d1, d2) ∈ E(t)(�) if, for each a ∈ Act ,

— d1

〈a,t+f(a),0〉
−−−−−→ d′

1 implies d2

〈a,t+f(a),0〉
−−−−−→ d′

2 for some d′
2 ∈ Dcrav such that (d′

1, d
′
2) ∈ �.

(2) A relation � ∈ Rel will be called E(t)-bisimulation if � ⊆ E(t)(�).

(3) We say that two states d1 and d2 are (t)-eager equivalent, d1 ∼(t)
e d2, if and only if there

exists an E(t)-bisimulation � such that (d1, d2) ∈ �.

(4) We say that two processes p1 and p2 are (t)-eager equivalent, p1 ∼(t)
e p2, if and only if

(0 ⇒ p1) ∼(t)
e (0 ⇒ p2).

Again, eager equivalence is strictly finer than (t)-eager equivalence and ∼(t)
e is preserved

by all operators of the language.

Proposition B.4. Let p1, p2 ∈ Pcrav be such that p1 ∼e p2. Then, p1 ∼(t)
e p2 for each t ∈ �.

For the next lemma we assume minclk ([], Act ) = ∞ and maxclk ([], Act ) = −∞.

Lemma B.6. Let d ∈ Dcrav , t ∈ � and O be an only parallel context such that d�>O and

t > maxclk (O, Act ). Then, O[d] ∼(t)
e d.

https://doi.org/10.1017/S0960129503004018 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503004018


F. Corradini and D. Di Cola 648

Proof. By Lemma B.4, d
〈a,t′ ,0〉
−−→ d′ if and only if O[d]

〈a,t′ ,0〉
−−→ O[d′]. Moreover, by t >

maxclk (O, Act ), there is no a ∈ Act and O′[] an only parallel context such that

O[]
〈a,t+f(a),0〉
−−−−−→ O′[]. Then it is easy to prove that the relation (Corollary B.1 is also needed)

�t = {(O[d], d) | d ∈ Dcrav , O a only parallel context, t > maxclk (O, Act ) and d�>O}

is an E(t)-bisimulation.

B.4. The main results

The following decomposition lemma is the key statement to prove our main result.

Consider two only parallel contexts O′
[], O

′′
[] and d′, d′′ ∈Dcrav . Assume O′[d′] ∼e O

′′[d′′]. We

state conditions under which O′[d′] ∼e O
′′[d′′] implies the eager equivalence of d′, d′′, and

O′
[], O

′′
[] in isolation. More precisely, we prove that when each active local clock within

d′ and d′′ is strictly greater than each active local clock within O′
[] and O′′

[], we have

O′[d′] ∼e O
′′[d′′] implies d′ ∼e d

′′ and O′ ∼e O
′′.

Lemma B.7. Let d′, d′′ ∈ Dcrav and O′
[], O

′′
[] be two only parallel contexts such that the

following hold:

(1) d�>O, with d ∈ {d′, d′′} and O ∈ {O′, O′′};
(2) O′[d′] ∼e O

′′[d′′].

Then, d′ ∼e d
′′ and O′ ∼e O

′′.

Proof. Assume that (1) and (2) hold for d′, d′′ ∈ Dcrav and O′
[], O

′′
[]. In the rest of this

proof we will often write dn and Om[] (with n, m ∈ {1, 2} ) to denote a pair of states d1, d2

and a pair of only parallel contexts O1[], O2[], respectively. We prove the two statements

separately.

(a) Proof of d′ ∼e d
′′. Consider

�1 = {(d1, d2) | ∃ O1[], O2[] such that O1[d1] ∼e O2[d2] and dn �>Om}.

We prove that �1 is an ∼e -bisimulation.

Clearly, (d′, d′′) ∈ �1. So, we can assume (d1, d2) ∈ �1 with O1[] and O2[] such

that O1[d1] ∼e O2[d2] and dn �>Om. Moreover, assume d1

〈a,t,0〉
−−→ d′

1 (the symmetric case

is similar). From Lemma B.4 applied to the latter transition, O1[d1]
〈a,t,0〉
−−→O1[d

′
1] is

derivable. From the hypothesis O1[d1]∼eO2[d2], we also have O2[d2]
〈a,t,0〉
−−→ d′′

2 such that

O1[d
′
1] ∼e d

′′
2. From d1

〈a,t,0〉
−−→ d′

1, Proposition B.3 and the fact that d1 �>O2, we must have

O2[d2]
〈a,t,0〉
−−→ O[d′

2] for some d′
2 such that d2

〈a,t,0〉
−−→ d′

2 (or, in other words, transitions out

of O2 performing an a action are only possible at completion time strictly less than

t – hence O2

〈a,t,0〉
−−→ O′

2 is impossible). Transitions dn
〈a,t,0〉
−−→ d′

n, the hypothesis dn �>Om

and Corollary B.1, allow us to conclude that d′
n �>Om. Hence, from O1[d

′
1] ∼e O2[d

′
2],

we have (d′
1, d

′
2) ∈ �1.
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(b) Proof of O′ ∼e O
′′. Consider

�2 = {(O1, O2) | ∃ d1, d2 ∈ Dcrav such that O1[d1] ∼e O2[d2] and dn �>Om}.

We prove that �2 is an ∼e -bisimulation. Clearly, (O′, O′′) ∈ �2. Assume (O1, O2) ∈
�2. Then, d1, d2 ∈ Dcrav such that O1[d1] ∼e O2[d2] and dn �>Om. Moreover, assume

O1

〈a,t,0〉
−−→ O′

1 (the symmetric case is similar) for some a ∈ Act and t ∈ �. We consider

two steps.

(b1) We show that there are two states d′
n, derivatives of dn, which are such that

O1[d
′
1] ∼e O2[d

′
2], d

′
n �>Om and minclk (d′

n, Act ) > maxclk (O′
1, Act ). We will find

d′
n by performing all possible transitions out of dn at starting time from 0 to

maxclk (O′
1, Act ). Since each process in the current language can only perform a

finite number of concurrent actions at a given starting time (see Proposition A.1),

this procedure is actually effective.

First we prove for every i � 0 that there are d′
n derivatives of dn such that

O1[d
′
1] ∼e O2[d

′
2], d

′
n �>Om and minclk (d′

n, Act ) > i. We proceed by induction on

maxclk (O′
1, Act ) (which we assume to be greater than −∞, otherwise the proof

is trivial).

The case i = 0 is simple as O1[d1] ∼e O2[d2], dn �>Om and minclk (dn, Act ) � 0

(each local clock within a state is greater than or equal to 0). Now, we assume the

statement for i− 1 and prove it for i. Hence there are states d(ki)
n , which are deriv-

atives of dn such that O1[d
(ki)
1 ] ∼e O2[d

(ki)
2 ], d(ki)

n �>Om, minclk (d(ki)
n , Act ) > i− 1,

and prove that there exist d
(ki+1)
n derivatives of d(ki)

n such that O1[d
(ki+1)
1 ] ∼e O2[d

(ki+1)
2 ],

d
(ki+1)
n �>Om and minclk (d

(ki+1)
n , Act ) > i.

Consider the following computation at starting time i − C1:

d
(ki)
1

〈aki ,tki ,0〉
−−−−→ d

(ki+1)
1

〈aki+1 ,tki+1 ,0〉
−−−−−−→ · · ·

〈aki+1−1 ,tki+1−1 ,0〉
−−−−−−−−→ d

(ki+1)
1 ,

where ki+1 � ki and i = tj −f(aj) for every ki � j < ki+1. Suppose that state d
(ki+1)
1

cannot perform eager actions at starting time i. Computation C1 must be finite,

that is, ki+1 exists by Proposition A.1 (otherwise, state d
(ki)
1 would have an infinite

computation at starting time i). From d
(ki)
1 �>Om, Corollary B.1 applies repeatedly

to each transition within C1. Thus we have d
(j)
1 �>Om, ∀j such that ki � j � ki+1.

Moreover, by the hypothesis, minclk (d(ki)
1 , Act ) > i− 1. Thus, by Proposition B.2,

we have minclk (d(j)
1 , Act ) > i − 1, ∀j such that ki � j � ki+1. In particular, we

have minclk (d
(ki+1)
1 , Act ) > i−1. From Lemma B.1 we have minclk (d

(ki+1)
1 , Act ) �= i

(otherwise we would have an eager transition out of d
(ki+1)
1 at starting time i and

this would contradict the hypothesis). Hence, minclk (d
(ki+1)
1 , Act ) > i.

By Lemma B.4 we have the following computation – C′
1 :

O1[d
(ki)
1 ]

〈aki ,tki ,0〉
−−−−→ O1[d

(ki+1)
1 ]

〈aki+1 ,tki+1 ,0〉
−−−−−−→· · ·

〈aki+1−1 ,tki+1−1 ,0〉
−−−−−−−−→ O1[d

(ki+1)
1 ].

From the hypothesis O1[d
(ki)
1 ] ∼e O2[d

(ki)
2 ], we also have a computation – C′

2:

O2[d
(ki)
2 ]

〈aki ,tki ,0〉
−−−−→ O2[d

(ki+1)
2 ]

〈aki+1 ,tki+1 ,0〉
−−−−−−→· · ·

〈aki+1−1 ,tki+1−1 ,0〉
−−−−−−−−→ O2[d

(ki+1)
2 ],
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with O1[d
(j)
1 ] ∼e O2[d

(j)
2 ], ∀j such that ki � j � ki+1 can be derived. Indeed, from

d
(j)
1 �>O2 (∀j such that ki � j � ki+1) and d

(ki)
1

〈aki ,tki ,0〉
−−−−→ d

(ki+1)
1 , we have that each

eager transition out of O2 is derivable at a completion time strictly less than tki
(see Proposition B.3). In other words, in computation C′

2, context O2[] is never

involved. Moreover, the state O2[d
(ki+1)
2 ] cannot perform eager actions at starting

time i. Otherwise, from O1[d
(ki+1)
1 ] ∼e O2[d

(ki+1)
2 ], state d

(ki+1)
1 would also be able to

match this transition thereby contradicting the hypothesis.

From Lemma B.4 we also have – C2

d
(ki)
2

〈aki ,tki ,0〉
−−−−→ d

(ki+1)
2

〈aki+1 ,tki+1 ,0〉
−−−−−−→ · · ·

〈aki+1−1 ,tki+1−1 ,0〉
−−−−−−−−→ d

(ki+1)
2 .

As in the case of computation C1, we have that Corollary B.1, Proposition B.2

and Lemma B.1 (note that d(ki)
2 �>Om and minclk (d(ki)

2 , Act ) > i − 1) allow us to

prove that d
(j)
2 �>Om, minclk (d(j)

2 , Act ) > i − 1 (∀j such that ki � j � ki+1) and

minclk (d
(ki+1)
2 , Act ) > i.

Thus, we can conclude that there are two states d
(ki+1)
n (which are deriv-

atives of d(ki)
n ) such that we have O1[d

(ki+1)
1 ] ∼e O2[d

(ki+1)
2 ], d

(ki+1)
n �>Om and

minclk (d
(ki+1)
n , Act ) > i.

(b2) Assume two states d′
1 and d′

2 (obtained from step (b1) by choosing d
(ks+1)
1 and

d
(ks+1)
2 , respectively, with s = maxclk (O′

1, Act )) such that

(i) O1[d
′
1] ∼e O2[d

′
2],

(ii) d′
n �>Om and

(iii) minclk (d′
n, Act ) > maxclk (O′

1, Act ).

From O1

〈a,t,0〉
−−→ O′

1, we have that O1[d
′
1]

〈a,t,0〉
−−→ O′

1[d
′
1], and from (i), we have

O2[d
′
2]

〈a,t,0〉
−−→ d′′

2 such that O′
1[d

′
1] ∼e d

′′
2. By considering O1

〈a,t,0〉
−−→ O′

1 and the over-

timing hypothesis d′
2 �>O1 of item (ii), by Proposition B.3, we have d′′

2 = O′
2[d

′
2]

and O2

〈a,t,0〉
−−→ O′

2. We have Om

〈a,t,0〉
−−→ O′

m, and there are two states d′
n such that

O′
1[d

′
1] ∼e O

′
2[d

′
2]. In order to state that (O′

1, O
′
2) ∈ �2, it remains to prove that

d′
n �>O′

m. From the hypothesis we know minclk (d′
n, Act ) > maxclk (O′

1, Act ).

Clearly, d′
n �>O′

1. Therefore we have to prove that d′
n �>O′

2. We start by proving

d′
2 �>O′

2. Assume minclk (d′
2, Act ) � maxclk (O′

2, Act ), for a contradiction. By

Lemma B.1, for some only parallel context O′′
2 , b ∈ Act and t′, t′′ ∈ �, there is

a transition O′
2

〈b,t′ ,0〉
−−→ O′′

2 with t′′ = t′ − f(b) � minclk (d′
2, Act ). By Item (a), we

have d′
1 ∼e d

′
2 (see items (i) and (ii)). By Proposition B.4, d′

1 ∼(t′′)
e d′

2 immediately

follows.

By Lemma B.5, minclk (d′
2, Act ) = minclk (d′

1, Act ). Moreover, by hypothesis

(Item (iii)), minclk (d′
1, Act ) > maxclk (O′

1, Act ). Therefore,

t′′ � minclk (d′
2, Act ) = minclk (d′

1, Act ) > maxclk (O′
1, Act ).

Hence t′′ > maxclk (O′
1, Act ) and d′

1 �>O′
1 (Item (iii)) can be used together with

Lemma B.6 to conclude d′
1 ∼(t′′)

e O′
1[d

′
1]. By considering O′

1[d
′
1] ∼e O

′
2[d

′
2], we have
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O′
1[d

′
1] ∼(t′′)

e O′
2[d

′
2] by Proposition B.4. Now we prove O′

2[d
′
2] �∼(t′′)

e d′
2. This implies,

by transitivity of ∼(t′′)
e , that d′

1 �∼(t′′)
e d′

2, thereby contradicting the hypothesis.

Suppose for a contradiction that O′
2[d

′
2] ∼(t′′)

e d′
2. Since we already know that

O2[d
′
2] ∼(t′′)

e d′
2, by transitivity, we have O2[d

′
2] ∼(t′′)

e O′
2[d

′
2]. Moreover, from

d′
2 �>O2, we know that

t′′ � minclk (d′
2, Act ) > maxclk (O2, Act ).

By Lemma B.3, O2 cannot perform actions at starting time t′′. Thus, as in case (b1)
above, if we perform all the transitions at starting time t′′ that d′

2 in O′
2[d

′
2] can

perform, then the state O2[d
′
2] must match these transitions (O2[d

′
2] ∼(t′′)

e O′
2[d

′
2])

with transitions out of d′
2. Still, as in case (b1), by Proposition A.1, these two

computations must be finite (otherwise, states O2[d
′
2] and O′

2[d
′
2] would have an

infinite computation at starting time t′′). Assume that the target states of these

computations out of O2[d
′
2] and O′

2[d
′
2] are O2[d

′′
2] and O′

2[d
′′′
2 ], respectively. By

the hypothesis, the latter state can still perform O′
2

〈b,t′ ,0〉
−−→ O′′

2 at starting time t′′.

This transition cannot be matched by O2[d
′′
2] because, by the hypothesis, O2 and

d′′
2 cannot both perform transitions at starting time t′′.

Hence, we have O′
2[d

′
2] �∼(t′′)

e d′
2. This means that d′

1 �∼(t′′)
e d′

2, and we find a contra-

diction.

Then we have minclk (d′
2, Act ) > maxclk (O′

2, Act ) (that is, d′
2 �>O′

2).

Finally, by

minclk (d′
2, Act ) = minclk (d′

1, Act )

and
minclk (d′

1, Act ) > maxclk (O′
2, Act )

(that is, d′
1 �>O′

2), we can conclude d′
n �>O′

2, and therefore d′
n �>O′

m.

Summarising, items (b1) and (b2) provide two states d′
n such that O′

1[d
′
1] ∼e O

′
2[d

′
2] and

d′
n �>O′

m. Hence, (O′
1, O

′
2) ∈ �2.

As a first application of this decomposition statement, consider the following useful

lemma.

Lemma B.8. Let d1 = Πi∈I (ti ⇒ pi) and d2 = Πi∈I (ti ⇒ qi) be such that pi, qi ∈ S, ti �= tj
for i �= j and d1 ∼e d2. Then ti ⇒ pi ∼e ti ⇒ qi for every i ∈ I .

Proof. We proceed by induction on #I . Case #I = 1 follows by the hypothesis. We

assume the statement for #I � n−1 and prove it for #I = n. Assume that the various local

clocks are ordered in such a way that ti1 < · · · < tin if I = {i1, . . . , in}. Let d′ = tin ⇒ pin ,

d′′ = tin ⇒ qin , O
′
[] = Πi∈I−{in} (ti ⇒ pi) | [] and O′′

[] = Πi∈I−{in} (ti ⇒ qi) | []. Then:

(1) d�>O, with d ∈ {d′, d′′} and O ∈ {O′, O′′}, and

(2) O′[d′] ∼e O
′′[d′′].

Thus, by Lemma B.7, we have tin ⇒ pin ∼e tin ⇒ qin and

Πi∈I−{in} (ti ⇒ pi) ∼e Πi∈I−{in} (ti ⇒ qi).

By the induction hypothesis, the main statement then follows since #(I − {in}) < n.
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Consider the structural equivalence ≡ defined as the smallest congruence over states

Dcrav that satisfies the followings laws (where d1, d2, d3 ∈ Dcrav and t ∈ �):

- d1 ≡ d1 | (t ⇒ nil)

- t ⇒ (n)p ≡ t + n ⇒ p

- t ⇒ rec x.p ≡ t ⇒ p[rec x.p/x]

- d1 | d2 ≡ d2 | d1

- d1 | (d2 | d3) ≡ (d1 | d2) | d3

- (d1 | d2) \B ≡ (d1 \B) | (d2 \B)

- (d1 | d2)[Φ] ≡ (d1[Φ]) | (d2[Φ])

These equalities are sound with respect to our performance-based equivalences. It has

to be noted that some of them, and in particular, the last two, hold only because of

the restrictions in the current language. For standard reasons, they are not sound in the

presence of invisible actions.

Two important lemmas now follow. The first proves a reduction result. Each process can

be reduced to the parallel composition of components that do not have delay operators

at the top level.

Lemma B.9. Let p ∈ Pcrav and t, k ∈ �. Then there are ti ∈ �, pi ∈ S such that ti � t

for every i, ti �= tj for i �= j and

t + (−)k ⇒ p ≡ Πi∈I (ti + (−)k ⇒ pi)

Proof. In order to use induction on the structure of p, we prove this statement for open

terms. The statement for processes follows as a corollary. We proceed by case analysis on

the form of p. The additional requirement ti �= tj for i �= j follows by the clock distribution

equation (t ⇒ p) | (t ⇒ q) = (t ⇒ p | q).
(a) p = nil and p = a.p1 are trivial. Set I is a singleton.

(b) p = (n)p1. Then t + (−)k ⇒ p = t + (−)k ⇒ (n)p1 ≡ t + n + (−)k ⇒ p1. By the induc-

tion hypothesis, t + n + (−)k ⇒ p1 ≡ Πi∈I (ti + (−)k ⇒ pi) where ti � t + n.

Thus, t + (−)k ⇒ (n)p1 ≡ Πi∈I (ti + (−)k ⇒ pi) and ti � t + n � n.

(c) p =
∑

i∈I si. This case is trivial since
∑

i∈I si ∈ S. Set I is a singleton.

(d) p = p1 | p2. By the induction hypothesis, t + (−)k ⇒ p1 ≡ Πi∈I (t1i + (−)k ⇒ p1
i ), t

1
i � t,

and t + (−)k ⇒ p2 ≡ Πj∈J (t2j + (−)k ⇒ p2
j ), t

2
i � t.

Then,

t + (−)k ⇒ (p1 | p2) ≡ (Πi∈I (t1i + (−)k ⇒ p1
i )) | (Πj∈J (t2j + (−)k ⇒ p2

j ))

≡ Πi∈I,j∈J and t1i =t2j
(t1i + (−)k ⇒ (p1

i | p2
j ))) |

(Πi∈I and t1i �=t2j ,∀j∈J (t1i + (−)k ⇒ p1
i )) |

(Πj∈J and t2j �=t1i ,∀i∈I (t2j + (−)k ⇒ p2
j ))

(e) p = p1 \B. By the induction hypothesis, t + (−)k ⇒ p1 ≡ Πi∈I (t1i + (−)k ⇒ p1
i ), where

every ti � t. Then t + (−)k ⇒ (p1 \B) ≡ (t + (−)k ⇒ p1) \B. Finally, this latter state

is ≡-equivalent to (Πi∈I (t1i + (−)k ⇒ p1
i )) \B, which in turn is ≡-equivalent to Πi∈I

t1i + (−)k ⇒ (p1
i \B).
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(f) p = p1[Φ]. This case is similar to the previous one.

(g) p = rec x.p1. Then t + (−)k ⇒ rec x.p1 ≡ t + (−)k ⇒ p1[rec x.p1/x]. By the induction

hypothesis,

t + (−)k ⇒ p1[rec x.p1/x] = (t + (−)k ⇒ p1)[rec x.p1/x]

≡ (Πi∈I (ti + (−)k ⇒ pi))[rec x.p1/x],

where ti � t.

Now, (Πi∈I (ti + (−)k ⇒ pi))[rec x.p1/x] ≡ (Πi∈I (ti + (−)k ⇒ pi[rec x.p1/x])). Finally,

observe that each pi[rec x.p1/x] ∈ S, since by the induction hypothesis, each pi ∈ S
and each pi is guarded.

We now prove a version of Lemma A.2 extended to timed states.

Lemma B.10. Let t, t′, r ∈ �, k ∈ �+, p ∈ S, d ∈ Dcrav and a ∈ Act be such that

(t ⇒ p)
〈a,t′ ,r〉
−−→ d. Then, there exist I ⊆ �, #I < ∞, ti, t

1
i , t

2
i ∈ �, si ∈ S for every i ∈ I ,

p′ ∈ S such that d ≡ (t ⇒ p′) | Πi∈I (ti ⇒ si), ti � t + f(a) + r and:

(1) (t ⇒ p)
〈a,t′−r,0〉
−−−−→ d′ ≡ (t ⇒ p′) | Πi∈I (ti − r ⇒ si) if r > 0

(2) (t ⇒ p)
〈a,t′+k,k〉
−−−−→ d′ ≡ (t ⇒ p′) | Πi∈I (ti + k ⇒ si) if r = 0.

Proof. The proof is a standard induction on the depth of (t ⇒ p)
〈a,t′ ,r〉
−−→ d. We show the

most interesting case only; namely, action prefixing. All the other cases follow by similar

reasoning.

Assume p = a.p1 and (t ⇒ a.p1)
〈a,t+f(a)+r,r〉
−−−−−−→ t + f(a) + r ⇒ p1.

By Lemma B.9, t + f(a) + r ⇒ p1 ≡ (t + f(a) + r ⇒ nil) |Πi∈I (ti ⇒ si), where si ∈ S and

ti � t + f(a) + r > t. Moreover:

(1) (t ⇒ a.p)
〈a,t′−r,0〉
−−−−→ t + f(a) ⇒ p ≡ (t ⇒ nil) | Πi∈I (ti − r ⇒ si) if r > 0

(2) (t ⇒ a.p)
〈a,t′+k,k〉
−−−−→ t + f(a) + k ⇒ p ≡ (t ⇒ nil) | Πi∈I (ti + k ⇒ si) if r = 0.

Another key lemma in this section says that if two timed states t ⇒ pi (i ∈ {1, 2} ) are

eager equivalent, then t∗ ⇒ pi (i ∈ {1, 2} ), for every t∗ > t, are also eager equivalent. This

statement requires the introduction of a new function up, which given a state d ∈ Dcrav

and a natural number n ∈ �, returns state d where each local clock is increased of n time

units.

Definition B.4. Let up : Dcrav ×� → Dcrav be the least relation that satisfies the following

inference rules (where t, n ∈�, a ∈Act, d, d1, d2 ∈Dcrav , and pi, rec x.p ∈ Pcrav ):

up (t ⇒ nil, n) = t + n ⇒ nil

up (t ⇒ a.p1, n) = t + n ⇒ a.p1

up (t ⇒ (m)p1, n) = t + n ⇒ (m)p1

up (t ⇒
∑

i∈I pi, n) = t + n ⇒
∑

i∈I pi
up (d1 | d2, n) = up (d1, n) | up (d2, n)

up (d \B, n) = up (d, n) \B
up (t ⇒ rec x.p, n) = t + n ⇒ rec x.p

up (d[Φ], n) = up (d, n)[Φ]
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Eager transitions out of states d ∈ Dcrav and the corresponding ones out of states

up (d, n) are strictly related. See Corradini (2000) for a proof of the following statement.

Lemma B.11. Let d, d′, d′′ ∈ Dcrav , a ∈ Act and t, n ∈ �. Then:

(1) up (d, n)
〈a,t,0〉
−−→ d′ implies d

〈a,t−n,0〉
−−−→ d′′ and d′ = up (d′′, n)

(2) d
〈a,t,0〉
−−→ d′ implies up (d, n)

〈a,t+n,0〉
−−−→ up (d′, n).

Lemma B.12. Let t ∈ �, p1, p2 ∈ Pcrav be such that (t ⇒ p1) ∼e (t ⇒ p2). Then, for each

t∗ > t, we have (t∗ ⇒ p1) ∼e (t∗ ⇒ p2).

Proof. Assume p1, p2 ∈ Pcrav , t, t
∗ ∈ � be such that (t ⇒ p1) ∼e (t ⇒ p2) and t∗ > t. Let

K be the ∼e -bisimulation such that (t ⇒ p1, t ⇒ p2) ∈ K.

To prove (t∗ ⇒ p1) ∼e (t∗ ⇒ p2), we define

� = {(up (d1, n), up (d2, n)) | n ∈ � and (d1, d2) ∈ K}

and prove that � is an ∼e -bisimulation. Clearly, it contains the pair (t∗ ⇒ p1, t
∗ ⇒ p2).

Consider n ∈ �, d1, d2 ∈ Dcrav such that (d1, d2) ∈ K and (up (d1, n), up (d2, n)) ∈ � and

assume up (d1, n)
〈a,t,0〉
−−→ d′

1 (the symmetric case is similar). From item (1) of Lemma B.11,

we have d1

〈a,t−n,0〉
−−−→ d′′

1 and d′
1 = up (d′′

1 , n). Since (d1, d2) ∈ K, we have d2

〈a,t−n,0〉
−−−→ d′′

2 and

(d′′
1 , d

′′
2) ∈ K. By Lemma B.11(2), we also have up (d2, n)

〈a,t,0〉
−−→ d′

2 and d′
2 = up (d′′

2 , n). Hence,

from (d′′
1 , d

′′
2) ∈ K, it is (d′

1, d
′
2) ∈ �.

Theorem 3.2. Let p1, p2 ∈ Pcrav . Then, p1 ∼e p2 if and only if p1 ∼c p2.

Proof. Assume p1, p2 ∈ Pcrav . p1 ∼c p2 implies p1 ∼e p2 immediately follows by

Proposition 3.1. Now we assume p1 ∼e p2 and prove p1 ∼c p2. Let

� = {(d′, d′′) | d′ ≡ (Πi∈I (t(0)
i ⇒ p

(0)
i )), d′′ ≡ (Πi∈I (t(0)

i ⇒ q
(0)
i )) for some

I = {1, . . . , n} such that n ∈ �+ and, for each i ∈ I,

(t(0)
i ⇒ p

(0)
i ) ∼e (t(0)

i ⇒ q
(0)
i ) , t(0)

i ∈ �, p
(0)
i , q

(0)
i ∈ S}.

We then prove that � is a PC-bisimulation. By Lemma B.9, 0 ⇒ p1 ≡ Πi∈I (ti ⇒ p1
i ) and

0 ⇒ p2 ≡ Πj∈J (tj ⇒ p2
j ). By d ≡ d | (t ⇒ nil), and the associativity and commutativity

of parallel composition, we can add parallel components (of the form t ⇒ nil) in such

a way that I = J and every local clock that appears in Πi∈I (ti ⇒ p1
i ) also appears in

Πj∈I (tj ⇒ p2
j ), and vice versa. Then we can group parallel components with the same local

clock, by applying (t ⇒ p) | (t ⇒ q) = t ⇒ (p | q) from right to left. Then, Lemma B.8 can

be used to state that (0 ⇒ p1, 0 ⇒ p2) ∈ �.

Take a generic (d′, d′′) ∈ �. Then d′ ≡ Πi∈I (t(0)
i ⇒ p

(0)
i ) and d′′ ≡ Πi∈I (t(0)

i ⇒ q
(0)
i ), where

I = {1, . . . , n} and t
(0)
i ∈ �, p(0)

i , q
(0)
i ∈ S, (t(0)

i ⇒ p
(0)
i ) ∼e (t(0)

i ⇒ q
(0)
i ), for each i ∈ I .

Assume d′ ≡ Πi∈I (t(0)
i ⇒ p

(0)
i )

〈a,t,r〉
−−→ d1 where r � 0 (the symmetric case is similar). Then

there exists k ∈ I such that (t(0)
k ⇒ p

(0)
k )

〈a,t,r〉
−−→ d2 and d1 = Πi∈I (d′

i), where d′
k = d2,

d′
i = (t(0)

i ⇒ p
(0)
i ) for each i �= k. Assume r > 0 (the case r = 0 is similar). Lemma B.10

applied to transition (t(0)
k ⇒ p

(0)
k )

〈a,t,r〉
−−→ d2 gives d2 ≡ (t(0)

k ⇒ p′) | Πm∈M (t1m ⇒ p1
m), t1m �
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t
(0)
k + f(a) + r. Again by Lemma B.10, we also have (t(0)

k ⇒ p
(0)
k )

〈a,t−r,0〉
−−−→ d3 and d3 ≡

(t(0)
k ⇒ p′) | Πm∈M (t1m − r ⇒ p1

m).

Using the latter transition and the hypothesis (t(0)
k ⇒ p

(0)
k ) ∼e (t(0)

k ⇒ q
(0)
k ), we have

(t(0)
k ⇒ q

(0)
k )

〈a,t−r,0〉
−−−→ d4 and d3 ∼e d4. By Lemma B.10, d4 ≡ (t(0)

k ⇒ q′) | Πo∈O (t2o ⇒ q2
o),

where t2o � t
(0)
k + f(a). Moreover, again by Lemma B.10, (t(0)

k ⇒ q
(0)
k )

〈a,t,r〉
−−→ d5 and d5 ≡

(t(0)
k ⇒ q′) | Πo∈O (t2o + r ⇒ q2

o) (thus t2o + r � t
(0)
k + f(a) + r).

Thus, we also have d′′ ≡ Πi∈I (t(0)
i ⇒ q

(0)
i )

〈a,t,r〉
−−→ d6 = Πi∈I (d′′

i ) where d′′
k = d5 and d′′

i =

(t(0)
i ⇒ q

(0)
i ) for each i �= k.

The rest of the proof is devoted to proving that (d1, d6) ∈ �. To do this, it is sufficient

to prove that d2 and d5 can be decomposed into ∼e -equivalent components as required

by relation �.

Regarding d3 and d4, by rule d ≡ d | (t ⇒ nil), and the associativity and commutativity

of parallel composition, we can assume, as above, that M = O and every local clock

that appears in Πm∈M (t1m − r ⇒ p1
m) also appears in Πo∈O (t2o ⇒ q2

o), and vice versa. Of

course, we can apply the same rules to make sure that the same properties also apply in

Πm∈M (t1m ⇒ p1
m) and Πo∈O (t2o + r ⇒ q2

o) appearing within the ≡-equivalent forms of d2 and

d5, respectively. Actually we can additionally assume that t ⇒ p1
m and t ⇒ q2

o appear within

d3 and d4 (within their ≡-equivalent forms) if and only if t + r ⇒ p1
m and t + r ⇒ q2

o appear

within d2 and d5 (simply apply d ≡ d | (t + r ⇒ nil) in d2 and d5 whenever d ≡ d | (t ⇒ nil)

is applied in d3 and d4). Hence, without loss of generality, we can assume:

d3 ≡ (t(0)
k ⇒ p′) | Πm∈M (tm ⇒ p1

m),

d4 ≡ (t(0)
k ⇒ q′) | Πm∈M (tm ⇒ q2

m)

d2 ≡ (t(0)
k ⇒ p′) | Πm∈M (tm + r ⇒ p1

m)

d5 ≡ (t(0)
k ⇒ q′) | Πm∈M (tm + r ⇒ q2

m).

By hypothesis, d3 ∼e d4 and tm > t
(0)
k . Since p′, q′, p1

m and q2
m are in S, by Lemma B.8,

we have t
(0)
k ⇒ p′ ∼e t

(0)
k ⇒ q′ and tm ⇒ p1

m ∼e tm ⇒ q2
m. By Lemma B.12, we also have

tm + r ⇒ p1
m ∼e tm + r ⇒ q2

m. Hence (d2, d5) ∈ �, and, consequently, (d1, d6) ∈ � also.
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