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The present paper presents an overview of the AIGaN/GaN-based circuits realized over the years. Two technological processes
with 0.25 and 0.7 wm gate length allowed one to address applications from L- to Ku-bands. Depending on the process devel-
opment and frequency of the operation, results on hybrid or MMIC technology are presented. GaN technology is evaluated
through the realization of high-power amplifiers, robust low-noise amplifiers, or power switches to prepare the next generation

of Tx-Rx modules.
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. INTRODUCTION

AlGaN/GaN high electron-mobility transistors (HEMTs)
show better power performances at a given frequency than
lower band-gap materials. At material level, piezoelectric
effects in the GaN structure lead to the presence of fixed
charges at interfaces, giving rise to a two-dimensional electron
gas with an electron density larger than that created for
example in GaAs HEMTs using intentional doping. The
large band-gap of 3.4 eV results in a high breakdown field
of 3 MV/cm and allows an increase in bias voltage and
power by a factor of at least five compared to low band-gap
technologies [1-4]. This high breakdown field combined
with a high electron saturation velocity, as well as a high
carrier density and mobility through the AIGaN/GaN hetero-
structures, lead to many developments on this technology.
GaN HEMTs were initially developed for power applications,
the thermal conductivity of GaN at 300 K of 190 Wm ™ 'K™*
and that of silicon carbide (SiC) of 400 Wm™ 'K, allowing
a good dissipation of the heat generated in the channel.
These good thermal properties promoted epitaxial structures
grown on SiC substrate for power applications. Nevertheless,
the noise factor and the robustness to high levels of overdrive
lead such technology to be evaluated in other functions [5-8].
At the emission part, power switches are studied as an alterna-
tive solution to circulators to reduce size and weight. For the
reception, robust low-noise amplifiers (LNAs) should allow
module designers to move the limiter behind the amplifier.
This should reduce the noise budget of the reception chain
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and thus increase the dynamic of reception. Mixers are also
studied for good inter-modulation performances, noise
characteristics, and linearity [9]. In this work, we present an
overview of the circuits realized at Alcatel-Thales 3-5 lab
last years. High-power amplifiers in L- and X-bands and
broadband 6-18 GHz are presented. Hybrid or MMIC ampli-
fiers were developed taking into account the availability of
via-holes in through the SiC substrate and frequencies of
operation. Results on LNAs and power switches are also
shown. All these developments contribute to prepare the next
generation of Tx-Rx front-end modules based on GaN material.

. MATERIALS

AlGaN/GaN HEMT epitaxial layers are grown on an SiC sub-
strate using low-pressure metal organic chemical vapor depo-
sition. Mercury probe C-V measurements show a typical sheet
carrier density of 1.1013cm™* TLM (Transmission line
measurements) measurements present a mean sheet resistance
of 490 () per square for an aluminum fraction of 28% in the
22-nm-thick AlGaN layer. Figure 1 shows a cross-section of
such typical layer structure.

1. DEVICE TECHNOLOGY

The electrical isolation of components is performed by helium
implantation. Ti/Al/Ni/Au ohmic contacts are formed using a
rapid thermal anneal at temperature of 9oo °C. Good and
reproducible contact resistances are obtained at a typical
value of 0.2 ) mm. Mo-based field-plated 0.7 pm gate
length process or o0.25 wm mushroom gate process are
defined by electron beam lithography to address applications
from 1 to 18 GHz. Devices are passivated by depositing
an SiO,-Si;N, layer by plasma enhanced chemical vapor
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Fig. 1. Typical layer structure of AIGaN/GaN HEMT.

deposition (PECVD). Then, main electrical interconnections
are made using Ti/Pt/Au metals.

MMIC production needs additional process steps. Passive
elements consist in PECVD nitride MIM capacitors, NiCr
resistors, and evaporated Ti/Pt/Au inductances. After front-
side processing, the AIGaN/GaN heterostructure grown on
SiC wafer is mounted top side down on a sapphire substrate
and thinned down to 100 wm. Plasma etching via-holes tech-
nology is then used to ground the devices. Vias and backside
metallization consisted in sputtered TiW/Au and Au plating.
Figure 2 shows a cross-section of the main steps realized
during the o.7 pwm gate length process.

Field Plate

Metalization level 2

IvV. DEVICES TOPOLOGIES

Appropriate device topologies are necessary to cover appli-
cations ranging from around 1 to 18 GHz, LNAs to high-
power amplifiers emitting few watts at upper frequencies to
more than 100 W in S-band. For a given application, ‘pizza’
mask combining a large set of components are thus often
designed in a first step to evaluate and choose the best suitable
device. Trade-off between gain, power, and or input and
matching has to be considered. Figure 3 shows photographs
of coplanar 4 x 250 um with coplanar accesses for typical
S-band applications and microstrip 12 X 100 pm transistor
dedicated to X-band.

The 4 x 250 wm devices built with the 0.7 wm gate length
process exhibit a maximum drain current value at Vos=0V
(Isss) of 0.7 A/mm at a drain voltage of 6 V. The maximum
DC transconductance g, is 0.4 S/mm. Pinch-off and break-
down voltages (at 1 mA/mm of drain current) are, respect-
ively, —3.6 and 160 V. Minimum noise factor (NF,,;,) of the
4 x 250 pm device is 1.2 dB at 2 GHz for a Vy, voltage of
10V (Fig. 4). Power 8 x 250 wm devices under load-pull
measurements demonstrate an output power of 9 W (4.5 W/
mm) with 56% of power-added efficiency (PAE) and
16.5 dB of gain at 3 GHz and 40 V of drain voltage in continu-
ous wave (CW) operating conditions.

The 12 x 100 um devices are based on the 0.25 pum gate
length process for X-band applications. These power transis-
tors show an I drain current of 1.1 A/mm (Fig. s5). Its
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\
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Fig. 2. Cross-section of main steps of 0.7 pm gate length process.
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Fig. 3. Photograph of coplanar 4 x 250 pwm (left) and microstrip 12 x 100 pm power device (right).
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Fig. 4. NF,,;, of 4 x 250 pum device versus frequency in L-band at different Vg,
voltages (V4= 10 V).

small signal gain is 15 dB at 10 GHz at a drain voltage of 25 V
and a drain current of 210 mA.

Figure 6 shows the current gain cut-off frequency (F;) and
maximum available power gain cut-off frequency (F,,,) for
0.25 pum gate length devices with various total gate widths.

A typical power device of 1.6 mm presents F, and F,,,,, values
of, respectively, 18 and 35 GHz. A ratio of 2 between F, and
F1ag values is well conserved from elementary to power devices.

Figure 7 shows load-pull power measurements of the
1.2 mm device at 10 GHz. Measurements are performed in
pulse mode with a pulse length of 10 ps with 10% of duty
cycle. The device is biased at a voltage of 25 V and quiescent
drain current of 290 mA. At the optimum output load impe-
dances of 12.6 + j.9 () at the fundamental frequency, with 50
) at harmonic frequencies, the device shows a typical output
power of 37 dBm (5 W) corresponding to a power density of
4.2 W/mm. The PAE is 47% and the associated gain is 11 dB.

Appropriate devices are then combined to build functions
delivering more gain, more power to fulfill system require-
ments. LNA results, power switches, or power amplifiers pre-
sented in the present paper are based on these elementary
devices and technologies performances.

V. POWERSWITCH

GaN-based power switches are studied as an alternative to cir-
culator to save space and weight in equipments. Depending on
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Fig. 5. Pulsed I-V characteristics of 12 x 100 wm device from quiescent point
Ve=o0Vand Vis=0V.
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Fig. 6. F,.,, and F, evolution versus total gate width (Vga=5V, Is=
100 mA/mm).

the operating frequency and bandwidth, the trade-off between
performances and compactness can be discussed and power
switches seem to be more interesting for wideband than for
narrow band applications. Here we present the performances
of a power double pass double thru (DPDT) switch designed
using 4 x 250 pm GaN transistors [10, 11]. The fours paths
are identical and each one is constituted of three paralleled
transistors separated by a A/4 transmission line (Fig. 8).

At an input power of 42 dBm, the DPDT insertion losses
are lower than 2 dB over the [1-2] GHz band (Fig. 9).
Isolations between the four ports are better than 50 dB.

The power DPDT robustness was also measured to test the
maximum input power survivability. Input powers as high as
49 dBm (80 W) were necessary to destroy the switch (Fig. 10)
showing the high level of power withstand by these power
switches.
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Fig. 7. Load-pull measurement of 12 x 100 um device (Vo = 25V, I =
290 mA, F, = 10 GHz, 10 us/10%).
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Fig. 8. Power DPDT principle description.
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Fig. 9. Power DPDT losses with P;,, = 42 dBm.

VI. LNAS

On the receive part of a transmission chain, discrete PIN
diodes are often used to limit the power incoming from the
antenna and protect the GaAs LNA. As for power switches,
GaN-based LNAs can withstand around 10 times more
power than GaAs ones allowing to suppress or move the
limiter behind the LNA and improving the dynamic of the
receiver. However, the noise factor of GaN HEMT has to be
sufficiently low in order to have a GaN LNA noise factor com-
parable to the association of a GaAs LNA and a limiter.

Figure 11 shows a photograph of robust two-stage L-band
LNA designed with 4 x 250 wm GaN transistors. Figure 12
shows measurements of the LNA at a quiescent bias point
of Vjo=10V and I;; = 220 mA. A noise figure of 1.7 dB
and an associated gain of 22 dB are obtained.

Return losses are better than —12 dB. An on-off switching
time of 30 ns is also obtained. In order to demonstrate the
robustness of the LNA to high level of overdrive, it was
measured with an aggression test bench in CW mode. Input
powers ranging from 22 to 38 dBm were injected at the
input of the amplifier. The LNA handled input powers up to
37 dBm demonstrating the high level of overdrive capability
of GaN-based LNAs.

GaN devices were also evaluated in X-band with a hybrid
or MMIC approach [12]. Figure 13 shows the photograph of
a hybrid single-stage X-band amplifier. The amplifier is
based on an 8 x 75 wm device from o0.25 pm gate length
process.
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Fig. 10. Power DPDT losses versus input power ranging 44—-49 dBm.
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Fig. 11. Low-noise two-stage amplifier photograph.

Such amplifier has a small signal gain of 9 dB at 10 GHz at
a quiescent current of 80 mA and V4 voltage of 10 V. The gain
of the amplifier is highly reduced by the wire bondings necess-
ary to connect the source contacts to ground but allow the
device to be stabilized. Figure 14 shows the noise measure-
ments at 10 V of Vy voltage for drain currents ranging 40—
100 MA.

The noise factor is 1.6 dB over more than 2 GHz band-
width with a low dependency to drain current. At the 1 dB
compression point, the amplifier delivers an output power
of 25.6 dBm (360 mW).

Vil. HIGH-POWER AMPLIFIERS

Due to its high breakdown electrical field, high-power ampli-
fier is the microwave function which takes more advantages of
the GaN technology. These functions are developed from few
Megahertz to more than 100 GHz. In this part, we present
results of hybrid and MMIC high-power amplifiers up to
18 GHz.

Figure 15 shows the power stage of a broadband hybrid
power amplifier in L-band and a 6 x 8 x 250 pm power die
in package. The complete amplifier is constituted by two
stages, each in a balanced configuration with 3 dB-9o0°
hybrid couplers to ensure good input and output return
losses. Thanks to such configuration, each stage can be
measured under 50 () conditions separately.

Each power die is mounted in a ceramic standard package
including an R//C stabilization network at the input of each
elementary 8 x 250 pm device of the power die. This
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Fig. 12. Measured gain and noise figure of the LNA.
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Fig. 13. Hybrid single-stage X-band LNA.
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Fig. 14. Noise factor of hybrid single-stage X-band amplifier.

network also contributes to reduce the gain ripple in the band-
width. The two-stage amplifier was measured at a drain
voltage of 18 V and a total quiescent current of 2.8 A.
Measured S11 and S22 are below —15 dB in the 1-2 GHz
band. The small signal gain S21 is 22.2 dB. Amplifiers were
then measured under CW large signal operating conditions.
The backside temperature was maintained at 25 °C.
Figure 16 shows the results of the amplifier over the [1-2]
GHz frequency band. At an input power of 19.5 dBm, the
measured output power is 42 dBm (16W) with a PAE better
than 32%. At 1.2 GHz, the output power reaches 44.5 dBm
(28 W) with a PAE of 40% and a gain of 25 dB. The drain
current rises from 2.8 up to 4 A.

Each stage was separately characterized for different back-
side temperatures ranging [0-75] °C. The power stage shows a

OVERVIEW OF AIGAN/GaN HEMT TECHNOLOGY

power variation between o0.015 and 0.02 dB/°C over the fre-
quencies and temperatures ranges. Thermal simulations
were performed to calculate a maximum channel temperature
of 140 °C at a backside temperature of 50 °C. Due to the AB
class of operation, the channel temperature was at its
maximum at the quiescent point for low input power.

Electrical robustness was also evaluated. It consisted on
presenting at the output of the amplifier different reflection
coefficients from o (50 ) load) to 0.7 with eight different
phases to describe a complete circle in the Smith chart
(Fig. 17). After each set of measurements, the first load was
re-measured in order to detect degradations. No change in
performances was seen thanks to the back-off took on Vi
voltage for such operating conditions. Figure 18 shows the
load lines described by one device at the intrinsic current
source. Blue curves represent load lines described under 50
Q load conditions for input powers ranging [0-32] dBm
over the [1-2] GHz band. Red curves represent load lines
under a voltage standing wave ratio of six corresponding to
a module of reflection coefficient of 0.7 showing the safe
area of operation of instantaneous drain currents and voltages.

GaN HEMT technology was also evaluated in S-band at a
higher V,, voltage in order to get more power. Power dies
of 38 mm of total gate width were realized. Figure 19 shows
a photograph of such power die in CuW power package
including MIM matching capacitors.

In pulse conditions, at V= 40 V, an output power of
130 W (3.4 W/mm) with 40% of PAE were achieved at
2.7 GHz.

GaN MMICs were developed in the frame of the European
Defense Agency contract Korrigan. Several functions were

Fig. 15. Photograph of the second stage of the power amplifier (95 x 70 mm®) and power die in package.
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realized such as X-band or broadband 6-18 GHz switches,
LNAs, or power amplifiers. Figure 20 shows a microstrip
X-band power amplifier realized on 100-pwm-thick SiC sub-
strate. The amplifier includes two stages. The first stage is
composed of two 12 x 100 um and the second stage of four
16 x 140 pm devices. The chip size is 4500 X 4000 pm?.

Amplifiers were characterized on wafer under pulsed drain
conditions of 20 ws/10%. First, the amplifier was biased at a
drain voltage of 25 V and at a quiescent drain current of
2.3 A. Figure 21 shows the measured performances over the
[8-10] GHz band.

The output power was higher than 44.8 dBm (30 W) and
the PAE higher than 33% in the [8.5-9.5] GHz bandwidth.
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Fig. 18. Load lines of one device at the intrinsic current source for various load
conditions.
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Fig. 19. Thirty-eight millimeter power die in CuW power package for S-band
applications.

The associated gain was in the range of 13.5 + 0.5 dB. The
amplifier delivered a maximum output power of 46 dBm
(40 W) with 38% of PAE and 14 dB of associated gain at
9 GHz. The compression level of 4 dB allowed the amplifier
to deliver its best PAE. Then, the amplifier was measured at
a higher drain bias voltage of 32 V. The amplifier delivered
a maximum output power of 47.7 dBm (58 W) corresponding
to a power density of 6.5 W/mm with 38% of PAE and 14.6 dB
of associated gain at 9 GHz. This result represents the state of
the art of the output power obtained on MMIC with AlGaN/
GaN HEMTS [13-19].

The technology was also evaluated for 6-18 GHz broad-
band amplifiers. Hybrid design was used because no via-holes
technology was available at that time. The flip chip mounting
technique was used because it offers many electrical advan-
tages: it allows us to ground the device without wire
bonding, which reduces too much the power gain of the
device to operate up to 18 GHz. Moreover, it also ensures a
better control and reproducibility of gate and drain connec-
tions between the circuit and the device without too high
series inductances that are penalizing for a wideband match-
ing. From a thermal point of view, aluminium nitride ceramics
with a thermal conductivity of 170 W/m K" were used to
have a good thermal dissipation. An amplifier in balanced
configuration with two 8 x 75 wm device is presented in
Fig. 22 [20].

Fig. 20. Photograph of 18 mm?* X-band MMIC amplifier.
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Fig. 22. Photography of the balanced amplifier mounted in test jig.

Power measurements were performed at a quiescent bias
point of V4 =20V and I; = 200 mA. Figure 23 gives the
output power measured at 3 dB of gain compression. An
output power above 2.8 W in the [7-17] GHz bandwidth was
obtained. A maximum output power is achieved at 7.5 GHz
at 4.5 W corresponding to a power density of 3.8 W/mm.

These very encouraging results on hybrid technology
allowed us to demonstrate the wideband amplification capabili-
ties using the 0.25 wm gate length AIGaN/GaN HEMT process.

Power amplifiers from L- to Ku-band were realized using
0.7 or 0.25 pm gate length GaN processes. Both hybrid and

Pout (W) @ 3dBc

0||||||1|1||||||||[|||||
6 7 8 9 10 11 12 13 14 15 16 17 18

Frequency (GHz)

Fig. 23. Output power measured at 3 dB of gain compression (V4 =20V,
Ijo = 200 mA).
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MMIC circuits were used showing the several advantages of
the GaN technology: excellent power levels, good PAE, and
high robustness.

VI, CONCLUSION

Several designs and realizations of AIGaN/GaN-based circuits
were conducted over the last years. The 0.25 and 0.7 pm gate
length processes allowing building functions from L-band up
to 18 GHz in hybrid or MMIC. Even if GaN was firstly devel-
oped for high-power amplifiers, interest of robust LNAs or
power switches was investigated. Power switches should be an
alternative solution to circulators to reduce size and weight of
modules. At the reception, robust LNAs should allow module
designers to remove the limiter and thus improve the noise
budget of the reception chain. GaN-based high-power ampli-
fiers shown superior power-frequency performances than
lower band-gap materials and will probably replace actual tech-
nologies such as laterally diffused metal oxide semiconductor or
GaAs for high power when all the reliability challenges will be
won. The GaN era is only at its dawn.
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