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Arithmetic derivatives through
geometry of numbers
Hector Pasten

Abstract. We define certain arithmetic derivatives on Z that respect the Leibniz rule, are additive
for a chosen equation a + b = c, and satisfy a suitable nondegeneracy condition. Using Geometry of
Numbers, we unconditionally show their existence with controlled size. We prove that any power-
saving improvement on our size bounds would give a version of the abc Conjecture. In fact, we show
that the existence of sufficiently small arithmetic derivatives in our sense is equivalent to the abc
Conjecture. Our results give an explicit manifestation of an analogy suggested by Vojta in the eighties,
relating Geometry of Numbers in arithmetic to derivatives in function fields and Nevanlinna theory.
In addition, our construction formalizes the widespread intuition that the abc Conjecture should be
related to arithmetic derivatives of some sort.

1 Introduction

1.1 A map satisfying the Leibniz rule

There is great interest in constructing derivatives on Z behaving like derivatives on
function fields, as they are expected to have remarkable applications. For instance,
the arithmetic analogue of the Mason–Stothers theorem is the abc Conjecture, but
the proof for polynomials heavily uses derivatives, and it is unclear how to adapt it
to Z.

Let us discuss a first attempt by focusing only on the Leibniz rule. For each prime
p, let vp denote the p-adic valuation on Q, and let ξp be a variable. Let Ω be the free
Z-module generated by the variables ξp . Let d ∶ Z→ Ω be the map defined by d0 = 0
and by

dn = n∑
p∣n

vp(n)
p

⋅ ξp ,

for n ≠ 0, where p varies over the different prime divisors of n. (A version of d ∶ Z→
Ω and generalizations can be found in [7].) Note that n ⋅ vp(n)/p ∈ Z when p∣n, so
dn ∈ Ω for all n ∈ Z. In particular, when p is prime, we get dp = ξp . One immediately
checks the following lemma.

Lemma 1.1 (Leibniz rule for d) For all a, b ∈ Z, we have d(ab) = adb + bda.
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In fact, there is a sense in which d ∶ Z→ Ω is the universal map on Z satisfying
the Leibniz rule (see Section 5). Unfortunately, this map d is not a good analogue of a
derivative, because it is not additive: For instance, d(1) = 0, d(2) = ξ2, and d(3) = ξ3,
but we certainly have 0 + ξ2 ≠ ξ3.

1.2 Arithmetic derivatives

The starting point of our work is the following suggestion due to Thanases Pheidas:
When derivatives are applied in function field arithmetic, it is often the case that
additivity is only needed finitely many times. Thus, one might still assign values to
the variables ξp in order to make d additive in the finitely many needed cases. For
instance, in our previous example, we may replace ξ2 and ξ3 by 1 to get 0 + 1 = 1 from
the equation 1 + 2 = 3.

Our aim is to investigate this construction in the simplest nontrivial case: when
exactly one additive condition is imposed. For this, it is convenient to give an algebraic
formulation of Pheidas’s suggestion.

Consider a group morphism ψ ∶ Ω → Z. The arithmetic derivative dψ attached to ψ
is simply defined as dψ = ψ ○ d ∶ Z→ Z. Note that dψ ∶ Z→ Z still respects the Leibniz
rule.

Given coprime positive integers a, b, c with a + b = c, the condition dψ(a) +
dψ(b) = dψ(c) imposes a linear equation on the values ψ(ξp). When c > 2, the set of
all such maps ψ satisfying ψ(ξp) = 0 whenever p ∤ abc turns out to be a nontrivial free
abelian group (cf. Lemma 2.4). We denote this group by T (a, b). With this notation,
one can ask to what extent an arithmetic derivative dψ for ψ ∈ T (a, b) can be used to
mimic arguments from function field arithmetic.

1.3 The Small Derivatives Conjecture

Let us focus our attention on a particular kind of morphism ψ ∶ Ω → Z. For us, a
derivation is a group morphism ψ ∶ Ω → Z satisfying that its norm ∥ψ∥ ∶= supp ∣ψ(ξp)∣
is finite. The set of all such maps is a Z-module denoted by T , which comes equipped
with the norm ∥ − ∥. The previously defined groups T (a, b) are contained in T .

In addition to these definitions, we also introduce the notion of ψ-independence for
a pair of integers (a, b) and a derivation ψ, by requiring that the arithmetic Wronskian
Wψ(a, b) = adψb − bdψ a is nonzero. Our study focuses on the question of existence
of small (in the sense of ∥ − ∥) derivations ψ ∈ T (a, b) satisfying that a, b are ψ-
independent. We propose the following conjecture.

Conjecture 1.2 (Small Derivatives Conjecture; cf. Conjecture 3.9) There is an abso-
lute constant 0 < η < 1 such that for all but finitely many triples of coprime positive
integers (a, b, c) satisfying a + b = c and not of the form (1, N , q) with q prime (up
to order), the following holds: There is ψ ∈ T (a, b) such that a, b are ψ-independent
and ∥ψ∥ < cη .

This conjecture seems to capture the usefulness of derivatives in function field
arithmetic in the sense that it allows one to translate arguments from function fields
to Z, provided that additivity of derivatives is used just once. In order to clarify how
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to use our arithmetic derivatives together with the Small Derivatives Conjecture to
perform such a translation, in Section 3.4, we give a short proof of the analogue of
Fermat’s Last Theorem (FLT) forC[x] based on derivatives without using the Mason–
Stothers theorem or radicals, and then we translate the argument to Z. We conclude
that the Small Derivatives Conjecture implies the asymptotic form of FLT.

The connection with FLT is of course just an example to clarify the analogy
between our arithmetic derivatives and the usual function field derivatives. Actually,
our main goal is to show that the Small Derivatives Conjecture is equivalent to the
abc Conjecture (with a suitable choice of exponents). Let us give a brief outline of the
main results.

1.4 Main results

In Theorem 2.6, we will use Geometry of Numbers to show that T (a, b) admits a
full set of linearly independent derivations with controlled norm. In Theorem 3.3,
we prove an unconditional abc-type bound which explicitly includes a contribution
coming from the norm of arithmetic derivatives. This motivates the problem of
producing ψ ∈ T (a, b) for a given pair of coprime positive integers (a, b) such that
∥ψ∥ is small and a, b are ψ-independent. We prove such a result in Lemma 3.5,
but unfortunately, it is insufficient to prove the abc Conjecture. Nevertheless, this
analysis motivates a heuristic (cf. Section 3.3) leading to the formulation of the Small
Derivatives Conjecture discussed above. As for evidence, in addition to Lemma 3.5
and the heuristic in Section 3.3, we prove a version of the Small Derivatives Conjecture
with exponent η = 1/2 + ε, provided that the ψ-independence condition is replaced by
a somewhat weaker nondegeneracy condition (see Theorem 2.8).

Our main results concerning the arithmetic relevance of these notions are Lemma
4.1 and Theorem 4.5 (see also Corollary 4.6). These results show that the Small
Derivatives Conjecture is equivalent to the abc Conjecture, with a precise dependence
of exponents.

1.5 Some algebraic context

In Section 5, we include a discussion on a generalization of the constructions Ω
and T from an algebraic point of view. Consider a commutative monoid R, a
commutative unitary ring A, and a morphism of monoids α ∶ R → A, where A is
taken as a multiplicative monoid. For an A-module U, we say that a map D ∶ R → U
is an α-derivation (with values in U) if D(α(r)) = 0 for every r ∈ R and D(ab) =
aD(b) + bD(a) for all a, b ∈ A.

We will construct a universal α-derivation d(A,α) ∶ A→ Ω(A,α) and compute it in
some examples. One of these examples shows that our map d ∶ Z→ Ω is precisely the
universal α-derivation on Z for the inclusion map α ∶ {−1, 1} → Z. So, in this sense,
the map d ∶ Z→ Ω is not artificial.

Our notion of α-derivations is very similar to the theory of absolute derivations
from [7], except that we keep track of the additional data of a morphism of monoids
α ∶ R → A—in fact, when R = {1}, we recover the absolute derivations from [7].
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The additional data of a morphism of monoids are natural from various points of
view. First, in our arithmetic applications, it corresponds to restricting the support
of the derivations ψ ∈ T , which was necessary in the definition of T (a, b). Second,
one can check compatibility with localization of our α-derivations, leading to sheaves
of α-derivations on pre-log schemes (although we do not pursue this direction in
this work). From this point of view, our modules T (a, b) give normed sheaves on
Spec(Z) endowed with a suitable pre-log structure. Finally, monoids are often con-
sidered as the most basic “ground field” in the general F1 philosophy, which motivates
the construction of derivatives on Z by requiring compatibility with monoids rather
than requiring linearity.

1.6 Remarks on arithmetic derivatives

In summary, this work formalizes the widespread intuition that some sort of arith-
metic derivative on Z should be closely related to the abc Conjecture. Our results are
in line with Vojta’s proposed analogy comparing Geometry of Numbers in arithmetic
to derivatives in the setting of function fields and Nevanlinna theory (see Chapter 6
in [12]). We stress the fact that—despite the close relation with more sophisticated
concepts such as “geometry over F1”—our constructions only involve classical tools.

It is worth pointing out that Vojta has a different proposal for arithmetic derivatives
in terms of the existence of small rational points in the total space of certain projective
bundles (the Tautological Conjecture; cf. Section 30 in [13]). Furthermore, Faltings [6]
investigated yet another possible notion of arithmetic derivative in terms of certain
axiomatically defined arithmetic analogue of the Kodaira–Spencer class for fibrations,
showing that such an object cannot exist.

Finally, we mention that Buium (see [3] and the references therein) developed a
theory of p-derivations, which affords some analogies between differential calculus
and the arithmetic of local fields. Buium’s p-derivations, however, are purely local,
and they do not seem to be related to the global notion of arithmetic derivative in the
present work.

2 Derivations and arithmetic derivatives

2.1 The module T and arithmetic derivatives

Recall (from the Introduction) that Ω is the free Z-module generated by the variables
ξp for p varying over prime numbers. For a Z-linear map ψ ∶ Ω → Z, we define ∥ψ∥ =
supp ∣ψ(ξp)∣. We will often use the observation that if ψ ≠ 0, then ∥ψ∥ ≥ 1. Let

T = {ψ ∈ HomZ(Ω,Z) ∶ ∥ψ∥ is finite}.

Elements of T will be called derivations, and ∥ − ∥ is a norm on the Z-module T .
Given a derivation ψ ∈ T , we define the arithmetic derivative attached to ψ as the

map

dψ ∶ Z→ Z defined by dψ ∶= ψ ○ d.
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For example, the classical “arithmetic derivative” that one encounters in elemen-
tary number theory [1, 10] is precisely dσ where σ(∑p ap ξp) = ∑p ap—note that
∥σ∥ = 1, so σ ∈ T .

Returning to the general case, observe that upon composing with ψ ∈ T , Lemma
1.1 gives the following result.

Lemma 2.1 (Leibniz rule for arithmetic derivatives) Let ψ ∈ T . For every a, b ∈ Z,
we have dψ(ab) = adψb + bdψ a. Thus, for all integers n ≥ 1 and all a ∈ Z, we have
dψ(an) = nan−1dψ a.

Concerning norms, the following estimates are useful.

Lemma 2.2 For every positive integer n, we have∑p∣n vp(n)/p ≤ (2 log 2)−1 log n. In
particular, if n ≥ 2 and ψ ∈ T , then ∣dψ(n)∣ < ∥ψ∥ ⋅ n log n.

Proof. We can assume n ≥ 2. Then, we get

∑
p∣n

vp(n)
p

= ∑
p∣n

vp(n) log p ⋅ 1
p log p

≤ (max
p∣n

1
p log p

) log n ≤ log n
2 log 2

.

The last claim is immediate from dψ(n) = n∑p∣n vp(n)p−1ψ(ξp). ∎

2.2 The modules T (a, b)

The support of ψ ∈ T is the set of primes supp(ψ) = {p ∶ ψ(ξp) ≠ 0}. The support of
a nonzero integer n is supp(n) = {p ∶ p∣n}, and the number of different prime factors
is ω(n) = #supp(n). We recall the following elementary fact.

Lemma 2.3 We have ω(n) = O(log(n)/ log log n). In particular, for each ε > 0, we
have the bound ω(n) < ε log n for all but finitely many positive integers n.

For a pair of positive integers a, b, we define

T (a, b) = {ψ ∈ T ∶ supp(ψ) ⊆ supp(ab(a + b)) and dψ(a + b) = dψ a + dψb}

(because a and b are positive, supp(ab(a + b)) is a finite set). Thus, for ψ ∈ T (a, b),
we have that the arithmetic derivative dψ not only satisfies the Leibniz rule, but
also satisfies dψ(a + b) = dψ a + dψb for the chosen integers a and b. Explicitly, the
condition dψ(a + b) = dψ a + dψb is

a∑
p∣a

vp(a)
p

⋅ ψ(ξp) + b∑
p∣b

vp(b)
p

⋅ ψ(ξp) = (a + b) ∑
p∣a+b

vp(a + b)
p

⋅ ψ(ξp),(2.1)

which is a homogeneous linear equation on the unknowns ψ(ξp) for p ∈ supp(ab(a +
b)). Hence:

Lemma 2.4 (Basic existence lemma) Let a and b be positive integers. Then, T (a, b)
is a saturated Z-submodule of T of rank ω(ab(a + b)) − 1.
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2.3 Bounding the norm

We aim for a more precise version of Lemma 2.4. First, we note that for all m, n, k ∈ Z,
we have

d(km + kn) − d(km) − d(kn) = k ⋅ (d(m + n) − dm − dn)
and similarly for dψ for any ψ ∈ T . Hence, the question of existence of arithmetic
derivatives respecting additivity for a chosen pair of numbers can be reduced to the
coprime case.

We will need the following version of Siegel’s lemma which builds on Minkowski’s
second theorem in Geometry of Numbers (see Theorem 2 in [2]).

Theorem 2.5 (Siegel’s lemma) Let a1 , . . . , aN ∈ Z. The equation a1 X1 +⋯+ aN XN =
0 has linearly independent solutions xi = (x i1 , . . . , x i N) ∈ ZN for 1 ≤ i ≤ N − 1 satisfying

N−1
∏
i=1

max
1≤ j≤N

∣x i j ∣ ≤ N ⋅ max
1≤ j≤N

∣a j ∣.

With this at hand, we can prove a more precise version of Lemma 2.4, which we
state in the case of positive integers for the sake of simplicity.

Theorem 2.6 (Existence of arithmetic derivatives of controlled size) Suppose
that a, b are coprime positive integers with c ∶= a + b > 2, i.e., (a, b) ≠ (1, 1). Then,
T (a, b) has rank r ∶= ω(abc) − 1 ≥ 1, and there areZ-linearly independent derivations
ψ1 , . . . , ψr ∈ T (a, b) satisfying

r
∏
i=1
∥ψ i∥ ≤

ω(abc)
2 log 2

⋅ c log c.

Proof. As in (2.1), the condition dψ a + dψb = dψ c defining T (a, b) becomes

a∑
p∣a

vp(a)
p

⋅ ψ(ξp) + b∑
p∣b

vp(b)
p

⋅ ψ(ξp) = c∑
p∣c

vp(c)
p
⋅ ψ(ξp).

Because (a, b) ≠ (1, 1), we have r ≥ 1. Treating ψ(ξp) as unknowns and using the fact
that a, b, and c are pairwise coprime, the coefficients of the previous equation are
positive integers bounded by c log2(c)/2, where log2 is the base 2 logarithm. The result
follows by Theorem 2.5. ∎

Choosing the smallest derivation provided by the previous theorem, one deduces
the following corollary.

Corollary 2.7 (Existence of a small derivative) Let ε > 0. For all but finitely many
triples of coprime integers a, b, c with c > 2 and satisfying a + b = c, there is a nonzero
ψ ∈ T (a, b) with ∥ψ∥ < c 1

r +ε , where r = ω(abc) − 1.

However, Corollary 2.7 does not ensure any sort of nondegeneracy for the arith-
metic derivative it provides. For instance, although ψ is not zero, it can occur that
dψ(a) = dψ(b) = dψ(c) = 0. The following result remedies this situation.
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Theorem 2.8 (Small nontrivial derivatives) Let ε > 0. For all but finitely many triples
of coprime integers a, b, c larger than 1 that satisfy a + b = c, there is ψ ∈ T (a, b) with
∥ψ∥ < c 1

2+ε such that not all the integers dψ(a), dψ(b), dψ(c) are zero.

Proof. Because a, b, c are larger than 1, each one of them has prime divisors. Thus,
the conditions (2.1), dψ(a) = 0, and dψ(b) = 0 are linearly independent when we
consider the terms ψ(ξp) as unknowns. Let K (a, b) ⊆ T (a, b) be the subgroup
defined by these conditions, and note that rkK (a, b) = r − 2, where r = rkT (a, b) =
ω(abc) − 1 (see Lemma 2.4).

Let ψ1 , . . . , ψr ∈ T (a, b) be as provided by Theorem 2.6, and assume that they
are labeled in such a way that ∥ψ1∥ ≤ ∥ψ2∥ ≤ ⋯ ≤ ∥ψr∥. Because the ψ i are linearly
independent, there are indices i1 < i2 such that ψ i1 and ψ i2 are not in K (a, b). Then,
we have

∥ψ i1∥2 ≤ ∥ψ i1∥ ⋅ ∥ψ i2∥ ≤
r
∏
i=1
∥ψ i∥ ≤

ω(abc)
2 log 2

⋅ c log c,

and we conclude by Lemma 2.3. ∎

We will be interested in a more delicate notion of nondegeneracy for a derivation
ψ ∈ T (a, b), for which we need to introduce certain arithmetic Wronskians.

2.4 Independence

One might be tempted to explore analogues of various notions from differential
calculus using the functions dψ ∶ Z→ Z instead of an actual derivative. Rather than
giving a lengthy list of such definitions, let us simply mention here a notion that will
be useful for us. Given ψ ∈ T , the ψ-Wronskian of two integers a, b is defined by

Wψ(a, b) = det [ a b
dψ a dψb ] = adψb − bdψ a ∈ Z.

Let us also note the formula

Wψ(a, b) = ab ⋅
⎛
⎝∑p∣b

vp(b)
p

ψ(ξp) −∑
p∣a

vp(a)
p

ψ(ξp)
⎞
⎠

.(2.2)

We say that a, b are ψ-dependent if Wψ(a, b) = 0. Otherwise, they are ψ-independent.
From (2.2), we deduce that a, b are ψ-dependent if and only if

∑
p∣a

vp(a)
p

ψ(ξp) = ∑
p∣b

vp(b)
p

ψ(ξp).(2.3)

Given positive integers a and b, we define

T ○(a, b) = {ψ ∈ T (a, b) ∶ a, b are ψ-dependent}.

Lemma 2.9 Let a, b be coprime positive integers with (a, b) ≠ (1, 1). The set T ○(a, b)
is a saturated Z-submodule of T (a, b)with rkT ○(a, b) = rkT (a, b) − 1 = ω(ab(a +
b)) − 2. In particular, T ○(a, b) is properly contained in T (a, b).
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Proof. Because (a, b) ≠ (1, 1), there is some prime q∣ab. Hence, equation (2.3)
defining T ○(a, b) is nontrivial. Furthermore, no term corresponding to primes p∣c
contributes to (2.3), while they appear in equation (2.1) defining T (a, b). This proves
that, considering the values ψ(ξp) as variables, equations (2.1) and (2.3) are linearly
independent. We conclude by Lemma 2.4. ∎

3 An abc bound and the problem of small arithmetic derivatives

3.1 The abc Conjecture

The radical of a positive integer n, denoted by rad(n), is the product without
repetitions of the different primes dividing n. The celebrated abc Conjecture is the
following.

Conjecture 3.1 (The Masser–Oesterlé abc Conjecture) Given ε > 0, there is a con-
stant κε > 0 such that for all coprime positive integers a, b, c with a + b = c, we have
c < κε ⋅ rad(abc)1+ε .

For many applications, even the following weaker version would suffice the follow-
ing conjecture.

Conjecture 3.2 (Oesterlé’s abc Conjecture) There is an absolute constant M such that
for all coprime positive integers a, b, c with c = a + b, we have c < rad(abc)M .

Oesterlé’s version of the abc Conjecture was proposed first in 1985, and it was later
refined into the Masser–Oesterlé abc Conjecture by Masser. See [8] for a historical
account of how these conjectures were formulated. To the best of the author’s knowl-
edge, they remain open.

3.2 An abc bound using arithmetic derivatives

The notion of derivation considered in the previous section is enough to get an
estimate in the spirit of the abc Conjecture, with a proof analogous to Snyder’s proof
of Mason’s theorem in the function field setting (see [11]) or to the proof of the Second
Main Theorem in Nevanlinna theory using Wronskians or logarithmic derivatives.

Theorem 3.3 (An abc estimate) Let a, b be coprime positive integers with (a, b) ≠
(1, 1), and let ψ ∈ T (a, b). Suppose that a and b are ψ-independent. Writing c = a + b,
we have

c
log c

≤ rad(abc) ⋅ ∥ψ∥
log 2

.

For the proof, we need a simple observation.

Lemma 3.4 For any positive integer n and any ψ ∈ T , we have that n divides
gcd(n, dψ n) ⋅ rad(n).
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Proof. n divides n ⋅ rad(n). From the definition of dψ , we see that n divides (dψ n) ⋅
rad(n). ∎

Proof of Theorem 3.3 The equation dψ a + dψb = dψ c gives

W ∶=Wψ(a, b) =Wψ(a, c) =Wψ(c, b),
which is nonzero, because a, b are ψ-independent. By Lemma 3.4, we see that
a/rad(a) divides W =Wψ(a, b), and similarly for b and c. By coprimality of a, b,
and c, we get that abc divides W ⋅ rad(abc). Because W ≠ 0, we conclude abc ≤
∣W ∣ ⋅ rad(abc). From (2.2), we deduce

abc
rad(abc) ≤ ∣W ∣ = ab

�����������
∑

p

vp(a)
p

ψ(ξp) −∑
p

vp(b)
p

ψ(ξp)
�����������

≤ ab∥ψ∥ ∑
p∣ab

vp(ab)
p

≤ ab∥ψ∥ ⋅ log(ab)
2 log 2

,

where the last bound is by Lemma 2.2. The result follows from log(ab) ≤ 2 log c. ∎

3.3 Small arithmetic derivatives

In view of Theorem 3.3, we cannot avoid the question of existence of small derivations
ψ ∈ T (a, b) subject to the condition that a, b be ψ-independent. A first result is
directly deduced from Lemma 2.9 and Theorem 2.6.

Lemma 3.5 (Small arithmetic derivatives satisfying independence) Let a, b be
coprime positive integers with (a, b) ≠ (1, 1), and let c = a + b. Let r = ω(abc) − 1, and
note that r ≥ 1. For any list of linearly independent derivations ψ1 , . . . , ψr ∈ T (a, b),
there is at least one index 1 ≤ i0 ≤ r such that a, b are ψ i0 -independent. Furthermore,
choosing ψ1 , . . . , ψr as in Theorem 2.6, we get

∥ψ i0∥ ≤
ω(abc)
2 log 2

⋅ c log c.

Example 3.6 Let q = 2n − 1 be a Mersenne prime, and take a = 1, b = q, and c = 2n .
Then, T (1, q) = Z ⋅ ψ1, where the ψ1(ξ2) = 1, ψ1(ξq) = n ⋅ 2n−1, and ψ1(p) = 0, for all
p ≠ 2, q. Thus, in this example, the bound given by Lemma 3.5 is sharp up to a factor
of 2, because we actually have:

∥ψ1∥ = n ⋅ 2n−1 = ω(abc)
4 log 2

⋅ c log c.

Unfortunately, Lemma 3.5 combined with Theorem 3.3 falls short of proving the
abc Conjecture. Nevertheless, it clarifies the fact that in order to prove the abc
Conjecture, one must get a power-saving improvement over the bound in Lemma 3.5.

Optimistically, we may expect that in Theorem 2.6, one can choose the ψ i such that
all the log ∥ψ i∥ have roughly the same size. Proceeding as in Lemma 3.5, if ω(abc) ≥ 3
(i.e., r ≥ 2), this would give the desired power-saving improvement. Regarding the
condition ω(abc) ≥ 3, we have the following lemma.
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Lemma 3.7 Up to order, the only triples of coprime positive integers a, b, c with a +
b = c having ω(abc) ≤ 2 are the following: (1, 1, 2), (1, 8, 9), and (1, 2n , q)with q prime
and n ≥ 1.

This follows from Mihailescu’s theorem [9]. Of course, it is not known whether
there are infinitely many primes of the form q = 2n + 1 (Fermat primes) or q = 2n − 1
(Mersenne primes).

There is, however, an additional caveat in the previous heuristic. If a, b, c are, up
to order, 1, q, N for some prime q, then from the defining equations (2.1) and (2.3),
we see that every ψ ∈ T ○(a, b) satisfies the unexpected condition ψ(ξq) = 0. If in
addition N is the product of powers of small primes, then it can happen that T ○(a, b)
is generated by unusually small derivations, in which case our heuristic justification
on how to get a power-saving improvement over Lemma 3.5 fails.

Example 3.8 Consider a = 1, b = 108 = 22 ⋅ 33, and c = q = 109. Then, r = 2,
and the group T 0(1, 108) ≃ Z is generated by the derivation ψ1 determined
by (ψ1(2), ψ2(3), ψ3(109)) = (1,−1, 0). On the other hand, any derivation ψ2 ∈
T (1, 108) which is linearly independent from ψ1 satisfies ∥ψ2∥ ≥ 108, with equality
achieved (for instance) at (ψ2(2), ψ2(3), ψ2(109)) = (2,−1, 108).

The previous considerations motivate our main conjecture.

Conjecture 3.9 (Small Derivatives Conjecture) There is an absolute constant 0 < η <
1 such that for all but finitely many triples of coprime positive integers (a, b, c) satisfying
a + b = c and not of the form (1, N , q) with q prime (up to order), the following holds:
There is ψ ∈ T (a, b) such that a, b are ψ-independent and ∥ψ∥ < cη .

The crucial aspects of Conjecture 3.9 are that the exponent η is strictly less than
1, and that a, b must be ψ-independent. Some of our results provide unconditional
evidence:
• Corollary 2.7 shows that if we completely drop the ψ-independence condition, then

the desired bound holds for any η > 0, for those triples a, b, c satisfying ω(abc) >
1 + 1/η.

• Theorem 2.8 shows that if we replace the ψ-independence condition by the weaker
requirement that dψ(a) or dψ(b) be nonzero, then one can indeed achieve a bound
with exponent η < 1—in fact, any η > 1/2 works. (Note that if ψ ∈ T (a, b) and a, b
are ψ-independent, then necessarily dψ(a) or dψ(b) is nonzero.)

• Lemma 3.5 shows that if we keep the ψ-independence condition, then a version
of the Small Derivatives Conjecture holds with exponent η = 1 + ε rather than the
sought η < 1.

3.4 Proof of concept: Fermat’s Last Theorem

As it is well known, the analogue of FLT over polynomials can be deduced from
the Mason–Stothers theorem, and the same argument over Z shows that the abc
Conjecture implies the “asymptotic” FLT, meaning FLT up to finitely many exponents
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(of course, FLT was proved by Wiles [14], while the abc Conjecture remains open.)
Let us give a direct proof1 of FLT for the polynomial ring C[x] without using the
Mason–Stothers theorem or radicals. Recall that the Wronskian of f , g ∈ C[x] is
W( f , g) = f g′ − f ′g.

Proposition 3.10 (FLT for polynomials) Let n ≥ 3. Let f , g , h ∈ C[x] be coprime
nonzero polynomials with at least one of them nonconstant. Then, f n + gn ≠ hn .

Proof. For the sake of contradiction, suppose that f n + gn = hn . Without loss of
generality, assume that h has the largest degree among f , g , h. Note that W( f , h) ≠ 0,
for otherwise we would have f = λh and g = (1 − λ)h for some λ ∈ C, which is not
possible.

Taking derivatives and multiplying by f, we find f n f ′ + f gn−1 g′ = f hn−1h′. Using
f n f ′ = (hn − gn) f ′, we get gn−1W( f , g) = hn−1W( f , h). Because W( f , h) ≠ 0 and
g , h are coprime, we find

(n − 1)deg(h) ≤ deg W( f , g) ≤ deg( f g) − 1 < 2 deg(h),
which implies n < 3, a contradiction. ∎

Our theory of arithmetic derivatives affords a smooth translation of the previous
proof into the setting of integers, conditional on the Small Derivatives Conjecture 3.9.

Proposition 3.11 (Asymptotic FLT conditional on the Small Derivatives Conjecture)
Assume Conjecture 3.9. There is a positive integer n0 such that for all n ≥ n0, the
following holds: If a, b, c are coprime positive integers, then an + bn ≠ cn .

Proof. Assume Conjecture 3.9 with some exponent η < 1, and let n ≥ 2 be a positive
integer. Thus, for all but finitely many triples of coprime integers a, b, c with an +
bn = cn , there is ψ ∈ T (an , bn) such that ∥ψ∥ < cn⋅η and Wψ(an , bn) ≠ 0 (an , bn , cn

are not prime). Note that dψ(an) = nan−1dψ a by Lemma 2.1 and similarly for b, so
Wψ(an , bn) = n(ab)n−1Wψ(a, b), concluding Wψ(a, b) ≠ 0.

Starting from an + bn = cn , we repeat the computation from the polynomial
case using Lemma 2.1 and the fact that ψ ∈ T (an , bn). We get bn−1Wψ(a, b) =
cn−1Wψ(a, c). Because Wψ(a, b) ≠ 0 and b, c are coprime, Lemma 2.2 yields

cn−1 ≤ ∣Wψ(a, b)∣ = ∣adψb − bdψ a∣ < ∥ψ∥ ⋅ 2c2 log c < 2c2+n⋅η log c.

Up to finitely many triples (a, b, c), this shows n ≤ 3/(1 − η), which suffices to prove
the result. ∎

In Section 4, we will show that the Small Derivatives Conjecture is equivalent to
the abc Conjecture, and in this way, one can prove Proposition 3.11 by using the abc
Conjecture as an intermediate step. Nevertheless, the previous proof gives an example
of how to use our arithmetic derivatives to directly translate arguments from function
field arithmetic to the integers.

1We make no claim of originality on this argument, although we could not find it in the literature.
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4 Small arithmetic derivatives are equivalent to the abc Conjecture

4.1 The Small Derivatives Conjecture implies the abc Conjecture

Lemma 4.1 If the Small Derivative Conjecture 3.9 holds for some value of η, then
Oesterlé’s abc Conjecture 3.2 holds for every M > 1/(1 − η).

Proof. Assume Conjecture 3.9 for some exponent 0 < η < 1. If up to order we have
(a, b, c) = (1, N , q) with q prime and N ≥ 2, then rad(abc) ≥ 2q > q + 1 ≥ c; hence,
the abc Conjecture holds in such cases. So, we may assume we are not in the previous
case. For all but finitely many triples of coprime positive integers a, b, c with a + b = c,
we have

c
log c

< rad(abc) ⋅ cη

log 2
,

where we applied Theorem 3.3 and Conjecture 3.9. The result follows. ∎

It turns out that the converse is also true (cf. Theorem 4.5), but the proof is more
delicate.

4.2 Preliminary lemmas

Lemma 4.2 Let K be a field, and let m < n be positive integers. Let vi =
(v i ,1 , . . . , v i ,n) ∈ Kn for 1 ≤ i ≤ m be linearly independent over K. Let j0 be such that
v i , j0 ≠ 0 for some i. There is an injective function τ ∶ {1, . . . , m} → {1, . . . , n} such that
j0 is in the image of τ, and for each 1 ≤ i ≤ m, we have v i ,τ(i) ≠ 0.

Proof. Let I = {1, . . . , m} and J = {1, . . . , n}. Let A = [v i , j]i∈I , j∈J , and note that
this matrix has rank m by linear independence of its rows. The j0-th column is
not the zero vector, so we may choose J′ ⊆ J with #J′ = m such that the square
matrix A′ = [v i , j]i∈I , j∈J′ still has rank m. In particular, det(A′) ≠ 0. Writing det(A′) =
∑σ ±∏i v i ,σ(i) where σ varies over bijective functions I → J′ (with suitable choice of
signs), we see that for some bijective τ ∶ I → J′, we have∏i v i ,τ(i) ≠ 0. ∎

Lemma 4.3 Let ε > 0. For all but finitely many positive integers n, we have
∏p∣n vp(n) < nε .

Proof. Note that ∏p∣n vp(n) ≤ σ0(n) where σ0(n) is the number of positive divi-
sors of n. Thus, the result follows from standard bounds on σ0(n). ∎

We remark that a much more precise version of Lemma 4.3 is due to de Weger [4].
The following result limits how small ∥ψ∥ can be when a, b are ψ-dependent. Note

that the condition that a, b, c are not of the form 1, N , q with q prime (up to order)
from our heuristic in Section 3.3 naturally appears here again.

Lemma 4.4 Let a, b, c be coprime positive integers with a + b = c, not of the
form (1, 8, 9) or (1, N , q) with q prime (up to order). Define r = ω(abc) − 1. Let
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ψ1 , . . . , ψr−1 ∈ T ○(a, b) be linearly independent derivations; in particular, a and b
are ψ i -dependent for each i. Suppose that there is some number M satisfying 1 < M < 2
and c < rad(abc)M , and let μ = (2 −M)/(4M). Then,

r−1
∏
i=1
∥ψ i∥ ≥

cμ

∏p∣abc vp(abc) .

Proof. Recall that T ○(a, b) is defined by the conditions (2.1) and (2.3). Together
they give

∑
p∣a

vp(a)
p

ψ(ξp) = ∑
p∣b

vp(b)
p

ψ(ξp) = ∑
p∣c

vp(c)
p

ψ(ξp),(4.1)

which holds for every ψ ∈ T ○(a, b), in particular for each ψ i . In fact, (2.1) and (2.3)
together are equivalent to (4.1), so

T ○(a, b) = {ψ ∈ T ∶ supp(ψ) ⊆ supp(abc) and (4.1) holds}.

We distinguish three cases (Lemma 3.7 and our assumptions imply that there is no
other case):
(i) Up to order, both ab and c have at least two different prime factors each.
(ii) Up to order, we have (a, b, c) = (1, qs , N) for a prime q and some integer s ≥ 2

and N with at least two prime factors.
(iii) (a, b, c) = (qs1

1 , qs2
2 , qs3

3 ) where q1 , q2 , q3 are different primes and s i ≥ 1 for
each i.

Let us first deal with cases (i) and (ii).
In case (i), suppose that there is some prime q∣abc such that ψ i(ξq) = 0 for

each i. Then, every ψ ∈ T ○(a, b) would satisfy ψ(ξq) = 0, because the derivations
ψ1 , . . . , ψr−1 generate a finite index subgroup of T ○(a, b) (cf. Lemma 2.9). This is
not possible, because the condition ψ(ξq) = 0 is linearly independent from the two
equations in (4.1) that define T ○(a, b). This proves that in case (i), for each prime
p∣abc, we have (ψ i(ξp))i ≠ (0, . . . , 0).

In case (ii), we note that one of the equations in (4.1) is 0 = sψ(ξq)/q, which
is equivalent to ψ(ξq) = 0. Therefore, T 0(a, b) is defined by ψ(ξq) = 0 and
∑p∣N vp(N)ψ(ξp)/p = 0. This last equation is linearly independent from any
condition of the form ψ(ξp) = 0 with p ≠ q, because N has at least two prime factors.
This proves that in case (ii), for each p∣abc with p ≠ q, we have (ψ i(ξp))i ≠ (0, . . . , 0).

Let q′ be the largest prime factor of abc in case (i), and let it be the largest prime
factor of abc subject to the condition q′ ≠ q in case (ii). In either case, (ψ i(ξq′))i ≠
(0, . . . , 0).

Let I = {1, . . . , r − 1} and J = {p ∶ p∣abc}, so that #I = r − 1 < #J = r + 1. Choosing
the vectors vi = (ψ i(ξp))p∈J for i ∈ I, Lemma 4.2 gives an injective function τ ∶ I → J
having q′ in its image such that for every i ∈ I, we have ψ i(ξp i ) ≠ 0, where p i ∶= τ(i).

By coprimality of a, b, c and considering the denominators in (4.1), we see that
for each p∣abc and each i, we have that p divides vp(abc)ψ i(ξp). Together with the
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previous nonvanishing, for each i = 1, . . . , r − 1, we find vp i (abc)∥ψ i∥ ≥ p i . This gives

∏
p∣abc

vp(abc) ⋅
r−1
∏
i=1
∥ψ i∥ ≥

r−1
∏
i=1
(vp i (abc)∥ψ i∥) ≥

r−1
∏
i=1

p i = Pq′ ,

where P is the product of the primes p i ≠ q′. Let �1 , �2 ∈ J be the two primes not in
the image of τ. Then, rad(abc) = P�1�2q′.

In case (i), we have �1 , �2 < q′, so rad(abc) = P�1�2q′ < P ⋅ (q′)3 ≤ (Pq′)3. This
proves∏r−1

i=1 p i ≥ rad(abc)1/3 ≥ c1/(3M), which concludes the proof in case (i).
In case (ii), notice that q = � j , for j = 1 or j = 2. Let us assume q = �1, in particular,

�2 < q′. Observe that �2
1 = q2 ≤ qs ≤ c, so �1 ≤ c1/2. Then, we get

c1/M ≤ rad(abc) = P�1�2q′ ≤ P(q′)2c1/2 ≤ (Pq′)2c1/2 .

This proves∏r−1
i=1 p i ≥ c(2−M)/(4M), which concludes the proof in case (ii).

Finally, let us consider case (iii). Naturally, one of the primes q i is 2, but this will
not be relevant. Note that r = 2, so we need a lower bound for ∥ψ1∥. By (4.1), we find
s1ψ1(ξq1)/q1 = s2ψ1(ξq2)/q2 = s3ψ1(ξq3)/q3, and it follows that rad(abc) = q1q2q3
divides s1s2s3ψ1(ξq1)ψ1(ξq2)ψ1(ξq3). In particular,

∥ψ1∥3 ⋅ ∏
p∣abc

vp(abc)3 ≥ ∥ψ1∥3 ⋅ ∏
p∣abc

vp(abc) ≥ rad(abc) > c1/M ,

which gives the result in case (iii). ∎

4.3 The abc Conjecture implies the Small Derivatives Conjecture

Theorem 4.5 If Oesterlé’s abc Conjecture 3.2 holds with some exponent 1 < M <
2, then the Small Derivatives Conjecture 3.9 holds for each exponent η > 1 − (2 −
M)/(4M).

Let us remark that for 1 < M < 2, the quantity μ = (2 −M)/(4M) satisfies 3/4 <
1 − μ < 1. We see that any exponent η > 1 − μ sufficiently close to 1 − μ satisfies η < 1;
hence, it is admissible for the Small Derivatives Conjecture 3.9.

Proof of Theorem 4.5 We assume that Oesterlé’s abc Conjecture 3.2 holds for
some exponent M with 1 < M < 2. Let us fix ε > 0. In the argument below, we may
need to implicitly discard finitely many triples (a, b, c) for some inequalities to hold,
which we indicate by writing “≤∗” instead of “≤.” The finitely many discarded triples
will only depend on M and ε.

Let a, b be coprime positive integers, set c = a + b, and assume that (a, b, c) is not
of the form (1, N , q) with q prime, up to order.

Let ψ1 , . . . , ψr ∈ T (a, b) be as provided by Theorem 2.6, and label these deriva-
tions in such a way that ∥ψ1∥ ≤ ∥ψ2∥ ≤ ⋯ ≤ ∥ψr∥. Let i0 ∈ {1, 2, . . . , r} be the least
index such that ψ i0 ∉ T ○(a, b), which exists by Lemma 2.9. We distinguish two
cases:
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(a) i0 < r. In this case, using Lemma 2.3, we get ∥ψ i0∥ ≤∗ c(1+ε)/2, because

∥ψ i0∥2 ≤
r
∏
i=i0

∥ψ i∥ ≤
ω(abc)
2 log 2

c log c ≤∗ c1+ε .

(b) i0 = r. In this case, we have ψ1 , . . . , ψr−1 ∈ T ○(a, b), and we can apply Lemma
4.4, because we are assuming Conjecture 3.2 for some exponent 1 < M < 2. Let
us define μ = (2 −M)/(4M). Lemmas 2.3 and 4.3 give ∥ψr∥ ≤∗ c1−μ+ε , because

cμ−ε/2 ⋅ ∥ψr∥ ≤∗
cμ

∏p∣abc vp(abc) ⋅ ∥ψr∥ ≤
r
∏
i=1
∥ψ i∥ ≤

ω(abc)
2 log 2

c log c ≤∗ c1+ε/2 .

The second case is the one giving the worst bound, hence the result. ∎

In particular, Lemma 4.1 and Theorem 4.5 give the following result.

Corollary 4.6 The Masser–Oesterlé abc Conjecture 3.1 implies the Small Derivative
Conjecture 3.9. Conversely, the Small Derivative Conjecture 3.9 implies Oesterlé’s abc
Conjecture 3.2.

5 Differentials of rings over monoids

5.1 Definitions

Let A be a commutative unitary ring, let R be a commutative monoid, and let α ∶ R →
A be a morphism of monoids with A taken as a multiplicative monoid. Given an A-
module U, a U-valued α-derivation on A is a function D ∶ A→ U satisfying
(Diff1) R-triviality: D(α(r)) = 0 for all r ∈ R;
(Diff2) Leibniz rule: D(ab) = aD(b) + bD(a) for all a, b ∈ A.

A differential (A, α)-module is a pair (U , D), where U is an A-module and D is a
U-valued α-derivation on A.

Naturally, these definitions can also be formulated when A is just assumed to be
a commutative monoid, which is perhaps better suited for the theory of monoid
schemes (“geometry over F1”; cf. [5]). However, we keep the assumption that A be a
ring to simplify the exposition and because this is the case of interest for us. Another
observation is that when R = {1}, we recover the notion of absolute derivation from
[7], and in fact, most of that theory can be generalized to our setting.

One directly checks the following result.

Lemma 5.1 Let (U , D) be a differential (A, α)-module. We have:
(i) D(0) = D(1) = 0.
(ii) For all r ∈ R and b ∈ A, we have D(α(r)b) = α(r)D(b).
(iii) Given a ∈ A and a positive integer n, we have D(an) = nan−1D(a).
(iv) Given u ∈ A× and a positive integer n, we have D(u−n) = −nu−(n+1)D(u).
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Given differential (A, α)-modules (U , D) and (V , E), a morphism of differential
(A, α)-modules is a morphism of A-modules f ∶ U → V that satisfies E = f ○ D. We
obtain a category of differential (A, α)-modules which we denote by Φ(A,α).

For an A-module U, let Der(A,α)(U) = {D ∶ A→ U ∶ (U , D) ∈ Ob(Φ(A,α))}. This
is an A-module with the structure induced by U. Given A-modules U and V and
a morphism f ∈ HomA(U , V), we define Der(A,α)( f ) ∶ Der(A,α)(U) → Der(A,α)(V)
by Der(A,α)( f )(D) = f ○ D.

Lemma 5.2 The rule Der(A,α) defines a functor A-Mod→ A-Mod.

5.2 Universal object

Consider α ∶ R → A as before. Let XA be the free A-module on the generators
ea for a ∈ A. Let M(A,α) ⊆ XA be the sub A-module generated by the elements
eα(r) for r ∈ R and eab − aeb − bea for a, b ∈ A. We consider the quotient A-module
Ω(A,α) = XA/M(A,α) and define d(A,α) ∶ A→ Ω(A,α) by d(A,α)(a) = ea mod M(A,α).
By construction, (Ω(A,α) , d(A,α)) is a differential (A, α)-module. If there is no risk of
confusion, we will simply write d instead of d(A,α).

Lemma 5.3 (Universal property of Ω(A,α)) For each A-module U, the rule
ψ ↦ ψ ○ d defines a functorial isomorphism of A-modules ηU ∶ HomA(Ω(A,α) , U) →
Der(A,α)(U). Thus, Ω(A,α) represents the functor Der(A,α). In particular, (Ω(A,α) , d)
is an initial object in the category Φ(A,α).

Proof. Functoriality on U and A-linearity are immediate. Let us check that ηU is an
isomorphism.

Let ψ ∈ HomA(Ω(A,α) , U) with ηU(ψ) = 0. This means that ψ ○ d ∶ A→ U is the
zero map. The set d(A) generates Ω(A,α) as an A-module, so ψ = 0, because it vanishes
on a generating set of Ω(A,α). Thus, ηU is injective.

Let D ∈ Der(A,α)(U). Let θ ∶ XA → U be the A-module map determined by
θ(ea) = D(a) on the standard basis {ea}a∈A of the free A-module XA. Let d̃ ∶ A→ XA
be the function d̃(a) = ea , and let π ∶ XA → XA/M(A,α) = Ω(A,α) be the quotient map.
Note that θ ○ d̃ = D and d = π ○ d̃. Because D satisfies (Diff1) and (Diff2), we have that
a generating set for M(A,α) is contained in ker(θ), and because θ is A-linear, we get
M(A,α) ⊆ ker(θ). Thus, there is an A-module map ψ ∶ Ω(A,α) → U with θ = ψ ○ π.
Therefore, D = θ ○ d̃ = ψ ○ π ○ d̃ = ψ ○ d = ηU(ψ), proving that ηU is surjective. ∎

We call (Ω(A,α) , d) the universal differential (A, α)-module.

5.3 Examples

We conclude by discussing some concrete examples.

Example 5.4 Let A = Fq be a finite field with q elements and α ∶ R → Fq be arbitrary.
The elements d(x) for x ∈ Fq generate Ω(Fq ,α), and d(x) = d(xq) = qxq−1d(x) = 0.
Therefore, Ω(Fp ,α) = (0).
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Example 5.5 Let A = Z/4Z, and let α ∶ {1} → Z/4Z be the inclusion. In this case,
it is not so lengthy to directly compute M(A,α) ⊆ XA = (Z/4Z)4. One finds that the
universal α-derivation is d ∶ Z/4Z→ Z/2Z⊕Z/2Z defined by d(0) = d(1) = (0, 0),
d(2) = (1, 0), and d(3) = (0, 1). Note that d(1) + d(2) = (1, 0) ≠ (0, 1) = d(3), so d is
not additive. Nevertheless, let σ ∶ (Z/2Z)2 → Z/2 be σ(x , y) = x + y. Then, the α-
derivation σ ○ d ∶ Z/4Z→ Z/2Z respects the equation 1 + 2 = 3.

Example 5.6 Let A be a UFD, and let T be a set of pairwise nonassociated irreducible
elements. Let R = A− ∪t∈T(t), let α ∶ R → A be the inclusion, and let U = ⊕t∈T A.
Define D ∶ A→ U by D(a) = (vt(a) ⋅ at−1)t∈T , where vt is the t-adic valuation. Then,
D ∶ A→ U is an α-derivation, and we claim it is the universal one. Indeed, given
a = rtn1

1 ⋯tnk
k ∈ A with r ∈ R, n j ≥ 1, and t j ∈ T different, the map d = d(A,α) satisfies

d(a) = ∑k
j=1 n j at−1

j d(t j). Because U is free, there is an A-module map ϕ ∶ U → Ω(A,α)
satisfying d = ϕ ○ D. We conclude by universality of Ω(A,α).

Example 5.7 In the previous example, consider the special case A = Z and T the
set of all prime numbers, so that R = {−1, 1}. Then, D ∶ A→ U turns out to be our
map d ∶ Z→ Ω. So, the latter is the universal α-derivation when α ∶ {−1, 1} → Z is
the inclusion. Thus, HomZ(Ω,Z) ≃ Der(Z,α)(Z) is the module of all α-derivations
D ∶ Z→ Z. Our Z-module T is a metrized version of this.
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