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In this paper, we analyze the influence of observed and unobserved initial values
on the bias of the conditional maximum likelihood or conditional sum-of-squares
(CSS, or least squares) estimator of the fractional parameter, d, in a nonstation-
ary fractional time series model. The CSS estimator is popular in empirical work
due, at least in part, to its simplicity and its feasibility, even in very complicated
nonstationary models.

We consider a process, Xt , for which data exist from some point in time,
which we call −N0 + 1, but we only start observing it at a later time, t = 1. The
parameter (d,μ,σ 2) is estimated by CSS based on the model �d

0 (Xt − μ) = εt ,
t = N + 1, . . . , N + T , conditional on X1, . . . , X N . We derive an expression for the
second-order bias of d̂ as a function of the initial values, Xt , t = −N0 + 1, . . . , N ,
and we investigate the effect on the bias of setting aside the first N observations as
initial values. We compare d̂ with an estimator, d̂c, derived similarly but by choos-
ing μ = C . We find, both theoretically and using a data set on voting behavior, that
in many cases, the estimation of the parameter μ picks up the effect of the initial
values even for the choice N = 0.

If N0 = 0, we show that the second-order bias can be completely eliminated by a
simple bias correction. If, on the other hand, N0 > 0, it can only be partly eliminated
because the second-order bias term due to the initial values can only be diminished
by increasing N .

1. INTRODUCTION

One of the most commonly applied inference methods in nonstationary autore-
gressive (AR) models, and indeed in all time series analysis, is based on the
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conditional sum-of-squares (CSS, or least squares) estimator, which is obtained
by minimizing the sum of squared residuals. The estimator is derived from the
Gaussian likelihood conditional on initial values and is often denoted the con-
ditional maximum likelihood estimator. For example, in the AR(k) model we
set aside k observations as initial values, and conditioning on these implies that
Gaussian maximum likelihood estimation is equivalent to CSS estimation. This
methodology was applied in classical work on ARIMA models by, e.g., Box
and Jenkins (1970), and was introduced for fractional time series models by
Li and McLeod (1986) and Robinson (1994), in the latter case for hypothesis
testing purposes. The CSS estimator has been widely applied in the literature,
also for fractional time series models. In these models, the initial values have
typically been assumed to be zero, and as remarked by Hualde and Robinson
(2011, p. 3154) a more appropriate name for the estimator may thus be the
truncated sum-of-squares estimator. Despite the widespread use of the CSS es-
timator in empirical work, very little is known about its properties related to the
initial values and specifically related to the assumption of zero initial values.

Recently, inference conditional on (nonzero) initial values has been advocated
in theoretical work for univariate nonstationary fractional time series models by
Johansen and Nielsen (2010) and for multivariate models by Johansen and Nielsen
(2012a)—henceforth JN (2010, 2012a)—and Tschernig, Weber, and Weigand
(2013). In empirical work, these methods have recently been applied by, for
example, Carlini, Manzoni, and Mosconi (2010) and Bollerslev, Osterrieder,
Sizova, and Tauchen (2013) to high-frequency stock market data, Hualde and
Robinson (2011) to aggregate income and consumption data, Osterrieder and
Schotman (2011) to real estate data, and Rossi and Santucci de Magistris (2013)
to futures prices.

In this paper, we assume the process Xt exists for t ≥ −N0 +1, and we derive
the properties of the process from the model given by the truncated fractional fil-
ter �

d0−N0
(Xt −μ0) = εt with εt ∼ i.i.d.(0,σ 2), for some d0 > 1/2. However, we

only observe Xt for t = 1, . . . ,T0 = N +T, and so we estimate (d,μ,σ 2) from the
conditional Gaussian likelihood for X N+1, . . . , X N+T given X1, . . . , X N , which
defines the CSS estimator d̂. Our first result is to prove consistency and asymp-
totic normality of the estimator of d. This is of interest in its own right, not only
because of the usual issue of nonuniform convergence of the objective function,
but also because the estimator of μ is in fact not consistent when d0 > 1/2. We
then proceed to derive an analytical expression for the asymptotic second-order
bias of d̂ via a higher-order stochastic expansion of the estimator. We apply this
to investigate the magnitude of the influence of observed and unobserved initial
values, and to discuss the effect on the bias of setting aside a number of observa-
tions as initial values, i.e., of splitting a given sample of size T0 = N + T into N
initial values and T observations for estimation. We compare d̂ with an estimator,
d̂c, derived from centering the data at C by restricting μ = C . We find, both theo-
retically and using a data set on voting behavior as illustration, that in many cases,
the parameter μ picks up the effect of the initial values even for the choice N = 0.
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Finally, in a number of relevant cases, we show that the second-order bias can
be eliminated, either partially or completely, by a bias correction. In the most
general case, however, it can only be partly eliminated, and in particular the
second-order bias term due to the initial values can only be diminished by in-
creasing the number of initial values, N .

In the stationary case, 0 < d < 1/2, there is a literature on Edgeworth ex-
pansions of the distribution of the (unconditional) Gaussian maximum likelihood
estimator based on the joint density of the data, (X1, . . . , XT ), in the model (1).
In particular, Lieberman and Phillips (2004) find expressions for the second-order
term, from which we can derive the main term of the bias in that case. We have
not found any results on the nonstationary case, d > 1/2, for the estimator based
on conditioning on initial values.

The remainder of the paper is organized as follows. In the next section, we
present the fractional models and in Section 3 our main results. In Section 4, we
give an application of our theoretical results to a data set of Gallup opinion polls.
Section 5 concludes. Proofs of our main results and some mathematical details
are given in the appendices.

2. THE FRACTIONAL MODELS AND THEIR INTERPRETATIONS

A simple model for fractional data is

�d(Xt −μ) = εt , εt ∼ i.i.d.
(
0,σ 2), t = 1, . . . ,T, (1)

where d ≥ 0, μ ∈ R, and σ 2 > 0. The fractional filter �d Xt is defined in terms
of the fractional coefficients πn(u) from an expansion of (1 − z)−u =∑∞

n=0 πn(u)zn , i.e.,

πn(u) = u(u +1) . . . (u +n −1)

n!
= �(u +n)

�(u)�(n +1)
∼ nu−1

�(u)
as n → ∞, (2)

where �(u) denotes the Gamma function and “∼” denotes that the ratio of the left-
and right-hand sides converges to one. More results are collected in Appendix A.

For a given value of d such that 0 < d < 1/2, we have
∑∞

n=0 πn(d)2 < ∞.
In this case, the infinite sum Xt = �−dεt =∑∞

n=0 πn(d)εt−n exists as a stationary
process with a finite variance, and gives a solution to equation (1) because �dμ =∑∞

n=0 πn(−d)μ = 0.
When d > 1/2, the solution to (1) is nonstationary. In that case, we discuss be-

low two interpretations of equation (1) as a statistical model. First as an uncondi-
tional (joint) model of the stationary process �X1, . . . ,�XT when 1/2 < d < 3/2,
and then as a conditional model for the nonstationary process X N+1, . . . , X N+T

given initial values when d > 1/2. In the latter case we call Xt an initial value if
t ≤ N and denote the initial values Xn,n ≤ N , and we assume, see Section 2.2,
that the variables we are measuring started at some point −N0 +1 in the past, and
we truncate the fractional filter accordingly.
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2.1. The Unconditional Fractional Model and its Estimation

One approach to the estimation of d from model (1) with nonstationary data is the
difference-and-add-back approach based on Gaussian estimation for stationary
processes. If we have the a priori information that 1/2 < d < 3/2, say, then we
could transform the data X0, . . . , XT to �XT = (�X1, . . . ,�XT )′ and note that
(1) can be written

�d−1�(Xt −μ) = εt ,

so that �Xt is stationary and fractional of order −1/2 < d − 1 < 1/2. Note that
�μ = 0, so the parameter μ does not enter. To calculate the unconditional Gaus-
sian likelihood function, we then need to calculate the T × T variance matrix
� = �(d,σ 2) = Var(�XT ), its inverse, �−1, and its determinant, det�. This
gives the Gaussian likelihood function,

−1

2
logdet� − 1

2
�X′

T �−1�XT . (3)

A general optimization algorithm can then be applied to find the maximum like-
lihood estimator, d̂stat, if � can be calculated. This is possible by the algorithm
in Sowell (1992). The estimator d̂stat is not a CSS estimator, which is the class of
estimators we study in this paper, but it was applied by Byers, Davidson, and Peel
(1997) and Dolado, Gonzalo, and Mayoral (2002) in the analysis of the voting
data, and by Davidson and Hashimzade (2009) to the Nile data.

The estimator d̂stat was analyzed by Lieberman and Phillips (2004) for true
value d0 < 1/2. They derived an asymptotic expansion of the distribution function
of T 1/2(d̂stat −d0), from which a second-order bias correction of the estimator can
be derived, see Section 3.2.

In more complicated models than (1), the calculation of � may be computation-
ally difficult. This is certainly the case in, say, the fractionally cointegrated vector
autoregressive model of JN (2012a). However, even in much simpler models such
as the usual autoregressive model, a conditional approach has been advocated for
its computational simplicity, e.g., Box and Jenkins (1970), because conditional
maximum likelihood estimation simplifies the calculation of estimators by reduc-
ing the numerical problem to least squares. For this reason, the conditional estima-
tor has been very widely applied to many models, including (1). For a discussion
and comparison of the numerical complexity of Gaussian maximum likelihood as
in (3) and the CSS estimator, see e.g., Doornik and Ooms (2003).

2.2. The Observations and Initial Values

It is difficult to imagine a situation where {Xs}T−∞ is available, so that (1) could
be applied. In general, we assume data could potentially be available from some
(typically unknown) time in the past, −N0 +1, say. We therefore truncate the filter
at time −N0; that is, define �d

−N0
Xt =∑t+N0−1

n=0 πn(−d)Xt−n , and consider

�d
−N0

(Xt −μ) = εt , t = 1, . . . ,T0, (4)
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as the model for the data we actually observe, namely Xt for t = 1, . . . , N +
T = T0. In practice, when N0 > 0, we do not observe all the data, and so we have
to decide how to split a given sample of size T0 = N + T into (observed) initial
values {Xn}N

n=1 and observations {Xt }T
t=N+1 to be modeled, and then calculate the

likelihood based on the truncated filter �d
0 , as an approximation to the conditional

likelihood based on (4). In the special case with N0 = 0, the equations in (4)
become

X1 = μ+ ε1, (5)

X2 = −π1(−d)X1 +μ+π1(−d)μ+ ε2,

etc., and μ can thus be interpreted as the initial mean or level of the observations.
Clearly, if μ is not included in the model, the first observation is X1 = ε1 with
mean zero and variance σ 2. The lag length builds up as more observations become
available.

As an example we take (an updated version of) the Gallup poll data from Byers
et al. (1997) to be analyzed in Section 4. The data are monthly from January 1951
to November 2000 for a total of 599 observations. In this case, the data are not
available for all t simply because the Labour party was founded in 1900, and the
Gallup company was founded in 1935, and in fact the regular Gallup polls only
started in January 1951, which is denoted −N0 +1.

As a second example, consider the paper by Andersen, Bollerslev, Diebold, and
Ebens (2001) which analyzes log realized volatility for companies in the Dow
Jones Industrial Average from 2 January 1993 to 28 May 1998. For each of these
companies there is an earlier date, which we call −N0 + 1, where the company
became publicly traded and such measurements were made for the first time. The
data analyzed in Andersen et al. (2001) were not from −N0 + 1, but only from
the later date when the data became available on CD-ROM, which was 2 January
1993, which we denote t = 1. We thus do not have observations from −N0 + 1
to 0.

We summarize this in the following display, which we think is representative
for most, if not all, data in economics:

. . . , X−N0︸ ︷︷ ︸
Data do not exist

, X−N0+1, . . . , X0︸ ︷︷ ︸
Data exist

but are not observed

, X1, . . . , X N︸ ︷︷ ︸
Data are observed

(initial values)

, X N+1, . . . , XT0︸ ︷︷ ︸
Data are observed

(estimation)

(6)

Thus, we consider estimation of

�d
0(Xt −μ) = εt , t = 1, . . . ,T0, (7)

as an approximation to model (4). Unlike for (4), the conditional likelihood for
(7) can be calculated based on available data from 1 to T0. For a fast algorithm to
calculate the fractional difference, see Jensen and Nielsen (2014).

In summary, we use �d
−N0

(Xt −μ) = εt as the model we would like to analyze.
However, because we only have data for t = 1, . . . ,T0, we base the likelihood on
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the model �d
0(Xt −μ) = εt , for which an approximation to the conditional like-

lihood from (4) can be calculated with the available data. We then try to mitigate
the effect of the unobserved initial values by conditioning on X1, . . . , X N .

2.3. The Conditional Fractional Model

Let parameter subscript zero denote true values. In the conditional approach,
we interpret equation (4) as a model for Xt given the past Ft−1 =
σ(X−N0+1, . . . , Xt−1) and therefore solve the equation for Xt as a function of
initial values, errors, and the initial level, μ0. The solution to (1) is given in JN
(2010, Lemma 1) under the assumption of bounded initial values, and we give
here the solution of (4).

LEMMA 1. The solution of model (4) for X N+1, . . . , XT0 , conditional on initial
values Xn,−N0 < n ≤ N, is, for t = N +1, . . . ,T0, given by

Xt = �
−d0
N εt −�

−d0
N

t+N0−1∑
n=t−N

πn(−d0)Xt−n +�
−d0
N πt+N0−1(−d0 +1)μ0. (8)

We find the conditional mean and variance by writing model (4) as Xt −μ =
(1−�d

−N0
)(Xt −μ)+ εt . Because (1−�d

−N0
)(Xt −μ) is a function only of the

past, we find

E(Xt −μ|Ft−1) = (1−�d
−N0

)(Xt −μ) and Var(Xt |Ft−1) = Var(εt ) = σ 2.

As an example we get, for d = 1 and μ = 0, the well-known result from the
autoregressive model that E(Xt |Ft−1) = Xt−1 and Var(Xt |Ft−1) = σ 2. In model
(4) this implies that the prediction error decomposition given Xn,−N0 < n ≤ N ,
is the conditional sum of squares,

T0∑
t=N+1

(Xt − E(Xt |Ft−1))
2

Var(Xt |Ft−1)
= σ−2

T0∑
t=N+1

(
�d

−N0
(Xt −μ)

)2
,

which is used in the conditional Gaussian likelihood function (9) below.

2.4. Estimation of the Conditional Fractional Model

We would like to consider the conditional (Gaussian) likelihood of {Xt , N + 1 ≤
t ≤ T0} given initial values {Xn,−N0 +1 ≤ n ≤ N }, which is given by

−T

2
logσ 2 − 1

2σ 2

T0∑
t=N+1

(
�d

−N0
(Xt −μ)

)2
. (9)

If in fact we have observed all available data, such that N0 = 0 as in, e.g., the
Gallup poll data we can use (9) for N0 = 0. More commonly, however, data are
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not available all the way back to inception at time −N0 +1, so we consider the sit-
uation that the series exists for t > −N0, but we only have observations for t ≥ 1,
as in the volatility data example. We therefore replace the truncated filter �d

−N0

by �d
0 and suggest using the (quasi) likelihood conditional on {Xn,1 ≤ n ≤ N },

L
(
d,μ,σ 2)= −T

2
logσ 2 − 1

2σ 2

T0∑
t=N+1

(
�d

0(Xt −μ)
)2

. (10)

That is, (10) is an approximation to the conditional likelihood (9), where (10)
has the advantage that it can be calculated based on available data from t = 1
to T0 = N + T . It is clear from (10) that we can equivalently find the (quasi)
maximum likelihood estimators of d and μ by minimizing

L(d,μ) = 1

2

T0∑
t=N+1

(
�d

0(Xt −μ)
)2 (11)

with respect to d and μ.
We find from (A.15) in Lemma A.4 that

�d
0(Xt −μ) = �d

0 Xt −
t−1∑
n=0

πn(−d)μ

= �d
0 Xt −πt−1(−d +1)μ = �d

0 Xt −κ0t (d)μ,

where we have introduced κ0t (d) = πt−1(−d + 1). The estimator of μ for fixed
d is

μ̂(d) =
∑T0

t=N+1(�
d
0 Xt )κ0t (d)∑T0

t=N+1 κ0t (d)2
,

provided
∑T0

t=N+1 κ0t (d)2 > 0. The conditional quasi-maximum likelihood esti-
mator of d can then be found by minimizing the concentrated objective function

L∗(d) = 1

2

T0∑
t=N+1

(
�d

0 Xt

)2 − 1

2

(∑T0
t=N+1

(
�d

0 Xt
)
κ0t (d)

)2

∑T0
t=N+1 κ0t (d)2

, (12)

which has no singularities at the points where
∑T0

t=N+1 κ0t (d)2 = 0, see

Theorem 1. Thus, the conditional quasi-maximum likelihood estimator d̂ can be
defined by

d̂ = arg min
d∈D

L∗(d) (13)

for a parameter space D to be defined below.
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This is a type of conditional-sum-of-squares (CSS) estimator for d. The first
term of (12) is standard, and the second takes into account the estimation of the
unknown initial level μ at the inception of the series at time −N0 +1.

For d = d0 and μ = μ0 we find, provided
∑T0

t=N+1 κ0t (d0)
2 > 0, that

μ̂(d0)−μ0 =
∑T0

t=N+1 εtκ0t (d0)∑T0
t=N+1 κ0t (d0)2

,

which has mean zero and variance σ 2
0

(∑T0
t=N+1 κ0t (d0)

2
)−1 that does not go to

zero when d0 > 1/2 because then σ−2
0

∑T0
t=N+1 κ0t (d0)

2 is bounded in T0, see
(B.9) in Lemma B.1. Thus we have that, even if d = d0, μ̂(d0) is not consistent.

In the following we also analyze another estimator, d̂c, constructed by choosing
to center the observations by a known value rather than estimating μ as above.
The known value, say C , used for centering, could be one of the observed initial
values, e.g., the first one, or an average of these, or it could be any known constant.
This can be formulated as choosing μ = C in the likelihood function (10) and
defining

d̂c = arg min
d∈D

L∗
c(d), (14)

L∗
c(d) = 1

2

T0∑
t=N+1

(
�d

0(Xt −C)
)2

, (15)

which is also a CSS estimator. A commonly applied estimator is the one obtained
by not centering the observations, i.e., by setting C = 0. In that case, an initial
nonzero level of the process is therefore not taken into account.

The introduction of centering and of the parameter μ, interpreted as the initial
level of the process, thus allows analysis of the effects of centering the observa-
tions in different ways (and avoid the, possibly unrealistic, phenomenon described
immediately after (5) when μ = 0). We analyze the conditional maximum like-
lihood estimator, d̂, where the initial level is estimated by maximum likelihood
jointly with the fractional parameter, and we also analyze the more traditional
CSS estimator, d̂c, where the initial level is “estimated” using a known value C ,
e.g., zero or the first available observation, X1.

In practice, we split a given sample of size T0 = N + T into (observed) initial
values {Xn}N

n=1 and observations {Xt }N+T
t=N+1 to be modeled, and then calculate the

likelihood (12) based on the truncated filter �d
0 as an approximation to the model

(4) starting at −N0 +1. In order to discuss the error implied by using this choice in
the likelihood function, we derive in Theorem 2 a computable expression for the
asymptotic second-order bias term in the estimator of d via a higher-order stochas-
tic expansion of the estimator. This bias term depends on all observed and unob-
served initial values and the parameters. In Corollary 1 and Theorems 3 and 4,
we further investigate the effect on the bias of setting aside the data from t = 1
to N as initial values.
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2.5. A Relation to the ARFIMA Model

The simple model (1) is a special case of the well-known ARFIMA model,

A(L)�d Xt = B(L)εt , t = 1, . . . ,T,

where A(L) and B(L) depend on a parameter vector ψ and A(z) �= 0 and B(z) �= 0
for |z| ≤ 1. For this model, the conditional likelihood depends on the residuals

εt (d,ψ) = B(L)−1 A(L)�d Xt = b(ψ, L)�d Xt ,

and when b(ψ, L) = 1 we obtain model (1) as a special case.
For the ARFIMA model the analysis would depend on the derivatives of the

conditional likelihood function, which would in turn be functions of the deriva-
tives of the residuals. Again, to focus on estimation of d we consider the remain-
ing parameter ψ fixed at the true value ψ0. For a function f (d) we denote the
derivative of f with respect to d as D f (d) = ∂

∂d f (d) (Euler’s notation), and the
relevant derivatives are

Dmεt (d,ψ)|d0,ψ0 = b(ψ0, L)Dm�d Xt |d0 = (log�)mb(ψ0, L)�d0 Xt

= (log�)mεt .

Thus, for this more general model, the derivatives of the conditional likelihood
with respect to d , when evaluated at the true values, are identical to those of the
residuals from the simpler model (1). We can therefore apply the results from the
simpler model more generally, but only if we know the parameter ψ0. If ψ has to
be estimated, the analysis becomes much more complicated. We therefore focus
our analysis on the simple model.

3. MAIN RESULTS

Our main results hold only for the true value d0 > 1/2, that is, for nonstationary
processes, which is therefore assumed in the remainder of the paper. However,
we maintain a large compact parameter set D for d in the statistical model, which
does not assume a priori knowledge that d0 > 1/2, see Assumption 2.

3.1. First-order Asymptotic Properties

The first-order asymptotic properties of the CSS estimators d̂ and d̂c derived from
the likelihood functions L∗(d) and L∗

c(d) in (12) and (15), respectively, are given
in the following theorem, based on results of JN (2012a) and Nielsen (2015). To
describe the results, we use Riemann’s zeta function, ζs =∑∞

j=1 j−s,s > 1, and
specifically

ζ2 =
∞∑

j=1

j−2 = π2

6
� 1.6449 and ζ3 =

∞∑
j=1

j−3 � 1.2021. (16)

We formulate two assumptions that will be used throughout.
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Assumption 1. The errors εt are i.i.d.(0,σ 2
0 ) with finite fourth moment.

Assumption 2. The parameter set for (d,μ,σ 2) is D × R × R+, where
D = [d, d̄], 0 < d < d̄ < ∞. The true value is (d0,μ0,σ

2
0 ), where d0 > 1/2 is

in the interior of D.

THEOREM 1. Let the model for the data Xt , t = 1, . . . , N + T, be given by (4)
and let Assumptions 1 and 2 be satisfied. Then the functions L∗(d) in (12) and
L∗

c(d) in (15) have no singularities for d > 0, and the estimators d̂ and d̂c derived
from L∗(d) and L∗

c(d), respectively, are both
√

T -consistent and asymptotically
distributed as N (0,ζ−1

2 ).

3.2. Higher-order Expansions and Asymptotic Bias

To analyze the asymptotic bias of the CSS estimators for d, and in particular
how initial values influence the bias, we need to examine higher-order terms in
a stochastic expansion of the estimators, see Lawley (1956). The conditional
(negative profile log) likelihoods L∗(d) and L∗

c(d) are given in (12) and (15).
We find, see Lemma B.4, that the derivatives satisfy DL∗(d0) = OP (T 1/2),
D2L∗(d0) = OP (T ), and D3L∗(d) = OP (T ) uniformly in a neighborhood of d0,
and a Taylor series expansion of DL∗(d̂) = 0 around d0 gives

0 = DL∗(d̂) = DL∗(d0)+ (d̂ −d0)D
2L∗(d0)+ 1

2
(d̂ −d0)

2D3L∗(d∗),

where d∗ is an intermediate value satisfying |d∗ − d0| ≤ |d̂ − d0| P→ 0. We
then insert d̂ − d0 = T −1/2G̃1T + T −1G̃2T + OP (T −3/2) and find G̃1T =
−T 1/2DL∗(d0)/D

2L∗(d0) and G̃2T = − 1
2 T (DL∗(d0))

2D3L∗(d∗)/(D2L∗(d0))
3,

which we write as

T 1/2(d̂ −d0) = −T −1/2DL∗(d0)

T −1D2L∗(d0)
− 1

2
T −1/2

(
T −1/2DL∗(d0)

T −1D2L∗(d0)

)2
T −1D3L∗(d∗)
T −1D2L∗(d0)

+OP (T −1). (17)

Based on this expansion, we find another expansion T 1/2(d̂ − d0) = G1T +
T −1/2G2T + oP (T −1/2) with the property that (G1T ,G2T )

D→ (G1,G2) and
E(G1T ) = E(G1) = 0. Then the zero- and first-order terms of the bias are zero,
and the second-order asymptotic bias term is defined as T −1 E(G2).

We next present the main result on the asymptotic bias of d̂. In order to for-
mulate the results, we define some coefficients that depend on N , N0,T , and on
initial values and (μ0,σ

2
0 ,d) (we suppress some of these dependencies for nota-

tional convenience),

η0t (d) = −
0∑

n=−N0+1

πt−n(−d)(Xn −μ0), (18)
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η1t (d) =
t−1−N∑

k=1

k−1
N∑

n=−N0+1

πt−n−k(−d)(Xn −μ0)

−
N∑

n=1

Dπt−n(−d)(Xn −μ0), (19)

κ0t (d) = πt−1(−d +1), and κ1t (d) = −Dπt−1(−d +1). (20)

For two sequences {ut ,vt }∞t=1, we define the product moment 〈u,v〉T =
σ−2

0

∑T0
t=N+1 utvt , see e.g., Lemma B.1. The main contributions to the bias are

expressed for d = d0 in terms of

ξN ,T (d) = 〈η0,η1〉T − 〈η0,κ0〉T

〈κ0,κ0〉T
(〈η0,κ1〉T +〈η1,κ0〉T )+ 〈η0,κ0〉2

T

〈κ0,κ0〉2
T

〈κ1,κ0〉T , (21)

ξC
N ,T (d) = 〈η0,η1〉T − (C −μ0)(〈η0,κ1〉T +〈η1,κ0〉T )+ (C −μ0)

2〈κ1,κ0〉T , (22)

τN ,T (d) = σ−2
0

∑
N≤s<t≤N+T −1

(t − s)−1πt (−d +1)πs(−d +1)/〈κ0,κ0〉T . (23)

Note that (21)–(23) are all invariant to scale because of the normalization by
σ 2

0 . Also note that, even if 〈κ0,κ0〉T = 0, the ratio 〈η0,κ0〉T /〈κ0,κ0〉T as well
as τN ,T (d) are well defined, see Theorem 1 and Appendix C.1.

THEOREM 2. Let the model for the data Xt , t = 1, . . . , N + T, be given by (4)
and let Assumptions 1 and 2 be satisfied. Then the asymptotic biases of d̂ and d̂c

are

bias(d̂) = −(T ζ2)
−1
[
3ζ3ζ

−1
2 + ξN ,T (d0)+ τN ,T (d0)

]
+o
(
T −1), (24)

bias(d̂c) = −(T ζ2)
−1
[
3ζ3ζ

−1
2 + ξC

N ,T (d0)
]
+o
(
T −1), (25)

where limT →∞ |ξN ,T (d0)| < ∞, limT →∞ |τN ,T (d0)| < ∞, and
limT →∞ |ξC

N ,T (d0)| < ∞.

The leading bias terms in (24) and (25) are of the same order of magnitude
in T , namely O(T −1). First, the fixed term, 3ζ3ζ

−2
2 , derives from correlations of

derivatives of the likelihood and does not depend on initial values or d0. The sec-
ond term in (24), ξN ,T (d0), is a function of initial values and d0, and can be made
smaller by including more initial values (larger N ) as shown in Corollary 1 below.
The third term in (24), τN ,T (d0), only depends on (N ,T,d0). If we center the data
by C , and do not correct for μ, we get the term ξC

N ,T (d0) in (25). However, if we
estimate μ we get ξN ,T (d0)+τN ,T (d0) in (24), where τN ,T (d0) is independent of
initial values and only depends on (N ,T,d0). The coefficients η0t (d) and η1t (d)
are linear in the initial values, and hence the bias terms ξN ,T (d) and ξC

N ,T (d) are
quadratic in initial values scaled by σ0.
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The fixed bias term, 3ζ3ζ
−2
2 , is the same as the bias derived by Lieberman and

Phillips (2004) for the estimator d̂stat, based on the unconditional likelihood (3) in
the stationary case, 0 < d0 < 1/2. They showed that the distribution function of
ζ

1/2
2 T 1/2(d̂stat −d0) is

FT (x) = P
(
ζ

1/2
2 T 1/2(d̂stat −d0) ≤ x

)
= �(x)+ T −1/2ζ3ζ

−3/2
2 φ(x)(2+ x2)+ O(T −1),

where �(x) and φ(x) denote the standard normal distribution and density func-
tions, respectively. Using D(φ(x)(2 + x2)) = −φ(x)x3, we find that an approxi-
mation to the expectation of ζ

1/2
2 T 1/2(d̂stat − d0), based on the first two terms, is

given by

−T −1/2ζ3ζ
−3/2
2

∫
xφ(x)x3dx = −T −1/23ζ3ζ

−3/2
2 ,

which shows that the second-order bias of d̂stat, derived for 0 < d0 < 1/2, is
the same as the the second-order fixed bias term of d̂ derived for d0 > 1/2 in
Theorem 2.

The dependence of the bias in Theorem 2 on the number of observed initial
values, N , is explored in the following corollary.

COROLLARY 1. Under the assumptions of Theorem 2, we obtain the fol-
lowing bounds for the components of the bias terms for d̂ and d̂c when
d > 1/2 and for any 0 < ε < min(d,2d −1),

max
(
|ξC

N ,T (d)|, |ξN ,T (d)|
)

≤ c(1+ N )−min(d,2d−1)+ε. (26)

The result in Corollary 1 shows how the bias term arising from not observing
all initial values decays as a function of the number of observed values set aside
as initial values, N .

More generally, the results in this section shows that a partial bias correction
is possible. That is, by adding the terms (T ζ2)

−13ζ3ζ
−1
2 and (T ζ2)

−1τN ,T (d̂),
the second-order bias in d̂ and d̂c can be partly eliminated, but the bias due to
(T ζ2)

−1ξN ,T (d0) can only be made smaller by increasing N .
A different type of bias correction was used by Davidson and Hashimzade

(2009, eqn. 4.4) in an analysis of the Nile data. They considered the CSS esti-
mator when all initial values are set to zero in the stationary case. To capture
the effect of the left-out initial values, they introduce a few extra regressors that
are found as the first principal components of the variance matrix of the n = 150
variables x∗∗ = {∑∞

k=s πk(−d)Xs−k
}n

s=1.
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3.3. Further Results for Special Cases

The expressions for ξN ,T (d), ξC
N ,T (d), and τN ,T (d) in (21)–(23) show that they

depend on (N ,T,d) and, in the case of ξN ,T (d) and ξC
N ,T (d), also on all initial

values. In order to get an impression of this dependence, we derive simple expres-
sions for various special cases.

First, when d is an integer, we find simple results for ξN ,T (d), ξC
N ,T (d), and

τN ,T (d), and hence the asymptotic bias, as follows.

THEOREM 3. Under the assumptions of Theorem 2 it holds that ξC
N ,T (d) =

ξN ,T (d) = 0 in the following two cases:

(i) If d = k for an integer k such that 1 ≤ k ≤ N,

(ii) If d = 1 and N ≥ 0. In either case, the asymptotic biases of d̂ and d̂c are
given by

bias(d̂) = −(T ζ2)
−1(3ζ3ζ

−1
2 + τN ,T (d0))+o

(
T −1),

bias(d̂c) = −(T ζ2)
−13ζ3ζ

−1
2 +o

(
T −1).

(iii) If d0 = N + 1 then τN ,T (d0) = 0 and bias(d̂) = −(T ζ2)
−1
(
3ζ3ζ

−1
2 +

ξN ,T (N +1)
)+o

(
T −1

)
.

It follows from Theorem 3(i) that for d = 1 we need one initial value
(N ≥ 1) and for d = 2 we need two initial values (N ≥ 2), etc., to obtain
ξC

N ,T (d) = ξN ,T (d) = 0. Alternatively, for d0 = 1, Theorem 3(ii) shows that there
will be no contribution from initial values to the second-order asymptotic bias
even if N = 0, and Theorem 3(iii) shows that when N = 0, it also holds that
τ0,T (1) = 0 such that bias(d̂) = −(T ζ2)

−13ζ3ζ
−1
2 +o(T −1). Since the bias term

is continuous in d0, the same is approximately true for a (small) neighborhood
of d0 = 1.

Note that the results in Theorem 3 show that in cases (i) and (ii), the estimators
d̂ and d̂c can be bias corrected to have second-order bias equal to zero.

We finally consider the special case with N0 = 0, where all available data
are observed. We use the notation �(d) = D log�(d) to denote the Digamma
function.

THEOREM 4. If N0 = 0 and N ≥ 0 then ξN ,T (d0) = 0 and the biases of
d̂ and d̂c are given by

bias(d̂) = −(T ζ2)
−1
[
3ζ3ζ

−1
2 + τN ,T (d0)

]
+o
(
T −1), (27)

bias(d̂c) = −(T ζ2)
−1
[
3ζ3ζ

−1
2 + ξC

N ,T (d0)
]
+o
(
T −1), (28)

where τN ,T (d0) is defined in (23) and ξC
N ,T (d0) simplifies to

ξC
N ,T (d0) = −(C −μ0)〈κ0,η1〉T + (C −μ0)

2〈κ0,κ1〉T . (29)
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In particular, for N0 = N = 0 we get the analytical expressions

bias(d̂) = −(T ζ2)
−1
[
3ζ3ζ

−1
2 − (�(2d0 −1)−�(d0))

]
+o
(
T −1), (30)

bias(d̂c) = −(T ζ2)
−1

[
3ζ3ζ

−1
2 − (C −μ0)

2

σ 2
0

(
2d0 −2

d0 −1

)
(�(2d0 −1)−�(d0))

]

+o
(
T −1). (31)

It follows from Theorem 4 that if we have observed all possible data, that is
N0 = 0, then we get a bias of d̂ in (27) and of d̂c in (28) and (29). The bias of d̂
comes from the estimation of μ and the bias of d̂c depends on the distance C −μ0.

With N0 = 0 as in Theorem 4, we note that the biases of d̂ and d̂c do not depend
on unobserved initial values. It follows that (27) can be used to bias correct the
estimator d̂ and (28) to bias correct the estimator d̂c. For d̂ this bias correction
gives a second-order bias of zero, but for d̂c the correction is only partial due
to (29).

Although the asymptotic bias of d̂ is of order O(T −1), we note that the asymp-
totic standard deviation of d̂ is (T ζ2)

−1/2, see Theorem 1. That is, for testing
purposes or for calculating confidence intervals for d0, the relevant quantity is
in fact the bias relative to the asymptotic standard deviation, and this is of order
O(T −1/2). To quantify the distortion of the quantiles (critical values), we there-
fore focus on the magnitude of the relative bias, for which we obtain the following
corollary by tabulation.

COROLLARY 2. Letting N0 = 0 and T0 = N + T be fixed and tabulating the
relative bias,

(T ζ2)
1/2bias(d̂) = −((T0 − N )ζ2)

−1/2[3ζ3ζ
−1
2 + τN ,T0−N (d0)

]
,

see (27), for N = 0, . . . ,T0 − 2 and d0 > 1/2, the minimum value is attained for
N = 0. Thus, we achieve the smallest relative (and also absolute) bias of d̂ by
choosing N = 0.

4. APPLICATION TO GALLUP OPINION POLL DATA

As an application and illustration of the results, we consider the monthly Gallup
opinion poll data on support for the Conservative and Labour parties in the
United Kingdom. They cover the period from January 1951 to November 2000,
for a total of 599 months. The two series have been logistically transformed,
so that, if Yt denotes an observation on the original series, it is mapped into
Xt = log(Yt/(100−Yt )). A shorter version of this data set was analyzed by Byers
et al. (1997) and Dolado et al. (2002), among others.

Using an aggregation argument and a model of voter behavior, Byers et al.
(1997) show that aggregate opinion poll data may be best modeled using
fractional time series methods. The basic finding of Byers et al. (1997) and
Dolado et al. (2002) is that the ARFIMA (0,d,0) model, i.e., model (1),appears to
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fit both data series well and they obtain values of the integration parameter d in
the range of 0.6–0.8.

4.1. Analysis of the Voting Data

In light of the discussion in Section 2.2, we work throughout under the assump-
tion that Xt was not observed prior to January 1951 because the data series did
not exist, and we truncate the filter correspondingly, i.e., we consider model
(4). Because we observe all available data, we estimate d (and μ,σ ) by the
estimator d̂ setting N = N0 = 0 and take T = 599 following Theorem 4 and
Corollary 2.

The results are presented in Table 1. Since we have assumed that N = N0 = 0,
we can bias correct the estimator using (30) in Theorem 4, and the resulting esti-
mate is reported in Table 1 as d̂bc. Two conclusions emerge from the table. First,
the estimates of d (and σ ) are quite similar for the two data series, but the esti-
mates of μ are quite different. Second, the bias corrections to the estimates are
small. More generally, the estimates obtained in Table 1 are in line with those
from the literature cited above.

4.2. An Experiment with Unobserved Initial Values

We next use this data to conduct a small experiment with the purpose of inves-
tigating how the choice of N influences the bias of the estimators of d, if there
were unobserved initial values. For this purpose, we assume that the econometri-
cian only observes data starting in January 1961. That is, January 1951 through
December 1960 are N0 = 120 unobserved initial values. We then split the given
sample of T0 = 479 observations into initial values (N ) and observations used
for estimation (T ), such that N + T = 479. We can now ask the questions (i)
what is the consequence in terms of bias of ignoring initial values, i.e., of setting
N = 0, and (ii) how sensitive is the bias to the choice of N for this particular
data set.

To answer these questions we apply (24) and (25) from Theorem 2. We
note that ξN ,T (d) and ξC

N ,T (d) depend on the unobserved initial values, i.e., on
Xn,−N0 < n ≤ 0, which in this example are the 120 observations from

TABLE 1. Estimation results for Gallup opinion poll data

Conservative Labour

d̂ 0.7718 0.6940
d̂bc 0.7721 0.6914
μ̂ 0.0097 −0.4313
σ̂ 0.1098 0.1212

Note: The table presents parameter estimates for the Gallup opinion poll data with T = 599 and N0 = N = 0. The
subscript ‘bc’ denotes the bias corrected estimator, cf. (30). The asymptotic standard deviation of d̂ is given in
Theorem 1 as (T π2/6)−1/2 � 0.032.
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January 1951 to December 1960. To apply Theorem 2 we need (estimates of)
d0,μ0,σ0. For this purpose we use (d̂bc, μ̂, σ̂ ) from Table 1.

The results are shown in Figure 1. The top panels show the logistically trans-
formed opinion poll data for the Conservative (left) and Labour (right) parties.
The shaded areas mark the unobserved initial values January 1951 to December
1960. The bottom panels show the relative bias in the estimators of d as a function
of N ∈ [0,24], and the starred straight line denotes the value of the fixed (rela-
tive) bias term, −(T0 − N )−1/23ζ3ζ

−3/2
2 . The estimators are d̂ in (13) and d̂c in

(14) either with C chosen as the average of the T0 observations, denoted d̂c in the
graph, or with C = 0, denoted d̂0 in the graph. That is, for d̂0 the series have not
been centered, and for d̂c the series have been centered by the average of the T0
observed values. The latter two estimators are the usual CSS estimators with and
without centering of the series.

In Figure 1, we note that the relative bias of d̂0 is larger for the Labour party
series because the last unobserved initial values are larger in absolute value than
those of the Conservative party series. In particular, if one does not condition on
initial values and uses N = 0, the relative bias of d̂0 is 0.45 for the Labour party
series and −0.05 for the Conservative party series. It is clear from the figure that

FIGURE 1. Application to Gallup opinion poll data.
Note: The top panels show (logistically transformed) opinion poll time series and the bottom panels show the relative

bias for three estimators of d as a function of the number of chosen initial values, N , when the first N0 = 120

observations have been reserved as unobserved initial values (shaded area). The estimators are d̂ in (13) and d̂c in

(14) either with C chosen as the average of the T0 observations, denoted d̂c in the graph, or with C = 0, denoted d̂0

in the graph. The starred line denotes the fixed (relative) bias, −(T0 − N )−1/23ζ3ζ
−3/2
2 .
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the relative bias of d̂0 for the Labour party series can be reduced substantially and
be made much closer to the fixed bias value by conditioning on just a few initial
values. The same conclusions can be drawn for d̂c but reversing the roles of the
two series. The reason is that, after centering the series by the average of the T0
observations, it is now for the Conservative party series that the last unobserved
initial values are different from zero, while those of the Labour party series are
close to zero.

Finally, for d̂ , where the initial level or centering parameter, μ, is estimated
jointly with d, we find that the relative bias is increasing in N . The reason for this
is that τN ,T (d) dominates ξN ,T (d), at least for this particular data series. With
N = 0 the relative bias is very small and the estimator d̂ is better than the other
two estimators.

5. CONCLUSION

In this paper, we have analyzed the effect of unobserved initial values on the
asymptotic bias of the CSS estimators, d̂ and d̂c, of the fractional parameter in
a simple fractional model, for d0 > 1/2. We assume that we have data Xt for
t = 1, . . . ,T0 = N + T, and model Xt by the truncated filter �

d0−N0
(Xt −μ0) = εt

for t = 1, . . . ,T0 and N0 ≥ 0. We derive estimators from the models �d
0(Xt −

μ) = εt or �d
0(Xt − C) = εt by maximizing the respective conditional Gaussian

likelihoods of X N+1, . . . , XT0 given X1, . . . , X N .
We give in Theorem 2 an explicit formula for the second-order bias of d̂,

consisting of three terms. The first is a constant, the second, ξN ,T (d0), depends
on initial values and decreases with N , and the third, τN ,T (d0), does not de-
pend on initial values. The first and third terms can thus be used in general for
a (partial) bias correction. In Theorem 4 we simplify the expressions for the case
when N0 = 0, so that all data are observed. In this case we can completely bias
correct the estimator d̂, at least to second order. We further find that for d̂ the
smallest bias appears for the choice N = 0. This choice is used for the analysis of
the voting data in Section 4.1 where the bias correction is also illustrated.

In Section 4.2, we illustrate the general results with unobserved initial val-
ues, again using the voting data. Here we show that, when keeping N0 = 120
observations for unobserved initial values, the estimator d̂ with N = 0 has the
smallest bias. Thus, the idea of letting the parameter μ capture the initial level of
the process eliminates the effect of the unobserved initial values, at least in this
example.
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APPENDIX A: The Fractional Coefficients

In this section, we first give some results of Karamata. Because they are well known we
sometimes apply them in the remainder without special reference.

LEMMA A.1. For m ≥ 0 and c < ∞,

N∑
n=1

(1+ logn)mnα ≤ c(1+ log N )m Nα+1 if α > −1, (A.1)

∞∑
n=N

(1+ logn)mnα ≤ c(1+ log N )m Nα+1 if α < −1. (A.2)

Proof. See Bingham, Goldie, and Teugels (1987, Thm. 1.5.8–1.5.10). n

We next present some useful results for the fractional coefficients (2) and their deriva-
tives.

LEMMA A.2. Define the coefficient aj = 1{j≥1}
∑ j

k=1 k−1, where 1{A} denotes the
indicator function for the event A. The derivatives of πj (·) are

Dm logπj (u) = (−1)m+1
j−1∑
i=0

1

(i +u)m for u �= 0,−1, . . . ,− j +1 and m ≥ 1, (A.3)

Dπj (u) = (−1)−u (−u)!( j +u −1)!

j!
for u = 0,−1, . . . ,− j +1 and j ≥ 2, (A.4)

D2πj (u) = 2Dπj (u)(aj+u−1 −a−u) for u = 0,−1, . . . ,− j +1 and j ≥ 2. (A.5)

Proof of Lemma A.2. The result (A.3) follows by taking derivatives in (2) for u �=
0,−1, . . . ,− j +1. For u = −i and i = 0,1, . . . , j −1 we first define

P(u) = u(u +1) · · · (u + j −1), Pk(u) = P(u)

u + k
, Pkl (u) = P(u)

(u + k)(u + l)
for k �= l,

noting that πj (u) = P(u)/j!, see (2). We then find

DP(u) =
∑

0≤k≤ j−1

Pk(u) and D2 P(u) =
∑

0≤k �=l≤ j−1

Pkl (u),

which we evaluate at u = −i for i = 0,1, . . . , j −1. However, for such i we find Pk(−i) = 0
unless k = i and Pkl (−i) = 0 unless k = i or l = i . Thus,

DP(u)|u=−i = Pi (−i)=(−i)(−i +1) · · · (−1)×(1)(2) · · · ( j −1−i)=(−1)i i!( j −i −1)!

and (A.4) follows because Dπj (u) =DP(u)/j!, see (2). Similarly (A.5) follows from

D2 P(u)|u=−i =
∑
k �=i

Pki (−i)+
∑
l �=i

Pil (−i) = 2
∑
k �=i

Pki (−i)

= 2
∑
k �=i

Pi (−i)

k − i
= 2Pi (−i)

∑
k �=i

1

k − i
= 2Pi (−i)(aj−i−1 −ai ).

n
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For u = 0,−1,−2, . . ., we note that πj (u) = 0 for j ≥ −u + 1, but Dmπj (u) remains
nonzero even for such values of j where πj (u) = 0.

LEMMA A.3. Let N be an integer and assume j ≥ N, then

πj (u) =
j∏

i=1

i +u −1

i
= πN (u)

j∏
i=N+1

(1+ (u −1)/ i) = πN (u)αN , j (u) (A.6)

with αN , j (u) =∏ j
i=N+1(1+ (u −1)/ i) for j > N and αN , j (u) = 1 for j = N.

For m ≥ 0 and j ≥ 1 it holds that∣∣Dmπj (u)
∣∣≤ c(1+ log j)m ju−1, (A.7)∣∣DmαN , j (u)
∣∣≤ c(1+ log j)m ju−1. (A.8)

For m ≥ 0 and j ≥ 1 we also have the more precise evaluations

πj (u) = ju−1

�(u)

(
1+ ε1 j (u)

)
, (A.9)

where supu∈K |ε1 j (u)| → 0 as j → ∞ for any compact set K⊂ R\{0,−1, . . . }, and

αN , j (u) = N !

�(u + N )
ju−1 (1+ ε2 j (u)

)
, (A.10)

where supu∈K |ε2 j (u)| → 0 as j → ∞ for any compact set K⊂ R\{−N ,−(N +1), . . . }.

Proof. To show (A.6), we first note that for j = N the result is trivial. For j > N we
factor out the first N coefficients,

∏N
i=1(i +u −1)/ i = πN (u). The product of the remain-

ing coefficients is denoted αN , j (u). The results (A.7) and (A.9) for πj (u) can be found in
JN (2012a, Lemma A.5), and the results (A.8) and (A.10) for αN , j (u) can be found in the

same way from a Taylor’s expansion of
∑ j

i= j0
log(1+ (u −1)/ i) for j > j0 ≥ 1−u. n

LEMMA A.4. Let aj = 1{j≥1}
∑ j

k=1 k−1. Then,

π0(u) = 1 and π1(u) = u for any u, (A.11)

Dmπ0(u) = 0 and Dmπ1(u) = 1{m=1} for m ≥ 1 and any u, (A.12)

Dπj (0) = j−11{j≥1} and D2πj (0) = 2 j−1aj−11{j≥2}, (A.13)∣∣Dmπj (0)
∣∣ ≤ cj−1(1+ log j)m−11{j≥1} ≤ cj−1+δ for m ≥ 1 and any δ > 0,

(A.14)
k∑

n= j

Dmπn(−u) =Dmπk(−u +1)−Dmπj−1(−u +1) for m ≥ 0 and any u, (A.15)

∞∑
n= j

Dmπn(−u) = −Dmπj−1(−u +1) for m ≥ 0 and u > 0, (A.16)

k∑
n=0

πn(u)πk−n(v) = πk(u + v) for any u,v. (A.17)
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Proof of Lemma A.4. Result (A.11) is well known and follows trivially from (2),
and (A.12) follows by taking derivatives in (A.11). Next, (A.13) and (A.14) follow from
Lemmas A.2 and A.3. To prove (A.15) with m = 0 multiply the identity

(u
n
) = (u−1

n
)+(u−1

n−1
)

by (−1)n to get

(−1)n
(

u

n

)
= (−1)n

(
u −1

n

)
− (−1)n−1

(
u −1

n −1

)
.

Summation from n = j to n = k yields a telescoping sum such that

k∑
n= j

(−1)n
(

u

n

)
= (−1)k

(
u −1

k

)
− (−1)k−1

(
u −1

j −1

)
,

which in terms of the coefficients πn(·) gives the result. Take derivatives to find (A.15)
with m ≥ 1. From (A.7) of Lemma A.3, Dmπk(−u +1) ≤ c(1+ logk)mk−u → 0 as k →
∞ when u > 0 which shows (A.16). Finally, (A.17) follows from the Chu-Vandermonde
identity, see Askey (1975, pp. 59–60). n

LEMMA A.5. For any α,β it holds that

t−1∑
n=1

nα−1(t −n)β−1 ≤ c(1+ log t)tmax(α+β−1,α−1,β−1). (A.18)

For α +β < 1 and β > 0 it holds that
∞∑

k=1

(k +h)α−1kβ−1(1+ log(k +h))n ≤ chα+β−1(1+ logh)n . (A.19)

Proof of Lemma A.5. (A.18): See JN (2010, Lemma B.4).
(A.19): We first consider the summation from k = 1 to h:

h1−α−β
h∑

k=1

(k +h)α−1kβ−1(1+ log(k +h))n

≤ c(1+ log2h)nh−1
h∑

k=1

(
k

h
+1

)α−1( k

h

)β−1

≤ c(1+ logh)n
∫ 1

0
(1+u)α−1uβ−1du.

The integral is finite for β > 0 and all α because 1 ≤ 1+u ≤ 2.
To evaluate the summation from k = h + 1 to ∞ we note that log(k + h) ≤ log(2k) ≤

c logk for h ≤ k. This gives the bound
∞∑

k=h+1

(k +h)α−1kβ−1(1+ log(k +h))n ≤ c
∞∑

k=h+1

(h + k)α−1kβ−1(1+ logk)n

≤ c
∞∑

k=h

kα+β−2(1+ logk)n

≤ chα+β−1(1+ logh)n,

see (A.2) of Lemma A.1. n
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LEMMA A.6. For d > 1/2 and 2d −1−u > 0 it holds that
∞∑

n=0

(
d −1

n

)(
d −1−u

n

)
= �(2d −1−u)

�(d)�(d −u)
=
(

2d −2−u

d −1

)
,

∞∑
n=0

(
d −1

n

)
∂

∂u

(
d −1−u

n

)∣∣∣∣
u=0

= −
(

2d −2

d −1

)
(�(2d −1)−�(d)).

Proof of Lemma A.6. With the notation a(n) = a(a + 1) · · · (a + n − 1), Gauss’s Hy-
pergeometric theorem, see Abramowitz and Stegun (1964, p. 556, eqn. 15.1.20), shows
that
∞∑

n=0

a(n)b(n)

c(n)n!
= �(c)�(c −a −b)

�(c −a)�(c −b)
for c > a +b.

For a = −d +1, b = −d +1+u, and c = 1, we have c −a −b = 2d −1−u > 0 so that
∞∑

n=0

(
d −1

n

)(
d −1−u

n

)
=

∞∑
n=0

(−d +1)(n)

n!

(−d +1+u)(n)

n!

= �(1)�(2d −1−u)

�(d)�(d −u)
=
(

2d −2−u

d −1

)
with derivative with respect to u as given, using ∂ log�(d +u)/∂u|u=0 = �(d). n

APPENDIX B: Asymptotic Analysis of the Derivatives

We first analyze �d
0 (Xt −C) and introduce some notation. From Lemma 1 we have an

expression for Xt , t = 1, . . . , N +T, and we insert that into �d
0 Xt and find, using �d

0 Xt =∑t−1
n=0 πn(−d)Xt−n and (A.15), that for t ≥ N +1 we have

�d
0 (Xt −C) = �d

N Xt +
t−1∑

n=t−N

πn(−d)Xt−n −
t−1∑
n=0

πn(−d)C

= �
d−d0
N εt −�

d−d0
N

⎧⎨
⎩

t+N0−1∑
n=t−N

πn(−d0)Xt−n −πt+N0−1(−d0 +1)μ0

⎫⎬
⎭

+
t−1∑

n=t−N

πn(−d)Xt−n −πt−1(−d +1)C

= �
d−d0
N εt +ηt (d)−κ0t (d)(C −μ0), (B.1)

where

ηt (d) = −
t−1−N∑

k=0

πk(d0 −d)

N∑
n=−N0+1

πt−n−k(−d0)Xn +
N∑

n=1

πt−n(−d)Xn

+
t−1−N∑

k=0

πk(d0 −d)πt+N0−k−1(−d0 +1)μ0 −πt−1(−d +1)μ0.
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The derivatives of �d
0 (Xt −C) with respect to d, evaluated at d = d0, are of the form

Dm�
d0
0 (Xt −C) = S+

mt +ηmt (d0)−κmt (d0)(C −μ0), (B.2)

where

κmt (d) = (−1)mDmπt−1(−d +1)

and the stochastic term S+
mt is defined, for t ≥ N +1, as

Smt = (−1)m
∞∑

k=0

Dmπk(0)εt−k = S+
mt + S−

mt ,

S+
mt = (−1)m

t−1−N∑
k=0

Dmπk(0)εt−k and S−
mt = (−1)m

∞∑
k=t−N

Dmπk(0)εt−k .

The main deterministic term is

ηmt (d) = (−1)m+1

⎡
⎣ N∑

n=−N0+1

t−1−N∑
k=0

Dmπk(0)πt−k−n(−d)Xn −
N∑

n=1

Dmπt−n(−d)Xn

−
t−1−N∑

k=0

Dmπk(0)πt+N0−k−1(−d +1)μ0 +Dmπt−1(−d +1)μ0

⎤
⎦. (B.3)

We use the notation 〈u,v〉T = σ−2
0
∑N+T

t=N+1 utvt → σ−2
0
∑∞

t=N+1 utvt = 〈u,v〉, if the
limit exists.

We first give the order of magnitude of the deterministic terms and product moments
containing these.

LEMMA B.1. The functions ηmt (d) satisfy

|η0t (d)| ≤ ct−d , (B.4)

|ηmt (d)| ≤ c(t − N )−min(1,d)+δ for m ≥ 1, t ≥ N +1, and any δ > 0. (B.5)

For d > 1/2 it follows that, for any 0 < ε < min(d,2d −1),

〈ηm ,ηn〉T → 〈ηm ,ηn〉 < ∞, m,n ≥ 0, (B.6)

|〈ηm ,κn〉T | ≤ c(1+ N )−min(d,2d−1)+ε, m,n ≥ 0, (B.7)

max(|〈η0,η1〉T |, |〈κ1,κ0〉T |) ≤ c(1+ N )−min(d,2d−1)+ε . (B.8)

If N = 0 it holds that

〈κ0,κ0〉T → σ−2
0

(
2d −2

d −1

)
and

〈κ0,κ1〉T → −σ−2
0

(
2d −2

d −1

)
(�(2d −1)−�(d)) . (B.9)
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If Assumption 1 holds then

〈S+
m ,ηn〉T

P→ 〈S+
m ,ηn〉, m,n ≥ 0, (B.10)

〈S+
m ,κn〉T

P→ 〈S+
m ,κn〉, m,n ≥ 0, (B.11)

where E(〈S+
m ,ηn〉T ) = E(〈S+

m ,κn〉T ) = E(〈S+
m ,ηn〉) = E(〈S+

m ,κn〉) = 0.

Proof of Lemma B.1. (B.4): The expression for η0t (d) is

η0t (d) = −
0∑

n=−N0+1

πt−n(−d)Xn +πt+N0−1(−d +1)μ0 −πt−1(−d +1)μ0

= −
0∑

n=−N0+1

πt−n(−d)(Xn −μ0), (B.12)

see (A.15) of Lemma A.4. Using the bound |πt−n(−d)| ≤ c(t − n)−d−1 we find∑0
n=−N0+1 |πt−n(−d)| ≤ ct−d for n ≤ 0, see (A.7) of Lemma A.3, and the result follows.

(B.5): The remaining deterministic terms with m ≥ 1 are evaluated using
|(−1)m+1Dmπk(0)| ≤ ck−1+δ1{k≥1} for δ > 0, see (A.14) of Lemma A.4, and we
find, for t ≥ N +1,

|ηmt (d)| ≤ c
∞∑

n=−N

t−1−N∑
k=1

k−1+δ(t − k +n)−d−1 + c
N∑

n=1

(t −n)−d−1+δ

+ c
t−1−N∑

k=1

k−1+δ(t + N0 − k −1)−d + c(t −1)−d+δ

≤ c

⎡
⎣t−1−N∑

k=1

k−1+δ(t − k − N )−d + (t − N )−d+δ

⎤
⎦

≤ c
[(

1+ log(t − N )
)
(t − N )−min(1,d)+δ + (t − N )−d+δ

]
≤ c(t − N )−min(1,d)+2δ,

where we have used (A.18) of Lemma A.5.
(B.6): From (B.5) we find |ηmt (d)ηnt (d)| ≤ c(t − N )−2min(1,d)+2δ so that |〈ηm ,ηm〉| < ∞
by choosing 2δ < 2min(1,d)−1 = min(1,2d −1), which is possible for d > 1/2.
(B.7): Similarly we find 〈ηn,κm〉T ≤ c

∑∞
t=1 t−min(1,d)+δ(t + N − 1)−d . If 1/2 <

d < 1 we apply (A.19) of Lemma A.5 to obtain the result
∑∞

t=1(t + N )−d t−d+ε ≤
c(1+N)1−2d+ε , and if d ≥ 1 we use (t + N )−d ≤ (1+ N )−d+2ε t−2ε for 2ε < d and find

∞∑
t=1

(t + N )−d t−1+ε ≤ (1+ N )−d+2ε
∞∑

t=1

t−1−ε ≤ c(1+ N )−d+2ε .

(B.8): The proofs for 〈η0,η1〉T and 〈κ1,κ0〉T are the same as for (B.7).

(B.9): For N = 0 we find 〈κ0,κ0〉T =∑T −1
n=0

(d−1
n
)2

and 〈κ0,κ1〉T = 1
2D
∑T

t=1 κ0t (d)2

such that the result follows from Lemma A.6.
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(B.10): We have

∞∑
t=N+T +1

S+
mtηnt (d) =

∞∑
t=N+T +1

ηnt (d)(−1)m+1
t−1−N∑

k=1

Dmπt−k(0)εk (B.13)

=
∞∑

k=1

⎡
⎣ ∞∑

t=max(T,k)+N+1

ηnt (d)(−1)m+1Dmπt−k(0)

⎤
⎦εk .

For some small δ > 0 to be chosen subsequently, we use the evaluations |ηnt (d)| ≤
c(t − N )−min(1,d)+δ , |Dmπt−k(0)| ≤ c(t − k)−1+δ1{t−k≥1}, and t−min(1,d)+δ =
(t − k + k)−min(1,d)+δ ≤ (t − k)−2δk−min(1,d)+3δ . Then

Var

⎛
⎝ ∞∑

t=N+T +1

S+
mtηnt (d)

⎞
⎠≤ c

∞∑
k=1

⎡
⎣ ∞∑

t=max(T,k)+1

t−min(1,d)+δ(t + N − k)−1+δ

⎤
⎦2

≤ c
∞∑

k=1

k−2min(1,d)+6δ

⎡
⎣ ∞∑

t=max(T,k)+1

(t − k)−1−δ

⎤
⎦2

.

For T → ∞ we have
∑∞

t=max(T,k)+1(t − k)−1−δ → 0, and because
∑∞

k=1

k−2min(1,d)+6δ < ∞ we get by dominated convergence that Var
(∑∞

t=N+T +1 S+
mt

ηnt (d)
)→ 0. This shows that 〈S+

m ,ηn〉T
P→ 〈S+

m ,ηn〉 =∑∞
t=N+1 S+

mtηnt (d).

(B.11): We use (B.13) and find
∑∞

t=N+T +1 S+
mtκnt (d) =∑∞

k=1
[∑∞

t=max(T,k)+1 κnt (d)

(−1)m+1Dmπt−k(0)
]
εk , and the proof is completed as for (B.10). n

We next define the (centered) product moments of the stochastic terms,

M+
mnT = σ−2

0 T −1/2
N+T∑

t=N+1

(
S+

mt S+
nt − E

(
S+

mt S+
nt

))
, (B.14)

as well as the product moments derived from the corresponding stationary processes,

MmnT = σ−2
0 T −1/2

N+T∑
t=N+1

(Smt Snt − E (Smt Snt )) .

The next two lemmas give their asymptotic behavior, where we note that

E
(
S+

0t S+
mt
)= E (S0t Smt ) = 0 for m ≥ 1. (B.15)

LEMMA B.2. Suppose Assumption 1 holds and let ζ2 =∑∞
j=1 j−2 = π2/6 � 1.6449

and ζ3 =∑∞
j=1 j−3 � 1.2021, see (16). Then

E
(
M2

01T
)= σ−2

0 T −1
N+T∑

t=N+1

E
(
S2

1t
)= ζ2, (B.16)

https://doi.org/10.1017/S0266466615000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466615000110


1120 SØREN JOHANSEN AND MORTEN ØRREGAARD NIELSEN

E
(
M01T M02T

)= σ−4
0 T −1

N+T∑
s,t=N+1

E
(
S0t S1t S0s S2s

)

= σ−2
0 T −1

N+T∑
t=N+1

E
(
S1t S2t

)= −2ζ3, (B.17)

E
(
M01T M11T

)= σ−4
0 T −1

N+T∑
s,t=N+1

E
(
S0t S1t S2

1s
)= −4ζ3, (B.18)

E
〈
S+

0 ,κ0
〉
T

〈
S+

1 ,κ0
〉
T = σ−4

0

N+T∑
s,t=N+1

E
(
S+

0sκ0s(d)S+
1tκ0t (d)

)
(B.19)

= −σ−2
0

∑
N≤s<t≤N+T −1

(t − s)−1πt (−d +1)πs(−d +1).

It follows that, for N = 0 and T → ∞,

τ0,T (d) = −
E
(〈

S+
0 ,κ0

〉
T

〈
S+

1 ,κ0
〉
T

)
〈κ0,κ0〉T

→ −(�(2d −1)−�(d)). (B.20)

Furthermore, for T fixed and N → ∞, see also (A.6),

τN ,T (d) =
∑

N≤s<t≤N+T −1(t − s)−1αN ,t (−d +1)αN ,s(−d +1)∑
N+1≤t≤N+T αN ,t−1(−d +1)2

(B.21)

→
T −1∑
t=1

t−1 − (T −1)/T .

Proof of Lemma B.2. (B.16): From S0t = εt , S1t = −∑∞
k=1 k−1εt−k , and (B.15) we

find

E
(
M2

01T
)= σ−4

0 E

⎡
⎣T −1/2

N+T∑
t=N+1

εt

∞∑
k=1

k−1εt−k

⎤
⎦2

= σ−2
0 T −1

N+T∑
t=N+1

E

⎡
⎣ ∞∑

k=1

k−1εt−k

⎤
⎦2

=
∞∑

k=1

k−2 = ζ2.

(B.17): We find using the expressions for S0t , S1t , and S2t = 2
∑∞

j=2 j−1aj−1εt− j , aj =
1{j≥1}

∑ j
k=1 k−1, together with (B.15) that

E
(
M01T M02T

)= −2σ−4
0 T −1 E

⎡
⎣ N+T∑

t=N+1

εt

∞∑
k=1

k−1εt−k

⎤
⎦
⎡
⎣ N+T∑

s=N+1

εs

∞∑
j=2

(
j−1aj−1

)
εs− j

⎤
⎦

= σ−2
0 T −1

N+T∑
t=N+1

E
(
S1t S2t

)
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and

σ−2
0 T −1

N+T∑
t=N+1

E
(
S1t S2t

)= −2σ−2
0 T −1

N+T∑
t=N+1

E

⎡
⎣∞∑

k=1

k−1εt−k

∞∑
j=2

(
j−1aj−1

)
εt− j

⎤
⎦

= −2T −1
N+T∑

t=N+1

∞∑
j=2

j−2
j−1∑
k=1

k−1

= −2
∞∑

j=2

j−2
j−1∑
k=1

k−1 = −2κ3 (B.22)

for κ3 =∑∞
j=2 j−2∑ j−1

k=1 k−1. We thus need to show that κ3 = ζ3.

Let f (λ) = log
(
1 − eiλ

) = 1
2 c(λ) + iθ(λ), where i = √−1 is the imaginary unit,

c(λ) = log(2(1 − cos(λ)), θ(λ) = arg
(
1 − eiλ

) = −(π − λ)/2 for 0 < λ < π , and

θ(−λ) = −θ(λ). The transfer function of Smt is Dm(1 − eiλ
)d−d0 |d=d0 = f (λ)m , so

that the cross spectral density between Smt and Snt is f (λ)m f (−λ)n and E(Smt Snt ) =
σ 2

0
2π

∫ π
−π f (λ)m f (−λ)ndλ. Because c(λ) is symmetric around zero and θ(λ) is antisym-

metric around zero, i.e., θ(−λ) = −θ(λ), it follows that

c(λ)3 = ( f (λ)+ f (−λ))3 = f (λ)3 +3 f (λ)2 f (−λ)+3 f (λ) f (−λ)2 + f (−λ)3.

Noting that the transfer function of S0t = εt is f (λ)0 = 1 and integrating both sides we
find

σ 2
0

2π

∫ π

−π
c(λ)3dλ = E(S3t S0t )+3E(S2t S1t )+3E(S1t S2t )+ E(S0t S3t ).

The left-hand side is given as −12σ 2
0 ζ3 in Lieberman and Phillips (2004, p. 478) and the

right-hand side is −12σ 2
0 κ3 from (B.15) and (B.22), which proves the result.

(B.18): We find, using the expressions for Smt and (B.15), that E
(
M01T M11T

)
is

σ−4
0 T −1

N+T∑
s,t=N+1

E
(

S0t S1t S2
1s

)

= −T −1
N+T∑

s,t=N+1

E

⎡
⎣εt

t−1∑
k=−∞

(t − k)−1εk

s−1∑
j=−∞

(s − j)−1εj

s−1∑
i=−∞

(s − i)−1εi

⎤
⎦ .

The only contribution comes for t = j > k = i or t = i > k = j and therefore t < s. These
two contributions are equal, so we find, using s − k = s − t + t − k,

2T −1
N+T∑

t=N+1

N+T∑
s=t+1

t−1∑
k=−∞

(t − k)−1(s − t)−1(s − k)−1

= 2T −1
N+T∑

t=N+1

N+T∑
s=t+1

t−1∑
k=−∞

[
(t − k)−1 + (s − t)−1

]
(s − k)−2.
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Next we introduce u = s − k [≥ 2] and v = t − k [1 ≤ v < u] and find

2
∞∑

u=2

u−1∑
v=1

[
v−1 + (u − v)−1

]
u−2 = 4

∞∑
u=2

u−2
u−1∑
v=1

v−1 = 4κ3 = 4ζ3,

which proves (B.18).
(B.19): From S+

0s = εs , S+
1t = −∑t−1−N

k=1 k−1εt−k = −∑t−1
k=N+1(t − k)−1εk , and

κ0t (d) = πt−1(−d +1) we get

E
〈
S+

0 ,κ0
〉
T

〈
S+

1 ,κ0
〉
T = σ−4

0

N+T∑
s,t=N+1

E
(

S+
0sκ0s(d)S+

1t (d)κ0t (d)
)

= −σ−2
0

∑
N+1≤s<t≤N+T

(t − s)−1πt−1(−d +1)πs−1(−d +1).

(B.20): For N = 0 we use Dπt−s(u)|u=0 = (t − s)−11{t−s≥1} and find the limit∑
0≤s<t<∞

Dπt−s(u)|u=0πs(−d +1)πt (−d +1)

=
∞∑

t=1

Dπt (−d +1+u)|u=0πt (−d +1)

=
∞∑

t=1

D

(
d −1−u

t

)∣∣∣∣
u=0

(
d −1

t

)
= −

(
2d −2

d −1

)(
�(2d −1)−�(d)

)
using (A.17) and Lemma A.6. From (B.9) we find the limit of 〈κ0,κ0〉T .

(B.22): From (A.6) we find the representation in (B.22), where we have cancelled the
factor πN (−d + 1)2. Note that

∑
N+1≤t≤N+T αN ,t−1(−d + 1)2 ≥ αN ,N (−d + 1)2 = 1

and αN ,t (−d +1) =∏t
i=N+1(1−d/ i) → 1 for N → ∞ and t ≥ N +1, so that τN ,T (d) →

T −1∑
N≤s<t≤N+T −1(t − s)−1 =∑T −1

i=1 i−1 − (T −1)/T . n

LEMMA B.3. Suppose Assumption 1 holds. Then, for T → ∞, it holds that
{MmnT }0≤m,n≤3 are jointly asymptotically normal with mean zero, and some variances
and covariances can be calculated from (B.16), (B.17), and (B.18) in Lemma B.2. It follows
that the same holds for {M+

mnT }0≤m,n≤3 with the same variances and covariances.

Proof of Lemma B.3. {MmnT }: We apply a result by Giraitis and Taqqu (1998) on limit
distributions of quadratic forms of linear processes. We define the cross covariance function

rmn(t) = E(Sm0Snt ) = σ 2
0 (−1)m+n

∞∑
k=0

Dmπk(0)Dnπt+k(0)

and find r00(t) = σ 2
0 1{t=0}, rm0(t) = σ 2

0 (−1)mDmπ−t (0)1{t≤−1}, and r0n(t) =
σ 2

0 (−1)nDnπt (0). For m,n ≥ 1 we find that |rmn(t)| is bounded for a small δ > 0 by

c
∞∑

k=1

(1+ log(t + k))m−1(1+ logk)n−1(t + k)−1k−1

≤ c
∞∑

k=1

(t + k)−1+δk−1+δ ≤ ct−1+3δ,
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using the bound (t +k)−1+δ ≤ k−2δ t−1+3δ . Thus
∑∞

t=−∞ rmn(t)2 < ∞, and joint asymp-
totic normality of {MmnT }0≤m,n≤3 then follows from Giraitis and Taqqu (1998, Thm. 5.1).
The asymptotic variances and covariances can be calculated as in (B.16), (B.17), and (B.18)
in Lemma B.2.{

M+
mnT

}
: We show that E

(
MmnT − M+

mnT

)2 → 0. We find

MmnT − M+
mnT = σ−2

0 T −1/2
N+T∑

t=N+1

(
S+

mt S−
nt + S−

mt S+
nt + S−

mt S−
nt

− E
(

S+
mt S−

nt + S−
mt S+

nt + S−
mt S−

nt

))
, (B.23)

and show that the expectation term converges to zero and that each of the stochastic terms
has a variance tending to zero.

T −1/2∑N+T
t=N+1 E

(
S+

mt S−
nt + S−

mt S+
nt + S−

mt S−
nt
)→ 0: The first two terms are zero be-

cause S+
mt and S−

nt are independent. For the last term we find using (A.14) of Lemma A.4
that

∣∣E(S−
mt S−

nt
)∣∣= σ 2

0

∞∑
k=t−N

|Dmπk(0)Dnπk(0)| ≤ c
∞∑

k=t−N

k−2+δ ≤ c(t − N )−1+δ,

so that

T −1/2
N+T∑

t=N+1

E
(

S−
mt S−

nt

)
≤ cT −1/2+δ → 0. (B.24)

Var
(
T −1/2∑N+T

t=N+1 S+
mt S−

nt
)→ 0: The first two terms of (B.23) are handled the same

way. We find because (S+
mt , S+

ns) is independent of (S−
mt , S−

ns) that

Var

⎛
⎝T −1/2

N+T∑
t=N+1

S+
mt S−

nt

⎞
⎠= T −1

N+T∑
s,t=N+1

E
(

S+
mt S−

nt S+
ms S−

ns

)

= T −1
N+T∑

s,t=N+1

E
(

S+
mt S+

ms

)
E
(

S−
nt S−

ns

)
.

Then replacing the log factors by a small power, δ > 0, we find for |Dmπt−i (0)| ≤
c(t − i)−1(1+ log(t − i))m ≤ c(t − i)−1+δ that

∣∣E(S+
mt S+

ms
)∣∣=

∣∣∣∣∣∣E
⎛
⎝t−1−N∑

i=1

Dmπt−i (0)εi

s−1−N∑
j=1

Dmπs− j (0)εj

⎞
⎠
∣∣∣∣∣∣

= σ 2
0

min(s,t)−1−N∑
i=1

|Dmπt−i (0)Dmπs−i (0)|

≤ c
min(s,t)−1−N∑

i=1

(t − i)−1+δ(s − i)−1+δ.
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Now take s > t and evaluate (s − i)−1+δ = (s − t + t − i)−1+δ ≤ (s − t)−1+3δ(t − i)−2δ

and

∣∣E(S+
mt S+

ms
)∣∣≤ c(s − t)−1+3δ

t−1−N∑
i=1

(t − i)−1−δ ≤ c(s − t)−1+3δ.

Similarly for

E
(
S−

nt S−
ns
)= E

⎛
⎝ N∑

i=−∞
Dnπt−i (0)εi

N∑
j=−∞

Dnπs− j (0)εj

⎞
⎠

= σ 2
0

N∑
i=−∞

Dnπt−i (0)Dnπs−i (0)

we find

∣∣E(S−
nt S−

ns
)∣∣≤ c

N∑
i=−∞

(t − i)−1+δ(s − i)−1+δ = c
∞∑

i=−N

(t + i)−1+δ(s + i)−1+δ

≤ c(s − t)−1+3δ
∞∑

i=−N

(t + i)−1−δ ≤ c(s − t)−1+3δ(t − N )−δ.

Finally, we can evaluate the variance as

Var

⎛
⎝T −1/2

N+T∑
t=N+1

S+
mt S−

nt

⎞
⎠≤ cT −1

∑
N+1≤t<s≤N+T

(s − t)−1+3δ(t − N )−δ(s − t)−1+3δ

= cT −1
T −1∑
h=1

h−2+6δ
T −h∑
t=1

t−δ ≤ cT −1T 1−δ → 0.

Var
(

T −1/2∑N+T
t=N+1 S−

mt S−
nt

)
→ 0: The last term of (B.23) has variance

Var

⎛
⎝T −1/2

N+T∑
t=N+1

S−
mt S−

nt

⎞
⎠= T −1 E

⎛
⎜⎝
⎡
⎣ N+T∑

t=N+1

S−
mt S−

nt

⎤
⎦2
⎞
⎟⎠− T −1

⎡
⎣ N+T∑

t=N+1

E(S−
mt S−

nt )

⎤
⎦2

.

The first of these terms is T −1∑N+T
s,t=N+1 E(S−

mt S−
nt S−

ms S−
ns) which equals

T −1
N+T∑

s,t=N+1

N∑
i, j,k,p=−∞

E
(
Dmπt−i (0)εiD

nπt− j (0)εj

×Dmπs−k(0)εkD
nπs−p(0)εp

)
. (B.25)

There are contributions from E(εi εj εkεp) in four cases which we treat in turn.

Case 1, i = j �= k = p: This gives the expectation squared, T −1
[∑N+T

t=N+1 E
(
S−

mt S−
nt
)]2

,

which is subtracted to form the variance.
Cases 2 and 3, i = k �= j = p and i = p �= j = k: These are treated the same way. We

find for Case 2 that the contribution to (B.25) is bounded by
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cT −1
N+T∑

s,t=N+1

∞∑
i=−N

(1+ log(t + i))m(1+ log(s + i))m(t + i)−1(s + i)−1

×
∞∑

j=−N

(1+ log(t + j))n(1+ log(s + j))n(s + j)−1(t + j)−1

≤ cT −1
N+T∑

s,t=N+1

⎡
⎣ ∞∑

i=−N

(t + i)−1+δ(s + i)−1+δ

⎤
⎦2

≤ cT −1
∑

N+1≤t<s≤N+T

⎡
⎣ ∞∑

i=−N

(t + i)−1+δ(s + i)−1+δ

⎤
⎦2

.

We evaluate (s + i)−1+δ = (s − t + t + i)−1+δ ≤ (s − t)−1+3δ(t + i)−2δ so that
∞∑

i=−N

(t + i)−1+δ(s + i)−1+δ ≤
∞∑

i=−N

(s − t)−1+3δ(t + i)−1−δ ≤ (s − t)−1+3δ(t − N )−δ

and hence the contribution to (B.25) is bounded by

cT −1
∑

N+1≤t<s≤N+T

(s − t)−2+6δ(t − N )−2δ

= cT −1
T −1∑
h=1

h−2+6δ
T −h∑
t=1

t−2δ ≤ cT −1T 1−2δ → 0.

Case 4, i = j = p = k: This gives in the same way the bound

T −1
N+T∑

s,t=N+1

∞∑
i=−N

(t + i)−2+δ(s + i)−2+δ ≤ cT −1
∞∑

i=−N

⎡
⎣ N+T∑

t=N+1

(t + i)−2−δ

⎤
⎦2

≤ cT −1
∞∑

i=1

i−2−2δ → 0.
n

We now apply the previous Lemmas B.1, B.2, and B.3, and find asymptotic results for
the derivatives Dm L∗(d0).

LEMMA B.4. Let the model for the data Xt , t = 1, . . . , N + T, be given by (4) and let
Assumptions 1 and 2 be satisfied. Then the (normalized) derivatives of the concentrated
likelihood function L∗(d), see (12), satisfy

σ−2
0 T −1/2DL∗(d0) = A0 + T −1/2 A1 + OP (T −1), (B.26)

σ−2
0 T −1D2L∗(d0) = B0 + T −1/2 B1 + OP (T −1(log T )), (B.27)

σ−2
0 T −1D3L∗(d0) = C0 + OP (T −1/2), (B.28)

where

A0 = M+
01T , E(A1) = ξN ,T (d0)+ τN ,T (d0), (B.29)

B0 = ζ2, B1 = M+
11T + M+

02T , (B.30)

C0 = −6ζ3. (B.31)

https://doi.org/10.1017/S0266466615000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466615000110


1126 SØREN JOHANSEN AND MORTEN ØRREGAARD NIELSEN

Here, ξN ,T (d0), τN ,T (d0), and M+
mnT , are given in (21), (23), and (B.14), respectively,

and ζ2 = π2/6 and ζ3 � 1.2021, see (16).
The (normalized) derivatives of L∗

c (d), see (15), satisfy (B.26)–(B.28) and (B.30)–
(B.31), but (B.29) is replaced by

A0 = M+
01T , E(A1) = ξC

N ,T (d0), (B.32)

where ξC
N ,T (d0) is given in (22).

Proof of Lemma B.4. The concentrated sum of squared residuals is given in (12).
We note that the first term is OP (T ), and from Lemmas B.1 and B.2 the next is OP (1), so
the second term has no influence on the asymptotic distribution of d̂. However, for the bias
we need to analyze it further.

We need an expression for the derivatives of the concentrated likelihood, i.e., Dm L∗(d).
Recall L(d,μ) from (11) and denote derivatives with respect to d and μ by subscripts.
Then L∗(d) = L(d,μ(d)) and therefore

DL∗(d) = Ld (d,μ(d))+ Lμ(d,μ(d))μd (d)

D2L∗(d) = Ldd (d,μ(d))+2Ldμ(d,μ(d))μd (d)+ Lμμ(d,μ(d))μd (d)2

+ Lμ(d,μ(d))μdd (d),

but μ̂ is determined from Lμ(d,μ(d)) = 0, which implies Ldμ(d,μ(d)) +
Lμμ(d,μ(d))μd (d) = 0, and hence

DL∗(d) = Ld (d,μ(d)), (B.33)

D2L∗(d) = Ldd (d,μ(d))− Ldμ(d,μ(d))2

Lμμ(d,μ(d))
. (B.34)

We find the derivatives for d = d0 and suppress the dependence on d0 in the following.
Thus κ0t = κ0t (d0) and κ1t = κ1t (d0), etc.

(B.26) and (B.29): We find from (B.2) that Dm�
d0
0 (Xt −μ) = S+

mt +ηmt −κmt (μ−μ0),
and therefore from (B.33),

σ−2
0 T −1/2DL∗ = σ−2

0 T −1/2
N+T∑

t=N+1

(
S+

0t +η0t − (μ̂−μ0)κ0t
)(

S+
1t +η1t − (μ̂−μ0)κ1t

)
,

where μ̂ − μ0 = μ̂(d0) − μ0 = (〈S+
0 ,κ0〉T + 〈η0,κ0〉T )/〈κ0,κ0〉T . Since E(XY ) =

E(X)E(Y )+Cov(X,Y ) and E(μ̂−μ0) = 〈η0,κ0〉T /〈κ0,κ0〉T we get

E
(
σ−2

0 T −1/2DL∗)= σ−2
0 T −1/2

N+T∑
t=N+1

(
η0t − 〈η0,κ0〉T

〈κ0,κ0〉T
κ0t

)(
η1t − 〈η0,κ0〉T

〈κ0,κ0〉T
κ1t

)

+ σ−2
0 T −1/2

N+T∑
t=N+1

Cov

((
S+

0t − 〈S+
0 ,κ0〉T

〈κ0,κ0〉T
κ0t

)
,

(
S+

1t − 〈S+
0 ,κ0〉T

〈κ0,κ0〉T
κ1t

))
.
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The first term is T −1/2ξN ,T , see (21). The second term is, using Cov(S+
0t , S+

1t ) = 0, see

(B.15), equal to T −1/2 times

− E
〈
S+

0 ,κ0
〉
T

〈
S+

0 ,κ1
〉
T〈

κ0,κ0
〉
T

− E
〈
S+

1 ,κ0
〉
T

〈
S+

0 ,κ0
〉
T〈

κ0,κ0
〉
T

+ E
〈
S+

0 ,κ0
〉2
T

〈
κ0,κ1

〉
T〈

κ0,κ0
〉2
T

= −
〈
κ0,κ1

〉
T〈

κ0,κ0
〉
T

− E
〈
S+

1 ,κ0
〉
T

〈
S+

0 ,κ0
〉
T〈

κ0,κ0
〉
T

+
〈
κ0,κ1

〉
T〈

κ0,κ0
〉
T

= − E
〈
S+

1 ,κ0
〉
T

〈
S+

0 ,κ0
〉
T〈

κ0,κ0
〉
T

= τN ,T ,

see (B.19) and (23).
(B.27) and (B.30): The first term of T −1D2L∗ in (B.34) is analyzed below and is of the or-
der of 1 and T −1/2. In the second term of (B.34) we find Lμμ(d0,μ(d0)) = σ 2

0 〈κ0,κ0〉T =
O(1) and

Ldμ(d0,μ(d0)) = T −1
N+T∑

t=N+1

(
S+

0t +η0t − (μ̂−μ0)κ0t

)
κ1t

+T −1
N+T∑

t=N+1

κ0t

(
S+

1t +η1t − (μ̂−μ0)κ1t

)

= OP (1),

and hence T −1Ldμ(d0,μ(d0))2/Lμμ(d0,μ(d0)) = OP (T −1) and can be ignored. Thus,
we get

σ−2
0 T −1D2L∗ = σ−2

0 T −1
N+T∑

t=N+1

(
S+

1t +η1t − (μ̂−μ0)κ1t

)2

+ σ−2
0 T −1

N+T∑
t=N+1

(
S+

0t +η0t − (μ̂−μ0)κ0t

)(
S+

2t +η2t − (μ̂−μ0)κ2t

)

+ OP
(
T −1).

By Lemma B.1 it holds that 〈ηm ,ηn〉T = O(1) and 〈S+
m ,ηn〉T = OP (1) such that

σ−2
0 T −1D2L∗ = σ−2

0 T −1
N+T∑

t=N+1

E
(

S+
1t

)2 + T −1/2
(

M+
11T + M+

02T

)
+ OP

(
T −1)

= ζ2 + T −1/2
(

M+
11T + M+

02T

)
+ OP

(
T −1(log T )

)
using also (B.16) and (B.24).
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(B.28) and (B.31): For the third derivative it can be shown that the extra terms involving
derivatives μd (d0) and μdd (d0) can be ignored and we find

σ−2
0 T −1D3 L∗ = σ−2

0 3T −1
N+T∑

t=N+1

(
S+

1t +η1t − (μ̂−μ0)κ1t
)(

S+
2t +η2t − (μ̂−μ0)κ2t

)

+σ−2
0 T −1

N+T∑
t=N+1

(
S+

0t +η0t − (μ̂−μ0)κ0t
)(

S+
3t +η3t − (μ̂−μ0)κ3t

)+ OP
(
T −1)

= 3T −1/2 M+
12T +3σ−2

0 T −1
N+T∑

t=N+1

E
(
S+

1t S+
2t

)+ T −1/2 M+
03T + OP

(
T −1)

= −6ζ3 + OP
(
T −1/2),

where the second-to-last equality uses Lemma B.1 and the last equality uses Lemmas B.2
and B.3, (B.17), and (B.24).
(B.32): For the function L∗

c (d), see (15), we find

σ−2
0 T −1/2DL∗

c = σ−2
0 T −1/2

N+T∑
t=N+1

(
S+

0t +η0t − (C −μ0)κ0t
)(

S+
1t +η1t − (C −μ0)κ1t

)
,

with expectation given by

σ−2
0 T −1/2

N+T∑
t=N+1

(η0t − (C −μ0)κ0t )(η1t − (C −μ0)κ1t )

+σ−2
0 T −1/2

N+T∑
t=N+1

Cov
(

S+
0t , S+

1t

)

= σ−2
0 T −1/2

N+T∑
t=N+1

(η0t − (C −μ0)κ0t )(η1t − (C −μ0)κ1t ) = T −1/2ξC
N ,T (d0).

The remaining derivatives give the same results as for L∗. Notice that the two factors in
the sum in the score are independent so there is no term corresponding to τN ,T . n

APPENDIX C: Proofs of Main Results

C.1. Proof of Theorem 1

We first show that the likelihood functions have no singularities. When t ≥ N + 1 we can
use the decomposition πt−1(−d + 1) = πN (−d + 1)αN ,t−1(−d + 1), see (A.6). We find
in the second term of L∗(d) in (12) that the factor πN (−d +1)2 cancels and

[∑N+T
t=N+1(�d

0 Xt )κ0t (d)
]2

∑N+T
t=N+1 κ0t (d)2

=
[∑N+T

t=N+1(�d
0 Xt )αN ,t−1(−d +1)

]2

∑N+T
t=N+1 αN ,t−1(−d +1)2

.
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This is a differentiable function of d because
∑N+T

t=N+1 αN ,t−1(−d + 1)2 ≥
αN ,N (−d + 1)2 = 1, see (A.6). Note, however, that μ̂(d) has singularities at the points
d = 1,2, . . . , N .

We next discuss the estimator d̂. The proof for d̂c is similar, but simpler because in that
case μ̂(d) = C does not depend on d. The arguments generally follow those of JN (2012a,
Thm. 4) and Nielsen (2015, Thm. 1). To conserve space we only describe the differences
in detail.

C.1.1. Existence and Consistency of the Estimator. The function L∗(d) in (12) is the
sum of squares of

�d
0 (Xt − μ̂(d)) = �

d−d0
N εt +ηt (d)− (μ̂(d)−μ0)κ0t (d),

see (B.1), so that we need to analyze product moments of the terms on the right-hand side,
appropriately normalized. The deterministic term ηt (d) was analyzed under the assumption
of bounded initial values in JN (2012a, Lemma A.8(i)) as Dit (ψ) with b = d, i = k = 0,
and α0 = β0 = 0, where it was shown that

sup
−1/2−κ≤d−d0≤d̄−d0

|ηt (d)| → 0 and

sup
d−d0≤d−d0≤−1/2−κ

max
1≤t≤T

|td−d0+1/2ηt (d)| → 0 as t → ∞.

This shows that ηt (d) is uniformly smaller than �
d−d0
N εt (appropriately normalized on the

intervals −1/2−κ ≤ d −d0 ≤ d̄ −d0 and d −d0 ≤ d −d0 ≤ −1/2−κ), and is enough to
show that in the calculation of product moments we can ignore ηt (d), which will be done
below.

The product moment of the stochastic term,
∑N+T

t=N+1(�
d−d0
N εt )

2, is analyzed in
Nielsen (2015) under Assumption 1 of finite fourth moment. Following that analysis,
for some 0 < κ < 1/2 to be determined, we divide the parameter space into intervals

where �
d−d0
N εt is nonstationary, “near critical”, or (asymptotically) stationary according

to d −d0 ≤ −1/2−κ, −1/2−κ ≤ d −d0 ≤ −1/2+κ , or −1/2+κ ≤ d −d0.
Clearly, d0 is contained in the interval −1/2 + κ ≤ d − d0, and we show that on this

interval the contribution from the second term in the objective function

RT (d) = T −1
N+T∑

t=N+1

(�
d−d0
N εt )

2 − T −1

[∑N+T
t=N+1 �

d−d0
N εtαN ,t−1(1−d)

]2

∑N+T
t=N+1 αN ,t−1(1−d)2

= T −1
N+T∑

t=N+1

(�
d−d0
N εt )

2 − T −1 AT (d)2

BT (d)
, (C.1)

say, is negligible. It then follows that the objective function is only negligibly different
from the objective function obtained without the parameter μ, see e.g., Nielsen (2015),
and existence and consistency of d̂ follows for the interval d −d0 ≥ −1/2+κ .

The two intervals covering d − d0 ≤ −1/2 + κ require a more careful analysis, which
is given subsequently. Following the strategy of JN (2012a) and Nielsen (2015), we show
that for any K > 0 there exists a (fixed) κ > 0 such that, for these intervals,

P(inf RT (d) > K ) → 1 as T → ∞. (C.2)
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This implies that P(d̂ ∈ {d : d − d0 ≥ −1/2 + κ}) → 1 as T → ∞, so that the relevant
parameter space is reduced to {d : d −d0 ≥ −1/2+κ} on which existence and consistency
has already been shown.

C.1.2. Tightness of Product Moments. We want to show that the remainder term,
T −1 AT (d)2/BT (d), in (C.1) is dominated by the first term on various compact inter-
vals. The function BT (d) is discussed below, and we want to find the supremum of the
suitably normalized product moment MT (d) = T α+βd (log T )γ AT (d) by considering it
a continuous process on a compact interval K; that is, we consider it a process in C(K),
the space of continuous functions on K endowed with the uniform topology. The usual
technique is then to prove that the process MT is tight in C(K), which implies that also
supd∈K |MT (d)| is tight, by the continuity of the mapping f �→ supu∈K | f (u)|, that is
supd∈KMT (d) = OP (1).

Tightness of MT can be proved by applying Billingsley (1968, Thm. 12.3), which states
that it is enough to verify the two conditions

E MT (d0)2 ≤ c, (C.3)

E
(
MT (d1)− MT (d2)

)2 ≤ c(d1 −d2)2 for d1,d2 ∈K. (C.4)

In one case we will also need the weak limit of the process MT , and in that case we apply
Billingsley (1968, Thm. 8.1), which states that if MT is tight then convergence of the finite
dimensional distributions implies weak convergence. Thus, instead of working with the
processes themselves, we need only evaluate their second moments and finite dimensional
distributions.

Specifically, by a Taylor series expansion of the coefficients we find

πm(d0 −d1)αN ,t+m−1(1−d1)−πm(d0 −d2)αN ,t+m−1(1−d2)

= −(d1 −d2){Dπm(d0 −d∗
m,t )αN ,t+m−1(1−d∗

m,t )

+πm(d0 −d∗
m,t )DαN ,t+m−1(1−d∗

m,t )}
for some d∗

m,t between d1 and d2. It follows that if d1 and d2 are in the interval K, then

also d∗
m,t ∈ K, so that any uniform bound we find for EDMT (d)2 for d ∈ K will also be

valid for d∗
m,t . This shows that to prove tightness of MT (d), it is enough to verify

sup
d∈K

E MT (d)2 ≤ c and sup
d∈K

E(DMT (d))2 ≤ c. (C.5)

C.1.3. Evaluation of Product Moments. We evaluate product moments on intervals of
the form d ≥ 1/2− ξ or d ≤ 1/2− ξ, as well as d −d0 ≥ −1/2−κ or d −d0 ≤ −1/2−κ .
Some of these intervals may be empty, depending on d and d̄, in which case the proof
simplifies easily, so we proceed assuming all intervals are non-empty.

The product moment BT (d) =∑N+T
t=N+1 αN ,t−1(1−d)2. We first find that

inf
d≥0

BT (d) ≥ 1 (C.6)

because BT (d) ≥ αN ,N (1−d) = 1.
Next there are constants c1,c2 such that

0 < c1 ≤ sup
d≤d≤1/2−ξ

T 2d−1 BT (d) ≤ c2 < ∞. (C.7)

https://doi.org/10.1017/S0266466615000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466615000110


INITIAL VALUES IN CSS ESTIMATION OF FRACTIONAL MODELS 1131

This follows from (A.10) because

T 2d−1
N+T∑

t=N+1

αN , j (1−d)2 =
(

N !

�(1−d + N )

)2
T −1

N+T∑
t=N+1

(
t

T

)−2d (
1+ ε2t (d)

)
,

which converges uniformly in d ∈ [d,1/2− ξ ] to (N !/�(1−d + N ))2/(1−2d) which is
bounded between c1 and c2 because 2ξ ≤ 1−2d ≤ 1−2d.

Finally,

inf
1/2−ξ≤d≤1/2+ξ

T 2d−1 BT (d) ≥ c
1− ((N +1)/T )2ξ

2ξ
, (C.8)

which again follows from (A.10) because (t/T )−2d ≥ (t/T )2ξ−1 which implies that

T 2d−1 BT (d) ≥ cT −1
N+T∑

t=N+1

(
t

T

)2ξ−1
≥ cT −2ξ

∫ T

N+1
u2ξ−1du

= c
1− ((N +1)/T )2ξ

2ξ
.

The product moment AT (d) =∑N+T
t=N+1 �

d−d0
N εtαN ,t−1(1−d). We find that

AT (d) =
N+T∑

t=N+1

εtφN ,t (d), φN ,t (d) =
N+T −t∑

m=0

πm(d0 −d)αN ,t+m−1(1−d).

From (A.7) and (A.8) we find |φN ,t (d)| ≤ c
∑N+T −t

m=0 md0−d−1(t +m)−d , and

E AT (d)2 = σ 2
0

N+T∑
t=N+1

φN ,t (d)2 ≤ c
N+T∑

t=N+1

⎧⎨
⎩

N+T −t∑
m=0

md0−d−1(t +m)−d

⎫⎬
⎭

2

,

while DAT (d) contains an extra factor log(m(t +m)).
We give in Table 2 the bounds for E AT (d)2 for various intervals and normalizations.

These follow from first using the inequalities (t +m)−d ≤ (t +m)−1/2+ξ when d ≥ 1/2−
ξ and T d (m + t)−d ≤ ((m + t)/T )−1/2+ξ when d ≤ 1/2−ξ, and similarly for d −d0. We
then apply the result that

T −1
N+T∑

t=N+1

⎧⎨
⎩T −1

N+T −t∑
m=0

(m

T

)−1/2+κ
(

t +m

T

)−1/2+ξ
⎫⎬
⎭

2

= O(1)

because the left-hand side converges to
∫ 1

0

{∫ 1−v
0 u−1/2+κ (u + v)−1/2+ξ du

}2
dv.

The product moment CM,T = ∑N+T
t=N+M+1

{∑M−1
n=0 πn(d0 − d)εt−n

}
αN ,t−1(1 − d).

Now we analyze another product moment, which we find by truncating the sum
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TABLE 2. Bounds for AT (d)

Second moment d d −d0 Upper bound on second moment Order

E AT (d)2 ≥ 1/2− ξ ≥ −1/2−κ
∑(∑

m−1/2+κ (t +m)−1/2+ξ
)2

T 1+2ξ+2κ

ET 2d AT (d)2 ≤ 1/2− ξ ≥ −1/2−κ
∑(∑

m−1/2+κ
( t+m

T

)−1/2+ξ
)2

T 2+2κ

ET 2(d−d0+1) AT (d)2 ≥ 1/2− ξ ≤ −1/2−κ
∑(∑

( m
T )−1/2+κ (t +m)−1/2+ξ

)2
T 2+2ξ

ET 4d−2d0+2 AT (d)2 ≤ 1/2− ξ ≤ −1/2−κ
∑(∑

( m
T )−1/2+κ

( t+m
T

)−1/2+ξ
)2

T 3

Note: Uniform upper bounds on the normalized second moment of AT (d) for different restrictions on d and d −d0.
The bounds are also valid if we replace κ by −κ or ξ by −ξ .

�
d−d0
N εt =∑t−N−1

n=0 πn(d0 −d)εt−n at M = T α for α < 1, and define

CT,M (d) =
N+T∑

t=N+2

εtψN ,M,t (d),

ψN ,M,t (d) =
min(M−1,N+T −t)∑

m=max(N+M+1−t,0)

πm(d0 −d)αN ,t+m−1(1−d). (C.9)

The coefficients are the same as for AT (d), but the sum ψN ,M,t (d) only contains at most
M terms. We give in Table 3 the bounds for the second moment of CT,M (d), which are
derived using the same methods as for AT (d).

We now apply the above evaluations to study the objective function in the three intervals
d −d0 ≥ −1/2+κ,−1/2−κ ≤ d −d0 ≤ −1/2+κ, and −1/2−κ ≤ d −d0.

C.1.4. The Stationarity Interval: {d −d0 ≥ −1/2+κ}∩D. We want to show that

sup
{d−d0≥−1/2+κ}∩D

∣∣∣∣∣T −1 AT (d)2

BT (d)

∣∣∣∣∣= oP (1),

and consider two cases because of the different behavior of BT (d).
Case 1: If d ≥ 1/2 − ξ we let K = {d ≥ 1/2 − ξ,d − d0 ≥ −1/2 + κ} ∩D and use

(C.6) to eliminate BT (d) and focus on AT (d). From Table 2 we find using (ξ,−κ) that
supK E

(
T −1 AT (d)2)= O

(
T 2ξ−2κ

)
. For the derivative we get an extra factor log T in the

coefficients and find supK E(T −1(DAT (d)
)2

) = O
(
(log T )2T 2ξ−2κ

)
.

TABLE 3. Bounds for CT,M (d)

Second moment d d −d0 Upper bound on second moment Order

ECT,M (d)2 ≥ 1/2− ξ ≥ −1/2−κ
∑(∑

m−1/2+κ (t +m)−1/2+ξ
)2

M1+2κ T 2ξ

ET 2d CT,M (d)2 ≤ 1/2− ξ ≥ −1/2−κ
∑(∑

m−1/2+κ
( t+m

T

)−1/2+ξ
)2

M1+2κ T

Note: Uniform upper bounds on the normalized second moment of CT,M (d) for different restrictions on d and
d −d0.
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It then follows from (C.3) and (C.4) that MT (d) = T −1/2+κ−ξ (log T )−1 AT (d) is tight.
Because convergence in probability and tightness implies uniform convergence in proba-
bility it follows that

sup
d∈K

T −1 AT (d)2 = OP

(
T −2κ+2ξ (log T )2

)
= oP (1) for ξ < κ.

Case 2: If d ≤ 1/2 − ξ , we define K = {d ≤ 1/2 − ξ, d − d0 ≥ −1/2 + κ} ∩D.
From (C.7) we find that supK E

(
T −1 AT (d)2/BT (d)

)≤ c supK E
(
T 2d−2 AT (d)2). From

Table 2, we then find for (ξ,−κ) that supK E
(
T 2d−2 AT (d)2)= O

(
T −2κ

)
. For the deriva-

tive we get an extra factor log T . Thus, supK E
(
DT d−1/2 AT (d)

)2 = O
(
(log T )2T −2κ

)
and (log T )−1T κ T d−1 AT (d) is tight, so that

sup
d∈K

∣∣∣∣∣T −1 AT (d)2

BT (d)

∣∣∣∣∣≤ c sup
d∈K

T 2d−2 AT (d)2 = OP
(
(log T )2T −2κ )= oP (1).

C.1.5. The Critical Interval: {−1/2 − κ ≤ d − d0 ≤ −1/2 + κ}∩D. For this interval
we show that (C.2) holds by setting κ sufficiently small. As in JN (2012a) and Nielsen
(2015) we apply a truncation argument. With M = T α , for some α > 0 to be chosen below,
let

�
d−d0
N εt =

M−1∑
n=0

πn(d0 −d)εt−n +
t−n−1∑
n=M

πn(d0 −d)εt−n = w1t +w2t , t ≥ M + N +1,

such that the objective function (C.1) is

RT (d) = T −1
N+T∑

t=N+1

(
�

d−d0
N εt −αN ,t−1(1−d)

AT (d)

BT (d)

)2

≥ T −1
N+T∑

t=N+M+1

(w1t + vt )
2 , (C.10)

where vt = w2t −αN ,t−1(1−d) AT (d)
BT (d) . We further find that

RT (d) ≥ T −1
N+T∑

t=N+M+1

w2
1t +2T −1

N+T∑
t=N+M+1

w1tw2t −2T −1CT,M (d)
AT (d)

BT (d)
, (C.11)

where CT,M (d) is given by (C.9). The first two terms in (C.11) are analyzed in Nielsen
(2015), where it is shown that by setting κ sufficiently small, the first term can be made
arbitrarily large while the second is oP (1), uniformly on |d − d0 + 1/2| ≤ κ1 for some
fixed κ1 > κ . Thus it remains to be shown that the third term of (C.11) is asymptotically
negligible, uniformly on the critical interval, that is,

sup
|d−d0+1/2|≤κ1

∣∣∣∣T −1CT,M (d)
AT (d)

BT (d)

∣∣∣∣= oP (1).

We consider two cases depending on d.
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Case 1: Let K = {1/2 − ξ ≤ d,−1/2 − κ1 ≤ d − d0 ≤ −1/2 + κ1} ∩ D.
From (C.6) we have BT (d)−1 ≤ 1 and from Table 2 we find for (ξ,κ1) that
supK E AT (d)2 = O(T 1+2κ1+2ξ ) and supK E(DAT (d))2 = O((log T )2T 1+2κ1+2ξ ) such
that supK |AT (d)| = OP ((log T )T 1/2+κ1+ξ ).

From Table 3 for (ξ,κ1) we then find supK ECT,M (d)2 = O(M1+2κ1 T 2ξ ) =
O(T α(1+2κ1)+2ξ ) and also supK E(DCT,M (d))2 = O((log T )2 M1+2κ1 T 2ξ ) =
O((log T )2T α(1+2κ1)+2ξ ), such that supK |CT,M (d)| = OP ((log T )T α(1/2+κ1)+ξ ). This
shows that

sup
d∈K

∣∣∣∣T −1CT,M (d)
AT (d)

BT (d)

∣∣∣∣= OP

(
(log T )2T α(1/2+κ1)−(1/2−κ1−2ξ)

)
= oP (1)

for α < (1/2−κ1 −2ξ)/(1/2+κ1).
Case 2: Let K = {d ≤ 1/2 − ξ,−1/2 − κ1 ≤ d − d0 ≤ −1/2 + κ1}∩D. From (C.7) we

find supK |T 1−2d BT (d)−1| ≤ c, and we find from Table 2 that supK E
(
T d−1 AT (d)

)2 =
O
(
T 2κ1

)
and therefore supK E

(
DT d−1 AT (d)

)2 = O
(
(log T )2T 2κ1

)
. From Table 3

we get supK E
(
T d−1CT,M (d)

)2 = O
(
M1+2κ1 T −1) = O

(
T α(1+2κ1)−1) and

supK E
(
DT d−1CT,M (d)

)2 = O
(
(log T )2 M1+2κ1 T −1) = O

(
(log T )2T α(1+2κ1)−1).

Hence

sup
d∈K

∣∣∣∣T −1CT (d)
AT (d)

BT (d)

∣∣∣∣= OP

(
(log T )2T α(1/2+κ1)−(1/2−κ1)

)
= oP (1)

for α < (1/2−κ1)/(1/2+κ1).

C.1.6. The Nonstationarity Interval: {d − d0 ≤ −1/2 − κ}∩D. We give different ar-
guments for different intervals of d, and we distinguish three cases.

Case 1: Let K = {1/2+ ξ ≤ d,d −d0 ≤ −1/2−κ}∩D. For this interval the main term
of RT (d) in (C.1) has been shown by Nielsen (2015) to satisfy (C.2), and it is sufficient to
show, with the normalization relevant to the nonstationarity interval, that

sup
d∈K

T 2(d−d0)
AT (d)2

BT (d)
= oP (1). (C.12)

We use (C.6) to evaluate BT (d)−1 ≤ 1 and find from Table 2 for (−ξ,κ) that
supK E(T 2(d−d0) AT (d)2) = O(T −2ξ ) so that E(DT d−d0 AT (d))2 = O

(
(log T )2T −2ξ

)
,

which shows that

sup
d∈K

T 2(d−d0)
AT (d)2

BT (d)
= OP

(
(log T )2T −2ξ

)
= oP (1).

Case 2: Let K= {1/2− ξ ≤ d ≤ 1/2+ ξ,d −d0 ≤ −1/2−κ}∩D. Again the main term
of RT (d) in (C.1) has been shown by Nielsen (2015) to satisfy (C.2), and we therefore
want to show that

sup
d∈K

∣∣∣∣∣T 2(d−d0)
AT (d)2

BT (d)

∣∣∣∣∣≤ supd∈K T 2(d−d0)T 2d−1 AT (d)2

infd∈K |T 2d−1 BT (d)| = OP (1), (C.13)

but can be made arbitrarily small by choosing ξ sufficiently small.
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It follows from (C.8) that the denominator T 2d−1 BT (d) of (C.13) can be made ar-
bitrarily large by choosing ξ sufficiently small, because (1 − ((N + 1)/T )2ξ )/2ξ →
log(T/(N + 1)) for ξ → 0. We next prove that the numerator of (C.13) is uni-
formly OP (1), which proves the result for Case 2. From Table 2 for (κ,ξ) we find
supK E(T 2(d−d0)T 2d−1 AT (d)2) = O(1). The derivative of T d−d0 T dφN ,t (d) is bounded
by

T −1
N+T −[T v]∑

m=N+1

(m

T

)d0−d−1
(

[T v]+m

T

)−d
log

(
m

T

(
m + [T v]

T

))
,

which converges to
∫ 1−v

0 ud0−d−1(v + u)−d log(u(u + v))du < ∞ for d ∈ K. Thus no

extra log T factor is needed in this case, and we find that T d−d0 T d−1/2 AT (d) is tight,
which proves that supK |T d−d0 T d−1/2 AT (d)| = OP (1).

Case 3: Finally, we assume d ≤ d ≤ 1/2− ξ and d −d0 ≤ d −d0 ≤ −1/2−κ . We note
that on this set the term T 1−2d BT (d)−1 is uniformly bounded and uniformly bounded
away from zero, see (C.7), so we factor it out of the objective function. We thus analyze
the objective function

R∗
T (d) = T 2d−2

N+T∑
t,s=N+1

(
(�

d−d0
N εt )

2αN ,s−1(1−d)2

− (�
d−d0
N εs)αN ,s−1(1−d)(�

d−d0
N εt )αN ,t−1(1−d)

)
.

The most straightforward approach would be to obtain the weak limit of

T 2(d−d0+1/2) R∗
T from the weak convergence of T d−d0+1/2�

d−d0
N εt on d −d0 ≤ 1/2−κ

and the uniform convergence of T dαN ,[T u]−1(1 − d) → N !
�(1−d+N ) u−d . However, the

former would require the existence of E |εt |q for q > 1/(d −d0 −1/2) ≥ 1/κ with κ arbi-
trarily small, see JN (2012b), which we have not assumed in Assumption 1. We therefore

introduce �
d−d0−1
N εt , the cumulation of �

d−d0
N εt , to increase the fractional order suffi-

ciently far away from the critical value d −d0 = −1/2, so the number of moments needed
is q > 1/(1+κ). To this end we first prove the following.

LEMMA C.1. Let at ,bt , t = 1, . . . ,T , be real numbers and At = ∑t
s=1 as , Bt =∑t

s=1 bs . Then

2

T (T −1)

T∑
t,s=1

(
a2

t b2
s −at bsasbt

)
≥
⎛
⎝ 2

T (T −1)

T −1∑
t=1

(
bt AT −bt At −bt+1 At

)⎞⎠2

.

Proof. We first find

T∑
t=1

T∑
s=1

(
a2

t b2
s −at bsasbt

)
=

∑
1≤s<t≤T

(
a2

t b2
s +a2

s b2
t −2at bsasbt

)

=
∑

1≤s<t≤T

(at bs −asbt )
2 .
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The proof is then completed by using the Cauchy-Schwarz inequality,⎛
⎝ 2

T (T −1)

∑
1≤s<t≤T

(at bs −asbt )

⎞
⎠2

≤ 2

T (T −1)

∑
1≤s<t≤T

(at bs −asbt )
2,

together with
∑

1≤s<t≤T (at bs −asbt ) =∑T −1
s=1 bs(AT − As)−∑T

t=2 bt At−1. n

Applying Lemma C.1 to T 2−2d 2
T (T −1) R∗

T (d) we find that for at = �
d−d0
N εt and bt =

αN ,t−1(1−d) it holds that R∗
T (d) ≥ 2T 2(d0−d)−1 QT (d)2, where

QT (d) = T 2d−d0−1/2T −1
N+T −1∑
t=N+1

(
αN ,t−1(1−d)(�

d−d0−1
N εN+T −1)

−(αN ,t−1(1−d)+αN ,t (1−d))(�
d−d0−1
N εt )

)
. (C.14)

Following the arguments in JN (2012a) and Nielsen (2015), we show that QT (d) converges
weakly (in the space of continuous functions of d) to a random variable that is positive
almost surely.

Let K = {d − d0 − 1 ≤ −3/2 − κ,d ≤ −1/2 − ξ} ∩D. Assumption 1 ensures that we
have enough moments, q > max(2,1/(1 + κ)), to apply the fractional functional central
limit theorem, e.g., Marinucci and Robinson (2000, Theorem 1), and find for each d ∈ K
that

T dαN ,[T u]−1(1−d)T d−d0−1/2�
d−d0−1
N ε[T u]

⇒ N !

�(N +1−d)
u−d Wd0−d (u) as T → ∞ on D[0,1],

where “⇒” denotes weak convergence and Wd0−d (u) = (�(d0 − d + 1))−1∫ u
0 (u − s)d0−ddW (s) denotes fractional Brownian motion (of type II) and W de-

notes Brownian motion generated by εt .
Because the integral is a continuous mapping of D[0,1] to R it holds that

QT (d) ⇒ Q(d) = N !

�(N +1−d)

∫ 1

0
u−d (Wd0−d (1)−2Wd0−d (u))du as T → ∞

(C.15)

for any fixed d ∈K. We can establish tightness of the continuous process QT (d) by evalu-
ating the second moment, using the methods above. For all terms we see that it has the same
form as AT (d) except that (d − d0,d) is replaced by (d − d0 − 1,d) and hence the result
follows as the results for AT (d). This establishes tightness of QT (d) and hence strength-
ens the convergence in (C.15) to weak convergence in the space of continuous functions of
d on K endowed with the uniform topology.

It thus holds that

inf
d∈K R∗

T (d) ≥ 2 inf
d∈KT 2(d0−d)−1 QT (d)2 +oP (1) ≥ 2T 2κ inf

d∈KQT (d)2 +oP (1),

where infd∈K QT (d)2 > 0 almost surely and κ > 0. It follows that, for any K > 0,

P

(
inf

d∈K R∗
T (d) > K

)
→ 1 as T → ∞,

which shows (C.2) and hence proves the result for Case 3.
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C.1.7. Asymptotic Normality of the Estimator. To show asymptotic normality of d̂ we
apply the usual expansion of the score function,

0 =DL∗(d̂)=DL∗(d0)+ (d̂ −d0
)
D2L∗(d∗),

where d∗ is an intermediate value satisfying |d∗ − d0| ≤ |d̂ − d0| P→ 0. The product mo-
ments in D2L∗(d) are shown in JN (2010, Lemma C.4) and JN (2012a, Lemma A.8(i))
to be tight, or equicontinuous, in a neighborhood of d0, so that we can apply JN (2010,
Lemma A.3) to conclude that D2L∗(d∗) = D2L∗(d0) + oP (1), and we therefore an-
alyze DL∗(d0) and D2L∗(d0). From Lemma B.4 we find that σ−2

0 T −1/2DL∗(d0) =
M+

01T + OP
(
T −1/2) and σ−2

0 T −1D2L∗(d0) = ζ2 + OP
(
T −1/2)= π2/6+ OP

(
T −1/2),

and the result follows from Lemmas B.2 and B.3.

C.2. Proof of Theorem 2

First we note that, as in the proof of Theorem 1 in Appendix C.1.7, we can apply JN
(2010, Lemma A.3) to conclude that D3L∗(d∗) = D3L∗(d0)+ oP (1). We thus insert the
expressions (B.26), (B.27), and (B.28) into the expansion (17) and find

T 1/2(d̂ −d0) = − A0 + T −1/2 A1

B0 + T −1/2 B1
− 1

2
T −1/2

(
A0 + T −1/2 A1

B0 + T −1/2 B1

)2
C0

B0 + T −1/2 B1

+oP
(
T −1/2),

which, using the expansion 1/(1+ z) = 1− z + z2 +·· · , reduces to

T 1/2(d̂ −d0) = − A0

B0
− T −1/2

(
A1

B0
− A0 B1

B2
0

+ 1

2

A2
0C0

B3
0

)
+oP

(
T −1/2).

We find that E(A0) = E(M+
01T ) = 0, so the bias of T (d̂ −d0) is, from (B.29)–(B.31),

−
(

E(A1)

B0
− E(A0 B1)

B2
0

+ 1

2

E(A2
0)C0

B3
0

)
+o(1)

= −
⎛
⎝ ξN ,T (d0)+ τN ,T (d0)

ζ2
−

E
(

M+
01T

(
M+

11T + M+
02T

))
+3E

(
M+2

01T

)
ζ3ζ−1

2

ζ 2
2

⎞
⎠

+ o(1). (C.16)

From Lemma B.2,

E
(

M+
01T

(
M+

11T + M+
02T

))
+3E

(
M+2

01T

)
ζ3ζ−1

2 = −4ζ3 −2ζ3 +3ζ3 = −3ζ3,

see (B.16)–(B.18), so that we get the final result −(ξN ,T (d0)+τN ,T (d0)+3ζ3ζ−1
2

)
ζ−1

2 +
o(1).

For the estimator d̂c we get the expansion (C.16), but use (B.32) instead of (B.31).
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C.3. Proof of Corollary 1

We suppress the argument d and want to evaluate ξN ,T and ξC
N ,T , see (21) and (22). From

(B.7) and (B.8) we find that 〈η0,η1〉T , 〈η0,κ1〉T , 〈η1,κ0〉T , and 〈κ1,κ0〉T are all bounded
by (1 + N )−min(d,2d−1)+ε , which shows the result for ξC

N ,T . To find the result for ξN ,T ,
it only remains to be shown that 〈η0,κ0〉T /〈κ0,κ0〉T is bounded. We find from (B.12) that

|η0t (d)| ≤ c
∑N0−1

j=0 |πt+ j (−d)|. We apply (A.6) and note that, for a given d and t > N >

d, the coefficients πt+ j (−d) = πN (−d)αN ,t+ j (−d) = πN (−d)
∏t+ j

i=N+1(1− (d +1)/ i)
are all of the same sign for j ≥ 0. If this is positive, we have, see (A.16),

N0−1∑
j=0

|πt+ j (−d)| ≤
∞∑

j=0

πt+ j (−d) = −πt−1(−d +1) > 0

because t − 1 ≥ N , and a similar relation holds if the coefficients are negative. Thus,
|η0t (d)| ≤ c|κ0t (d)| and therefore

∣∣〈η0,κ0
〉
T

∣∣= σ−2
0

∣∣∣∣∣∣
N+T∑

t=N+1

η0t (d)κ0t (d)

∣∣∣∣∣∣≤ cσ−2
0

N+T∑
t=N+1

κ0t (d)2

= c
〈
κ0,κ0

〉
T .

C.4. Proof of Theorem 3

C.4.1. Proof of Part (i). We note that, because t ≥ N + 1, we have κ0t (d) =
πt−1(−d +1) = 0 for d = 1, . . . , N . Similarly, because t +n ≥ N +1 for n ≥ 0, we have

η0t (d) =
N0−1∑
n=0

πt+n(−d)(μ0 − X−n) = 0 for d = 0,1, . . . , N +1,

and hence 〈η0,η1〉T = 〈η0,κ1〉T = 〈η1,κ0〉T = 〈κ1,κ0〉T = 0 for d = 1, . . . , N . This im-
plies that ξN ,T and ξC

N ,T are zero.

C.4.2. Proof of Part (ii). Next assume d = 1. The case with N ≥ 1 is covered by
part (i), so we only need to show the result for N = 0. For N = 0 we have κ0t (1) =
πt−1(0) = 1(t=1) and κ1t (1) = −Dπt−1(0) = −(t −1)−11{t−1≥1}, see (A.13). From (18)

we find η0t (1) =∑0
n=−N0+1 1(t−n=1)(Xn −μ0) = 1(t=1)(X0 −μ0), whereas η1t (1) is

nonzero only for t ≥ 2 because otherwise the summation over k in (19) is empty. Thus,
η0t (1) and κ0t (1) are nonzero only if t = 1, but η1t (1) and κ1t (1) are nonzero only if
t ≥ 2, and therefore ξC

0,T (1) = ξ0,T (1) = 0.

C.4.3. Proof of Part (iii). From (A.6) it follows that αN ,t (−d + 1)|d=N+1 =∏t
i=N+1(i − N − 1)/ i = 0 for t ≥ N + 1 and therefore (B.21) shows that τN ,T (d) = 0

for d = N +1.

C.5. Proof of Theorem 4

(27): For N0 = 0 we find from (18) that η0t (d0) =∑−1
n=0 πt+n(−d0)(μ0 − X−n) = 0, and

that is enough to show that ξN ,T (d0) = 0, see (21).
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(28) and (29): We also find for η0t (d0) = 0 that ξC
N ,T (d0) simplifies to

ξC
N ,T (d0) = σ−2

0

N+T∑
t=N+1

(−(C −μ0)κ0t )(η1t − (C −μ0)κ1t )

= −(C −μ0)(〈κ0,η1〉T − (C −μ0)〈κ0,κ1〉T ).

(30): The result follows from (27) and (B.20).
(31): If further N = 0, then both summations over n in (19) are empty, and hence zero, such
that η1t (d0) = 0. It then follows from (28) that ξC

N ,T (d0) = (C −μ0)2〈κ0,κ1〉T , which can
be replaced by its limit, see (B.9).
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