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Abstract. We consider isometric actions of lattices in semisimple algebraic groups on
(possibly non-compact) homogeneous spaces with (possibly infinite) invariant Radon
measure. We assume that the action has a dense orbit, and demonstrate two novel and
non-classical dynamical phenomena that arise in this context. The first is the existence
of a mean ergodic theorem even when the invariant measure is infinite; this implies the
existence of an associated limiting distribution, which can be different from the underlying
invariant measure. The second is uniform quantitative equidistribution of all orbits in
the space, which follows from a quantitative mean ergodic theorem for such actions.
In turn, these results imply quantitative ratio ergodic theorems for isometric actions of
lattices. This sheds some unexpected light on certain equidistribution problems posed by
Arnol’d [Arnol’d’s Problems. Springer, Berlin, 2004] and also on the ratio equidistribution
conjecture for dense subgroups of isometries formulated by Kazhdan [Uniform distribution
on a plane. Tr. Mosk. Mat. Obs. 14 (1965), 299–305]. We briefly mention the general
problem regarding ergodic theorems for actions of lattices on homogeneous spaces and
its solution given by Gorodnik and Nevo [Duality principle and ergodic theorems, in
preparation], and present a number of examples to demonstrate our results. Finally, we
also prove results on quantitative equidistribution for absolutely continuous averages in
transitive actions.

1. Equidistribution beyond amenable groups
Let G be a locally compact second countable (lcsc) group acting continuously on an lcsc
space X . Assume that X carries a σ -finite G-invariant Radon measure µ of full support.
Consider the following three natural conditions that often arise in practice.
(1) The action of G on X is transitive.
(2) The action of G on X has a unique invariant Radon measure.
(3) The action of G on X is isometric.
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Letting 0 be a countable dense subgroup of G, consider the problem of formulating and
establishing equidistribution results for the 0-orbits in X . This problem has been studied in
the past mainly in the case where the group 0 is amenable and the measureµ is finite. It is a
compelling challenge to generalize the theory to the case where the group is non-amenable
and the measure may be infinite. In particular, one would like to establish that a limiting
distribution for the 0-orbits exists, and study what its properties might be. This challenge
can be generalized further to the case where X is any standard Borel space with σ -finite
measure, where now the results sought are mean ergodic theorems in L p and pointwise
ergodic theorems that hold almost everywhere.

The possible choices of G, X and 0 include a large set of important examples arising
naturally in various branches of dynamics. We will discuss some of these examples below.

In the present paper we concentrate on establishing equidistribution results with an
effective rate of convergence for certain non-amenable groups and, in particular, lattice
subgroups of semisimple algebraic groups. A major ingredient in our considerations will
be mean ergodic theorems for actions of these groups.

We note that a mean ergodic theorem for spaces with infinite measure is a novel and
distinctly non-classical phenomenon. Indeed, it is well-known (see [Aa, Ch. 2]) that for an
action of a single transformation on a space with infinite measure, no formulation of such a
result is possible. Likewise, an effective rate of orbit equidstribution is a phenomenon that
does not arise in the ergodic theory of amenable groups, since the ergodic averages may
converge arbitrarily slowly.

1.1. Some background. The problem of extending ergodic theory to general countable
groups was raised half a century ago by Arnol’d and Krylov [AK]. They established
equidistribution of dense free subgroups of SO3(R) acting on S2, with respect to word
length, and formulated the problem of establishing ergodic theorems for balls with respect
to word length for actions of general countable finitely generated groups. Motivated by
the problems raised in [AK], Kazhdan [K] established that the orbits of certain dense
2-generator subsemigroups of the isometry group of the plane satisfy a ratio ergodic
theorem, namely that for every x ∈ X and any two bounded open sets A1 and A2 (with
nice boundary),

lim
t→∞

|{γ ∈ Bt : γ
−1x ∈ A1}|

|{γ ∈ Bt : γ−1x ∈ A2}|
=

m(A1)

m(A2)
.

Here Bt denotes the ball of radius t with respect to the word length on the free semigroup,
so that the counting is in effect governed by the weights given by convolution powers,
and m is Lebesgue measure on the plane. Kazhdan raised in [K] the question of
extending this result to other dense subgroups of a Lie group G acting on a homogeneous
space X = G/H , particularly when the action is isometric. Motivated by [AK, K],
Guivarc’h proved in [Gu1] the mean ergodic theorem for actions of free groups on a
probability space, generalizing von-Neumann’s classical result, and established in [Gu2]
a generalization of Kazhdan’s ratio ergodic theorem for certain dense subsemigroups of
isometries of Euclidean spaces, the weights being given again by the convolution powers
of a fixed probability measure on 0. Guivarc’h also raised the problem of establishing
equidistribution results in the generality of actions with a unique invariant measure.
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1.2. Ergodic theorems on homogeneous spaces: Arnol’d’s problems. Subsequently
(see [A, problems 1996-15 on page 115 and 2002-16 on page 148]), Arnol’d revisited
this topic and posed the following challenges. Consider the standard Lorentzian form
Q(x, y, z)= x2

+ y2
− z2 on R2,1 together with the identity component of the group of

isometries of the form, denoted by G = SO0(2, 1). Under the standard linear action of G,
the space R2,1 decomposes into three invariant subsets of different types, as follows:

(1) the light cone C, namely the set where the form vanishes;
(2) the two-sheeted hyperboloid H given by {x2

+ y2
− z2
=−1}, each of whose

components inherits a G-invariant Riemannian structure of constant negative
curvature isometric to the hyperbolic plane; thus H is a homogeneous space G/K
with compact stability group conjugate to K = SO2(R)∼= T;

(3) the one-sheeted hyperboloid known as the de-Sitter space S and given by
{x2
+ y2

− z2
= 1}, which inherits a G-invariant two-dimensional Lorentzian

structure and is a homogeneous space G/H with stability group conjugate to H =
SO0(1, 1)∼= R.

The group G has a natural action on the projectivization of the positive light cone, namely
the usual action by fractional linear transformations of the circle. The circle forms the
boundary of the hyperbolic plane and is denoted by B.

Now consider any lattice subgroup 0 ⊂ G. Then all orbits of the lattice in hyperbolic
space are discrete, and all orbits of the lattice on the boundary are dense. On the de-Sitter
space, almost all 0-orbits are dense, but not all. For example, the 0-orbit of a point is
discrete if the intersection of its stability group with the lattice is a lattice in the stability
group. Thus, two problems that arise naturally and which were formulated by Arnol’d are
the following.

(1) Establish equidistribution of the lattice orbits on the boundary B.
(2) Establish ergodic theorems for dense lattice orbits in the de-Sitter space S .

The first problem was solved in [G1] (see also [GM, GO] for generalizations); the second
problem was solved by Maucourant (unpublished) and in greater generality with explicit
rate in [GN2]. The distribution of orbits for the action of 0 on the positive light cone C
was computed in [G2, L, No] and [GW, §12].

1.3. Ergodic theorems beyond amenable groups: some surprises. We now turn to
explicating the results alluded to above and to describing their general context.

The study of the distribution of G-orbits in a general σ -finite measure space X proceeds
by fixing a family of bounded Borel measures βt on G for t ∈ Z+ or t ∈ R+. The
measures βt are not necessarily probability measures. For example, one important special
case is where Bt ⊂ G is a family of bounded sets of positive Haar measure; we then fix
a choice of growth rate function V (t) and define βt to be Haar measure on Bt divided by
V (t). The growth function V (t) may be of lower order of magnitude than mG(Bt ), for
instance.

We consider the operators defined on a compactly supported test function f : X→ R
by

πX (βt ) f (x)=
∫

G
f (g−1x) dβt (g).
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Thus, in the special case noted above,

πX (βt ) f (x)=
1

V (t)

∫
g∈Bt

f (g−1x) dg.

The properties of this family of operators provide the key to analyzing the distribution of
the orbit G · x . Of course, in the classical case of amenable groups acting by measure-
preserving transformations on a probability space, we have for a family of sets Bt ⊂ G
that:
(i) the right choice of growth function V (t) is the total measure mG(Bt ), so that the

operators above become averaging (i.e. Markov) operators;
(ii) the limit of the time averages as t→∞ is the space average of the function, when the

probability measure is ergodic; in particular, the limiting distribution is G-invariant.
It turns out that the ergodic theory of non-amenable groups is full of surprises, and

reveals several phenomena that have no analogues in classical amenable ergodic theory.
(1) The operators πX (βt ) may fail to converge, even when the βt are normalized ball

averages with respect to a word metric and the action is a dense isometric action on
a compact homogeneous space preserving Haar measure.

(2) The operators πX (βt )may converge to a limit operator, but the limit may be different
from the ergodic mean, even when the βt are normalized ball averages with respect to
a word metric and the action is a dense isometric action on a compact homogeneous
space preserving Haar measure.

(3) When the invariant measure is infinite, the operator πX (βt ) associated with a family
Bt may converge for a choice of growth function V (t) which is of lower order of
growth than mG(Bt ), with convergence for almost all points or even for all points x
outside a countable set:

lim
t→∞

1
V (t)

∫
g∈Bt

f (g−1x) dg =
∫

X
f dνx , νx 6= 0.

(4) The limit measure νx appearing in (3) may be non-invariant and depend non-trivially
on the initial point x . Furthermore, the limit measure may be completely different if
the family of sets Bt which are taken as the support of the measures βt is changed.

(5) The expression in (3) may converge for each and every x ∈ X , and yet the measure
νx may still be non-invariant and may depend on the initial point x as well as the
family Bt . This can happen even when the invariant measure is unique and even
when the action is isometric.

(6) The operators πX (βt ) in (3) may converge with a uniform rate of convergence, valid
for almost all points, or even for all points; that is,∣∣∣∣ 1

V (t)

∫
g∈Bt

f (g−1x) dg −
∫

X
f dνx

∣∣∣∣≤ C(x, f )V (t)−δ.

This can happen in compact spaces and also in non-compact spaces.
(7) As a result, convergence of the ratios:

|{γ ∈ Bt : γ
−1x ∈ A1}|

|{γ ∈ Bt : γ−1x ∈ A2}|
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may take place at a uniform rate for almost all points. As before, even for an
isometric action (with infinite invariant measure) the uniform rate may apply to all
points, but the νx appearing in the limiting expression νx (A1)/νx (A2) may depend
on x and Bt .

We remark that (1) and (2) are implicit already in [AK, Gu1], and that (1) has been noted
explicitly in [B] (see also Theorem 1.1 below).

The phenomena described in (3) and (4) were first demonstrated by a pioneering result
of Ledrappier [L] on the distribution of orbits of lattice subgroups of SL2(R) in the real
plane; see also [LP1, LP2]. Equivalently, the result applies to the action of a lattice in
SO0(2, 1) on the light cone C above (see [GW, Theorem 12.2] for more information).

The phenomenon described in (5) for isometric actions was first demonstrated in [GW,
Corollary 1.4(ii)] (see also Theorem 1.6 below).

Regarding (6) and (7), note that mean and pointwise ergodic theorems with uniform
rates for semisimple Kazhdan groups acting on probability spaces have been established
in [GN1, MNS, Ne2]. The question of whether an ergodic theorem implies equidistribution
with rates for all points forms one of the main subjects of the present paper. The solution
to this problem gives the phenomena described in (6) and (7) as immediate corollaries.

1.4. The mean ergodic theorem and equidistribution in compact spaces. Assume now
that the space X is equipped with a G-invariant probability measure µ. We say that πX (βt )

satisfies the mean ergodic theorem in L2 (with limit operator P ) if for every f ∈ L2(X, µ),∥∥∥∥∫
G

f (g−1x) dβt (g)− P f (x)

∥∥∥∥
2
= E( f, t)−→ 0 as t→∞, (1.1)

where P : L2(X, µ)→ L2(X, µ) is a linear operator, which may be different from the
orthogonal projection on the space of G-invariant functions; see, for instance, Theorem 1.1
below.

The mean ergodic theorem is known to hold for several large classes of lcsc groups,
including general amenable groups (see [Ne3] for a survey) and also semisimple
S-algebraic groups and their lattice subgroups (see [GN1] for a comprehensive discussion).
The next obvious question regarding the distribution of orbits concerns pointwise
convergence of the averages, i.e. whether for every f ∈ L2(X, µ) and almost all x ∈ X
it is true that ∣∣∣∣∫

G
f (g−1x) dβt (g)− P f (x)

∣∣∣∣−→ 0 as t→∞. (1.2)

When the space X is a compact metric space, one can consider sharpening the pointwise
ergodic theorem in two material ways. The first is to establish pointwise everywhere
convergence when f is continuous, namely that (1.2) holds for every point x ∈ X without
exception, in which case we say that the orbits of G in X are equidistributed. It was noted
in [GN1] (based on an earlier argument due to Guivarc’h [Gu1]) that for isometric actions
on compact spaces with an invariant ergodic probability measure of full support, pointwise
everywhere convergence of the averages for continuous functions follows from the mean
ergodic theorem. This result has as a consequence the fact that such actions are in fact
uniquely ergodic. Thus unique ergodicity can be established via spectral arguments.

https://doi.org/10.1017/S0143385711000721 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385711000721


Effective equidistribution 1977

The second way of sharpening the pointwise ergodic theorem is to establish that the
convergence in (1.2) proceeds at a fixed rate, uniformly for every starting point, if the
function f is Hölder continuous; that is,∣∣∣∣∫

G
f (g−1x) dβt (g)− P f (x)

∣∣∣∣≤ C( f, x)E(t) (1.3)

where E(t)→ 0 as t→∞. In this case, we say that the orbits have a uniform rate of
equidistribution, and we wish to estimate this rate.

In the present paper, we will establish equidistribution results with an effective uniform
rate in two significant cases, namely the isometric and transitive cases. To establish a
quantitative version of these results for actions of general groups G, we will require the
spectral assumption of the existence of a spectral gap. Recall that a unitary representation
has a spectral gap if it has no almost invariant sequence of unit vectors. We emphasize
that this assumption is necessary for the conclusion to hold, and that its validity is a very
common phenomenon. For example, all actions of groups with property T have a spectral
gap (in the orthogonal complement of the invariants).

We also show that the convergence rate is uniform on the sets

Ca(X)1 =

{
f ∈ C(X) : sup

x∈X
| f (x)| + sup

x 6=y

| f (x)− f (y)|

d(x, y)a
≤ 1

}
of Hölder continuous functions with Hölder norm bounded by one.

Let us now describe some concrete instances of these results, where the action preserves
a probability measure.

1.5. Uniform rate of equidistribution.

1.5.1. Free groups. Let Fr be a free group with r generators, where r ≥ 2. We denote
by `(γ ) the length of an element γ ∈ 0 with respect to the free generating set and by B2n

the ball of radius 2n. We denote by ε0 : Fr → {±1} the sign character of the free group,
taking the value 1 on words of even length and −1 on words of odd length.

Given a unitary representation π of Fr on a Hilbert space H, let H1 denote the space
of invariants and let Hε0 denote the space realizing the character ε0. Any vector f0 ∈Hε0

satisfies π(γ ) f0 = (−1)`(γ ) f0.
Given a decreasing family of finite-index subgroups 0i of Fr , we denote by F̂r the

profinite completion equipped with an invariant metric defined by

d(γ1, γ2)=max{|Fr : 0i |
−1
: γ−1

1 γ2 /∈ 0̂i }

for γ1, γ2 ∈ F̂r .

THEOREM 1.1.
(1) Consider an isometric action of Fr on a compact manifold X. Let µ be an ergodic

smooth probability measure on X with full support such that the representation of Fr

on L2
0(X, µ) has a spectral gap. Then for every Hölder-continuous f ∈ Ca(X)1 and

every x ∈ X,
1

#B2n

∑
γ∈B2n

f (γ−1x)= P f (x)+ O(e−θan) (1.4)
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where:
• θa > 0 depends only on the spectral gap and dim(X);
• the operator P is given by

P f =
∫

X
f dµ+

r − 1
r

(∫
X

f f̄0 dµ

)
f0,

with f0 ≡ 0 when Hε0 = 0, which is always the case when X is connected;
otherwise, Hε0 is one-dimensional and f0 denotes a unit vector that spans
Hε0 .

(2) Let 0i ⊂ Fr be a decreasing family of finite-index subgroups such that:
• |0i : 0i+1| is uniformly bounded;
• the family of representations L2

0(Fr/0i ) of Fr satisfies property (τ ) (i.e. has
uniform spectral gap).

Then for every f ∈ Ca(F̂r )1 and x ∈ F̂r , (1.4) holds as well, with respect
to the Haar probability measure µ on F̂r , the profinite completion associated with
the family 0i .

We recall that, taking X = S2 to be the unit sphere in R3 and G = SO3(R), it was shown
in [LPS1, LPS2] (see also [C, O] for generalizations to higher-dimensional spheres) that
certain dense subgroups 0 ⊂ G admit a spectral gap in their representation on L2

0(S
2).

The class of such subgroups was significantly enlarged recently in [BG]. It may even be
the case that every dense finitely generated subgroup of G admits a spectral gap, without
exception, but this remains a challenging open problem. In any case, whenever a spectral
gap exists, every orbit of the dense free group becomes equidistributed on the sphere at
a uniform exponential rate, depending on the size of the spectral gap (as well as on the
parameters r and a, of course).

We remark that in [Do], a property weaker than a spectral gap is established for dense
subgroups, and this result is sufficient to derive quantitative equidistribution, albeit at a
subexponential rate.

1.5.2. Lattices in simple algebraic groups. Let G⊂ GLd be a simply connected
absolutely simple algebraic group defined over a local field K of characteristic zero which
is isotropic over K (for example, G= SLd ). Let G =G(K ), and let 0 be a lattice in G.
We fix a norm on Matd(K ) which is the Euclidean norm if K is Archimedean and the
max-norm otherwise. Let Bt denote the ball {g ∈ G : log ‖g‖< t}.

THEOREM 1.2.
(1) Consider an isometric action of 0 on a compact manifold X. Let µ be a smooth

probability measure on X with full support such that the action of 0 in L2
0(X, µ) has

a spectral gap. Then for every f ∈ Ca(X)1 and every x ∈ X,

1
#(0 ∩ Bt )

∑
γ∈Bt

f (γ−1x)=
∫

X
f dµ+ O(e−θa t ) (1.5)

with explicit θa > 0.
(2) Let 0i ⊂ 0 be a decreasing family of finite-index subgroups such that:
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• |0i : 0i+1| is uniformly bounded;
• the family of representations L2

0(0/0i ) of 0 satisfies property (τ ).
Then for every f ∈ Ca(0̂)1 and every x ∈ 0̂, (1.5) holds as well, with respect to
the Haar probability measure µ on the profinite completion 0̂ associated with the
family 0i .

Remark 1.3. One can also formulate a version of Theorem 1.2 for general semisimple
S-arithmetic groups, but then one needs to impose the condition that the unitary
representation of G+ induced from the representation of 0 on L2

0(X, µ) has a strong
spectral gap (see [GN1] for the terminology).

1.5.3. Transitive actions. Another significant case where pointwise everywhere
convergence holds with a uniform rate is that of transitive actions, for which this property
holds for every bounded Borel function. We will consider below general homogenous
spaces with σ -finite invariant measure. Here we note only the following consequence in
the case where the measure is finite.

Let G⊂ GLd , the norm and the balls βt be as described in §1.5.2.

THEOREM 1.4. Consider a transitive continuous action of G on a homogeneous space X
that supports invariant Borel probability measure µ. Then, for every bounded Borel
function f on X of compact support and for every x ∈ X,

πX (βt ) f (x)=
∫

X
f dµ+ O

((
sup

s∈(t−1,t+1)
E( f, s)

)θ)
with an explicit θ ∈ (0, 1) which is independent of f and x.

The proofs of Theorems 1.1, 1.2 and 1.4 will be given in §5.

Remark 1.5. Let us note two other general approaches to deriving equidistribution results
in isometric actions from estimates on L2-norms. The first approach, which can be found
in [CO, GN1, Gu1] and is originally due to Guivarc’h, applies only in the case of compact
spaces and does not produce a rate of convergence. The second approach (see [CU, §8])
uses the theory of elliptic operators, so it can only be applied in the setting of Lie groups
and sufficiently smooth functions.

1.6. Ergodic theorems: spaces with infinite measure. Let us now turn to spaces with
infinite invariant measure, and consider the problem of establishing mean and pointwise
ergodic theorems and quantitative equidistribution of orbits for general group actions on
such spaces. In general, this basic challenge is largely unexplored, and here we take
up the important case of dense subgroups 0 ⊂ G acting isometrically by translations,
where we can establish pointwise everywhere convergence at a uniform rate. To that end,
we introduce a natural generalization of the mean ergodic theorem in this setting (see
Definition 2.1 below). In particular, we obtain the following equidistribution result that
provides a quantitative version of [GW, Corollary 1.4].

Let G⊂ GLd be a semisimple simply connected algebraic group which is defined over
a number field K and is K -simple. Let T and S be finite sets of Archimedean valuations
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of K with T ⊂ S. For v ∈ S, we denote by Kv the corresponding completions. Let OS

denote the ring of S-integers and let 0 =G(OS).
Let

H(g)=
∏
v∈S

‖gv‖v for g = (gv) ∈
∏
v∈S

G(Kv),

where ‖ · ‖v are norms on Matd(Kv) as in §1.5.2.

THEOREM 1.6. Assume that 0 is dense in G =
∏
v∈T G(Kv) with respect to the diagonal

embedding. Then there exist α ∈Q+ and β ∈ N such that for every Hölder function on G
with exponent a and compact support and for every x ∈ G,

1

tβ−1eαt

∑
γ∈0:log H(γ )<t

f (γ x)=
∫

G
f (g)

dmG(g)

H(gx)α
+ O f,x (e

−θa t )

uniformly for x in compact sets, where mG is a suitably normalized Haar measure on G
and θa > 0.

We note that the L2-convergence for the operators appearing in Theorem 1.6 is a special
case of the results of [GN2]. Hence, since the action of 0 on X is isometric, Theorem 1.6
follows from Theorem 2.5(2) below.

We refer to [GW, page 107] for the identification of α and also for a proof of the
following fact. Taking the family Bt associated with the distance function given (for
example) by a power of the height function will change the power of the density function
appearing in the limiting distribution. Thus, as we have already mentioned, this result
demonstrates that in the infinite-measure setting the limit measure does not have to be
invariant and may depend non-trivially on the initial point x and the family Bt , even if the
action is an isometric action with a spectral gap.

Finally, it is interesting to compare Theorem 1.6 with the results on equidistribution of
dense subgroups of nilpotent Lie groups established in [Br2]. In that case, the averages
constitute a Følner sequence and the limit distribution is Haar measure.

1.7. Dense groups of isometries: Kazhdan’s conjecture. Let (X, d) be an lcsc metric
space, and let G = Isom(X) be its group of isometries. Assume that the action of G on X
is transitive, and let m X be the unique isometry-invariant Radon measure on X . Fix two
bounded open sets A1 and A2 with boundary of zero measure. Consider a countable dense
subgroup 0 ⊂ G and a family of sets Bt ⊂ 0, for example balls with respect to a left-
invariant metric. For each x ∈ X , the orbit 0 · x is dense in X and we can form the ratios

|{γ ∈ Bt : γ
−1x ∈ A1}|

|{γ ∈ Bt : γ−1x ∈ A2}|
.

Consider the question of whether the ratios satisfy a ratio ergodic theorem, i.e. whether the
limit as t→∞ exists and, furthermore, whether it is given by

lim
t→∞

∑
γ∈Bt

χA1(γ
−1x)∑

γ∈Bt
χA2(γ

−1x)
=

m X (A1)

m X (A2)
. (1.6)

This problem was raised by Kazhdan in [K], where the case of certain dense 2-generator
subsemigroups of Isom(R2) acting on the plane was studied. Upon assuming that one
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of the generators is an irrational rotation, a version of (1.6) was established, but with Bt

taken to be balls in the free group or semigroup, not balls with respect to the word metric.
This amounts to considering weighted averages on 0, with the weights being given by
convolution powers. This result was generalized by Guivarc’h [Gu2], who considered
weighted averages given by convolution powers on certain dense subsemigroups of
Isom(Rn) acting on Rn (note also that a gap in the argument in [K] was closed in [Gu2]).
For further results in this direction see [V1, V2] and also [Br1], where the original
convergence theorem in the plane is sharpened to a local limit theorem.

Theorem 1.6 has, of course, a direct bearing on this problem. In principle, to show
that ratios converge, one does not need to establish the much stronger result that both the
numerator and the denominator converge at a common rate and find an explicit expression
for the rate. However, that is precisely the conclusion of Theorem 1.6; so, as an immediate
corollary, we obtain the following result.

COROLLARY 1.7. Keeping the notation and assumptions of Theorem 1.6, we have:
(1) if f1 and f2 are continuous of compact support and f2 ≥ 0 (and not identically zero),

then for every x1, x2 ∈ X,

lim
t→∞

∑
γ∈0:log H(γ )<t f1(γ x1)∑
γ∈0:log H(γ )<t f2(γ x2)

=

∫
X f1(g)H(gx1)

−α dm X (g)∫
X f2(g)H(gx2)−α dm X (g)

;

(2) if, in addition, f1 and f2 are Hölder continuous with exponent a, then for every
x1, x2 ∈ X,∑

γ∈0:log H(γ )<t f1(γ x1)∑
γ∈0:log H(γ )<t f2(γ x2)

=

∫
X f1(g)H(gx1)

−α dm X (g)∫
X f2(g)H(gx2)−α dm X (g)

+ O f1, f2,x1,x2(e
−θa t )

uniformly over x1 and x2 in compact sets.

Thus the ratios converge for every point, with uniform rate; however, the limit is not the
ratio of the integrals with respect to the isometry-invariant measure, but with respect to a
different measure.

We also remark that if f1 and f2 are bounded measurable functions with bounded
support, with f2 ≥ 0 not identically zero, then the ratios converge to the stated limit at
almost every point, with uniform rate. This is a consequence of the results of [GN2].

2. Formulation of quantitative equidistribution results
Let G be an lcsc group acting measurably on a measurable space X equipped with a
σ -finite quasi-invariant measure µ. We fix an increasing filtration of X by measurable
sets Xr , r ∈ N, of finite measure. We denote by ‖ · ‖p,r the L p-norm with respect to the
measure µ|Xr .

We consider families βt of bounded Borel measures on G; in particular, given a family
of sets Bt on G for t ≥ t0 and a positive growth function V (t), we consider the operators

πX (βt ) f (x)=
1

V (t)

∫
g∈Bt

f (g−1x) dg

for measurable f : X→ R.
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Definition 2.1. The operators πX (βt ) satisfy the mean ergodic theorem in L p for the action
of G on X if for every r ∈ N and f ∈ L p(X, µ|Xr ), the sequence πX (βt ) f converges in
L p(X, µ|Xr ).

It is clear from the definition that for 1≤ p <∞ there exist linear operators

Pr : L
p(X, µ|Xr )→ L p(X, µ|Xr )

such that
E p,r ( f, t) := ‖πX (βt ) f − Pr f ‖p,r → 0 as t→∞, (2.1)

and since
Pr+1|L p(X,µ|Xr )

= Pr ,

it is consistent to denote these operators by P . We shall then say that the πX (βt ) satisfy
the mean ergodic theorem in L p with limit operator P .

Remark 2.2. We note that our notion of mean ergodic theorem depends on the choice
of the filtration Xr ⊂ X and the normalization V (t). The crucial point is to choose the
normalization so that the operator P is non-trivial, in which case the mean ergodic theorem
yields significant information about the limiting distribution of the orbits.

As noted above, the fact that the foregoing formulation of the mean ergodic theorem
for spaces with infinite measure is meaningful is an indication of a novel and distinctly
non-classical phenomenon. Indeed, it is well-known (see [Aa, Ch. 2]) that for an action
of a single transformation on a space with infinite measure, no normalization V (t) for
which (2.1) holds can be found. Nonetheless, gradually the realization has grown that
mean ergodic theorems and equidistribution results do hold for some classes of action on
infinite measure spaces (see [G1, G2, GW, L, LP1, LP2]). In fact, in the forthcoming
paper [GN2] we establish the mean ergodic theorem for lattices in S-algebraic semisimple
groups acting on general algebraic homogeneous spaces. This result is part of a systematic
approach to ergodic theory on homogeneous spaces via the duality principle.

2.1. Isometric actions. Let us assume now that X is a locally compact second countable
metric space equipped with a Radon measure µ, so that the measures of balls are finite.
We fix a filtration of X by balls Xr of radius r centered at some fixed x0 ∈ X . We denote
by Dε(x) the closed ball in X of radius ε centered at x .

Definition 2.3.
(1) We say that the measure µ is uniformly of full support if for every r ∈ N and

ε ∈ (0, 1],
inf

x∈Xr
µ(Dε(x)) > 0.

(2) We say that the measureµ has local dimension at most ρ if for every r ∈ N, ε ∈ (0, 1]
and x ∈ Xr ,

µ(Dε(x))≥ mrε
ρ .

Remark 2.4. If the sets Xr are compact, then every measure µ of full support is uniformly
of full support. Moreover, if X is a compact manifold and µ is a smooth measure of full
support, then µ has local dimension at most dim(X).
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The following theorem is our main technical result concerning equidistribution for
isometric actions.

THEOREM 2.5. Consider an isometric action of an lcsc group G on the lcsc metric
space X equipped with a quasi-invariant Radon measure µ. Assume that the mean ergodic
theorem in L p holds for the operators πX (βt ) in the action of G on X, for some 1≤ p <∞,
and let f ∈ L p. Then:
(1) if the measure µ is uniformly of full support, then for every uniformly continuous

function f such that supp( f )⊂ Xr and (P f )|Xr is uniformly continuous, we have

max
x∈Xr
|πX (βt ) f (x)− P f (x)| = op,r, f (1)

as t→∞;
(2) if the measure µ has local dimension at most ρ, then for every f ∈ Ca(X)1 such that

supp( f )⊂ Xr and (P f )|Xr ∈ Ca(X)1, we have

max
x∈Xr
|πX (βt ) f (x)− P f (x)| �p,r E p,r ( f, t)a/(a+ρ/p)

for all sufficiently large t.

2.2. Transitive actions. As noted above, the behavior of the operators πX (βt ) may, in
general, depend quite sensitively on the initial point. Nonetheless, when the action is
transitive it is still possible to obtain a uniform result, provided that a certain regularity
property of the measures βt holds.

Let d be a right-invariant metric on G compatible with the topology of G such that the
closed balls with respect to d are compact (such a metric always exists; see, e.g., [HP]).
We denote the closed ball of radius ε centered at g ∈ G by Oε(g).

Definition 2.6. The family of measures βt is said to be coarsely monotone if there exist
monotone functions κ : (0, 1] → (0,∞) and δ : (0, 1] → (1,∞) such that

δε→ 1 and κε→ 0 as ε→ 0+

and, for every ε ∈ (0, 1], g ∈Oε(e) and t ≥ t0,

g · βt ≤ δεβt+κε .

If, in addition, we have δε = 1+ O(εa0) for some a0 > 0, then the family of measures is
said to be Hölder coarsely monotone with exponent a0.

Let X be a lcsc space on which the group G acts transitively and continuously. Since X
is locally compact, the topology on X coincides with the topology defined on X by viewing
it as a factor space of G. We equip X with a G-quasi-invariant Radon measure µ. The
space X is equipped with the natural metric (see [HR, §8]), which is defined by

d(x1, x2)= inf{d(g1, g2) : g1, g2 ∈ G, g1x0 = x1, g2x0 = x2} (2.2)

where x0 is a fixed element of X . We use the filtration on X such that Xr are balls of
radius r in X centered at some fixed x0 ∈ X .
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THEOREM 2.7. Assume that the mean ergodic theorem in L p holds for the family of
operators πX (βt ) in the transitive G-action on X, for some 1≤ p <∞.
(1) If βt is a coarsely monotone family of measures, then for every non-negative bounded

Borel function f : X→ R such that supp( f )⊂ Xr and P f is uniformly continuous
on Xr , we have

max
x∈Xr
|πX (βt ) f (x)− P f (x)| = op,r, f (1)

as t→∞.
(2) If, in addition, βt is Hölder coarsely monotone with exponent a0 and µ has local

dimension at most ρ, then for every non-negative bounded Borel function f : X→ R
such that supp( f )⊂ Xr and (P f )|Xr ∈ Ca(X)1, we have

max
x∈Xr
|πX (βt ) f (x)− P f (x)| �p,r

(
sup

s∈(t−κ1,t+κ1)

E p,r ( f, s)

)min(a0,a)/(min(a0,a)+ρ/p)

for all sufficiently large t.

Remark 2.8. It is often the case that the operator P maps compactly supported bounded
functions to uniformly continuous ones, or even to Hölder functions. In that case, we can
of course decompose every bounded real function into its positive and negative parts and
apply Theorem 2.7, so that the same conclusions are valid for all bounded functions.

3. Proof of equidistribution for isometric actions
In this section we prove Theorem 2.5. We start the proof with the following lemma.

LEMMA 3.1. Assume that the mean ergodic theorem in L p holds for the family of
operators πX (βt ), for some 1≤ p <∞. Assume that the action of G on the space X
is isometric and equipped with a quasi-invariant Radon measure µ which is uniformly of
full support. Then, for all sufficiently large t, r ∈ N and y ∈ Xr ,

βt ({g ∈ G : g−1 y ∈ Xr })= Or (1).

Proof. It follows from the mean ergodic theorem that∫
Xr

|βt ({g ∈ G : g−1x ∈ Xr })− PχXr (x)|
p dµ(x)= op,r (1)

as t→∞; hence

‖πX (βt )χXr ‖
p
p =

∫
Xr

(βt {g ∈ G : g−1x ∈ Xr })
p dµ(x)= Op,r (1).

Let δ > 0. Clearly, for the set

�r (δ, t) := {x ∈ Xr : βt ({g ∈ G : g−1x ∈ Xr }) > δ}

we have

µ(�r (δ, t))≤
‖πX (βt )χXr ‖

p
p

δ p .
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Therefore, if we choose δ so that δ p
= ‖πX (βt )χXr ‖

p
p/mr−1 where

mr−1 := inf
y∈Xr−1

µ(D1(y)) > 0,

then
µ(�r (δ, t)) < µ(D1(y)) for all y ∈ Xr−1.

Hence, for every y ∈ Xr−1 there exists x ∈ D1(y)⊂ Xr such that x /∈�r (δ, t), i.e.

βt ({g ∈ G : g−1x ∈ Xr })≤ δ = Or (1).

Since the action is isometric, we have d(x0, g−1x)≤ d(x0, g−1 y)+ 1. Hence, if g−1 y ∈
Xr−1, then g−1x ∈ Xr , and so

βt ({g ∈ G : g−1 y ∈ Xr−1})≤ βt ({g ∈ G : g−1x ∈ Xr }).

This implies the claim. 2

Proof of Theorem 2.5. In the proof we shall use parameters ε ∈ (0, 1) and δ > 0 that will
be specified later. Again, let

�r (δ, t)= {x ∈ Xr : |πX (βt ) f (x)− P f (x)|> δ}. (3.1)

Then
µ(�r (δ, t))≤ E p

p,r ( f, t)/δ p.

Hence, if we assume that

mr−1(ε) := inf
y∈Xr−1

µ(Dε(y)) > E p
p,r ( f, t)/δ p, (3.2)

then for every y ∈ Xr−1 there exists x ∈ Dε(y)⊂ Xr such that x /∈�r (δ, t), i.e.

|πX (βt ) f (x)− P f (x)| ≤ δ. (3.3)

Let
ωr ( f, ε)= sup{| f (z)− f (w)| : z, w ∈ Xr , d(z, w) < ε}. (3.4)

Since f is uniformly continuous, ωr ( f, ε)→ 0 as ε→ 0+. Using that the action of G on
X is isometric and supp( f )⊂ Xr , we deduce that

|πX (βt ) f (x)− πX (βt ) f (y)|

≤ ωr ( f, ε)βt ({g ∈ G : g−1x ∈ Xr or g−1 y ∈ Xr })�r ωr ( f, ε),

where the last inequality follows from Lemma 3.1. Hence, it follows from (3.3) that for
every y ∈ Xr−1,

|πX (βt ) f (y)− P f (y)| �r δ + ωr ( f, ε)+ ωr (P f, ε).

This estimate holds provided that δ satisfies (3.2). Therefore, it follows that for every
r ∈ N,

max
y∈Xr−1

|πX (βt ) f (y)− P f (y)| �r E ′p,r ( f, t)
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where

E ′p,r ( f, t)= inf
ε∈(0,1)

{E p,r ( f, t)/mr−1(ε)
1/p
+ ωr ( f, ε)+ ωr (P f, ε)}.

Using the fact thatωr ( f, ε), ωr (P f, ε)→ 0 as ε→ 0+ and that E p,r ( f, t)→ 0 as t→∞,
we conclude that E ′p,r ( f, t)= op,r, f (1) as t→∞ as well. This proves the first part of the
theorem.

To prove the second part of the theorem, observe that under the additional assumptions
we have

E ′p,r ( f, t)�r inf
ε∈(0,1)

{ε−ρ/p E p,r ( f, t)+ εa
}.

We therefore take ε = E p,r ( f, t)1/(a+ρ/p) and note that since E p,r ( f, t)→ 0 as t→∞,
we have ε ∈ (0, 1) for all sufficiently large t . It then follows that

E ′r ( f, t)�r Er ( f, t)a/(a+ρ/p),

as required. 2

4. Proof of equidistribution for transitive actions
Our proof of Theorem 2.7 follows the same strategy as for the proof of Theorem 2.5.
We start with the following lemma, which establishes directly that in the transitive case
the quasi-invariant measure is uniformly of full support. We use the metric d on the
homogeneous space X defined in (2.2).

LEMMA 4.1. For every r ∈ N and ε > 0,

mr (ε) := inf
x∈Xr

µ(Dε(x)) > 0.

Proof. It follows from the definition of the metric on X that

Ds(x)=Os(e) · x for every s > 0 and x ∈ X .

Since the balls Or (e) are compact, there exists ε′ = ε′(ε, r) > 0 such that gOε′(e)g−1
⊂

Oε(e) for every g ∈Or (e). Then, since the measure µ is quasi-invariant, for every
g ∈Or (e) we have

µ(Dε(gx0))≥ µ(Oε(e)gx0)≥ µ(gOε′(e)x0)�r µ(Oε′(e)x0).

This proves the claim. 2

Proof of Theorem 2.7. Let ε ∈ (0, 1) and δ > 0. As in the proof of Theorem 2.5, we
introduce the set

�r (δ, t)= {x ∈ Xr : |πX (βt ) f (x)− P f (x)|> δ}

and observe that
µ(�r (δ, t))≤ E p

p,r ( f, t)/δ p.

Let Ē p,r ( f, t) := sups∈(t−κ1,t+κ1)
E p,r ( f, s), where κε is as defined in Definition 2.6. Let

δ p > Ē p
p,r ( f, t)/mr−1(ε). (4.1)
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Then for every y ∈ Xr−1 and s ∈ (t − κ1, t + κ1) there exists xs ∈ Dε(y)⊂ Xr such that
xs /∈�r (δ, s), i.e.

|πX (βs) f (xs)− P f (xs)| ≤ δ. (4.2)

We set x1 = xt−κε and x2 = xt+κε . Then, since y = hx1 for some h ∈Oε(e), it follows
from the coarsely monotone property of βt that

πX (βt ) f (y)= πX (h · βt ) f (x1)≥ δ
−1
ε πX (βt−κε ) f (x1)

and

|πX (βt ) f (y)− P f (y)| ≤ (πX (βt ) f (y)− δ−1
ε πX (βt−κε ) f (x1))

+ |δ−1
ε πX (βt−κε ) f (x1)− P f (y)|.

Similarly,
πX (βt ) f (y)≤ δεπX (βt+κε ) f (x2)

and hence

|πX (βt ) f (y)− P f (y)| ≤ (δεπX (βt+κε ) f (x2)− δ
−1
ε πX (βt−κε ) f (x1))

+ |δ−1
ε πX (βt−κε ) f (x1)− P f (y)|.

Now we estimate each of the above terms separately.
It follows from (4.2), uniform continuity of P f on Xr and the boundedness of f that

|δεπX (βt+κε ) f (x2)− δ
−1
ε πX (βt−κε ) f (x1)|

≤ δε|πX (βt+κε ) f (x2)− P f (x2)| + |δεP f (x2)− δ
−1
ε P f (x1)|

+ δ−1
ε |πX (βt−κε ) f (x1)− P f (x1)|

≤ (δε + δ
−1
ε )δ + δε|P f (x2)− P f (x1)| + (δε − δ

−1
ε )|P f (x1)|

�r δ + ωr (P f, 2ε)+ (δε − δ−1
ε ),

where the function ωr is as defined in (3.4). Also,

|δ−1
ε πX (βt−κε ) f (x1)− P f (y)|

≤ δ−1
ε |πX (βt−κε ) f (x1)− P f (x1)| + |δ

−1
ε P f (x1)− P f (y)|

≤ δ−1
ε δ + δ−1

ε |P f (x1)− P f (y)| + (1− δ−1
ε )|P f (y)|

�r δ + ωr (P f, ε)+ (1− δ−1
ε ).

Therefore, we conclude that

|πX (βt ) f (y)− P f (y)| �r δ + ωr (P f, 2ε)+ δε − 2δ−1
ε + 1.

Since this estimate holds for all ε ∈ (0, 1), y ∈ Xr−1 and δ satisfying (4.1), we have

max
y∈Xr−1

|πX (βt ) f (y)− P f (y)| �r E ′′p,r ( f, t)

where

E ′′p,r ( f, t)= inf
ε∈(0,1)

{Ē p,r ( f, t)/mr−1(ε)
1/p
+ ωr (P f, 2ε)+ δε − 2δ−1

ε + 1}.
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Since δε→ 1 and ωr (P f, 2ε)→ 0 as ε→ 0+, and Ē p,r ( f, t)→ 0 as t→∞, it follows
that E ′′p,r ( f, t)→ 0 as t→∞ too. This implies the first part of the theorem.

To prove the second part of the theorem, we observe that under the additional
assumptions,

E ′′p,r ( f, t)�r inf
ε∈(0,1)

(ε−ρ/p Ē p,r ( f, t)+ εmin(a0,a)).

Since E p,r ( f, t)→ 0 as t→∞, it follows that Ē p,r ( f, t) ∈ (0, 1) for sufficiently large t .
Taking ε = Ē p,r ( f, t)1/(min(a0,a)+ρ/p), we deduce the second claim. 2

5. Completion of the proofs

Proof of Theorem 1.1. We deduce Theorem 1.1 from Theorem 2.5(2). We recall that the
mean ergodic theorem for the free group Fr was established in [Gu1, Ne1]. Moreover,
under the spectral gap assumption, the method of the proof of [Ne1, Theorem 1] implies
that ∥∥∥∥ 1

#B2n

∑
γ∈B2n

f (γ−1x)− P f (x)

∥∥∥∥
2
= O(e−θn

‖ f ‖2)

for some θ > 0 determined by the spectral gap.
Let G be the closure of Fr in the isometry group of X . Then the measure µ is invariant

and ergodic with respect to G. Since X is compact, G is compact, and it follows that µ is
supported on a single orbit of G. Hence, G acts transitively on X . Let G0 be the closure
in G of the subgroup of Fr generated by the words of even length. Since G0 has index
at most two in G, the subgroup G0 is open in G, and X consists of at most two open
orbits of G0. This implies that L2(X)ε0 has dimension at most one and is trivial when X is
connected. Moreover, it is clear that f0 is locally constant and, in particular, P f ∈ Ca(X)1.

Finally, we note that in case (1) the measure µ has local dimension at most dim(X)
(cf. Remark 2.4). In case (2), we have

µ(Dε(x))= µ(Dε(e))= ε

when ε = |0 : 0i |
−1. Since |0i : 0i+1| is uniformly bounded, this implies that µ has local

dimension at most one. Now Theorem 1.1 follows from Theorem 2.5(2). 2

Proof of Theorem 1.2. We note that L2-convergence for (1.5) with exponential rate follows
from the results of [GN1]. Indeed, the balls Bt are Hölder admissible by [GN1, Ch. 7].
Since in both cases we have a lower estimate on the local dimension (see the proof of
Theorem 1.1), Theorem 1.2 follows from Theorem 2.5(2). 2

Proof of Theorem 1.4. It follows from [GN1, Ch. 7] that the family of measures βt is
Hölder coarsely monotone. The fact that the πX (βt ) satisfy the quantitative mean ergodic
theorem in L2(X), when X is homogeneous and has finite invariant measure, is well-
known (see [GN1, Theorem 4.3] for more details and for the general case). Here, of
course, P( f )=

∫
X f dµ. Hence, Theorem 1.4 is a consequence of Theorem 2.7(2), taking

Remark 2.8 into account as well. 2
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