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In this paper we analyze the effects of a very general class of time-varying vari-
ances on well-known “stationarity” tests of the I ~0! null hypothesis+ Our setup
allows, among other things, for both single and multiple breaks in variance, smooth
transition variance breaks, and ~piecewise-! linear trending variances+ We derive
representations for the limiting distributions of the test statistics under variance
breaks in the errors of I ~0!, I ~1!, and near-I ~1! data generating processes, dem-
onstrating the dependence of these representations on the precise pattern fol-
lowed by the variance processes+ Monte Carlo methods are used to quantify the
effects of fixed and smooth transition single breaks and trending variances on the
size and power properties of the tests+ Finally, bootstrap versions of the tests are
proposed that provide a solution to the inference problem+

1. INTRODUCTION

Applied researchers have recently focused attention on the question of whether
or not the variability in the shocks driving macroeconomic time series has
changed over time ~see, e+g+, the literature review in Busetti and Taylor, 2003!+
The empirical evidence suggests that a decline in volatility over the past 20
years or so is a common phenomenon in many real and price variables+ These
findings have helped stimulate interest among econometricians in analyzing the
effects of innovation variance shifts on unit root and stationarity tests+ Among
others, Hamori and Tokihisa ~1997! and Kim, Leybourne, and Newbold ~2002!
have derived the implications of a single permanent variance shift in the inno-
vations of an I ~1! process on the size properties of Dickey–Fuller tests+ The
effect of a single variance shift on the stationarity test ~KPSS test! of Kwiat-
kowski, Phillips, Schmidt, and Shin ~1992! has been analyzed independently
by Busetti and Taylor ~2003! and Cavaliere ~2004a!, who found that the test
can suffer severe size distortions when there is a late ~early! positive ~negative!
variance shift under the null+
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We analyze the effects that a very general class of permanent variance breaks
has on the behavior of the KPSS stationarity test, together with those of Lo
~1991! and Xiao ~2001!; a brief review of these tests is given in Section 3+ Our
unobserved components model, introduced in Section 2, generalizes that con-
sidered in, inter alia, Kwiatkowski et al+ ~1992! to allow for innovation pro-
cesses whose variances evolve over time according to a quite general mechanism
that allows, e+g+, single and multiple breaks, smooth transition breaks, and trend-
ing variances+ Variance nonconstancy is allowed in both the irregular compo-
nent and the errors driving the level of the process+ In Sections 4 and 5 we
analyze the effects of time-varying variances on the large-sample behavior of
these statistics under both the I ~0! null and global I ~1! and local alternatives+
In Section 6 these effects are quantified, using Monte Carlo simulation, for the
aforementioned examples+

Related but different work was carried out by Hansen ~2000!, who shows
that the Lagrange multiplier ~LM! test of Nyblom ~1989! for structural change
in the parameters of a linear regression model ~which contains the KPSS test as
a special case! underrejects the I ~0! null when the marginal distribution of the
regressors changes over time+ Conversely, in this paper we show that where the
variance of the errors changes over time the picture is quite different, with
the KPSS ~and other stationarity! tests both under- and overrejecting the null,
but with a more pronounced tendency toward overrejecting+ Similarly, whereas
Hansen ~2000! shows that Nyblom’s test loses ~size-unadjusted! power under
structural changes in the marginal distribution of the regressors, for most of the
cases we consider the KPSS test gains power when the errors are heteroskedas-
tic+ In Section 7 we adapt the heteroskedastic bootstrap of Hansen ~2000! to the
present problem and show that the bootstrap tests perform well in practice+ Sec-
tion 8 concludes+ Sketch proofs are given in an Appendix; detailed proofs appear
in Cavaliere and Taylor ~2004!+

We use w
&&, I~{!, and D to denote weak convergence as the sample

size diverges, the indicator function, and the space of cadlag processes on
@0,1# endowed with the Skorohod metric, respectively, whereas x :� y means
that x is defined by y+ Finally, as in Phillips and Sun ~2001!, for two pro-
cesses X and Y on @0,1# we define the projections PZ X~s! :� *0

1 X~r! �
Z~r!' dr~*0

1 Z~r!Z~r!' dr!�1Z~s! and QZ X~s! :� *0
1 dX~r!Z ~1! ~r!'~*0

1 Z ~1! ~r! �
Z ~1!~r!' dr!�1Z~s!, where ~1! denotes the first derivative+

2. THE UNOBSERVED COMPONENTS MODEL

Consider the unobservable components ~UC! data generating process ~DGP!

yt :� xt
'b�m t � st «t , t � 1,2, + + + ,T, (1)

m t � m t�1 � sht ht , ht; IID~0,1!, m0 �
a+s+

0, (2)
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under the following set of assumptions ~which are taken to hold throughout the
paper, except where stated otherwise!+

Assumption V+ The term $st % satisfies s@sT # :� v~s!, where v~{! � D is a
nonstochastic function with a finite number of points of discontinuity; more-
over, v~{! � 0 and satisfies a ~uniform! first-order Lipschitz condition except
at the points of discontinuity+ Similarly, except where otherwise stated, sh@sT # :�
vh~s!, where vh~{! satisfies the same conditions as v~{!+

Assumption E+ The irregular component $«t % is a zero-mean, unit variance,
strictly stationary mixing process with E6«t 6 p � ` for some p � 2 and with
mixing coefficients $am% satisfying (m�0

` am
2~10r�10p! � ` for some r � ~2,4# ,

r � p+ The long-run variance l«
2 :� (k��`

` E~«t «t�k ! is strictly positive and
finite+ Furthermore, $«t % is independent of $ht % at all leads and lags+ As is stan-
dard, we refer to $«t % as an I ~0! process+

Assumption X+ The component xt is a p � 1 deterministic vector satisfying
the condition that there exist a scaling matrix dT and a bounded piecewise-
continuous function F~{! on @0,1# such that dT x@{T #r F~{! uniformly on @0,1# ,
with *0

1 F~s!F~s!' ds positive definite+

From ~1! and ~2!, observe that under Assumption V, the variance of both the
irregular component, ut :� st«t , and the shocks to the level process $m t % are
heteroskedastic+ Consequently, $ut % is I ~0! provided $st % is constant, whereas
$m t % reduces to a standard random walk if $sht % is constant and vanishes from
~1! when sht � 0, all t+ Notice that the model considered here generalizes the
UC model discussed in Kwiatkowski et al+ ~1992! by allowing both $st % and
$sht % to be potentially nonconstant over time+1

Assumption V allows for a wide class of models for the variances of the
errors+ Models of single or multiple variance shifts satisfy Assumption V with
v~{! piecewise constant+ For example, the function v~s! :� s0 � ~s1 � s0! �
I~s � m! gives the single break model with a variance shift at time @mT # ,
0 � m � 1, analyzed by Busetti and Taylor ~2003! and Cavaliere ~2004a!+ If
v~{!2 is an affine function, then the unconditional variance of the errors dis-
plays a linear trend+ Piecewise-affine functions are also permitted, allowing for
variances that follow a broken trend+Moreover, smooth transition variance shifts
also satisfy Assumption V: e+g+, the function v~s!2 :� s0

2 � ~s1
2 � s0

2!S~s!,
S~s!� ~1 � exp~�g~s � m!!!�1, which corresponds to a smooth ~logistic! tran-
sition from s0

2 to s1
2+ The parameter m determines the transition midpoint ~for

t � @mT # , st
2 � 0+5~s0

2 � s1
2!! whereas g � 0 controls the speed of transition

~the fixed change-point model follows as a limiting case for g r `!+
Assumption X is standard and allows for a wide variety of possible forms

for the deterministic component, including the pth-order trend function xt :�
~1, t, + + + , t p!' , 0 � p � `+ The broken intercept and broken intercept and trend
functions considered, e+g+, in Busetti and Harvey ~2001! are obtained by spec-
ifying xt

'b :� (j�0
i bj t j �(j�0

i bm, j tm
j for i � 0,1 respectively, in ~1!, tm

j being
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defined as tm
j :� ~t � m! j

I~t � m! and m satisfying limTr`~m0T !� m � ~0,1!
~see Phillips and Xiao, 1998, p+ 448!+

Remark 1+ If v~{! is not constant then the irregular component, $ut % , is uncon-
ditionally heteroskedastic+ Conditional heteroskedasticity is also permitted
through Assumption E ~see, e+g+, Hansen, 1992b!+ Assumption E has been used
extensively in the econometric literature as it allows $«t % to belong to a wide
class of weakly dependent stationary processes+ The strict stationarity assump-
tion is made without loss of generality and may be weakened to allow for weak
heterogeneity of the errors, as in, e+g+, Phillips ~1987!+

Remark 2+ The assumption of nonstochastic variance functions $v~{!,vh~{!%
can be easily weakened simply by assuming stochastic independence between
$«t ,ht % and $st ,sht % , given that the stochastic functionals $v~{!,vh~{!% must
have sample paths satisfying the requirements of Assumption V+ In the stochas-
tic variance framework, the results given in this paper hold conditionally on a
given realization of $v~{!,vh~{!% +

3. STATIONARITY TESTS

Kwiatkowski et al+ ~1992! focus on testing the I ~0! null hypothesis, H0 :sh
2 � 0,

against the I ~1! alternative hypothesis, H1 :sh
2 � 0, under the ancillary assump-

tion that st � s,sht � sh, all t, so that, under H0, $ yt % reduces to the I ~0! pro-
cess yt � xt

'b� ut , t � 1, + + + ,T+ Kwiatkowski et al+ ~1992! propose the test that
rejects H0 for large values of the statistic

KPSS :�
(
t�1

T

ZSt
2

T 2 Zl2
, (3)

where ZSt :� (i�1
t [ui , [ut , the ordinary least squares ~OLS! residuals from the

regression of yt on xt , t � 1, + + + ,T; Zl2 is a consistent estimator of the long-run
variance of $ut % under H0 and has the form Zl2 :� (j��T�1

T�1 k~ jqT
�1! [g~ j !,

[g~ j ! :� T �1 (t�6 j 6�1
T [ut [ut�6 j 6 , qT being a bandwidth parameter and k~{! a

weighting function+ Kwiatkowski et al+ ~1992! assume 10qT � T �102qT r 0 as
T r ` and k~x! :� 1 � 6x 6I~6x 6 � 1! ~Bartlett weights!+ However, because
we are dealing with mixing errors ~see Assumption E!, throughout the paper
we will require that qT and k~{! satisfy the following assumption ~de Jong,
2000!+

Assumption K+ ~K1! For all x � R, 6k~x!6� 1, k~x!� k~�x!; k~0!� 1; k~x!
is continuous at 0 and for almost all x � R; *�`

` 6k~x!6dx � `; 6k~x!6 � l~x!,
where l~x! is a nonincreasing function such that *�`

` 6x 6 6 l~x!6dx � `; ~K2!
qT F ` as T F `, and qT � o~T g!, g � 102 � 10r, where r is given in E+
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Assumption K is sufficiently general for our purposes as it is satisfied by
many of the most commonly employed kernels ~see Hansen, 1992a; Jansson,
2002!+

Remark 3+ The KPSS statistic maps the sequence $ ZSt % onto @0,1# by aver-
aging the squared values of the sequence+ Other stationarity tests can be obtained
by taking different mappings+ For example, the supremum of $6 ZSt 6% and range
of $ ZSt % deliver, respectively, the test of Xiao ~2001! and the rescaled range ~RS!
test of Lo ~1991!, which reject H0 for large values of the statistics KS :�
maxt 6 ZSt 60~ ZlT 102! and RS :� ~maxt ZSt � mint ZSt !0~ ZlT 102!, respectively+

4. ASYMPTOTIC SIZE

Under the null hypothesis considered by Kwiatkowski et al+ ~1992!, H0 :sht
2 �

sh
2 � 0, all t, if $st % is constant across the sample, it is well known that ~e+g+,

Kwiatkowski et al+, 1992, pp+ 164–165! KPSS w
&& *0

1 V~s!2 ds, where V~s! :�
B~s!� QF B~s!, F~s! :� *0

s F~r! dr, with B~{! a standard Brownian motion+ For
example, if xt :� ~1, t, + + + , t p�1!' , then F~s! :� ~1, s, + + + , s p�1!' and V~{! is a
pth-level Brownian bridge+

Now, assume that H0 holds but that st is not necessarily constant over time;
rather it satisfies Assumption V+ Then, the asymptotic distribution of the KPSS
statistic assumes the form detailed in the following theorem+

THEOREM 1+ Under H0 :sht
2 � sh

2 � 0, all t, KPSS w
&& *0

1 Vv~s!
2 ds,

where Vv~s! :� Bv~s! � QF Bv~s! and where Bv~s! :� Tv�1*0
sv~r! dB~r! ,

Tv :� ~*0
1v~s!2 ds!102.

Consequently, with respect to the homoskedastic case, the asymptotic distri-
bution of the KPSS statistic has the usual structure but with B~{! replaced by
Bv~{!+ It is only where v~{! is constant throughout the sample that Bv~{! reduces
to a standard Brownian motion and, hence, that KPSS has the standard limit-
ing distribution+

Remark 4+ The process Bv~{! is a diffusion corresponding to the stochastic
differential equation dBv~s!� ~v~s!0 Tv!dB~s! with initial condition Bv~0!� 0+
Because Bv~{! has zero mean, variance E~~10 Tv!*0

sv~r! dB~r!!2 � ~10 Tv2 ! �
*0

sv~r!2 dr �: Lv~s! � @0,1# ~where Lv~{! is an increasing homeomorphism
on @0,1# ! and has independent increments, Corollary 29+10 of Davidson ~1994!
implies that Bv~{! is distributed as B~Lv~{!!, and therefore at time s � @0,1# ,
Bv~{! has the same distribution as the standard Brownian motion B~{! at time
Lv~s! � @0,1# + That is, Bv~{! is a Brownian motion under modification of the
time domain ~see, e+g+, Revuz and Yor, 1991, p+ 170!+

Remark 5+ Under the conditions of Theorem 1, KS w
&& sups�@0,1#6Vv~s!6 and

RS w
&& sups, s '�@0,1# 6Vv~s! � Vv~s '!6+ Interestingly, in the case of no determin-

istic terms ~i+e+, xt
'b� 0!, because Vv~s! �

d
B~Lv~s!! ~see Remark 4!, it holds
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that sups�@0,1#6Vv~s!6 �
d

sups�@0,1#6B~L~s!!6 � sups�@0,1#6B~s!6, sups, s '�@0,1#

6Vv~s! � Vv~s '!6 �
d

sups, s '�@0,1# 6B~L~s!! � B~L~s '!!6 � sups, s '�@0,1# 6B~s! �
B~s '!6, and the asymptotic sizes of the KS and RS tests are not affected by vari-
ance changes that satisfy Assumption V+ Simulation evidence reported in
Cavaliere and Taylor ~2004! suggests that this invariance property also holds rea-
sonably well in small samples+

5. ASYMPTOTIC POWER

In this section we investigate the impact of time-varying variances in the irreg-
ular component in ~1!, and0or the error driving the level equation, ~2!, on both
the consistency and local asymptotic power properties of the tests+

5.1. Consistency

It is well known ~e+g+, Kwiatkowski et al+, 1992, eqn+ ~25!! that if sht
2 �

sh
2 � 0, then

OkqT

T
KPSS w

&&

�
0

1��
0

s

W~s! ds�2

ds

�
0

1

W~s!2 ds

, (4)

where Ok :� *�`
` k~s! ds, W~s! :� B0~s! � PF B0~s!, and $B0~{!% is a standard

Brownian motion independent of B~{!+ Because qT 0T r 0, ~4! implies that
KPSS diverges to �` at rate Op~T0qT ! under the I ~1! alternative+ In addition
to this result, note that if the $ut % component has a time-varying variance,
KPSS is still distributed as in ~4!, because as T r `, the I ~1! component
$ht % dominates+

Now, consider the general case where sht
2 � 0 but is not necessarily constant,

satisfying Assumption V+ Here the following result holds+

THEOREM 2+ If sht
2 � 0, all t, the weak convergence (4) holds with

W~{! replaced by Wvh~{! , where Wvh~s! :� Bvh~s! � PF Bvh~s! with Bvh~s! :�
Tvh
�1*0

svh~r! dB0~r! , Tvh :� ~*0
1vh~s!

2 ds!102.

Consequently, as in the case of constant variances, because qT 0Tr 0, Theo-
rem 2 implies that KPSS diverges to �` at rate Op~T0qT ! under global I ~1!
alternatives+

Remark 6+ Under the conditions of Theorem 2, ~ OkqT 0T !102KS w
&&

~sups�@0,1# 6*0
s Wvh~r! dr 6! ~*0

1 Wvh~s!
2 ds!�102 and ~ OkqT 0T !102RS w

&&

~sups, s '�@0,1# 6*s '
s Wvh~r! dr 6!~*0

1 Wvh~s!
2 ds!�102 , which imply that both KS and

RS also diverge to �`, at rate Op~~T0qT !
102!+
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5.2. Asymptotic Local Power

We now focus attention on the limiting behavior of the KPSS statistic under
the local alternative ~see also Busetti and Taylor, 2003, p+ 513!:

Hc :sht
2 �

c2

T 2
vh� t

T
�2�l« TvTvh �

2

, t � 1, + + + ,T, (5)

where c � 0 is a noncentrality parameter and l« Tv0 Tvh � 0 is a scale factor that
simplifies the representation of the asymptotic distributions+ Notice that Tv0 Tvh�
1 if st � sht , t � 1, + + + ,T; i+e+, if the pattern of time variation is common to the
variances of the irregular component in ~1! and the error driving the level in
~2!+ Moreover, where st � s and sht � sh, t � 1, + + + ,T, Hc reduces to the local
alternative considered by, inter alia, Stock ~1994, p+ 2799!+

The following theorem details the large-sample behavior of KPSS under Hc+

THEOREM 3+ Under Hc of (5),

KPSS w
&& �

0

1�Vv~s!� c�
0

s

Wvh~r! dr�2

ds, (6)

where the (independent) processes Vv~{! and Wvh~{! are as previously defined.

Remark 7+ Notice from ~6! that the asymptotic local power of KPSS is
affected by heteroskedasticity in both the irregular component and the errors
driving the level process+ Moreover, because the limiting processes relating to
these components enter the asymptotic distribution in different forms ~Wvh~{!
is integrated whereas Vv~{! is not!, it is anticipated that heteroskedasticity will
have different effects in these two cases+

Remark 8+ Under the homoskedastic condition that st
2 � s 2 and sht

2 � sh
2 ,

for all t, the local alternative simplifies to Hc :sh
2 � ~c20T 2 !s 2l«

2 , and the
right member of ~6! reduces to *0

1@V~s! � c*0
s W~r! dr# 2 ds ~cf+ Busetti and

Taylor, 2003, p+ 513!+

Remark 9+ Under the conditions of Theorem 3, KS w
&& sups�@0,1#6Vv~s! �

c*0
s Wvh~r! dr 6 and RS w

&& sups, s '�@0,1# 6Vv~s! � Vv~s '! � c*s '
s Wvh~r! dr 6+

6. NUMERICAL RESULTS

In this section we use Monte Carlo methods to quantify the finite-sample size
and power properties of KPSS, RS, and KS of ~3! and Remark 3, for the DGP
~1!–~2! with b � 0 and ~«t , ht !

' ; NIID~0, I2!, where $st
2% and0or $sht

2 % vary
according to Assumption V+ We focus on the following three particular cases,
where f ~s! can be either v~s! or vh~s!:
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• Case ~a!: Single Break: f ~s!2 � f0
2 � ~ f1

2 � f0
2!I~s � m!

• Case ~b!: Smooth Transition: f ~s!2 � f0
2 � ~ f1

2 � f0
2!S~s!, S~s! � ~1 �

exp~�g~s � m!!!�1

• Case ~c!: Piecewise-Linear Trend: f ~s!2 � f0
2 � ~ f1

2 � f0
2!~s � m! �

~1 � m!�1
I~s � m!+

Without loss of generality, in each case we set f0 � 1 and vary the ratio d �
f00f1 among d � $0+25,4% +A positive ~negative! variance shift obtains for d � 1
~d � 1!+ In both Cases ~a! and ~b! we vary the parameter m among m �
$0+1,0+5,0+9% + In Case ~b! we report results setting the speed of transition param-
eter g � 10+ Under Case ~c! we consider m � $0+0,0+5,0+9% + For m � 0+0 the
variance process follows a linear trend between f0

2 for s � 0 and f1
2 for s � 1+

When m � 0 the variance is fixed at f0
2 up until time @mT # after which time it

follows a linear trend path until s � 1 where it equals f1
2+ Other parameter val-

ues were considered but add little to what is reported+2

We have set both $«t % and $ht % to be serially uncorrelated Gaussian sequences
as the effects we are looking to quantify are those caused by nonconstant vari-
ances rather than serial correlation+ The latter are already well documented in
the literature; ~see, inter alia, Kwiatkowski et al+, 1992, pp+ 169–172!+ Accord-
ingly, we use a Bartlett kernel with qT � 1+ Samples of sizes T � 50 and 250
are considered; all tests were run at the nominal 5% level using critical values,
obtained in the same fashion, under st � 1 and sht � 0, t � 1, + + + ,T+3

6.1. Size Properties

Table 1 reports empirical rejection frequencies of the KPSS, RS, and KS tests
when sht � 0, t � 1, + + + ,T, and v~s!2 , 0 � s � 1, satisfies either Case ~a!, ~b!,
or ~c! with sj � fj , j � 0,1, for the range of parameter values outlined before+
Results are reported for the cases where [ut are the OLS residuals from the regres-
sion of yt on xt � 1 ~a constant! or xt � ~1, t !' ~a constant and linear trend!,
t � 1, + + + ,T+

Consider first the results for the single break model+ For early breaks
~m � 0+1! the KPSS test is ~over-! undersized when ~d � 4! d � 0+25+ For late
breaks this pattern is reversed+ For the constant case, KS displays the largest
size distortions in most cases, whereas there seems to be little to choose between
the KPSS and RS tests overall: KPSS is better behaved ~with only slight over-
sizing! than RS for m � 0+5, but the reverse is true for both m � 0+1 and m � 0+9+
Where significant size distortions occur in the KS and RS tests for the con-
stant case, they worsen considerably for the linear trend case, especially so in
the case of KS+ In the trend case the KPSS test is noticeably better behaved
than the other tests, behaving similarly to the constant case+ Finally, for m � 0+5
the degree of oversizing seen in each of the three tests does not vary signifi-
cantly between d � 4 and d � 0+25+

The results for the smooth transition break model largely mirror those for
the single break but with the distortions somewhat ameliorated+ This result is
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Table 1. Empirical size of stationarity tests: Heteroskedastic errors

KPSS KS RS

m � m* m � 0+5 m � 0+9 m � m* m � 0+5 m � 0+9 m � m* m � 0+5 m � 0+9

xt T d 0+25 4 0+25 4 0+25 4 0+25 4 0+25 4 0+25 4 0+25 4 0+25 4 0+25 4

Case ~a!
1 50 4+2 13+8 5+3 6+1 15+1 3+8 5+0 10+3 9+2 10+4 13+4 5+1 5+0 4+5 7+8 8+2 6+4 4+9

250 4+1 14+6 5+7 5+7 14+9 4+1 5+1 13+8 10+4 10+3 14+3 5+1 5+1 9+2 9+1 9+1 9+9 5+1
~1, t !' 50 4+2 15+2 6+8 6+5 13+8 4+2 5+2 25+4 14+7 16+0 28+4 5+9 5+4 16+2 7+9 7+6 15+9 5+6

250 4+3 13+4 6+8 6+6 13+5 4+1 5+6 30+9 16+4 16+5 31+5 5+6 5+5 17+4 9+0 8+8 17+6 5+5

Case ~b!, g � 10
1 50 4+2 10+6 5+4 5+6 10+8 4+1 5+1 11+2 8+2 8+7 11+4 5+1 5+2 6+8 6+7 6+6 7+3 5+0

250 4+2 10+7 5+7 5+6 10+9 4+2 5+2 11+9 9+0 8+8 12+2 5+1 5+2 8+2 7+5 7+2 8+7 5+1
~1, t !' 50 4+9 8+2 6+0 6+0 8+0 4+8 5+6 18+0 11+7 12+1 18+5 5+7 5+5 8+9 7+4 7+4 8+8 5+5

250 4+9 7+8 6+1 5+8 8+0 4+7 5+8 19+7 13+3 12+7 20+3 5+7 5+6 9+5 8+0 7+9 9+5 5+6

Case ~c!
1 50 5+2 5+3 9+9 3+8 12+3 4+2 6+6 7+0 12+3 5+6 9+0 4+9 5+4 5+6 8+2 5+3 4+8 5+0

250 5+6 5+2 9+8 3+8 12+4 4+3 7+3 6+8 13+0 5+9 10+3 4+9 5+9 5+5 9+5 5+5 7+1 4+8
~1, t !' 50 5+5 5+5 7+0 5+2 14+0 4+4 8+6 9+0 19+3 7+3 22+7 5+3 6+4 6+7 7+6 6+3 14+7 5+2

250 5+3 5+5 6+8 5+3 13+3 4+3 8+6 9+3 20+7 7+3 24+0 4+8 6+4 6+9 8+9 6+5 15+5 4+9

Note: ~i! In the column headed xt , 1 and ~1, t !' indicate that [ut , t � 1, + + + ,T, are the OLS residuals from the regression of yt on a constant, and a constant and linear time trend
respectively; ~ii! for Cases ~a! and ~b!, m* � 0+1, whereas for Case ~c!, m* � 0+0+
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perhaps not surprising given that the logistic function used in Case ~b! smooths
the break across the sample+ Although we report results for a relatively slow
transition speed, g � 10, we computed experiments for a range of values of g
and found the differences across g quite small with results tending toward those
for the single break model as g increased+ For example, by g� 50 these results
were indistinguishable+

Turning to the results for trending variances, for m � 0 the size of the KPSS
test is not substantially affected in either the constant or constant and trend
cases, whereas the size distortions seen in the constant and trend cases for the
KS and RS tests are roughly the same throughout for d � 4 and d � 0+25+
Again the KS test displays the worst size distortions+ For all of the tests linear
trending variances seem in most cases to have a lesser impact on size than
either fixed or smooth transition breaks+ The patterns of size distortions for
the piecewise-linear trend ~m � 0+5 and m � 0+9! exaggerate ~dampen! those
seen in the same setting when m � 0 and d � 0+25 ~d � 4!+

6.2. Local Power Properties

Table 3 reports empirical rejection frequencies of the KPSS, RS, and KS tests
under a local alternative for each of Cases ~a!, ~b! and ~c!+ For each case, results
are reported where either only $st

2% ~labeled “shift in I ~0! only”! or only $sht
2 %

~labeled “shift in I ~1! only”! vary through time and for the case where both
vary+ The range of values for the parameters is as in Section 6+1, excepting the
case where both components vary through time where $sht

2 % is fixed through-
out with d � 4 and m � 0+1 under Case ~a!, d � 4, m � 0+1, and g � 10 under
Case ~b!, and m � 0 and d � 4 under Case ~c!+ In these cases, therefore, $st

2%
and $sht

2 % evolve according to the same function with the same parameters,
whereas for the other entries in the table they evolve according to the same
function but with different parameters+ The local alternative considered is ~5!,
except that we do not scale out the nuisance parameter Tv0 Tvh+4 Results are
reported for the linear trend case with c � 10+ Results for the constant only
case and for other values of c were qualitatively similar+ Consequently, the results
for the shift in I ~0! only pertain to the local alternative Hc :sht

2 � sh
2 �

~100T !2 , t � 1, + + + ,T, whereas all other results relate to Hc :sht
2 � ~100T !2 �

vh~t0T !2 , t � 1, + + + ,T, where vh~+!2 is as defined previously for each of Cases
~a!, ~b! and ~c!+

Consider first Table 2, which reports benchmark results for the power of
the KPSS, RS, and KS tests for the homoskedastic case, st

2 � 1, t � 1, + + + ,T,
under the local alternative Hc :sht

2 � c20T 2 , t � 1, + + + ,T, for c � 1, 5, 10, 15,
20, and 25+ Observe that the KS test is dominated on local power by both the
KPSS and RS tests+ The KPSS test is the locally best invariant ~LBI! test in
this setting, so it is no surprise that it displays the highest power in most cases+
However, the RS test is very competitive on power and, indeed, tends to dis-
play higher power than KPSS for c � 20+
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Table 2. Empirical local power of stationarity tests: Homoskedastic errors

KPSS KS RS

T c 1 5 10 15 20 25 1 5 10 15 20 25 1 5 10 15 20 25

50 5+1 12+7 32+7 51+4 65+5 74+2 5+4 11+7 30+1 49+0 63+8 73+2 5+2 12+3 31+6 50+6 65+0 74+2
250 5+1 13+5 35+7 57+6 73+2 82+6 5+1 12+2 33+6 55+9 72+5 82+4 5+2 12+9 34+9 57+5 73+8 83+6
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Turning to the results for the heteroskedastic cases in Table 3, a number of
regularities are seen+ First, in each of the cases of variance shifts in the I ~0!,
I ~1!, and both I ~0! and I ~1! components, the RS and KPSS tests behave almost
identically+ Second, in the case of variance shifts in the I ~1! component only,
all three tests behave almost identically+ Third, in the case where variance shifts
affect both the I ~0! and I ~1! components, for the entries in Cases ~a! and ~b!
for m � 0+1, d � 4 and Case ~c! for m � 0+0, d � 4 ~i+e+, instances where
precisely the same variance process applies to both the I ~0! and I ~1! compo-
nents! the results are very similar to those seen in Table 2 for c � 10+ Fourth,
and as predicted by the asymptotic distribution theory ~cf+ Remark 7!, chang-
ing variances in the I ~0! and I ~1! components ~but not both! effect very differ-
ent outcomes: negative ~positive! shifts in the variance of the I ~1! component
result in increases ~decreases! in power relative to the benchmark homoskedas-
tic power in Table 2, whereas the converse is true for variance shifts in the I ~0!
component+ Fifth, and in contrast to the preceding point, shifts in both the I ~0!
and I ~1! variances tend not to inflate power beyond the homoskedastic bench-
mark; indeed, for single and smooth transition breaks with early positive shifts
the empirical rejection frequencies of all the tests are close to the nominal level+
Finally, the effects on power ~relative to the homoskedastic case! of heteroske-
dastic variances are most pronounced for the single break case and least pro-
nounced in the trend case ~cf+ Table 1!+

7. BOOTSTRAP PROCEDURES

In this section we show that the size biases caused by time-varying second
moments can be corrected by properly adapting the heteroskedastic fixed regres-
sor bootstrap of Hansen ~2000! to the present framework+ Interestingly, the het-
eroskedastic bootstrap allows us to retrieve asymptotically correct p-values even
in the presence of autocorrelated errors+ The rationale behind this result is that
whereas the asymptotic null distribution of the KPSS statistic is affected by
the heteroskedasticity function v~{! it is not affected by the short memory prop-
erties of the I ~0! component $«t % ~see Theorem 1!+ We outline the bootstrap
procedure for the KPSS-based procedure, although the KS- and RS-based pro-
cedures may be bootstrapped in an entirely analogous fashion+

Let D0 and G~{! denote the limiting null distribution of KPSS ~Theorem 1!
and its cumulative distribution function ~c+d+f+!, respectively+ Let $ [ut % denote
the residuals obtained by regressing yt on xt and let $zt %t�1

T denote an indepen-
dent N~0,1! sequence+ The bootstrap sample is defined as yt

b :� ut
b :� [ut zt , t �

1, + + + ,T, and the bootstrap statistic is given by KPSS b :� sb
�2 T �2 (t�1

T ~ ZSt
b!2

with ZSt
b :� (i�1

t [ui
b , sb

2 :� T �1 (t�1
T ~ [ut

b!2 , $ [ut
b% denoting the residuals obtained

from the regression of yt
b on xt , t � 1, + + + ,T+ The bootstrap p-value is pT

b :�
1 � GT

b~KPSS !, where GT
b~{! denotes the c+d+f+ of KPSS b +

The usefulness of the heteroskedastic bootstrap in the present framework is
given in Theorem 4, which shows ~i! that the bootstrap allows us to retrieve the
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Table 3. Empirical local power of stationarity tests under heteroskedastic errors: xt � ~1, t !'

KPSS KS RS

m � m* m � 0+5 m � 0+9 m � m* m � 0+5 m � 0+9 m � m* m � 0+5 m � 0+9

T d 0+25 4 0+25 4 0+25 4 0+25 4 0+25 4 0+25 4 0+25 4 0+25 4 0+25 4

Case ~a!: Shift in I ~0! only
50 6+0 78+9 10+2 48+2 23+6 34+7 7+1 76+4 18+0 49+8 32+3 33+8 7+1 77+2 10+3 46+9 23+9 35+3
250 6+1 83+8 10+1 52+8 24+3 37+3 7+3 83+2 19+9 56+2 35+4 36+9 7+4 83+6 11+5 52+4 26+1 38+5

Case ~a!: Shift in I ~1! only
50 87+5 7+0 79+1 20+3 45+4 31+5 86+9 6+9 80+6 19+1 44+8 29+4 87+7 7+0 80+3 19+7 45+1 30+7
250 94+6 7+7 86+8 22+6 47+3 34+6 95+0 7+2 87+9 20+9 45+9 32+5 95+4 7+3 88+1 21+8 47+0 33+8

Case ~a!: Shift in both I ~0! and I ~1!
50 4+3 29+5 7+1 10+5 14+7 6+6 5+6 34+3 15+0 19+9 28+7 7+9 5+3 28+6 7+9 10+6 16+6 7+9
250 4+3 29+2 6+8 11+3 14+1 7+1 5+6 40+7 16+7 21+9 31+8 8+2 5+4 31+4 9+2 12+8 18+1 8+2

Case ~b!: Shift in I ~0! only
50 7+1 72+9 9+5 48+1 17+6 35+3 7+6 70+8 14+6 47+8 24+4 33+3 7+5 71+7 10+2 46+9 17+3 34+6
250 6+8 79+9 9+4 52+3 17+9 38+5 7+5 79+6 16+2 54+1 26+2 37+3 7+4 79+8 10+6 52+3 18+5 38+6
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Case ~b!: Shift in I ~1! only
50 86+7 9+4 79+2 20+8 55+2 29+9 85+9 8+9 78+9 18+8 54+3 27+4 87+0 9+1 79+6 20+0 54+7 28+9
250 94+2 9+9 87+2 22+4 59+6 32+7 94+5 9+3 87+7 20+7 59+1 30+4 94+9 9+6 88+2 21+7 60+0 32+1

Case ~b!: Shift in both I ~0! and I ~1!
50 5+4 29+9 6+6 14+6 9+3 9+9 6+0 36+8 11+9 20+8 18+9 10+1 5+8 29+4 7+7 14+8 10+0 10+2
250 5+0 32+1 6+3 15+5 9+2 10+8 5+7 40+6 13+0 23+0 20+5 11+3 5+6 32+5 7+8 16+6 10+7 11+3

Case ~c!: Shift in I ~0! only
50 8+9 48+1 13+3 38+3 28+6 33+4 11+5 46+7 23+8 37+4 30+3 31+9 9+6 47+0 13+3 38+2 26+9 33+3
250 8+9 52+3 13+2 42+5 29+7 36+2 11+9 52+2 25+9 42+1 32+4 34+9 9+7 52+6 14+4 43+0 29+0 36+4

Case ~c!: Shift in I ~1! only
50 79+6 20+5 66+3 26+8 36+1 32+4 79+3 18+9 66+7 24+8 33+2 30+0 79+9 19+7 66+3 25+8 34+4 31+4
250 87+7 22+8 73+1 29+9 39+6 35+2 87+8 20+8 73+8 27+6 37+1 33+1 88+5 21+9 74+2 29+0 38+6 34+4

Case ~c!: Shift in both I ~0! and I ~1!
50 7+3 31+9 10+1 25+3 21+6 20+6 10+1 33+0 20+4 25+7 25+4 19+6 8+1 31+8 10+4 25+6 21+1 20+8
250 7+6 35+6 10+2 27+6 22+1 23+1 10+7 37+8 22+9 28+5 27+5 22+4 8+7 36+2 11+7 28+6 22+5 23+5

Note: ~i! In the first block of results sht � 100T, t � 1, + + + ,T, whereas in the second and third blocks sht � ~100T !vh~t0T !, t � 1, + + + ,T; ~ii! for Cases ~a! and ~b!, m* � 0+1, whereas
for Case ~c!, m* � 0+0+
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correct asymptotic null distribution and hence that the p-values based on
GT

b~KPSS ! are asymptotically pivotal and ~ii! that a test based on the boot-
strap p-values is consistent+

THEOREM 4+ (i) Under the conditions of Theorem 1, KPSS b w
&&p D0 and

pT
b w
&& U @0,1# , where w

&&p denotes weak convergence in probability (see Giné
and Zinn, 1990). (ii) Under the conditions of Theorem 2, pT

b p
&& 0.

In practice, GT
b~{! is not known but can be approximated in the usual way

through numerical simulation by generating N ~conditionally! independent boot-
strap statistics, KPSSn

b , n � 1, + + + ,N, computed as before but from yn, t
b :�

un, t
b :� [ut zn, t , t � 1, + + + ,T, with $$zn, t %t�1

T %n�1
N a doubly independent N~0,1!

sequence+ The simulated bootstrap p-value is then computed as IpT
b :�

N�1 (n�1
N

I~KPSSn
b � KPSS ! and is such that IpT

b a+s+
&& pT

b as N r `+
In Table 4 we report results for the bootstrapped KPSS testing procedure,

outlined before, applied to data generated according to Case ~a! of Section 6+1+
The results are therefore directly comparable with those given for Case ~a! in
Table 1 for the KPSS test+ Results are reported only for this case because this
was the form of heteroskedasticity that effected the most significant size dis-
tortions in the original tests+ The reported results are for experiments run over
N � 1,000 bootstrap replications+ Benchmark entries for the case where the
errors are homoskedastic are also reported in the column labeled “IID+”

A comparison of the results in Tables 1 and 4 shows that the bootstrap per-
forms very well in practice with empirical sizes much closer to the nominal
level than for the standard KPSS test+ Some oversizing, associated with early
negative and late positive variance breaks, is still seen for T � 50 but is much
reduced relative to that seen for the standard KPSS test and is largely elimi-
nated for T � 250+ The undersizing seen in the standard KPSS test for early

Table 4. Empirical size of bootstrap KPSS tests:
Heteroskedastic errors, Case ~a!

m � 0+1 m � 0+5 m � 0+9

xt T d 0+25 4 0+25 4 0+25 4 IID

1 50 5+2 7+8 5+4 5+7 8+0 5+1 5+2
250 5+1 6+1 5+0 5+4 6+0 5+1 5+0

~1, t !' 50 5+3 9+7 5+7 6+0 8+8 5+5 5+5
250 5+1 6+1 5+1 5+3 5+8 5+2 5+0

Note: ~i! In the column headed xt , 1 and ~1, t !' indicate that [ut , t � 1, + + + ,T, are the
OLS residuals from the regression of yt on a constant, and a constant and linear time
trend respectively; ~ii! entries in the column headed IID relate to the case of homoske-
dastic errors+
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positive and late negative breaks is eliminated by the bootstrap+ Although not
reported here, qualitatively similar improvements ~available on request! were
seen for bootstrapped implementations of the KS and RS tests and for data
generated under Cases ~b! and ~c!+

8. CONCLUSIONS

In this paper we have analyzed the effects that time-varying second moments
of a very general form have on the stationarity tests of Kwiatkowski et al+
~1992!, Lo ~1991!, and Xiao ~2001!+ We have demonstrated that, in general,
heteroskedasticity changes the limiting distributions of these stationarity test
statistics under both the null and local alternatives and ~for appropriately rescaled
statistics! global alternatives+We have presented Monte Carlo simulation results
to quantify the finite-sample effects of heteroskedasticity on the size and power
properties of the three tests+ Results were presented for variances displaying
either a single break, a smooth transition break, or a linear0piecewise-linear
trend+ Bootstrap versions of the tests, adapted from the heteroskedastic boot-
strap principle of Hansen ~2000!, were developed and shown to greatly improve
the finite-sample size properties of the tests+ Although not considered here, it
would be interesting and reasonably straightforward to extend the results pre-
sented in this paper to the corresponding tests for the null hypothesis of cointe-
gration of Shin ~1994!, inter alia+

NOTES

1+ Busetti and Taylor ~2003! consider the model discussed here under the constraint that
st � sht + In our framework we do not require this constraint to hold+

2+ Indeed, for Case ~c! we also considered the generalized trend function, f ~s!r � f0
r �

~ f1
r � f0

r!~s � m!~1 � m!�1
I~s � m!, for a range of values of r but found very little dependence

on r+
3+ All simulation experiments were conducted using the RNDN function of Gauss 3+1 over

40,000 Monte Carlo replications+
4+ Recall that this was done in Theorem 3 purely to simplify the right member of ~6!+
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APPENDIX

Proof of Theorem 1. Define the partial sum S@sT # :� (t�1
@sT # ut + Under Assumptions V

and E, T �102S@sT #
w
&& l« *0

sv~r! dB~r! � l« TvBv~s! ~see also Cavaliere, 2004b!+
Similarly, T �102 (t�1

@sT # ut xt
'dT

w
&& l« Tv*0

s dBv~r!F~r!
' + After some algebra, the pre-

ceding results taken together with the convergence result T �1 (t�1
T dT xt xt

'dT r

*0
1 F~s!F~s!' ds ~Assumption X ! allow us to conclude that T �102 ZS@sT #

w
&& l« TvVv~s!

and, hence, by the continuous mapping theorem ~CMT!, that T �2 (t�1
T ZSt

2 w
&&

l«
2 Tv2*0

1 Vv~s!
2 ds+ Note that the CMT also allows us to prove that T �102 maxt�T 6 ZSt 6

w
&&

l« Tv sups�@0,1#6Vv~s!6 and that T �102~maxt�T ZSt � mint�T ZSt !
w
&& l« Tv~sups�@0,1#Vv~s!�

infs�@0,1#Vv~s!! � l« Tv sups, s '�@0,1# 6Vv~s! � Vv~s '!6 ~see Remarks 3 and 5!+ The
proof is completed by showing that Zl2 p

&& l«
2 Tv2 , which follows from Cavaliere

~2004b, Thm+ 4!+ �
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Proof of Theorem 2. Because $sht % satisfies Assumption V then T �102m@sT #
w
&&

TvhBvh~s!, Bvh~s! :� ~10 Tvh!*0
svh~r! dB~r!+ This result also implies that T �102 �

~u@sT # � m@sT #!
w
&& TvhBvh~s! as $ut � m t % is dominated by $m t % + As in the proof of

Theorem 1, it easily follows that the residuals $ [ut % obey the functional central limit
theorem T �102 [u@sT #

w
&& TvhWvh~s! and, hence, by the CMT, the numerator of KPSS sat-

isfies T �4 (t�1
T ZSt

2 w
&& Tvh

2 *0
1@*0

s Wvh~r! dr# 2 ds+ Finally, as in Kwiatkowski et al+ ~1992!
one can show that for any j � o~T 102!, T �1 [g~ j ! � T �2 (t�6 j 6�1

T [ut [ut�6 j 6
w
&&

Tvh
2 *0

1 Wvh~s!
2 ds and hence that qT

�1 T �1 Zl2 w
&& Ok Tvh

2 *0
1 Wvh~s!

2 ds, Ok :� *�`
` k~x! dx+ �

Proof of Theorem 3. The proof follows directly from Theorems 1 and 2, using the
CMT and the fact that, because m t � Op~T �102!, Zl2 p

&& l«
2 Tv2 , as in Theorem 1+ �

Proof of Theorem 4. ~i! Conditionally on $ [ut %t�1
T , MT

b~s! :� T �102 (t�1
@sT # ut

bdT xt �
T �102 (t�1

@sT # zt [ut dT xt is Gaussian with covariance kernel LT
M~r, s! � LT

M~min$r, s%! :�
T �1 (t�1

@min$r, s%T # [ut
2dT xt xt

'dT ~see, e+g+, Hansen, 1996!+ Similarly, the process
ST

b~s! :� T �102 (t�1
@sT # yt

b � T �102 (t�1
@sT # ut

b is Gaussian with covariance kernel LT ~r, s!�
LT ~min$r, s%! :� T �1 (t�1

@min$r, s%T # [ut
2+ To simplify notation, but without loss of general-

ity, assume that xt contains a constant, i+e+, xt :� ~1, Ixt
'!' ; then ST

b~s! � ~1,0' !MT
b~s!, so

that the asymptotic distribution of ST
b~{! easily follows from that of MT

b~{!+ Now,
LT

M~s! w
&& Lv

M ~s! :� *0
sv~r!2F~r!F~r!' dr, which is a consequence of the fact that dT

�1 Zb
~notice that the true value of b is zero here! is of Op~T �102! and the mixing properties
of «t

2 � E~«t
2!+ It therefore follows that MT

b~s! w
&&p *0

sv~r!F~r! dB~r! �
Tv*0

s F~r! dBv~r! and, by the CMT, that ST
b~s! w

&&p TvBv~s!+ Hence, T �102 ZS@sT #
b �

ST
b~s! � MT

b~1!'~T �1 (t�1
T dT xt xt

'dT !
�1MT

b~s! weakly converges to Tv~Bv~s! �
QF Bv~s!! � TvVv~s!+ Notice that sb

2 :� T �1 (t�1
T ~ [ut

b!2 � T �1 (t�1
T [ut

2~zt
2 � 1! �

T �1 (t�1
T [ut

2+ As in Cavaliere ~2004b! it is straightforward to show that T �1 (t�1
T [ut

2 p
&&

Tv2 , so that sb
2 p
&& Tv2 if T �1 (t�1

T [ut
2~zt

2 � 1!
p
&& 0, a result that follows from a standard

application of the weak law of large numbers for martingale difference sequences+ The
preceding results imply that KPSS b w

&&p D0 and hence that GT
b~{!r G~{! uniformly in

probability+ The remainder of the proof is identical to the proof of Theorem 5 in Hansen
~2000!+ ~ii! Let ZST

b~s! :� T �1 ZS@sT #
b + Conditionally on $ [ut % , ZST

b~{! is Gaussian with
zero mean and covariance kernel LT

S ~r, s! � LT
S ~min$r, s%! :� T �2 (t�1

@min$r, s%T # [ut
2 w
&&

LS~min$r, s%!, LS~s! :� Tvh
2 *0

s Wvh~r!
2 dr+ Hence, ZST

b~s! w
&&p Tvh

2 *0
s Wvh~r! dBz1

~r! and
by the CMT T �3 (t�1

T ~ ZSt
b!2 w

&&p Tvh
2 *0

1~*0
s Wvh~r! dBz1

~r!!2 ds, Bz1
~{! being a stan-

dard Brownian motion, independent of Wvh~r!+ Using similar arguments it can be
shown that T �2 (t�1

T [ut
2 w
&& Tvh

2 *0
1 Wvh~s!

2 ds and that T �302 (t�1
T [ut

2~zt
2 � 1! w

&&p

Tvh
2*0

1 Wvh~s!
2 dBz2

~s!, Bz2
~{! being a standard Brownian motion, independent of

Wvh~{! and Bz1
~{!+ Consequently, the standardized variance estimator T �1sb

2 �
T �2 (t�1

T [ut
2 zt

2 � T �2 (t�1
T [ut

2 � T �2 (t�1
T [ut

2~zt
2 � 1! satisfies T �1sb

2 � T �2 (t�1
T [ut

2 �
Op~T �102! w

&&p Tvh
2 *0

1 Wvh~s!
2 ds+ Taken together, the preceding results imply that

KPSS b weakly converges in probability to the random variable ~*0
1 Wvh~s!

2 ds!�1

*0
1~*0

s Wvh~r! dBz1
~r!!2 ds, whose c+d+f+ is denoted by EGb~{!, and hence that GT

b~{!
p
&&

EGb~{!, uniformly+ Consequently, pT
b � 1 � EGb~KPSS !� op~1!+ Because, by Theorem 2,

KPSS diverges at the rate qT
�1 T, it follows that pT

b p
&& 0+ �
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