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1Institut de recherche mathématique de Rennes, UMR 6625 du CNRS,
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Abstract We define a notion of mixed Hodge structure with modulus that generalizes the classical

notion of mixed Hodge structure introduced by Deligne and the level one Hodge structures with additive
parts introduced by Kato and Russell in their description of Albanese varieties with modulus. With
modulus triples of any dimension, we attach mixed Hodge structures with modulus. We combine this

construction with an equivalence between the category of level one mixed Hodge structures with modulus
and the category of Laumon 1-motives to generalize Kato–Russell’s Albanese varieties with modulus to
1-motives.
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1. Introduction

1.1. Background

Unlike K-theory, classical cohomology theories, such as Betti cohomology, étale

cohomology or motivic cohomology (in particular Chow groups) are not able to

distinguish a smooth variety from its nilpotent thickenings. This inability to detect

nilpotence makes those cohomologies not the right tool to study non-homotopy invariant

phenomena. One very important situation where these kinds of phenomena occur is at

the boundary of a smooth variety. More precisely, if X is a smooth proper variety and

D is an effective Cartier divisor on X , then D can be seen as the non-reduced boundary

at infinity of the smooth variety X := X \ D. Since the works of Rosenlicht and Serre

(see [25]), it is known that the cohomology groups that admit a geometrical interpretation
in terms of Jacobian varieties or Albanese varieties do admit generalizations able to

see the non-reducedness of the boundary (unipotent groups appear in those generalized

Jacobians).

In recent years, most of the developments, following the work of Bloch–Esnault [5],

have focused on the algebraic cycle part of the story. In this work, we focus on the Hodge
theoretic counterpart of these developments.

1.2. Main results

In the present paper, we introduce a notion of mixed Hodge structure with modulus
(see Definition 1) that generalizes the classical notion of mixed Hodge structure

introduced by Deligne [7]. It is closely related to the notion of enriched Hodge structure

introduced by Bloch–Srinivas [6] and the notion of formal Hodge structure introduced by

Barbieri-Viale [1] and studied by Mazzari [18]. However, the relationship is not trivial;

see § 7. Our main results are summarized as follows:

(1) The category MHSM of mixed Hodge structures with modulus is Abelian. It

contains the usual category of mixed Hodge structures MHS as a full subcategory.

Duality and Tate twists extend to mixed Hodge structures with modulus.

(2) The category MHSM of mixed Hodge structures with modulus contains a full

subcategory MHSM1 which is equivalent to the category of Laumon 1-motives

(the duality functor on mixed Hodge structures with modulus corresponding via

this equivalence to Cartier duality).

(3) Given a smooth proper variety X and two effective simple normal crossing divisors

Y, Z on X such that |Y | ∩ |Z | = ∅, we associate functorially an object Hn(X, Y, Z)
of MHSM for each n ∈ Z. Its underlying mixed Hodge structure is given by the

relative cohomology Hn(X \ Z , Y,Z).
(4) For (X, Y, Z) as above, if further X is equidimensional of dimension d, then we have

a duality theorem (fr denotes the free part; see § 2.7):

Hn(X, Y, Z)∨ ∼= H2d−n(X, Z , Y )(d)fr.

Our construction is closer to Kato–Russell’s category H1 from [15]. It is also motivated

by the recent developments of the theory of algebraic cycles with modulus (such as
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additive Chow group [5], higher Chow groups with modulus [4], and Suslin homology

with modulus [20]), to which our theory might be considered as the Hodge theoretic

counterpart. We hope to study their relationship in a future work. We also leave as

a future problem a construction of an object of MHSM that overlays Deligne’s mixed

Hodge structure on Hn(X,Z) for non-proper X .

1.3. Application to Albanese 1-motives

For a pair (X, Y ) consisting of a smooth proper variety X and an effective divisor Y on

X , Kato and Russell constructed in [15] the Albanese variety with modulus AlbK R(X, Y )
as a higher dimensional analogue of the generalized Jacobian variety of Rosenlicht–Serre.
Our theory yields an extension of their construction to 1-motives. This goes as follows.

Given a triple (X, Y, Z) as in (3) and (4) above, it is easy to see that the

mixed Hodge structure with modulus H2d−1(X, Y, Z)(d)fr belongs to the subcategory

MHSM1. Therefore, it produces a Laumon 1-motive Alb(X, Y, Z) corresponding to

H2d−1(X, Y, Z)(d)fr under the equivalence (2) above. When Z = ∅, it turns out that

Alb(X, Y,∅) = [0→ AlbK R(X, Y )]. When d = 1, Alb(X, Y, Z) agrees with the Laumon
1-motive LM(X, Y, Z) constructed in [14, Definition 25].

1.4. Organization of the paper

The definition of the mixed Hodge structures with modulus is given in § 2. Its connection

with Laumon 1-motives is studied in § 3. We construct Hn(X, Y, Z) in § 4 and prove the

duality in § 5. In § 6, we construct Albanese 1-motives. We compare our theory with the

enriched and formal Hodge structures in § 7.

2. Mixed Hodge structures with modulus

2.1.

Let VecC be the category of finite dimensional C-vector spaces. Let Z be the category

associated with the ordered set Z and consider the category ZopVecC of functors Zop
→

VecC, that is, sequences in VecC (which may be neither injective nor surjective and may

not form a complex)

· · · → V k τ k
V
−→ V k−1 τ k−1

V
−−→ V k−2

→ · · · . (1)

We denote by Vec•C the strictly full subcategory of ZopVecC formed by the objects V •

such that V k
= 0 for all but finitely many elements k ∈ Z.

We denote by MHS the category of mixed Hodge structures. For an object H of

MHS, we denote by HZ its underlying finitely generated Z-module, by W•HQ the weight

filtration on HQ := HZ⊗Q, and by F•HC the Hodge filtration on HC := HZ⊗C.
Given an object H := (H, H•add, H•inf) in the product category MHS×Vec•C×Vec•C, we

set

Hk
:= HC⊕ H k

add⊕ H k
inf,

τ k
:= Id⊕ τ k

add⊕ τ
k
inf : H

k
→ Hk−1,

where τ k
add : H k

add→ H k−1
add and τ k

inf : H k
inf→ H k−1

inf are the structural maps.
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Definition 1. A mixed Hodge structure with modulus is a tuple

H := (H, H•add, H•inf,F
•),

consisting of a mixed Hodge structure H , two objects H•add, H•inf in Vec•C, and for every

k ∈ Z a linear subspace Fk of Hk such that the following conditions are satisfied:

(1-a) τ k(Fk) ⊆ Fk−1;

(1-b) an element x ∈ HC is in Fk HC if and only if there exists v ∈ H k
add such that x + v ∈

Fk ;

(1-c) Hk
= Fk

+ HC+ H k
add;

(1-d) H k
add ∩ Fk

= 0.

By abuse of terminology, we call F• the Hodge filtration on H. A morphism between

two mixed Hodge structures with modulus is a morphism of MHS×Vec•C×Vec•C that

respects Hodge filtrations. The category of mixed Hodge structures with modulus is

denoted by MHSM. A mixed Hodge structure with modulus is said to be polarizable if

its underlying mixed Hodge structure is graded polarizable, that is, the graded pieces for

the weight filtration are polarizable Hodge structures.

Remark 2. The conditions (1-c) and (1-d) can be rewritten in a more symmetric way

(in the sense of the opposite category). Indeed, they are equivalent to requiring that the

linear map Fk ↪→ Hk � H k
inf is surjective and the linear map H k

add ↪→ Hk � Hk/Fk is

injective.

Our Definition 1 is motivated by preceding works [1, 6, 15, 18] as well as the geometric

example described in § 4.

2.2.

Let H = (H, H•add, H•inf,F
•) be an object of MHSM. For each integer k, put

Hk
inf := HC⊕ H k

inf,

Fk
inf := {x ∈ Hk

inf | x + v ∈ Fk for some v ∈ H k
add} = Im(Fk

⊂ Hk � Hk
inf).

This definition and condition (1-d) implies that the projection map Hk
→ Hk

inf restricts

to an isomorphism Fk ∼= Fk
inf, and we get a commutative diagram

0

��

0

��
Fk ' //

��

Fk
inf

��
0 // H k

add
// Hk //

��

Hk
inf

//

��

0

0 // H k
add

// Hk/Fk //

��

Hk
inf/F

k
inf

��

// 0

0 0

(2)
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made of short exact sequences. It follows from this diagram and (1-c) that Hk
inf =

Fk
inf+ HC. Therefore, we find that

Hinf := (H, 0, H•inf,F
•

inf) (3)

is an object of MHSM. We obtain a functor

πinf :MHSM→MHSMinf, πinf(H) = Hinf,

where MHSMinf is the full subcategory of MHSM consisting of (H, H•add, H•inf,F
•) such

that H•add is trivial. This is a left adjoint of the inclusion functor iinf :MHSMinf→

MHSM.

2.3.

Similarly, for an object H = (H, H•add, H•inf,F
•) of MHSM, put

Hk
add := HC⊕ H k

add, Fk
add := Fk

∩Hk
add = ker(Hk

add ⊂ Hk � Hk/Fk).

This definition and condition (1-c) implies that the inclusion map Hk
add→ Hk induces

an isomorphism Hk
add/F

k
add
∼= Hk/Fk and we get a commutative diagram

0
��

0
��

0 // Fk
add

//

��

Fk //

��

H k
inf

// 0

0 // Hk
add

//

��

Hk //

��

H k
inf

// 0

Hk
add/F

k
add

' //

��

Hk/Fk

��
0 0

(4)

made of short exact sequences. It follows from (1-d) that H k
add ∩F

k
add = 0, and

Hadd := (H, H•add, 0,F•add) (5)

is an object of MHSM. We obtain a functor

πadd :MHSM→MHSMadd, πadd(H) = Hadd,

where MHSMadd is the full subcategory of MHSM consisting of (H, H•add, H•inf,F
•) such

that H•inf is trivial. This is a right adjoint of the inclusion functor iadd :MHSMadd→

MHSM.

2.4.

We identify MHS with the intersection of MHSMinf and MHSMadd in MHSM. Then πinf

and πadd restrict to

π0
inf :MHSMadd→MHS, π0

add :MHSMinf→MHS,
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and they are left and right adjoints of the inclusion functors

i0
inf :MHS→MHSadd, i0

add :MHS→MHSinf,

respectively (see (8)). Let H = (H, H•add, H•inf,F
•) be an object of MHSM. We have

π0
addπinfH = π

0
infπaddH = (H, 0, 0, F•HC). We may apply the results of § 2.3 and § 2.2

to Hinf and Hadd, respectively, yielding commutative diagrams

0
��

0
��

0 // Fk HC //

��

Fk
inf

//

��

H k
inf

// 0

0 // HC //

��

Hk
inf

//

��

H k
inf

// 0

HC/Fk HC
' //

��

Hk
inf/F

k
inf

��
0 0

0
��

0
��

Fk
add

' //

��

Fk HC

��
0 // H k

add
// Hk

add
//

��

HC //

��

0

0 // H k
add

// Hk
add/F

k
add

//

��

HC/Fk HC

��

// 0

0 0
(6)

made of short exact sequences. In particular, there exists a unique C-linear map Hk/Fk
→

HC/Fk HC which makes the following diagram

Hk/Fk

&&

// Hk
inf/F

k
inf

Hk
add/F

k
add

//

'

OO

H k
C/Fk HC

'

OO
(7)

commute (the vertical maps are induced by inclusions and the horizontal ones by

projections).

2.5.

As the following proposition shows, the category of mixed Hodge structures with modulus

is Abelian.

Proposition 3.

(1) Any morphism f : H→ H′ in MHSM is strict with respect to the Hodge filtration,

that is, f (Fk) = F′k ∩ f (Hk) for any k where H := (H, H•add, H•inf,F
•) and H′ :=

(H ′, H ′•add, H ′•inf,F
′•).

(2) The category MHSM is an Abelian category.

Proof. The category MHSM is an additive category that has kernels and cokernels. Let

Im f be the kernel of the canonical morphism H′→ Coker f and Coim f the cokernel of

the canonical morphism ker f → H. Note that Coim f is the tuple

(HZ/Ker fZ, H•add/Ker f •add, H•inf/Ker f •inf,F
•/(F• ∩Ker f •),

https://doi.org/10.1017/S1474748020000043 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000043


Mixed Hodge structures with modulus 167

while Im f is the tuple

(Im fZ, Im f •add, Im f •inf,F
′•
∩ Im f •).

Recall that for every object H in MHSM, we have a (functorial) exact sequence and

an isomorphism from (4) and (6):

0→ Fk
add→ Fk

→ H k
inf→ 0, Fk

add
'
−→ Fk HC.

By applying these to both Coim f and Im f , we get a commutative diagram with exact

rows

0 // Fk HC/(Fk HC ∩Ker fC) //

��

Fk/Fk
∩Ker f k //

��

H k
inf/Ker f k

inf
//

∼=

��

0

0 // Fk H ′C ∩ Im fC // F′k ∩ f (Hk) // Im f k
inf

// 0.

Thus, (1) is reduced to showing that the left vertical map is an isomorphism. This follows

from the fact that MHS is an Abelian category (that is, every morphism of mixed Hodge

structures is strict with respect to the Hodge filtration). (2) follows from (1).

2.6.

Let us consider functors

µadd :MHSMadd→ Vec•C, µadd(H, H•add, 0,F•add) = H•add,

µinf :MHSMinf→ Vec•C, µinf(H, 0, H•inf,F
•

inf) = H•inf,

jadd : Vec•C→MHSMadd jadd(V
•) = (0, V •, 0, 0),

jinf : Vec•C→MHSMinf jinf(V
•) = (0, 0, V •, V •).

Then µinf is a left adjoint of jinf and µadd is a right adjoint of jadd. We summarize the

functors we have introduced so far:

MHSM

πadd
tt

πinf
++

MHSMadd

iadd 33

µaddrr π0
inf

++

MHSMinf

iinfkk

µinf ++π0
add

ssVec•C

jadd 55

MHS

i0
inf

jj
i0
add

44

Vec•C.

jinfii

(8)

Remark 4.

(1) Let H be an object in MHSM. We write Hinf = iinfπinf(H) and Hadd = iaddπadd

(H); see (3) and (5). Let us also abbreviate Hinf = iinf jinfµinfπinf(H), Hadd =

iadd jaddµaddπadd(H), and H = π0
infπadd(H) = π

0
addπinf(H). Various (co)unit maps
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make a commutative diagram in MHSM

H

!!
Hadd

""

<<

Hinf

##
Hadd

;;

H

==

Hinf,

which produces the following (functorial) short exact sequences

0→ Hadd→ H→ Hinf→ 0, 0→ Hadd→ H→ Hinf→ 0

and

0→ Hadd→ Hadd→ H → 0, 0→ H → Hinf→ Hinf→ 0.

(2) Any morphism f : H→ H′ in MHSM is strict with respect to the filtration

Hadd ⊂ Hadd ⊂ H, H ′add ⊂ H′add ⊂ H′,

that is, f (H)∩H′add = f (Hadd), f (H)∩ H ′add = f (Hadd).

2.7.

Recall that a mixed Hodge structure H is called free if HZ is free as a Z-module. In
this case, it makes sense to define Wk HZ := Wk HQ ∩ HZ. For general H , we define its

free part by Hfr := (HZ/HZ,Tor,W•HQ, F•HC). A mixed Hodge structure with modulus

H = (H, H•add, H•inf,F
•) is called free if H is. For general H, we define its free part by

Hfr := (Hfr, H•add, H•inf,F
•).

2.8.

Let H be a mixed Hodge structure. The dual mixed Hodge structure H∨ =
(H∨Z ,W•H∨Q , F•H∨C ) of H is defined by

H∨Z = HomZ(H,Z), Wk H∨Q = (HQ/W−1−k HQ)
∨, Fk H∨C = (HC/F1−k HC)

∨,

where ∨ on the right-hand side denotes linear dual (see [7, 1.1.6], [12, 1.6.2]). Let H =

(H, H•add, H•inf,F
•) be an object in MHSM. We define the dual H∨ of H as the tuple

H∨ := (H∨, H∨,•add, H∨,•inf ,F
∨,•).

Here H∨ is the dual of the mixed Hodge structure H and for every k ∈ Z,

H∨,kadd := (H
1−k
inf )

∨, H∨,kinf := (H
1−k
add )

∨, F∨,k := (H1−k/F1−k)∨.

It is straightforward to see that the tuple H∨ belongs to MHSM. By definition, H∨ is

always free, and we have

H∨ = (Hfr)
∨, (H∨)∨ ∼= Hfr. (9)
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2.9.

Let m be an integer. Recall that the Tate twist H(m) of a mixed Hodge structure H is

defined by

H(m)Z = (2π i)m HZ, Wk H(m)Q = (2π i)m Wk+2m HQ, Fk H(m)C = Fk+m HC.

Let H = (H, H•add, H•inf,F
•) be an object in MHSM. We define the Tate twist H(m) =

(H(m), H(m)•add, H(m)•inf,F(m)
•) ∈MHSM of H by

H(m)kadd = H k+m
add , H(m)kinf = H k+m

inf , F(m)k = Fk+m .

2.10.

Let mod(Z) be the category of finitely generated Abelian groups. There is a faithful exact

functor

R :MHSM→ mod(Z)×VecC,

R(H, H•add, H•inf,F
•) =

(
HZ,

⊕
k∈Z

(
H k

add⊕ H k
inf

))
.

Remark 5.

(1) A sequence in MHSM is exact if and only if its image by R is exact in mod(Z)×
VecC.

(2) Since H k
add = H k

inf = 0 for almost all k, for any object H of MHSM, we have a

canonical isomorphism R(H∨) ∼= R(H)∨, where, on the right-hand side, ∨ denotes
the dual functor given by (A, V )∨ = (HomZ(A,Z), HomC(V,C)).

3. Laumon 1-motives

In [15, §4.1], Kato and Russell have defined a category H1 which provides a Hodge

theoretic description of the category M Lau
1 of Laumon 1-motives over C that extends

Deligne’s description [8, §10] of the category M Del
1 of Deligne 1-motives over C in terms

of the full subcategory MHS1 of MHS (see § 3.1 for its definition and § 3.6 for Laumon

1-motives). In this section, we define a subcategory of MHSM1 of MHSM which is

equivalent to H1, yielding an equivalence between MHSM1 and M Lau
1 (Corollary 8).

This will be used for our construction of Picard and Albanese 1-motives in § 6. There is

another Hodge theoretic description of M Lau
1 , due to Barbieri-Viale [1], in terms of the

category FHSfr
1 of torsion-free formal Hodge structures of level 6 1. As is explained in

[15, §4.6], two categories H1 and FHSfr
1 are equivalent.

3.1.

Let MHS1 be the full subcategory of MHS formed by the free mixed Hodge structures

of Hodge type

{(0, 0), (−1, 0), (0,−1), (−1,−1))}
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such that GrW
−1 is polarizable (see [8, Construction (10.1.3)]). Recall that such a mixed

Hodge structure is simply a free Abelian group of finite rank HZ with two filtrations (on

HQ := Q⊗Z HZ and HC = C⊗Q HQ)

0 = W−3 HQ ⊆ W−2 HQ ⊆ W−1 HQ ⊆ W0 HQ = HQ

0 = F1 HC ⊆ F0 HC ⊆ F−1 HC = HC

such that F0GrW
0 HC = GrW

0 HC (that is, F0 HC+W−1 HC = HC), F0W−2 HC = 0 and
GrW
−1 HZ is a polarizable pure Hodge structure of weight −1. (See § 2.7 for W•HZ.)

3.2.

Let H1 be the Abelian category defined by Kato and Russell in [15, §4.1]. Recall that an

object in H1 is a pair (HZ, HV ) consisting of a free Abelian group of finite rank HZ and

a C-vector space HV together with

(a) two two-step filtrations (called weight filtrations)

0 = W−3 HQ ⊆ W−2 HQ ⊆ W−1 HQ ⊆ W0 HQ = HQ

0 = W−3 HV ⊆ W−2 HV ⊆ W−1 HV ⊆ W0 HV = HV

on HQ := Q⊗Z HZ and HV ;

(b) a one-step filtration (called Hodge filtration)

0 = F1 HV ⊆ F0 HV ⊆ F−1 HV = HV ;

(c) two C-linear maps a : HC := C⊗Q HQ→ HV and b : HV → HC which are

compatible with the weight filtrations (that is, a maps Wk HC := C⊗Q Wk HQ to

Wk HV and b maps Wk HV to Wk HC) and such that b ◦ a = Id;

(d) a splitting of the weight filtration on Ker(b : HV → HC), that is, a decomposition

of Ker(b) as the direct sum of the graded pieces of the filtration induced by the

given weight filtration on HV ;

such that the following conditions are satisfied:

(i) the map a induces an isomorphism GrW
−1 HC→ GrW

−1 HV and the filtration on

GrW
−1 HV induced by the Hodge filtration on HV induces via this isomorphism a

polarizable pure Hodge structure of weight −1 on GrW
−1 HZ (here HZ is endowed

with the filtration induced by the weight filtration on HQ);

(ii) F0GrW
0 HV = GrW

0 HV and F0W−2 HV = 0.

Let us observe that one can attach to an object in H1 a canonical (graded polarizable)

mixed Hodge structure. To see this, set

H0
add := Ker(W−2 HV → W−2 HC), (10)

H0
inf := Ker(GrW

0 HV → GrW
0 HC).

The condition (i) implies Ker(GrW
−1 HV → GrW

−1 HC) = 0 and thus the given splitting of

the weight filtration on Ker(HV → HC) provides a direct sum decomposition HV = HC⊕
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H0
add⊕ H0

inf in which the weight filtration on HV becomes

W0 HV := HV ,

W−1 HV := W−1 HC⊕ H0
add,

W−2 HV := W−2 HC⊕ H0
add,

W−3 HV := 0.

One can then consider the one-step filtration

0 = F1 HC ⊆ F0 HC ⊆ F−1 HC = HC, (11)

where F0 HC is defined as the linear subspace of HC formed by the elements such that

there exists v ∈ H0
add for which x + v is contained in F0 HV . The conditions (i) and (ii)

have the following consequences.

Lemma 6. We have F0 HC+W−1 HC = HC and F0W−2 HC = 0. Moreover, the map a
induces an isomorphism F0GrW

−1 HC = F0GrW
−1 HV .

In particular, this attaches to an object in H1 a canonical (graded polarizable) mixed

Hodge structure of type {(0, 0), (−1, 0), (0,−1), (−1,−1)} with Hodge filtration given

by (11).

3.3.

Let us denote by MHSM1 the strictly full subcategory of MHSM formed by the mixed

Hodge structures with modulus (H, H•add, H•inf,F
•) such that the underlying mixed Hodge

structure H belongs to MHS1 and such that H k
inf = H k

add = 0 if k 6= 0. The proof of the

following proposition will be given in § 3.4 and § 3.5.

Proposition 7. The categories MHSM1 and H1 are equivalent.

3.4.

Let us explain the construction of a functor from H1 to MHSM1. Let (HZ, HV ) together

with the data described in § 3.2 be an object in the category H1. We associate with it

the tuple H = (H, H•add, H•inf,F
•). Here H is the mixed Hodge structure constructed in

§ 3.2; H•add and H•inf are the sequences defined by H k
add = H k

inf = 0 if k 6= 0 and (10); the

Hodge filtration F• is defined by F0
:= F0 HV via the canonical direct sum decomposition

HV = HC⊕ H0
add⊕ H0

inf =: H
0 given by the splitting of the weight filtration (see § 3.2)

and Fk
= Fk HC if k 6= 0. All conditions are obviously satisfied unless k = 0. In that case,

(1-a) is obvious and (1-b) is a consequence of the definition of the Hodge filtration in

§ 3.2. Condition (1-c) is implied by F0GrW
0 HV = GrW

0 HV and (1-d) by F0W−2 HV = 0.

3.5.

We now construct a functor from MHSM1 to the category H1. It is easy to see that

this functor and the one constructed in § 3.4 are quasi-inverse one to another proving

https://doi.org/10.1017/S1474748020000043 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000043


172 F. Ivorra and T. Yamazaki

Proposition 7. Given an object H = (H, H•add, H•inf,F
•) in MHSM1, we set

HV := H0
= HC⊕ H0

add⊕ H0
inf

and

F−1 HV := HV , W0 HV := HV ,

F0 HV := F0, W−1 HV := W−1 HC⊕ H0
add,

F1 HV := 0, W−2 HV := W−2 HC⊕ H0
add,

W−3 HV := 0.

The map a : HC→ HV is given by the inclusion and the map b : HV → HC by the

projection. The weight filtration on Ker(b) = H0
add⊕ H0

inf is given by

0 = W−3 Ker(b) ⊆ W−2 Ker(b) = W−1 Ker(b) = H0
add ⊆ W0 Ker(b) = Ker(b)

and the splitting is the obvious one. We have to check that the two conditions (i) and

(ii) are satisfied.

We start with (ii). Note that (see (4)) F0W−2 HV is a linear subspace of F0
add

and its image under the projection onto HC is contained in F0W−2 HC which is zero

(because of the restriction on the Hodge type of H). Since the projection maps F0
add

isomorphically onto F0 HC by (1-b) and (1-d), we have F0W−2 HV = 0. To show that

F0GrW
0 HV = GrW

0 HV , we have to show that HV = F0
+W−1 HC+ H0

add. We know that

F0GrW
0 HC = GrW

0 HC (because of the restriction on the Hodge type of H); hence,

HC = F0 HC+W−1 HC. By (1-b), we also have F0 HC ⊆ F0
+ H0

add. Hence, using (1-c),

we obtain

HV = F0
+ HC+ H0

add ⊆ F0
+ F0 HC+W−1 HC+ H0

add ⊆ F0
+W−1 HC+ H0

add

and therefore we have HV = F0
+W−1 HC+ H0

add as desired.

To prove (i), note that (see (4)) the restriction of b to the linear subspace W−1 HV
is induced by the projection H0

add→ HC which maps F0
add isomorphically onto F0 HC.

Therefore, b maps F0W−1 HV isomorphically onto F0W−1 HC. Since F0W−2 HV = 0 and

F0W−2 HC = 0, we have a commutative square

F0W−1 HV
� � //

'

��

W−1 HV /W−2 HV = GrW
−1 HV

'

��
F0W−1 HC

� � // W−1 HC/W−2 HC = GrW
−1 HC

in which the vertical morphisms are the isomorphisms induced by b. This shows that the

filtration on GrW
−1 HV deduced from the Hodge filtration on HV is the Hodge filtration on

GrW
−1 HZ which is thus a polarizable pure Hodge structure of weight −1.

3.6.

We briefly recall the category M Lau
1 of Laumon 1-motives over C in the sense of [16]. Let

S be the category of fppf sheaves [26, Example 2.32] on the category of affine C-schemes.
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We write Lie(F) := ker(F(C[ε]/(ε2))→ F(C)) for F ∈ S . We consider the category S0
of connected commutative algebraic groups over C as a full subcategory of S . Recall

that any G ∈ S0 is an extension of an Abelian variety Gab by a linear algebraic group

Glin, and we have a decomposition Glin
∼= Gmul×Gadd with Gmul

∼= Gr
m and Gadd

∼= Gs
a

for some r, s ∈ Z>0. Denote by S−1 the category of formal groups F over C such that

F = Fét× Finf with Fét
∼= Zr and Finf

∼= Ĝ
s
a for some r, s ∈ Z>0. We also consider S−1

as a full subcategory of S .

Recall that an object of M Lau
1 is a two-term complex [F → G] in S where F ∈ S−1

and G ∈ S0.

It is proved in [15, Theorem 4.1] that H1 is equivalent to M Lau
1 . Therefore,

Proposition 7 implies the following corollary.

Corollary 8. The categories MHSM1 and M Lau
1 are equivalent.

Explicit description of the equivalence functors H1 →M Lau
1 and M Lau

1 → H1 are

given in [15, §4.3 and §4.4]. By composing them with those in § 3.4 and § 3.5, we can

explicitly describe the equivalence functors in Corollary 8 as follows.

The functor MHSM1 →M Lau
1 sends an object H = (H, H•add, H•inf,F

•) of MHSM1 to
the Laumon 1-motive [Fét× Finf→ G] described as follows. First, set

G = W−1 HZ\W−1 HC⊕ H0
add/F

0
∩ (W−1 HC⊕ H0

add),

Fét = GrW
0 HZ, Lie Finf = H0

inf.

Next, we describe the map Fét→ G. Consider a commutative diagram

GrW
0 HZ // H/(W−1 HC⊕ H0

add) F0/F0
∩ (W−1 HC⊕ H0

add)
∼=oo

HZ

OOOO

� � // H = HC⊕ H0
add⊕ H0

inf

OOOO

F0.

OOOO

? _oo

(See § 3.2 (ii) for the bijectivity of the upper right arrow.) Given x ∈ Fét = GrW
0 HZ, we

choose its lift y ∈ HZ and an element z of F0 having the same image as x in H/(W−1 HC⊕
H0

add). Then y− z ∈ H belongs to W−1 HC⊕ H0
add and its class in G is independent of

choices of y and z. Therefore, we get a well-defined map Fét→ G. Finally, we describe the

map Finf→ G, or what amounts to the same, Lie Finf→ Lie G. Consider a commutative

diagram

H0
inf

// H/(W−1 HC⊕ H0
add) F0/F0

∩ (W−1 HC⊕ H0
add)

∼=oo

H0
inf
� � // H = HC⊕ H0

add⊕ H0
inf

OOOO

F0.

OOOO

? _oo

Given x ∈ Finf = H0
inf, we choose an element z of F0 having the same image as x in

H/(W−1 HC⊕ H0
add). Then x − z ∈ H belongs to W−1 HC⊕ H0

add and its class in Lie G =
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W−1 HC⊕ H0
add/F

0
∩ (W−1 HC⊕ H0

add) is independent of choices of z. Therefore, we get a

well-defined map Lie Finf→ Lie G.

In the other direction, the functor M Lau
1 →MHSM1 sends a Laumon 1-motive

[uét× uinf : Fét× Finf→ G] to the object H = (H, H•add, H•inf,F
•) of MHSM1 described

as follows. Let HZ be the fiber product of uét : Fét→ G and exp : Lie G → G, which

comes equipped with α : HZ→ Fét and β : HZ→ Lie G. We set

W0 HZ = HZ ⊇ W−1 HZ = ker(α) = ker(exp) = H1(G,Z)
⊇ W−2 HZ = ker(H1(G,Z)→ H1(Gab,Z))
⊇ W−3 HZ = 0,

where Gab is the maximal Abelian quotient of G. Put H0
inf := Lie Finf and H0

add :=

Lie Gadd, where Gadd is the additive part of G. Finally, we set

F0
:= ker(HC⊕ H0

add⊕ H0
inf→ Lie G),

where HC→ Lie G is induced by β, H0
add = Lie Gadd→ Lie G is the inclusion map, and

H0
inf = Lie Finf→ Lie G is induced by uinf. The Hodge filtration F•HC is determined by

the condition Definition 1 (1-b).

3.7.

Let us consider the Cartier duality functor (M Lau
1 )op

→M Lau
1 . The corresponding

functor Hop
1 → H1 admits a simple description as Hom(−,Z)(1) [15, 4.1]. By rewriting

it through § 3.4 and § 3.5, we find that the functor

MHSM
op
1 →MHSM1, H 7→ H∨(1)

gives a duality that is compatible with the Cartier duality via the equivalence in

Corollary 8. Here ∨ and (1) denotes the dual and Tate twist (see § 2.8 and § 2.9).

4. Cohomology of a variety with modulus

In this section, X is a connected smooth proper variety of dimension d over C, and

Y, Z are effective divisors on X such that |Y | ∩ |Z | = ∅ and such that (Y + Z)red is a

simple normal crossing divisor. Put U = X \ (Y ∪ Z) and let us consider the following
commutative diagram

U
j ′Y

||

j ′Z

""
jU

��

X \ Z
jZ

""

X \ Y
jY

||
Y

iY

//

i ′Y

OO

X Z ,
iZ

oo

i ′Z

OO

(12)

where all the maps are embeddings. The aim of this section is to construct an object

Hn(X, Y, Z) of MHSM for each integer n.
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4.1.

In this subsection, we assume that Y and Z are reduced. We consider the relative

cohomology

Hn
:= Hn(X \ Z , Y,Z) = Hn(X,ZX |Y,Z ) (13)

for each integer n, where ZX |Y,Z := R( jZ )∗( j ′Y )!ZU . It carries a mixed Hodge structure as

in [8, 8.3.8] or [19, Proposition 5.46]. By applying R( jZ )∗ to an exact sequence

0→ ( j ′Y )!ZU → ZX\Z → (i ′Y )∗ZY → 0,

we get a canonical distinguished triangle

ZX |Y,Z → R( jZ )∗ZX\Z → (iY )∗ZY
[+1]
−−→ (14)

and therefore a long exact sequence

· · · → Hn
→ Hn(X \ Z ,Z)→ Hn(Y,Z)→ Hn+1

→ · · · . (15)

The assumption |Y | ∩ |Z | = ∅ immediately implies

ZX |Y,Z = R( jZ )∗( j ′Y )!ZU ∼= ( jY )!R( j ′Z )∗ZU . (16)

By applying ( jY )! to a distinguished triangle

(i ′Z )∗(Ri ′Z )
!ZX\Y → ZX\Y → (R j ′Z )∗ZU →

[+1]
−−→,

we get a canonical distinguished triangle

(iZ )∗(RiZ )
!ZX → ( jY )!ZX\Y → ZX |Y,Z →

[+1]
−−→ . (17)

(Note that (iZ )∗ = (iZ )! and (Ri ′Z )
!ZX\Y = (RiZ )

!ZX by excision.) Therefore, we get a

long exact sequence

· · · → Hn
Z (X,Z)→ Hn

c (X \ Y,Z)→ Hn
→ Hn+1

Z (X,Z)→ · · · . (18)

Both (15) and (18) are long exact sequence of MHS (see [12]).
We set

�
p
X |Y,Z := �

p
X (log(Y + Z))⊗OX (−Y ),

where �
p
X (log(Y + Z)) is the sheaf on the analytic site of X of p-forms with logarithmic

poles along (Y + Z). It defines a subcomplex �•X |Y,Z of ( jZ )∗�
•

X\Z . For the definition of

�
p
X |Y,Z in the case where Y or Z is non-reduced, we refer to § 4.2.

We recall the construction of the mixed Hodge structure on Hn and show that its

Hodge filtration can be described in terms of the complex �•X |Y,Z as follows.

Proposition 9. Suppose that Y and Z are reduced, and let n be an integer.

(1) There is a canonical isomorphism

Hn
C
'
−→ Hn(X, �•X |Y,Z ). (19)

For every integer p, the induced map

Hn(X, �•>p
X |Y,Z )→ Hn

C

is injective, and its image agrees with the Hodge filtration F p Hn
C ⊂ Hn

C.
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(2) Let p, q be integers. If Gr
p
F GrW

p+q HC is non-trivial, then we have p, q ∈ [0, n]. If

further n > d, then we have p, q ∈ [n− d, d].

Note that the isomorphism (19) is the one induced by the canonical quasi-isomorphism

CX |Y,Z → �•X |Y,Z (see, for example, [9, Remarques 4.2.2 (c)]).

The mixed Hodge structure on Hn will be constructed from the cohomological

mixed Hodge complex K = (KZ, KQ, KC) on X (in the sense of [8, 8.1.6]), and K is

constructed as a cone of K Z
→ K Y where K Z and K Y are cohomological mixed complexes

that produce the mixed Hodge structures on Hn(X \ Z ,Z) and Hn(Y,Z), respectively.

Therefore, we first need to recall the construction of K Z and K Y .

We recall from [8, 8.1.8] the description of K Z and use, to do so, the notation for

filtered derived categories from [8, 7.1.1]. Let K Z
Z := R jZ∗ZX\Z ∈ D+(X,Z). Define a

filtered object (K Z
Q,W ) ∈ D+F(X,Q) by

K Z
Q := R jZ∗QX\Z , Wq K Z

Q := τ6q K Z
Q,

where τ6q denotes the canonical truncation. Define a bifiltered object (K Z
C ,W, F) ∈

D+F2(X,C) by

K Z
C := �

•

X (log Z), F p K Z
C := �

•>p
X (log Z), Wq K Z

C := Wq�
•

X (log Z),

Wq�
p
X (log Z) =


0 (q < 0)

�
p−q
X ∧�

q
X (log Z) (0 6 q 6 p)

�
p
X (log Z) (p 6 q).

We have an obvious isomorphism K Z
Z ⊗Q ∼= K Z

Q as well as an isomorphism (K Z
Q,W )⊗

C ∼= (K Z
C ,W ) deduced from the Poincaré lemma. The triple K Z

= (K Z
Z , K Z

Q, K Z
C ) together

with these isomorphisms is a cohomological mixed Hodge complex that produces the
mixed Hodge structure on Hn(X \ Z ,Z) (see [8, 8.1.7 and 8.1.9 (ii)]).

Next we recall from [10, 3.2.4.2] the description of K Y . Let I be the set of irreducible

components of Y . For each k > 0, we write Y [k] for the disjoint union of ∩T∈J T , where

J ranges over subsets of I with cardinality k+ 1. Write π [k] : Y [k]→ X for the canonical

map. Fixing an ordering on I , we obtain a complex QY [•] and a double complex �∗Y [•] of
sheaves on X :

QY [•] := [π
[0]
∗ QY [0] → π [1]∗ QY [1] → · · · → π

[q]
∗ QY [q] → · · · ],

�∗Y [•] := [π
[0]
∗ �

∗

Y [0] → π [1]∗ �
∗

Y [1] → · · · → π
[q]
∗ �∗Y [q] → · · · ].

Let K Y
Z := iY∗ZY ∈ D+(X,Z). Define a filtered object (K Y

Q,W ) ∈ D+F(X,Q) by

K Y
Q := QY [•] Wq K Y

Q := σ>−q K Y
Q,

where σ>−q denotes the brutal truncation. Define a bifiltered object (K Y
C ,W, F) ∈

D+F2(X,C) by

K Y
C := Tot(�∗Y [•]), F p K Y

C := Tot(σ∗>p�
∗

Y [•]), Wq K Y
C := Tot(σ•>−q�

∗

Y [•]).
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We have a Mayer–Vietoris isomorphism K Y
Z ⊗Q ∼= K Y

Q as well as an isomorphism

(K Y
Q,W )⊗C ∼= (K Y

C ,W ) deduced from the Poincaré lemma. The triple K Y
=

(K Y
Z , K Y

Q, K Y
C) together with these isomorphisms is a cohomological mixed Hodge complex

that produces the mixed Hodge structure on Hn(Y,Z).
We construct a morphism K Z

→ K Y of cohomological mixed Hodge complexes. By

applying R jZ∗ to the restriction map ZX\Z → i ′Y∗ZY , we get

K Z
Z = R jZ∗ZX\Z → R jZ∗i ′Y∗ZY = iY∗ZY = K Y

Z .

Similarly, we have

K Z
Q = R jZ∗QX\Z → iY∗QY [0] → π [0]∗ QY [•] = K Y

Q,

K Z
C = �

∗

X (log Z)
i∗Y
→π [0]∗ �

∗

Y [0] → Tot(�∗Y [•]) = K Y
C .

They respect filtrations and define a morphism φ : K Z
→ K Y . We then apply the mixed

cone construction [19, 3.22] [10, 3.3.24] to obtain K := Cone(φ)[−1] which produces the

mixed Hodge structure on Hn
= Hn(X \ Z , Y,Z). Proposition 9 (1), (2) is a consequence

of [8, 8.1.9 (v)] and Lemma 10, while Proposition 9 (3) follows from [8, 8.2.4] and (15).

Lemma 10. Set �
p
X |Y,Z := �

p
X (log(Y + Z))⊗OX (−Y ). Define a bifiltered object

(K ′C,W ′, F ′) ∈ D+F2(X,C) by

K ′C := �
•

X |Y,Z , F p K ′C := �
•>p
X |Y,Z , Wq K ′C := Wq�

•

X |Y,Z ,

Wq�
p
X |Y,Z =



0 (q < −p)

�
−q
X ∧�

p+q
X (log Y )⊗OX (−Y ) (−p 6 q < 0)

�
p−q
X ∧�

q
X (log(Y + Z))⊗OX (−Y ) (0 6 q 6 p)

�
p
X |Y,Z (p 6 q).

Then there is a canonical map K ′C→ KC inducing an isomorphism (K ′C,W ′, F ′) ∼=
(KC,W, F) in D+F2(X,C).

Proof. The map exists since the composition of K ′C ↪→ K Z
C → K Y

C is the zero map. Let us

verify that K ′C→ KC is a quasi-isomorphism. This is a local statement; thus, it suffices

to show it over X \ Y and X \ Z . The assertion becomes obvious over X \ Y , and over

X \ Z , it follows from a standard fact

Cone(CX → iY∗CY )[−1] ∼= jY !CX\Y ∼= �
•

X (log Y )⊗OX (−Y ).

A direct calculation shows that the filtrations are transformed as described.

Remark 11. Let a : X → Spec(C) be the structural morphism. By [22, 23], the mixed

Hodge structure on Hn can also be described using the six operations in the theory of

mixed Hodge modules as the nth cohomology group of the object aH
∗ ( jZ )

H
∗ ( j ′Y )

H
!
QH

U
of the derived category DbMHS

p
Q of the Abelian category MHS

p
Q of graded polarizable

mixed Q-Hodge structures.
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4.2.

We now drop the assumption that Y and Z are reduced. In this subsection, we provide

an alternative description of Hn
C. We define

�
p
X |Y,Z := �

p
X (log(Y + Z)red)⊗OX (−Y + Z − Zred) ⊂ jZ∗�

p
X\Z .

In particular, we have (recall that d = dim X)

�0
X |Y,Z = OX (−Y + Z − Zred) and �d

X |Y,Z = �
d
X ⊗OX (Yred− Y + Z).

They form a subcomplex �•X |Y,Z of jZ∗�
•

X\Z . When Y and Z are reduced, this complex

agrees with the one considered in the previous subsection and is consistent with the

notation in Lemma 10. For another pair of effective divisors Y ′ and Z ′ on X , we have

�•X |Y,Z ⊂ �
•

X |Y ′,Z ′ if Y > Y ′ and Z 6 Z ′. (20)

In particular, we have a commutative diagram of complexes in which all arrows are

inclusion maps:

�•X |Y,Z � s

&&
�•X |Y,Zred

+ �

88

� s

&&

�•X |Yred,Z

�•X |Yred,Zred
.

+ �

88

(21)

The following proposition plays an important role in this work.

Proposition 12. All maps in (21) are quasi-isomorphisms. Consequently, we have

Hn
C
∼= Hn(X, �•X |∗,∗′)

for all ∗ ∈ {Y, Yred}, ∗
′
∈ {Z , Zred} and n. (See Proposition 9 (1).)

Proof. The assertion for the left lower arrow is proved in [4, Lemma 6.1] (under a weaker

assumption that Y and Z have no common irreducible component). The same proof

works for the other arrows without any change. However, we include a brief account here

because of its importance in our work.

By induction, it suffices to show the following:

(1) For any irreducible component T of Y , �•X |Y,Z/�
•

X |Y+T,Z is acyclic.

(2) For any irreducible component T of Z , �•X |Y,Z+T /�
•

X |Y,Z is acyclic.

In what follows, we outline the proof of (2) by adapting that of [4, Lemma 6.2] (which is

precisely (1)). The complex in question can be rewritten as

�0
X |Y,Z+T ⊗OT

d0
T
→ �1

X |Y,Z+T ⊗OT
d1

T
→ �2

X |Y,Z+T ⊗OT
d2

T
→ · · · .

https://doi.org/10.1017/S1474748020000043 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000043


Mixed Hodge structures with modulus 179

We have an exact sequence

0→ �
p
X (log((Y + Z)red− T ))→ �

p
X (log(Y + Z)red)

Res
p
T
→ ω

p−1
T → 0,

where ω
p
T := �

p
T (log(Zred− T )|T ) and Res

p
T is the residue map. By taking tensor product

with OX (−Y + Z − Zred+ T )⊗OT , we obtain another exact sequence

0→ OX (−Y + Z − Zred+ T )⊗ωp
T → �

p
X |Y,Z+T ⊗OT

Res
p
Z ,T
→ OX (−Y + Z − Zred+ T )⊗ωp−1

T → 0,

by which we regard OX (−Y + Z − Zred+ T )⊗ωp
T as a subsheaf of �

p
X |Y,Z+T ⊗OT . Then

a direct computation shows

d p−1
T ◦Res

p
Z ,T +Res

p+1
Z ,T ◦ d p

T = e · id�p
X |Y,Z+T⊗OT

,

where e = −ordT (Z). We get a homotopy operator that proves (2).

4.3.

For any integers k and p, we define

�
(k)p
X |Y,Z :=

�
p
X |Y,Zred

if p < k,

�
p
X |Yred,Z

if p > k

=

�
p
X (log(Y + Z)red)⊗OX (−Y ) if p < k,

�
p
X (log(Y + Z)red)⊗OX (−Yred+ Z − Zred) if p > k.

For each k, they form a subcomplex �
(k)•
X |Y,Z of jZ∗�

•

X\Z . We have a sequence of inclusion
maps

�•X |Y,Zred
= �

(d+1)•
X |Y,Z ⊂ �

(d)•
X |Y,Z ⊂ · · · ⊂ �

(1)•
X |Y,Z ⊂ �

(0)•
X |Y,Z = �

•

X |Yred,Z , (22)

which fits the middle row of the diagram (21). We have �
(k)•
X |Yred,Zred

= �•X |Yred,Zred
for

any k. Similarly to (20), we have for another pair of effective divisors Y ′ and Z ′ on X and

for any k
�
(k)•
X |Y,Z ⊂ �

(k)•
X |Y ′,Z ′ if Y > Y ′ and Z 6 Z ′. (23)

Remark 13. Some cases of the complex �
(k)•
X |Y,Z have been used in the literature. When

d = 1, �
(1)•
X |Y,Z = [OX (−Y )→ �1

X ⊗OX (Z)] has been used in [14]. When k = d and Z = ∅,

�
(d)•
X |Y,∅ agrees with the complex S•Y used in [15].

For integers n and k, we define

Hn,k(X, Y, Z) := Hn(X, �(k)•X |Y,Z ), (24)
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Fn,k(X, Y, Z) := Hn(X, �(k)•>k
X |Y,Z ),

(H/F)n,k(X, Y, Z) := Hn(X, �(k)•<k
X |Y,Z ),

Hn,k
add(X, Y ) := Hn−1

(
X, �•<k

X (log Yred)⊗
OX (−Yred)

OX (−Y )

)
,

Hn,k
inf (X, Z) := Hn−1

(
X, �•<k

X (log Zred)⊗
OX (Z − Zred)

OX

)
.

By definition, we have �
(k)•>k
X |Y,Z = �

(k)•>k
X |Yred,Z

, �
(k)•<k
X |Y,Z = �

(k)•<k
X |Y,Zred

, and, therefore,

Fn,k(X, Y, Z) = Fn,k(X, Yred, Z), (H/F)n,k(X, Y, Z) = (H/F)n,k(X, Y, Zred).

Theorem 14. Let n and k be integers.

(1) Let a and b′ be the maps induced by the inclusion maps from (23):

Hn,k(X, Y, Zred)

a
::Hn,k(X, Y, Z)

byy b′ %%
Hn,k(X, Yred, Z).

a′
dd

Then there are canonical maps b and a′ such that b ◦ a = id and b′ ◦ a′ = id.

(2) We have canonical isomorphisms

Coker(a) ∼= Hn,k
inf (X, Z) ∼= Hn

(
X, �•>k

X (log Zred)⊗
OX (Z − Zred)

OX

)
,

ker(b′) ∼= Hn,k
add(X, Y ) ∼= Hn

(
X, �•>k

X (log Yred)⊗
OX (−Yred)

OX (−Y )

)
.

(3) The sequence

0→ Fn,k(X, Y, Z)
i
−→ Hn,k(X, Y, Z)

p
−→ (H/F)n,k(X, Y, Z)→ 0

is exact. Hereafter, we regard Fn,k(X, Y, Z) as a subspace of Hn,k(X, Y, Z).

(4) We have

a(Fn,k(X, Y, Zred)) ⊂ Fn,k(X, Y, Z),

b′(Fn,k(X, Y, Z)) = Fn,k(X, Yred, Z).

(Note, however, that a′ and b do not preserve Fn,k .) Moreover, there are

commutative diagrams with exact rows and columns

0 0

Hn,k
inf (X, Z)

OO

Hn,k
inf (X, Z)

OO

0 // Fn,k(X, Y, Z)

OO

// Hn,k(X, Y, Z)

OO

// (H/F)n,k(X, Y, Z) // 0

0 // Fn,k(X, Y, Zred)

OO

// Hn,k(X, Y, Zred)

a
OO

// (H/F)n,k(X, Y, Zred) // 0

0

OO

0,

OO
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and

0
��

0
��

Hn,k
add(X, Y )

��

Hn,k
add(X, Y )

��
0 // Fn,k(X, Y, Z) // Hn,k(X, Y, Z)

b′��

// (H/F)n,k(X, Y, Z) //

��

0

0 // Fn,k(X, Yred, Z) // Hn,k(X, Yred, Z)

��

// (H/F)n,k(X, Yred, Z) //

��

0

0 0.

(5) The inclusion map from (22) induces a map

τ n,k
: Hn,k(X, Y, Z)→ Hn,k−1(X, Y, Z)

and it holds that τ n,k(Fn,k(X, Y, Z)) ⊂ Fn,k−1(X, Y, Z). The same map also induces

maps

τ
n,k
add : Hn,k

add(X, Y )→ Hn,k−1
add (X, Y ),

τ
n,k
inf : Hn,k

inf (X, Z)→ Hn,k−1
inf (X, Z).

Proof. We introduce complexes �
(k)′•
X |Y,Z and �

(k)′′•
X |Y,Z by setting

�
(k)′ p
X |Y,Z :=

�
p
X |Y,Zred

if p < k,

�
p
X |Y,Z if p > k,

�
(k)′′ p
X |Y,Z :=

�
p
X |Y,Z if p < k,

�
p
X |Yred,Z

if p > k.

Altogether, they fit in a diagram extending (21) in which all arrows are inclusions:

�•X |Y,Z � t

''
�
(k)′•
X |Y,Z � t

&&

* 


77

�
(k)′′•
X |Y,Z � s

%%
�•X |Y,Zred

+ �

99

� s

&&

�
(k)•
X |Y,Z � t

''

* 

β

88

�•X |Yred,Z

�
(k)•
X |Y,Zred � t

''

* 

α

77

�
(k)•
X |Yred,Z

+ �

88

�•X |Yred,Zred
.

* 


77

(25)

The map a is induced by α. The cokernel of the degree p part of β ◦α is given by

�
p
X (log(Y + Z)red)⊗

OX (−Y + Z − Zred)

OX (−Y )
for p < k,
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�
p
X (log(Y + Z)red)⊗

OX (−Yred+ Z − Zred)

OX (−Yred)
for p > k,

but since |Y | ∩ |Z | = ∅, we have

OX (−Y + Z − Zred)

OX (−Y )
∼=

OX (−Yred+ Z − Zred)

OX (−Yred)
∼=

OX (Z − Zred)

OX
.

It follows that the cokernel of β ◦α is isomorphic to that of the lower right arrow in (21),

hence acyclic by Proposition 12. We have shown that β ◦α is a quasi-isomorphism.

We define b to be the composition of Hn(β) and Hn(β ◦α)−1, showing the first half

of (1). Since we have seen that a is injective for any n, we also get Coker(a) ∼=
Hn(X,Coker(α)), which is nothing but the right-hand side of the first displayed formula

in (2). Similarly, as we have seen that b is surjective for any n, we get Coker(a) ∼= ker(b) ∼=
Hn−1(X,Coker(β)) = Hn,k

inf (X, Z), proving the first half of (2). The rest of (1) and (2) is

shown by a dual argument.

To prove (3), we consider a diagram

�
(k)•>k
X |Yred,Z

f // �(k)•X |Yred,Z
g // �(k)•<k

X |Yred,Z

�
(k)•>k
X |Y,Z

f ′ // �(k)•X |Y,Z

, �

99

�
(k)•
X |Yred,Zred

g′ //
3 S

ee

�
(k)•<k
X |Yred,Zred

.

By Proposition 9 (2), g′ induces surjections on cohomology, hence so does g. It follows

that f induces injections on cohomology, hence so does f ′. We have shown the injectivity

of i . A dual argument proves the surjectivity of p. (3) follows.

The first half of (4) is obvious. The rest is obtained by taking cohomology of the

diagram:

0 0

�
(k)•>k
X |Y,Z

�
(k)•>k
X |Y,Zred

OO

�
(k)•
X |Y,Z

�
(k)•
X |Y,Zred

OO

0 // �(k)•>k
X |Y,Z

//

OO

�
(k)•
X |Y,Z

//

OO

�
(k)•<k
X |Y,Z

// 0

0 // �(k)•>k
X |Y,Zred

//

OO

�
(k)•
X |Y,Zred

//

OO

�
(k)•<k
X |Y,Zred

// 0

0

OO

0

OO

and its dual diagram. (5) is obvious.
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Corollary 15. We have Hn,k
add(X, Y ) = Hn,k

inf (X, Z) = 0 if one of the following conditions

is satisfied:

(1) k 6 0;

(2) k < n− d + 1;

(3) k > d;

(4) k > n.

Proof. Since the sheaves OX (−Yred)/OX (−Y ) and OX (Z − Zred)/OX are supported in

a closed subvariety of dimension d − 1, (1) and (2) follow from the definition (24).

Theorem 14 (2) implies the cases (3) and (4).

4.4.

We arrive at our main definition.

Definition 16. For each integer n, we define an object

Hn(X, Y, Z) = (Hn, Hn,•
add, Hn,•

inf ,F
n,•)

of MHSM as follows. Let Hn be the mixed Hodge structure considered in §4.1. We define

two objects Hn,•
inf and Hn,•

add of Vec•C to be (Hn,k
inf (X, Z), τ n,k

inf )k and (Hn,k
add(X, Y ), τ n,k

add)k ,

respectively. For each k ∈ Z, we have

Hn,k(X, Y, Z) ∼= Hn,k(X, Yred, Z)⊕ Hn,k
add(X, Y )

∼= Hn,k(X, Y, Zred)⊕ Hn,k
inf (X, Z)

∼= Hn,k(X, Yred, Zred)⊕ Hn,k
add(X, Y )⊕ Hn,k

inf (X, Z).

∼= Hn
C⊕ Hn,k

add(X, Y )⊕ Hn,k
inf (X, Z).

Here we applied Theorem 14 (1–2) (to (X, Y, Z), (X, Yred, Z), and (X, Y, Zred)), and for

the last isomorphism, we used Proposition 9 (1). We then define Fn,k
⊂ Hn

C⊕ Hn,k
inf ⊕ Hn,k

add
to be the subspace corresponding to Fn,k(X, Y, Z) ⊂ Hn,k(X, Y, Z), using Theorem 14 (3).

Theorem 14 (4–5) implies that they satisfy conditions (1-a)–(1-d) in Definition 1.

4.5.

Let (X, Y, Z) and (X ′, Y ′, Z ′) be two triples as in the beginning of § 4. Let f : X → X ′ be

a morphism of C-schemes such that f (X) 6⊂ |Y ′| ∪ |Z ′|. If f verifies the conditions

Y 6 f ∗Y ′, Zred > ( f ∗Z ′)red, Z − Zred > f ∗(Z ′− Z ′red), (26)

then it induces a morphism f ∗ : Hn(X ′, Y ′, Z ′)→ Hn(X, Y, Z) for any n. To see this, we

first note that the first two items in (26) implies that f restricts to X \ Zred→ X ′ \ Z ′red
and to Yred→ Y ′red. Hence, we have a pull-back map f ∗ : Hn(X ′ \ Z ′red, Y ′red,Z)→
Hn(X \ Zred, Yred,Z) in MHS. We next note that (26) implies �

(k)•
X | f ∗Y ′, f ∗Z ′ ⊂ �

(k)•
X |Y,Z

for any k ∈ Z. Hence, we have a pull-back map f ∗ : Hn,k(X ′, Y ′, Z ′)→ Hn,k(X, Y, Z)
induced by the maps of complexes �

(k)•
X ′|Y ′,Z ′ → f∗�

(k)•
X | f ∗Y ′, f ∗Z ′ → f∗�

(k)•
X |Y,Z , which
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verifies f ∗(Fn,k(X ′, Y ′, Z ′)) ⊂ Fn,k(X, Y, Z). By Theorem 14 (2), it induces f ∗ :
Hn,k

add(X
′, Y ′)→ Hn,k

add(X, Y ) and f ∗ : Hn,k
inf (X

′, Z ′)→ Hn,k
inf (X, Z). These maps define the

desired morphism.

Remark 17. Composition of two morphisms satisfying (26) need not satisfy (26). Here is

an example: (SpecC,∅,∅)→ (P1,∅,∅)→ (P1, x,∅), where the first map is the immersion

to a closed point x , and the second map is given by the identity.

4.6.

As an example, we give an explicit description of H = H1(X, Y, Z) when d = 1. Write H =

(H, H•inf, H•add,F
•) so that H = H1(X \ Z , Y,Z). If k 6= 1, then we have H k

inf = H k
add = 0

and hence Hk
= HC, Fk

= Fk HC. We have

HC ∼= H1(X, [OX (−Yred)→ �1
X ⊗OX (Zred)]),

F1 HC ∼= H0(X, �1
X ⊗OX (Zred)), F2 HC = HC, F0 HC = 0,

H1
add = H0(X,OX (−Yred)/OX (−Y )) ∼= H0(X, �1

X ⊗ (OX/OX (Yred− Y ))),

H1
inf = H0(X,OX (Z − Zred)/OX ) ∼= H0(X, �1

X ⊗ (OX (Z)/OX (Zred))),

H1
= H1(X, [OX (Y )→ �1

X ⊗OX (Z)]) ∼= HC⊕ H1
add⊕ H1

inf,

F1
= H0(X, �1

X ⊗OX (Z)).

These gadgets are considered in [14, Propositions 10, 14 and Definition 13].

5. Duality

Throughout this section, let X be a connected smooth proper variety of dimension d over

C, and let Y, Z be effective divisors on X such that |Y | ∩ |Z | = ∅ and such that (Y + Z)red

is a simple normal crossing divisor. The main result of this section is the following.

Theorem 18. For every integer n ∈ Z, there exists an isomorphism in MHSM

Hn(X, Y, Z)∨ ∼= H2d−n(X, Z , Y )(d)fr,

where (−)∨ is the duality functor described in § 2.8, and (−)(d) (resp. (−)fr) is the Tate

twist (resp. free part) introduced in § 2.9 (resp. § 2.7).

5.1.

Let us first assume that Y, Z are reduced. For a C-scheme V with structural map a :
V → Spec A, let Db

c (V, A) be the bounded derived category of sheaves of A-modules

with (algebraically) constructible cohomology and DV := RHom(−, a!A) : Db
c (V, A)→

Db
c (V, A) be the Verdier duality functor, where A is Z,Q, or C. Since we have DU (AU ) =

AU (d)[2d] as U = X \ (|Y | ∪ |Z |) is smooth of dimension d, we have

DX (AX |Y,Z ) = DX (R jZ∗ j ′Y !AU ) = jZ !R j ′Y∗DU (AU ) (27)

(∗)
= R jY∗ j ′Z !AU (d)[2d] = AX |Z ,Y (d)[2d],
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where we used the notations from (12) for the maps jY , etc. (see (16) for (∗)). The induced

pairing AX |Y,Z ⊗ AX |Z ,Y → AX factors through

AX |Y,Z ⊗ AX |Z ,Y → ( jU )!AU (28)

since (AX |Y,Z )y = 0 for all y ∈ Y and (AX |Z ,X )z = 0 for all z ∈ Z (as extension by zero).

Therefore, we obtain a pairing

Hn(X \ Z , Y, A)⊗ H2d−n(X \ Y, Z , A)(d)
^
−→ H2d

c (U, A)(d) ∼= A, (29)

where the last isomorphism is the trace map. As this pairing is perfect, up to torsion

when A = Z, we obtain an isomorphism

HomA(Hn(X \ Z , Y, A), A) ∼= H2d−n(X \ Y, Z , A)(d)fr. (30)

(Here (−)fr makes no effect if A = Q or C.)

We have a canonical pairing

�•X |Y,Z ⊗�
•

X |Z ,Y →
c�•U := �

•

X (log(Y + Z)red)⊗OX (−Yred− Zred) (31)

defined by the wedge product. Since c�•U is a resolution of ( jU )!CU , we obtain a pairing

Hn(X, �•X |Y,Z )⊗ H2d−n(X, �•X |Z ,Y )
^
−→ H2d

c (U,C) ∼= C, (32)

where the last isomorphism is the trace map.

The two pairings (29) (with A = C) and (32) are compatible with respect

to the isomorphisms Hn(X \ Z , Y,C) ∼= Hn(X, �•X |Y,Z ) and H2d−n(X \ Y, Z ,C) ∼=
H2d−n(X, �•X |Z ,Y ) from Proposition 9. This follows from a commutative diagram

CX |Y,Z ⊗CX |Z ,Y //

��

( jU )!CU

��
�•X |Y,Z ⊗�

•

X |Z ,Y
// c�•U ,

where the horizontal maps are (28) and (31).

Lemma 19. The morphism (30) defines an isomorphism of mixed Hodge structures

Hn(X, Y, Z)∨
'
−→ H2d−n(X, Z , Y )(d)fr.

Proof. Since we already know that it is an isomorphism of underlying Abelian groups,

it suffices to prove that it is a morphism of MHS. (This is known when Y = ∅ or Z = ∅;
see [12].) This amounts to showing that under the pairing (29),

F p Hn(X \ Z , Y,C) and F1−p(H2d−n(X \ Z , Y,C)(d)) = Fd+1−p H2d−n(X \ Z , Y,C)

annihilate each other, and the same for

Wq Hn(X \ Z , Y,Q) and W−q−1(H2d−n(X \ Z , Y,Q)(d)) = W2d−q−1 H2d−n(X \ Z , Y,Q).

Both immediately follow from the description of the filtrations given in Lemma 10.

Remark 20. Alternatively, one can prove this lemma in the same way as (27) upon

replacing Db
c (V, A) by the category of mixed Hodge modules MHM(V,Q) [22].
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5.2.

Let C•, D• be complexes of sheaves of C-vector spaces on X . Let ∧ : C•⊗ D•→ c�•U be

a morphism of complexes. The map ∧ together with the trace map induces a morphism

Hi (X,C•)⊗C H2d−i (X, D•)(d)
∧
−→ H2d(X, c�•U )(d)

'
−→ H2d

c (U,C)(d) Tr
−→ C

that defined a canonical morphism

H2d−i (X, D•)(d)→ Hi (X,C•)∨. (33)

Note that c�d
U = �

d
X by definition.

Lemma 21. Assume that C i and Di are locally free OX -modules for all i and that C i
=

Di
= 0 if i 6∈ [0, d]. If the map ∧ induces an isomorphism C i '

−→ HomOX (D
d−i , �d

X ) for

all i , then the morphism (33) is an isomorphism for every integer i .

Proof. Let n ∈ [0, d] be the greatest integer such that Cn
6= 0. Consider the truncated

complexes C ′• = C•<n and D′• = D•>d−n so that we have the exact sequences of

complexes of sheaves of C-vector spaces on X

0→ Cn
[−n] → C•→ C ′•→ 0, 0→ D′•→ D•→ Dd−n

[n− d] → 0.

These sequences, together with the pairing ∧ and the trace map, induce a morphism of

long exact sequences

· · · // H2d−i (X, D′•)(d) //

��

H2d−i (X, D•)(d) //

��

H2d−i (X, Dd−n
[n− d])(d) //

��

· · ·

· · · // Hi (X,C ′•)∨ // Hi (X,C•)∨ // Hi (X,Cn
[−n])∨ // · · · .

Let F = Dd−n and r = 2d − i − n. Note that

H2d−i (X,Cn
[−n]) = Hr (X,HomOX (F , �d

X )) = Extr
OX
(F , �d

X )

and Hi (X, Dd−n
[n− d]) = Hd−r (X,F ). Hence, we are reduced by induction to showing

that the map

Extr
OX
(F , �d

X )→ Hd−r (X,F )∨

induced by the canonical pairing

Extr
OX
(F , �d

X )× Hd−r (X,F )→ Hd(X, �d
X )

Tr
−→ C

is an isomorphism. This is Serre duality from [24] (see also [13, Theorem 7.6]).

5.3.

Let us come back to the general assumption of Theorem 18 (that is, Y and Z may not

be reduced). Let k ∈ Z be an integer. Then we have a canonical pairing

∧ : �
(k)•
X |Y,Z ⊗C�

(d+1−k)•
X |Z ,Y →

c�•U
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that induces a morphism (for every n ∈ Z)

Hn,k(X, Y, Z)⊗CH2d−n,d+1−k(X, Z , Y )→ H2d(X, c�•U )
∼= C

and therefore via the trace map, a morphism

H2d−n,d+1−k(X, Z , Y )→ Hn,k(X, Y, Z)∨. (34)

By Lemma 21, applied with C• = �(k)•X |Y,Z and D• = �(d+1−k)•
X |Z ,Y , we see that the morphism

(34) is an isomorphism for every integer n, k ∈ Z. Theorem 14 (2) also implies that (34)

induces isomorphisms

Hn,k
add(X, Y )∨ ∼= H2d−n,d+1−k

inf (X, Y ), (35)

Hn,k
inf (X, Z)∨ ∼= H2d−n,d+1−k

add (X, Z).

To prove Theorem 18, it suffices to show the following lemma.

Lemma 22. Under the duality of (34), Fn,k(X, Y, Z) is the exact annihilator of

F2d−n,d+1−k(X, Z , Y ).

Proof. They annihilate each other for the simple reason of degrees. Thus, it suffices to

show

dimHn,k(X, Y, Z)/Fn,k(X, Y, Z) = dimF2d−n,d+1−k(X, Z , Y ).

By (2) and (6), the left-hand side is equal to

dim Hn(X \ Z , Y,C)/Fk Hn(X \ Z , Y,C)+ dim Hn,k
add(X, Y ),

while by (4) and (6), the right-hand side is equal to

dim Fd+1−k H2d−n(X \ Y, Z ,C)+ dim H2d−n,d+1−k
inf (X, Y ).

The first terms coincide by Lemma 19, and the second terms also agree since we have

the isomorphisms (35).

This completes the proof of Theorem 18.

5.4.

Let (X ′, Y ′, Z ′) be another triple as in the beginning of this section and set d ′ = dim X ′.
Let f : X → X ′ be a morphism of C-schemes such that f (X) 6⊂ |Y ′| ∪ |Z ′|. If f verifies

the conditions

Yred > ( f ∗Y ′)red, Y − Yred > f ∗(Y ′− Y ′red), Z 6 f ∗(Z ′), (36)

then by Theorem 18 and § 4.5, we obtain an induced map

f∗ : H2d−n(X, Y, Z)(d)fr→ H2d ′−n(X ′, Y ′, Z ′)(d ′)fr,

which is dual to f ∗ : Hn(X ′, Z ′, Y ′)→ Hn(X, Z , Y ).
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6. Picard and Albanese 1-motives

6.1.

Let (X, Y, Z) be as in the beginning of § 4, and let us consider the objects H1(X, Y, Z)
and H2d−1(X, Y, Z) in MHSM from Definition 16. Proposition 9 (3) and Corollary 15

show that H1(X, Y, Z)(1)fr and H2d−1(X, Y, Z)(d)fr belong to MHSM1 (see § 3.3), where

(m) denotes the Tate twists and (−)fr denotes the free part (see § 2.9 and § 2.7).

Definition 23. We define the Picard and Albanese 1-motives Pic(X, Y, Z) and

Alb(X, Y, Z) to be the Laumon 1-motive that corresponds to H1(X, Y, Z)(1)fr
and H2d−1(X, Y, Z)(d)fr, respectively, under the equivalence MHSM1 ∼=M Lau

1 from

Corollary 8.

In view of § 3.7 and (9), Theorem 18 shows that Pic(X, Y, Z) and Alb(X, Z , Y ) are dual

to each other under the Cartier duality.

6.2.

Let (X, Y, Z) and (X ′, Y ′, Z ′) be two triples as in the beginning of § 4 and put d =
dim X and d ′ = dim X ′. Let f : X → X ′ be a morphism of C-schemes such that f (X) 6⊂
|Y ′| ∪ |Z ′|. If conditions (26) are satisfied, then by § 4.5, there is an induced map f ∗ :
H1(X ′, Y ′, Z ′)(1)→ H1(X, Y, Z)(1) and hence we obtain

f ∗ : Pic(X ′, Y ′, Z ′)→ Pic(X, Y, Z).

Similarly, if conditions (36) are satisfied, then by § 5.4, there is an induced map f∗ :
H2d−1(X, Y, Z)(d)fr→ H2d ′−1(X ′, Y ′, Z ′)(d ′)fr and hence we obtain

f∗ : Alb(X, Y, Z)→ Alb(X ′, Y ′, Z ′).

6.3.

Suppose d = 1. In this case, we have Pic(X, Y, Z) = Alb(X, Y, Z) and we write it as

Jac(X, Y, Z). We give its geometric description. Note that Jac(X, Y, Z) and Jac(X, Z , Y )
are Cartier dual to each other.

In [14, Definition 25], we considered a Laumon 1-motive LM(X, Y, Z). Explicitly, this is

given as follows (see [14, §5.2]). Let XY be a proper C-curve that is obtained by collapsing

Y into a single (usually singular) point (see [25, Chapter IV, §3–4]). Let G(X, Y ) be

the generalized Jacobian of X with modulus Y in the sense of Rosenlicht–Serre [25] or,

which amounts to the same, the Picard scheme Pic0(XY ) of XY . Let Fét(X, Z) = Div0
Z (X)

be the group of degree zero (Cartier) divisors supported on Z . Define F(X, Z)inf by

Lie F(X, Z)inf = H0(X,OX (Z − Zred)/OX ). Put F(X, Z) := Fét(X, Z)× Finf(X, Z). Let

uét : Fét(X, Z)→ G(X, Y ) be the map that associates to a divisor its isomorphism class.

(We identify Z with its image in XY .) Let uinf : Finf(X, Z)→ G(X, Y ) be the map such

that Lie uinf is given by the composition of

Lie Finf(X, Z) = H0(X,OX (Z − Zred)/OX )

= H0(XY ,OXY (Z − Zred)/OXY )
(∗)
→ H1(XY ,OXY ) = Lie G(X, Y ),
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where (∗) is the connecting map with respect to the short exact sequence

0→ OXY → OXY (Z − Zred)→ OXY (Z − Zred)/OXY → 0.

Put u = uét× uinf, and define

LM(X, Y, Z) = [u : F(X, Z)→ G(X, Y )].

By [14, eq. (29)], its Deligne part [Fét(X, Z)→ G(X, Y )sa] agrees with Degline’s 1-motive

H1
m(XY \ Z)(1) from [8, 10.3.4]. Here G(X, Y )sa denotes the maximal semi-Abelian

quotient of G(X, Y ).

Proposition 24. We have LM(X, Y, Z) ∼= Jac(X, Y, Z).

Proof. Let L′ be the object of MHSM1 corresponding to LM(X, Y, Z), and set L =

(L , L•add, L•inf,G
•) := L′(−1). Let H := H1(X, Y, Z) be the object described in § 4.6 and

write H = (H, H•add, H•inf,F
•). It suffices to show that L ∼= H.

We first show that L ∼= H as mixed Hodge structures. Let us consider a commutative

diagram

Y i //

i ′ !!

X
p // XY

X \ Z

j

OO

p′
// U := XY \ Z ,

j ′

OO

in which i and i ′ are closed immersions, j and j ′ are open immersions, and p and p′ are

finite morphisms. By applying R j ′∗ to an exact sequence

0→ ZU → p′∗ZX\Z → (p′ ◦ i ′)∗ZY → 0,

we obtain

R j ′∗ZU ∼= R j ′∗Cone(p′∗ZX\Z → (p′ ◦ i ′)∗ZY )[−1]

= Cone(p∗R j∗ZX\Z → p∗i∗ZY )[−1]

= p∗ZX |Y,Z .

It follows that H1(U,Z) ∼= H1(X,ZX |Y,Z ) = H . On the other hand, we have L ∼= H1(U,Z)
by [8, 10.3.8], whence L ∼= H .

By definition, we have (see § 3.6)

H1
inf = L1

inf = H0(X,OX (Z − Zred)/OX ),

H1
add = H0(X,OX (−Yred)/OX (−Y )),

L1
add = Lie G(X, Y )add,

where G(X, Y )add denotes the additive part of G(X, Y ). It follows H1
add
∼= L1

add by [14,

Lemma 24]. In particular, we get L1 ∼= H1. Finally, we have

G1
= ker(L1

→ Lie G(X, Y ))
(∗)
∼= ker(H1

→ H1(X,OX (−Y ))) = F1,

where for (∗), we used [25, Chapter V, §10, Proposition 5]. We are done.
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The construction of LM(X, Y, Z) works over any field of characteristic zero. Thus, one

can ask the following question.

Question 25. Can Pic(X, Y, Z) and Alb(X, Y, Z) be constructed over any field of

characteristic zero when d > 1?

When Z = ∅, this has been done by Kato and Russell [15, §5] (see the next subsection)

and extended by Russell to arbitrary perfect base field [21].

6.4.

We now consider a smooth projective variety X of dimension d and an effective divisor D
on X . Kato and Russell defined in [15, §6.1] objects H1(X, D+)(1) and H2d−1(X, D−)(d)
of their category H1 (see § 3.2) and gave their explicit description in [15, §6.3, 6.4]. The
Laumon 1-motive corresponding to H2d−1(X, D−)(d) has trivial formal group part, that

is, it can be written as [0→ AlbK R(X, D)] where AlbK R(X, D) is a commutative algebraic

group, and AlbK R(X, D) is Kato–Russell’s Albanese variety of X with modulus D.

Let us denote by H1(X, D+)(1) and H2d−1(X, D−)(d) the objects in MHSM1
that correspond to H1(X, D+)(1) and H2d−1(X, D−)(d) under the equivalence from

Proposition 7. Suppose now that Dred is a simple normal crossing divisor in X . By

comparing our construction of Hn(X, Y, Z) with [15, §6.3, 6.4], we obtain

H1(X, D+)(1) ∼= H1(X, 0, D)(1)fr, H2d−1(X, D−)(d) ∼= H2d−1(X, D, 0)(d)fr.

Therefore, we obtain the following.

Proposition 26. We have Alb(X, D, 0) ∼= [0→ AlbK R(X, D)].

6.5.

Lekaus [17] has defined Laumon 1-motives Pic+a (U ) and Alb+a (U ) for an equidimensional

quasi-projective C-scheme U of dimension d such that its singular locus is proper over

C. Their associated Deligne 1-motives agree with the cohomological Picard and Albanese

1-motives Pic+(U ) and Alb+(U ) constructed by Barbieri-Viale and Srinivas [3]; hence,

they correspond to the objects H1(U,Z)(1) and H2d−1(U,Z)(d) of MHS1 under Deligne’s

equivalence M Del
1
∼=MHS1 from [8, §10]. (Lekaus has also defined Laumon 1-motives

Pic−a (U ) and Alb−a (U ) whose associated Deligne 1-motives correspond to the homology

groups of U .)

We may define objects H1(U ),H2d−1(U ) of MHSM as follows. Let H1 and H2d−1 be

the objects of MHSM1 that correspond to Pic+a (U ) and Alb+a (U ) under the equivalence
M Lau

1
∼=MHSM1 from Corollary 8. Then we define H1(U ) := H1(−1) and H2d−1(U ) :=

H2d−1(−d).

Question 27. Can the definition of Hn(U ) be extended to n 6= 1, 2d − 1?

Remark 28. The nature of Pic+a (U ) and Alb+a (U ) are rather different from our

Pic(X, Y, Z) and Alb(X, Y, Z). For instance, suppose that U is an affine irreducible curve
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and let U be a good compactification. Then the Laumon 1-motive Pic+a (U ) = Alb+a (U ) =
[Fét× Finf→ G] verifies

G = Pic0(U ), Fét = Div0
U\U

(U ), Lie Finf = H1(U ,OU ).

(In particular, Finf depends only on U as long as U is affine.) On the other hand, let

X be a smooth proper curve and let Y, Z be effective divisors with disjoint support,

and let U := XY \ Z be the curve considered in § 6.3. Then Pic(X, Y, Z) = Alb(X, Y, Z) =
Jac(X, Y, Z) is written as [Fét× F ′inf→ G] using the same Fét and G as above, but

Lie F ′inf = H0(X,OX (Z − Zred)/OX ).

7. Relation with enriched and formal Hodge structures

7.1.

Let Ṽec
•

C be the subcategory of ZopVecC (see § 2.1) formed by the objects V • from (1)

such that V k are trivial for all sufficiently small k and such that τ k
V are isomorphic for

all sufficiently large k. For an object V • of Ṽec
•

C, we denote by V∞ the projective limit

of (V k, τ k
V )k∈Z and by τ∞,kV : V∞→ V k the canonical map. For a mixed Hodge structure

H , we define an object of Ṽec
•

C by

HC/F• := (· · · → HC/Fk HC→ HC/Fk−1 HC→ · · · ),

where all maps are the projection maps. We have HC/F∞ = HC.

Recall from [6] that an enriched Hodge structure is a tuple E = (H, V •, v•, s) of a mixed
Hodge structure H , an object V • of Ṽec

•

C, a morphism v• : V •→ HC/F• of Ṽec
•

C, and

a C-linear map s : HC→ V∞ such that v∞ ◦ s = id. A morphism between two enriched

Hodge structures is a pair of morphisms of MHS and of Ṽec
•

C that is compatible with

structural maps (v•, s). The category of enriched Hodge structures is denoted by EHS.

Let EHS4 be the full subcategory of EHS consisting of objects (H, V •, v•, s) such that

vk are isomorphic for all sufficiently large k (hence, s = (v∞)−1). Recall from § 2.3 that

we have defined a subcategory MHSMadd of MHSM.

Lemma 29. The categories EHS4 and MHSMadd are equivalent.

Proof. Take an object (H, V •, v•, s) of EHS4. We define an object (H, H•add, 0,F•) of

MHSMadd by setting for each integer k

H k
add := ker(vk), Fk

:= ker(HC⊕ ker(vk)→ V k),

where the last map is defined by τ∞,kV ◦ s : HC→ V k and the inclusion map ker(vk) ↪→

V k . This yields a functor EHS4→MHSMadd. Next, take an object (H, H•add, 0,F•) of

MHSMadd. We define an object (H, V •, v•, s) of EHS4 by setting for each integer k

V k
:= (HC⊕ H k

add)/F
k, vk

: V k
→ HC/Fk HC, s := (v∞)−1,

where vk is induced by the composition of the projection maps HC⊕ H k
add→ HC→

HC/Fk HC. This yields a functor EHS4→MHSMadd. It is easy to see that these two

functors are quasi-inverse to each other.
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Remark 30. One can construct a category that contains both EHS and MHSM as follows.

Let Ṽec
•∨

C be the subcategory of ZopVecC formed by the objects V • such that V k are

trivial for all sufficiently large k and such that τ k
V are isomorphic for all sufficiently

small k. We define M̃HSM to be the category of tuples (H, H•inf, H•add,F
•) consisting

of an object (H, H•inf, H•add) of MHS× Ṽec
•

C× Ṽec
•∨

C and a linear subspace Fk of Hk
=

HC⊕ H k
inf⊕ H k

add for each k ∈ Z, subject to conditions (1-a)–(1-d) in Definition 1. Then

EHS is identified with a subcategory M̃HSMadd of M̃HSM consisting of objects such

that H•inf = 0. Note that the functor R from § 2.10 cannot be extended to M̃HSM. Note

also that Ṽec
•

C (resp. Ṽec
•∨

C ) is not Noetherian (resp. Artinian); hence, M̃HSM⊗Q is

neither Noetherian nor Artinian, while Vec•C and MHSM⊗Q (as well as MHS⊗Q) are

both Artinian and Noetherian.

7.2.

Let n be a positive integer. We write MHSn for the subcategory of MHS consisting of

mixed Hodge structures H such that Gr
p
F GrW

p+q HC = 0 unless p, q ∈ [0, n]. Denote by

EHSn the full subcategory of EHS consisting of objects E = (H, V •, v•, s) such that HC
belongs to MHSn , V k

= 0 for any k 6 0, and τ
∞,k
V are isomorphic for any k > n. Let

EHSn
4

be the intersection of EHSn and EHS4. We define a functor 4n : EHSn
→ EHSn

4

by 4n(H, V •, v•, s) = (H, V •
4
, v•
4
, id), where

V k
4
:=

V k if k 6 n

HC if k > n,
τ k

V4 :=


τ k

V if k 6 n

τ
∞,n
V ◦ s if k = n+ 1

idHC if k > n+ 1,

vk
4
:=

vk if k 6 n

idHC if k > n.

According to Mazzari [18], a formal Hodge structure of level 6 n is a tuple (E,U, u)
of an object E = (H, V •, v•, (v∞)−1) of EHSn

4
, a finite dimensional C-vector space U ,

and a C-linear map u : U → V n . The category of formal Hodge structures of level 6 n is

denoted by FHSn . We identify the subcategory of FHSn formed by objects of the form

(E, 0, 0) with EHSn
4

.

Let MHSMn
� be a full subcategory of MHSM consisting of objects H =

(H, H•add, H•inf,F
•) such that H belongs to MHSn , H k

add = 0 unless k ∈ [1, n], and H k
inf =

0 for all k 6= n. Let MHSMn
� be the full subcategory of MHSMn

� consisting of objects

H = (H, H•add, H•inf,F
•) such that the composition map Hn

inf ↪→ Hn
inf � Hn

inf/F
n
inf is the

zero map.

Lemma 31.

(1) The categories FHSn and MHSMn
� are equivalent.

(2) The categories EHSn and MHSMn
� are equivalent.
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Proof. (1) Take an object ((H, V •, v•, s),U, u) of FHSn . We define an object

(H, H•add, H•inf,F
•) of MHSMn

� by setting for each integer k

H k
add := ker(vk), H k

inf :=

U k = n

0 k 6= n,

Fk
:=

ker(HC⊕ ker(vn)⊕U → V n) k = n

ker(HC⊕ ker(vk)→ V k), k 6= n,

where the last map is defined by τ∞,kV ◦ s : HC→ V k , the inclusion map ker(vk) ↪→ V k ,

and u : U → V n . This yields a functor FHSn
→MHSMn

�. Next, take an object H =

(H, H•add, H•inf,F
•) of MHSMn

�. Let E be an enriched Hodge structure that corresponds

to Hadd = πadd(H) (see (5)) under the equivalence in Lemma 29. Then E = (H, V •, v•, s)
belongs to EHSn

4
, and we have V k

= Hk
add/F

k
add. Set U = Hn

inf. We define a linear map

u : Hn
inf→ Hn

add/F
n
add as the composition of

Hn
inf ↪→ Hn � Hn/Fn ∼=

← Hn
add/F

n
add,

where the last isomorphism is from (4). We have defined an object (E,U, u) of FHSn .

This yields a functor MHSMn
�→ FHSn . It is easy to see that these two functors are

quasi-inverse to each other, proving (1).

(2) There is a full faithful functor σn : EHSn
→ FHSn given by

E = (H, V •, v•, s) 7→ (4n(E), ker(v∞), u),

where u is the composition of the inclusion map ker(v∞) ↪→ V∞ and τ∞,nV : V∞→ V n . Its

essential image is formed by objects ((H, V •, v•, s),U, u) of FHSn such that vn
◦ u = 0.

(See [2, Proposition 4.2.3] for the case n = 1. Formal Hodge structures satisfying the

last condition are called special in [18].) Under the equivalence from the first part of the

lemma, the last condition is translated to Hn
inf→ Hn

inf/F
n
inf being the zero map by (7).

Lemma 32. Denote by ιn : FHSn
→MHSM the composition of the equivalence functor

FHSn ∼=MHSMn
� from Lemma 31 and the inclusion functor MHSMn

� ⊂MHSMn. Then,

for any objects D, D′ of FHSn, we have

Ext1
FHSn (D, D′) ∼= Ext1

MHSM(ιn D, ιn D′).

Proof. By Lemma 31, it suffices to show that MHSMn
� is a thick Abelian subcategory

of MHSM. This follows from Remark 5.

7.3.

Let n be an integer and let X be a proper irreducible variety over C of dimension d.

Bloch and Srinivas constructed an enriched Hodge structure Hn
BS(X) = (H, V •, v•, s)

as follows. (There are variants; see [6, Corollary 2.2].) Let H = Hn(X,Z) be Deligne’s

mixed Hodge structure. Take a smooth (proper) hypercovering π : X∗→ X . Then we
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have Hn(X∗, �•<k
X∗ ) = HC/Fk HC, and there is a commutative diagram

Hn(X∗,C)
∼= // Hn(X∗, �•X∗)

// Hn(X∗, �•<k
X∗ )

HC
= // Hn(X,C) s //

∼=

OO

Hn(X, �•<d+1
X ) //

v∞

OO

Hn(X, �•<k
X ).

vk

OO

We define an object Hn
BS(X) of EHSn by setting V k

:= Hn(X, �•<k
X ) if k 6 d and V k

:=

Hn(X, �•<d+1
X ) if k > d. This belongs to EHSd if n > d.

In [18, Definition 3.1], Mazzari defined a similar object Hn,k
] (X) of EHSn

4
for each

k = 1, . . . , n. Let us have a look at a special case H2d−1,d
] (X) from [18, Example 3.2],

which actually belongs to EHSd
4

and the same as 4d(H2d−1
BS (X)). We write H2d−1

4
(X) for

the corresponding object of MHSM under the equivalence from Lemma 31. By Lemma 32,

Mazzari’s result [18, Proposition 3.5] can be rewritten as follows.

Proposition 33. Let X be an irreducible proper variety over C of dimension d. Denote

by Ad(X) the Albanese variety of X in the sense of Esnault–Srinivas–Viehweg [11]. Then

there is an isomorphism

Ad(X) ∼= Ext1
MHSM(Z(−d),H2d−1

4
(X)).
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Norm. Supér. (4) 36(3) (2003), 463–477.

6. S. Bloch and V. Srinivas, Enriched Hodge structures, in Algebra, Arithmetic and
Geometry, Part I, II (Mumbai, 2000), Tata Institute of Fundamental Research Studies in
Mathematics, Volume 16, pp. 171–184 (Tata Institute of Fundamental Research, Bombay,
2002). MR 1940668.
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