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Abstract We define a notion of mixed Hodge structure with modulus that generalizes the classical
notion of mixed Hodge structure introduced by Deligne and the level one Hodge structures with additive
parts introduced by Kato and Russell in their description of Albanese varieties with modulus. With
modulus triples of any dimension, we attach mixed Hodge structures with modulus. We combine this
construction with an equivalence between the category of level one mixed Hodge structures with modulus
and the category of Laumon 1-motives to generalize Kato—Russell’s Albanese varieties with modulus to

1-motives.
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1. Introduction

1.1. Background

Unlike K-theory, classical cohomology theories, such as Betti cohomology, étale
cohomology or motivic cohomology (in particular Chow groups) are not able to
distinguish a smooth variety from its nilpotent thickenings. This inability to detect
nilpotence makes those cohomologies not the right tool to study non-homotopy invariant
phenomena. One very important situation where these kinds of phenomena occur is at
the boundary of a smooth variety. More precisely, if X is a smooth proper variety and
D is an effective Cartier divisor on X, then D can be seen as the non-reduced boundary
at infinity of the smooth variety X := X \ D. Since the works of Rosenlicht and Serre
(see [25]), it is known that the cohomology groups that admit a geometrical interpretation
in terms of Jacobian varieties or Albanese varieties do admit generalizations able to
see the non-reducedness of the boundary (unipotent groups appear in those generalized
Jacobians).

In recent years, most of the developments, following the work of Bloch-Esnault [5],
have focused on the algebraic cycle part of the story. In this work, we focus on the Hodge
theoretic counterpart of these developments.

1.2. Main results

In the present paper, we introduce a notion of mixed Hodge structure with modulus
(see Definition 1) that generalizes the classical notion of mixed Hodge structure
introduced by Deligne [7]. It is closely related to the notion of enriched Hodge structure
introduced by Bloch—Srinivas [6] and the notion of formal Hodge structure introduced by
Barbieri-Viale [1] and studied by Mazzari [18]. However, the relationship is not trivial;
see § 7. Our main results are summarized as follows:

(1) The category MHSM of mixed Hodge structures with modulus is Abelian. It
contains the usual category of mixed Hodge structures MHS as a full subcategory.
Duality and Tate twists extend to mixed Hodge structures with modulus.

(2) The category MHSM of mixed Hodge structures with modulus contains a full
subcategory MHSM; which is equivalent to the category of Laumon 1-motives
(the duality functor on mixed Hodge structures with modulus corresponding via
this equivalence to Cartier duality).

(3) Given a smooth proper variety X and two effective simple normal crossing divisors
Y, Z on X such that |Y|N|Z| = @, we associate functorially an object H" (X, Y, Z)
of MHSM for each n € Z. Its underlying mixed Hodge structure is given by the
relative cohomology H*(X\ Z, Y, Z).

(4) For (X, Y, Z) as above, if further X is equidimensional of dimension d, then we have
a duality theorem (fr denotes the free part; see §2.7):

H'(X,Y,Z2) = HM "X, Z,Y)d)g.

Our construction is closer to Kato-Russell’s category H; from [15]. It is also motivated
by the recent developments of the theory of algebraic cycles with modulus (such as
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additive Chow group [5], higher Chow groups with modulus [4], and Suslin homology
with modulus [20]), to which our theory might be considered as the Hodge theoretic
counterpart. We hope to study their relationship in a future work. We also leave as
a future problem a construction of an object of MHSM that overlays Deligne’s mixed
Hodge structure on H" (X, Z) for non-proper X.

1.3. Application to Albanese 1-motives

For a pair (X, Y) consisting of a smooth proper variety X and an effective divisor ¥ on
X, Kato and Russell constructed in [15] the Albanese variety with modulus AIbXR (X, ¥)
as a higher dimensional analogue of the generalized Jacobian variety of Rosenlicht—Serre.
Our theory yields an extension of their construction to 1-motives. This goes as follows.

Given a triple (X,Y,Z) as in (3) and (4) above, it is easy to see that the
mixed Hodge structure with modulus H2A-L(X, Y, Z)(d)g belongs to the subcategory
MHSM,. Therefore, it produces a Laumon l-motive Alb(X,Y, Z) corresponding to
H¥=1(X,Y, Z)(d)g under the equivalence (2) above. When Z =, it turns out that
Alb(X, Y, ?) = [0 — AIbXR(X, Y)]. When d = 1, Alb(X, Y, Z) agrees with the Laumon
l-motive LM(X, Y, Z) constructed in [14, Definition 25].

1.4. Organization of the paper

The definition of the mixed Hodge structures with modulus is given in § 2. Its connection
with Laumon 1-motives is studied in § 3. We construct H"(X, Y, Z) in §4 and prove the
duality in §5. In §6, we construct Albanese 1-motives. We compare our theory with the
enriched and formal Hodge structures in § 7.

2. Mixed Hodge structures with modulus

2.1.

Let Vecc be the category of finite dimensional C-vector spaces. Let Z be the category
associated with the ordered set Z and consider the category Z°?Vecc of functors Z°P —
Vecc, that is, sequences in Vecc (which may be neither injective nor surjective and may
not form a complex)

P _

sk ket k2 (1)
We denote by Vecg the strictly full subcategory of Z°?Vecc formed by the objects V*®
such that V¥ = 0 for all but finitely many elements k € Z.

We denote by MHS the category of mixed Hodge structures. For an object H of
MHS, we denote by Hz its underlying finitely generated Z-module, by W, Hg the weight
filtration on Hg := Hz ® Q, and by F*®Hc the Hodge filtration on Hc := Hz @ C.

Given an object H := (H, H3,4, H; ) in the product category MHS x Vecg. x Vecg., we
set

9 = He @ Hygy ® iy,
k. Id@fgddeafi];f cHE ﬂ-fk_l,

k .ok k—1 k . gk k—1
where 7441 Hyqq — Hyqq and 71 Hi o — H; ; are the structural maps.
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Definition 1. A mixed Hodge structure with modulus is a tuple
I = (H, Higq, Hiyp T°),

consisting of a mixed Hodge structure H, two objects H},, HS ¢ in Vecg, and for every

k € Z a linear subspace F* of 3¢ such that the following conditions are satisfied:

(1-a) k(F*) c g*-1,

(1-b) an element x € Hg is in F¥Hg if and only if there exists v € Hz];dd such that x +v €
Tk,

(1-c) H* = F*+ He + HY 5

(1-d) HY, N Fr=o0.

By abuse of terminology, we call F* the Hodge filtration on H. A morphism between
two mixed Hodge structures with modulus is a morphism of MHS x Vecg x Vecg. that
respects Hodge filtrations. The category of mixed Hodge structures with modulus is
denoted by MHSM. A mixed Hodge structure with modulus is said to be polarizable if
its underlying mixed Hodge structure is graded polarizable, that is, the graded pieces for
the weight filtration are polarizable Hodge structures.

Remark 2. The conditions (1-c¢) and (1-d) can be rewritten in a more symmetric way
(in the sense of the opposite category). Indeed, they are equivalent to requiring that the
linear map F* — H* — Hi];f is surjective and the linear map Hzl;dd — H* — Fk/F* is
injective.

Our Definition 1 is motivated by preceding works [1, 6, 15, 18] as well as the geometric
example described in §4.

2.2.
Let H = (H, H;dd’ Hi.nf’ F*) be an object of MHSM. For each integer k, put
I = He © Hy,
FEo={x e HE | x+v e FF for some v e H*, ,} = Im(F* ¢ HF - HE )
inf * inf add inf/*

This definition and condition (1-d) implies that the projection map HFK — f}ffnf restricts

to an isomorphism F* = F*

inp a0d we get a commutative diagram

0 0 (2)

| |

= k
T ——— T

} y

0— H;dd g g_alcnf 0

[ {

0— H' = H/F* = HE /T —0

inf/ ¥ inf

v v

0 0
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made of short exact sequences. It follows from this diagram and (1-c) that }C{{nf =
?{‘nf—}— Hc. Therefore, we find that
Hint := (H, 0, Hp, T5p) (3)
is an object of MHSM. We obtain a functor
Tinf : MHSM — MHSMiyg,  7ine(H) = Hiny,

where MHSMjyf is the full subcategory of MHSM consisting of (H, H2y,, H3 ¢ F°) such
that H3,, is trivial. This is a left adjoint of the inclusion functor it : MHSMjur —
MHSM.

2.3.

Similarly, for an object H = (H, H?® F*) of MHSM, put

add’ mf’
k o k k . ak k _ k k k jak
3k = He@ HY o F = F N3 = ker(3E 1y € HE — 3F/F%),

This definition and condition (1-c) implies that the inclusion map SJ-C’; ad = 3k induces
an isomorphism J—Cg q d/ff"k 4 = HK/F* and we get a commutative diagram

/ / .
k k k
0 Jadd J’ Hyg—>0

| ! I

k k k
00— — I —H ;=0

} J

add/ add — = 3k

v |

0 0
made of short exact sequences. It follows from (1-d) that H ;‘ ’J" dq =0, and
Hada = (H, Hygq, 0, Fpg9) ()
is an object of MHSM. We obtain a functor
Tadd : MHSM — MHSM,qd,  7add(H) = Hadd.

where MHSM 44 is the full subcategory of MHSM consisting of (H, H3;y, Hyp F°) such
that H . is trivial. This is a right adjoint of the inclusion functor iyqq : MHSMyqq —
MHSM.

2.4.
We identify MHS with the intersection of MHSM;, s and MHSM,,qq in MHSM. Then mj,¢
and m,qq restrict to

70 MHSM,qq — MHS, 72, : MHSM;,; — MHS,
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and they are left and right adjoints of the inclusion functors
i) o MHS — MHS,qq, i0;4: MHS — MHS; s,

respectively (see (8)). Let 3 = (H, H3y4, Hp F*) be an object of MHSM. We have

ngddrrinff}{ = rri?ﬂfrraddf}( = (H,0,0, F*Hc). We may apply the results of §2.3 and §2.2
to Hinr and Hoqq, respectively, yielding commutative diagrams

0 0 0 0
! ! b
0 F*He g . H: . —0 gk 4 —— FFHe

| y [ | |

k k k k
0 Hc g Hyy =0 0= Hyyy > Hadd He 0

| \ I \ |

Hc/F*He = 3¢k /5¢ 0= Hr = 3t /F g = He/F*He -0

inf/ ~ inf

| I I v

0 0 0 0

(6)
made of short exact sequences. In particular, there exists a unique C-linear map H¥/F* —
Hc/F¥Hc which makes the following diagram

fHk/ ?k :H{(nf/ ‘rf{(nf (7)

S

k k k jpk
Hoqa/Taqa — He/F He

commute (the vertical maps are induced by inclusions and the horizontal ones by
projections).

2.5.

As the following proposition shows, the category of mixed Hodge structures with modulus
is Abelian.

Proposition 3.

(1) Any morphism f : H — H' in MHSM s strict with respect to the Hodge filtration,
that is, f(F%) = F*N f(H*) for any k where H = (H, H2y s H g, %) and 3=
(H', H' 4. H'{p. F7°).
(2) The category MHSM is an Abelian category.
Proof. The category MHSM is an additive category that has kernels and cokernels. Let

Im f be the kernel of the canonical morphism H' — Coker f and Coim f the cokernel of
the canonical morphism ker f — H. Note that Coim f is the tuple

(Hz/ Ker fz, Hyyq/ Ker foyq. Hayg/ Ker fire, F°/(F°* N Ker f°),
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while Im f is the tuple
(Im fz, Im f24. Im fire, I NIm f°).
Recall that for every object 3 in MHSM, we have a (functorial) exact sequence and
an isomorphism from (4) and (6):

0— Fyy—F—H,—0 > FH

inf

By applying these to both Coim f and Im f, we get a commutative diagram with exact
rows

0 — F*Hg/(F*He NKer fo) — F*/F* NKer f* —— HE ./ Ker ff . ——0

| | |

0 —— FYH.NIm fc 540 f ) ———Im fi ——=0.

Thus, (1) is reduced to showing that the left vertical map is an isomorphism. This follows
from the fact that MHS is an Abelian category (that is, every morphism of mixed Hodge
structures is strict with respect to the Hodge filtration). (2) follows from (1). O

2.6.

Let us consider functors

Madd : MHSMaqq — Vecl,  wadd(H, Hygq, 0, F54q) = Hygq
Wint : MHSMins — Vecg,  wint(H, 0, HY ¢, 7 ) = Hy .

Jadd : Vect > MHSMadqq  jadd(V*®) = (0, V*,0,0),

Jinf : Vecé — MHSM;,¢ Jjint(V*®) = (0,0, V*, V*®).

Then pinf is a left adjoint of jiur and paqq is a right adjoint of j,qq. We summarize the
functors we have introduced so far:

ladd MHSM iinf (8)
Jadd MHSM,qq o 0 MHSMiy Jinf
Vecs, <~ Tine > MHS Tadd S

Remark 4.

(1) Let H be an object in MHSM. We write Hins = ijnfmins(H) and Haqq = iaddTadd
(30); see (3) and (5). Let us also abbreviate Hinf = iinfjinflinfTinf(H), Haqd =
iadd Jadd MaddTadd (F0), and H = 70 maqa (H) = 72, 7ine(H0). Various (co)unit maps
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make a commutative diagram in MHSM

H
:Hadd X inf
Hyad H Hint,

which produces the following (functorial) short exact sequences
0— Hagqa > H—> Hing >0, 0— Hygq > H —> Hing— 0

and
0— Hygq > Hoqqa > H—>0, 0— H — Hipf > Hing — 0.

(2) Any morphism f : H — H in MHSM is strict with respect to the filtration
Hadd C Haqd CH, Hlgq CHiogq CH',

that is, f(FONH, g = f(Haad)s fEONH gq = f(Hada)-

2.7.

Recall that a mixed Hodge structure H is called free if Hz is free as a Z-module. In
this case, it makes sense to define WyHz := WyHg N Hz. For general H, we define its
free part by Hyy == (Hz/Hz, Tor» WeHg, F*Hc). A mixed Hodge structure with modulus

=(H,H add’ HS f, 3"') is called free if H is. For general H, we define its free part by

g{fr = (Hg, H add’ mf’ 9j.)

2.8.

Let H be a mixed Hodge structure. The dual mixed Hodge structure HY =
(H), W, H(\!f, F*HY) of H is defined by
Hy = Homg(H,Z), WiHg = (Ho/W-1-+Hp)", F'HY = (Hc/F'™"Hc),

where Vv on the right-hand side denotes linear dual (see [7, 1.1.6], [12, 1.6.2]). Let H =
(H, H3y4> Hi g F°) be an object in MHSM. We define the dual FHY of H as the tuple

= ),
Here HY is the dual of the mixed Hodge structure H and for every k € Z,
Hygy = (Hy Y. Hyf o= (HIGDY, 570 = @Y,

It is straightforward to see that the tuple Y belongs to MHSM. By definition, " is
always free, and we have

= Hp)", (O = Ky (9)
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2.9.

Let m be an integer. Recall that the Tate twist H(m) of a mixed Hodge structure H is
defined by

H(m)z = Qmi)" Hz, WiH(m)q = 2ri)" Wiyan Hg, F*H(m)c = F**" He.

Let H = (H, H}4y, H 5 F°) be an object in MHSM. We define the Tate twist H(m) =

(H(m), H(m)? 4. H(m)? ., F(m)®) € MHSM of H by

inf>

H(m)agq = HAT,  Hm) e = HY™,  Fom)l = g4,

inf = “finf >

2.10.
Let mod(Z) be the category of finitely generated Abelian groups. There is a faithful exact
functor

R : MHSM — mod(Z) x Vecc,

L] L] L k k
R(H, add’ ““inf> F) = (HZ’ @ (Hadd ©® Hinf)) :
keZ

Remark 5.

(1) A sequence in MHSM is exact if and only if its image by R is exact in mod(Z) x
Vecc.

(2) Since He]fdd = Hi];lf =0 for almost all k, for any object H of MHSM, we have a
canonical isomorphism R(HY) = R(H)Y, where, on the right-hand side, v denotes
the dual functor given by (A, V)Y = (Homgz(A, Z), Homc(V, C)).

3. Laumon I-motives

In [15, §4.1], Kato and Russell have defined a category H; which provides a Hodge
theoretic description of the category //llLau of Laumon 1-motives over C that extends
Deligne’s description [8, §10] of the category (//llDel of Deligne 1-motives over C in terms
of the full subcategory MHS; of MHS (see § 3.1 for its definition and § 3.6 for Laumon
1-motives). In this section, we define a subcategory of MHSM; of MHSM which is
equivalent to Hi, yielding an equivalence between MHSM; and //llLa“ (Corollary 8).
This will be used for our construction of Picard and Albanese 1-motives in §6. There is
another Hodge theoretic description of //llLau, due to Barbieri-Viale [1], in terms of the
category FHSI;lr of torsion-free formal Hodge structures of level < 1. As is explained in
[15, §4.6], two categories H; and FHS{r are equivalent.

3.1.

Let MHS; be the full subcategory of MHS formed by the free mixed Hodge structures
of Hodge type

{(0, 0)5 (_17 0)7 (0, _1)7 (_17 _1))}
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such that Gr", is polarizable (see [8, Construction (10.1.3)]). Recall that such a mixed
Hodge structure is simply a free Abelian group of finite rank Hz with two filtrations (on
Hp := Q®gz Hz and Hc = C®q Hg)
0=W_3Hg S W_2Hg € W_1Hgp € WyHgp = Hg
0= F'"Hc € FOHe € F~'He = He

such that FOGrSVH(c = Gr(v)VH(C (that is, FOHc+W_1Hc = He), FOW_yHc =0 and
Gﬂvl Hz is a polarizable pure Hodge structure of weight —1. (See §2.7 for WeHz.)

3.2.

Let H; be the Abelian category defined by Kato and Russell in [15, §4.1]. Recall that an
object in H; is a pair (Hz, Hy) consisting of a free Abelian group of finite rank Hy and
a C-vector space Hy together with

(a) two two-step filtrations (called weight filtrations)

0=W_3Hg S W_Hg C W_1Hgp € WyHgp = Hyg
0=W_3sHy C W_oHy C W_1Hy C WoHy = Hy

on Hp := Q®gz Hz and Hy;
(b) a one-step filtration (called Hodge filtration)

0=F'H, < F°Hy € F"'Hy = Hy;

(c) two C-linear maps a:Hc:=C®qgHg — Hy and b:Hy — Hc which are
compatible with the weight filtrations (that is, @ maps Wi Hc := C®qg WiHg to
Wi Hy and b maps Wi Hy to Wi Hc) and such that boa = 1d;

(d) a splitting of the weight filtration on Ker(b : Hy — Hg), that is, a decomposition
of Ker(b) as the direct sum of the graded pieces of the filtration induced by the
given weight filtration on Hy;

such that the following conditions are satisfied:
(i) the map a induces an isomorphism Grﬁ/] He — Gﬂ/1 Hy and the filtration on
GI'EVI Hy induced by the Hodge filtration on Hy induces via this isomorphism a

polarizable pure Hodge structure of weight —1 on GrW] Hy, (here Hz is endowed
with the filtration induced by the weight filtration on Hg);

(i) FOGr) Hy = Gr)y Hy and FOW_,Hy = 0.

Let us observe that one can attach to an object in H; a canonical (graded polarizable)
mixed Hodge structure. To see this, set

Hgdd = Ker(W_2Hy — W_,Hp), (10)
Hi%f = Ker(GrgVHV — GrgVHC).

The condition (i) implies Ker(GrK’1 Hy — Grrg/1 Hc) = 0 and thus the given splitting of
the weight filtration on Ker(Hy — Hg) provides a direct sum decomposition Hy = Hc @
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Hgdd &) Hi%f in which the weight filtration on Hy becomes

WoHy := Hy,
W_iHy := W_1 Hc ® Hy,g,
W_2Hy := W2 He @ Hpyy,
W_3Hy := 0.

One can then consider the one-step filtration
0= F'Hec € F'He € F'He = He, (11)

where FOHe is defined as the linear subspace of Hc formed by the elements such that
there exists v € Hz?dd for which x +v is contained in FOHy. The conditions (i) and (ii)
have the following consequences.

Lemma 6. We have FOHc+ W_He = He and FOW_,Hc = 0. Moreover, the map a
induces an isomorphism FOGIKV1 Hc = FOGr?1 Hy.

In particular, this attaches to an object in H; a canonical (graded polarizable) mixed
Hodge structure of type {(0,0), (—1,0), (0, —1), (—1, —1)} with Hodge filtration given
by (11).

3.3.

Let us denote by MHSM, the strictly full subcategory of MHSM formed by the mixed
Hodge structures with modulus (H, H3 4, H » F°) such that the underlying mixed Hodge
structure H belongs to MHS| and such that Hik][1f = Hgdd =0 if kK # 0. The proof of the
following proposition will be given in §3.4 and § 3.5.

Proposition 7. The categories MHSM| and H1 are equivalent.

3.4.

Let us explain the construction of a functor from H; to MHSM;. Let (Hz, Hy) together
with the data described in §3.2 be an object in the category H;. We associate with it
the tuple H = (H, H;dd’ Hi;lf, F*). Here H is the mixed Hodge structure constructed in
§3.2; Hyq and HJ ¢ are the sequences defined by He]:dd = Hi];f =0if k # 0 and (10); the
Hodge filtration J is defined by 79 := FOHy via the canonical direct sum decomposition
Hy = Hc® Hzgdd ® Hi%f =: HO given by the splitting of the weight filtration (see §3.2)
and F* = F¥He if k # 0. All conditions are obviously satisfied unless k = 0. In that case,
(1-a) is obvious and (1-b) is a consequence of the definition of the Hodge filtration in

§3.2. Condition (1-c) is implied by F°Gry Hy = Gry Hy and (1-d) by FOW_sHy = 0.

3.5.

We now construct a functor from MHSM; to the category H;. It is easy to see that
this functor and the one constructed in §3.4 are quasi-inverse one to another proving
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Proposition 7. Given an object H = (H, H;;dd’ Hi.nf’ F*) in MHSM, we set

Hy :=H" = Hc @ HDyy ® Hy;

and
F7]HV = Hy, WoHy = Hy,
0 . 31‘0 e 0
FHy = 9%, W_iHy = W_1Hc ® H ;.
F'Hy :=0, W_oHy := W_oHec @ HYy .
W_3Hy := 0.

The map a: Ho — Hy is given by the inclusion and the map b: Hy — Hg by the
projection. The weight filtration on Ker(b) = Hg 1 ® Hi?lf is given by

0= W_3Ker(b) € W_p Ker(h) = W_; Ker(b) = H ,, Wy Ker(b) = Ker(b)

a

and the splitting is the obvious one. We have to check that the two conditions (i) and
(ii) are satisfied.

We start with (ii). Note that (see (4)) FOW_,Hy is a linear subspace of Hfgdd
and its image under the projection onto Hc is contained in FOW_,Hc which is zero
(because of the restriction on the Hodge type of H). Since the projection maps ?gdd
isomorphically onto FOHc by (1-b) and (1-d), we have FOW_Hy = 0. To show that
FOGr(‘)}VHV = GrSVHV, we have to show that Hy = ¥+ W_, Hc +H§dd' We know that
FOGrgVH(C = Gr(v)VHC (because of the restriction on the Hodge type of H); hence,
Hc = FOHe + W_ 1 He. By (1-b), we also have FOH¢ C 90+H§dd. Hence, using (1-c),
we obtain

Hy =3+ He + HYyy € 5+ FOHe + W_ 1 He + HYyq € F°+ W_1He + H)yy
and therefore we have Hy = ¥+ W_| Hc + Ha?dd as desired.

To prove (i), note that (see (4)) the restriction of b to the linear subspace W_;Hy
is induced by the projection 9—[2 44 —> Hc which maps ff'g qq 1somorphically onto F OHc.
Therefore, b maps FOW_; Hy isomorphically onto FOW_;He. Since FOW_,Hy = 0 and
FOW_,Hc = 0, we have a commutative square

FOW_1Hy“—— W_1Hy/W_yHy = GtV Hy
FOW_yHc“—— W_ Hc/W_2Hc = Gt Hc

in which the vertical morphisms are the isomorphisms induced by b. This shows that the
filtration on GrKV1 Hy deduced from the Hodge filtration on Hy is the Hodge filtration on

GI‘YI Hyz which is thus a polarizable pure Hodge structure of weight —1.

3.6.

We briefly recall the category ./ lLau of Laumon 1-motives over C in the sense of [16]. Let
7 be the category of fppf sheaves [26, Example 2.32] on the category of affine C-schemes.
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We write Lie(F) := ker(F(C[e]/(¢?)) — F(C)) for F € .#. We consider the category .%
of connected commutative algebraic groups over C as a full subcategory of .. Recall
that any G € .%) is an extension of an Abelian variety G,p, by a linear algebraic group
G1in, and we have a decomposition Glip = Gyl X Gadd With Gy = G, and Gaqq = G
for some r, s € Z>¢. Denote by “_1 the category of formal groups F over C such that
F = Fg X Fipr with Fg =77 and Fips = G for some r, s € Z>o. We also consider .%_
as a full subcategory of .7.

Recall that an object of //llLau is a two-term complex [F — G] in . where F € .¥_
and G € 9.

It is proved in [15, Theorem 4.1] that H; is equivalent to //llLau. Therefore,
Proposition 7 implies the following corollary.

Corollary 8. The categories MHSM| and ///EJau are equivalent.

Explicit description of the equivalence functors H; — //llLau and //llLau — H; are
given in [15, §4.3 and §4.4]. By composing them with those in §3.4 and §3.5, we can
explicitly describe the equivalence functors in Corollary 8 as follows.

The functor MHSM;| — //E“au sends an object H = (H, H3 44, Hy e F°) of MHSM, to
the Laumon 1-motive [Fg X Fing — G] described as follows. First, set

G = W_ 1 HZ\W_1 He ® H,4/F° 0 (W_1 He & Hly,),
Fs = Gry Hz, Lie Fipg = HY.

Next, we describe the map Fg — G. Consider a commutative diagram

Gry Hy — H/(W_1Hc & H dd)<—3’0/3’°ﬂ(W_1H(cEBH )

| T T

Hy——= H =Hc® H) ®H), oF9.

(See §3.2 (ii) for the bijectivity of the upper right arrow.) Given x € Fg = Gro Hy, we
choose its lift y € Hz and an element z of F° having the same image as x in H/(W_1Hc &
Hz?dd)' Then y —z € H belongs to W_ \Hc @ H° adq and its class in G is independent of
choices of y and z. Therefore, we get a well-defined map Fg — G. Finally, we describe the
map Finf — G, or what amounts to the same, Lie Fj,y — Lie G. Consider a commutative
diagram

HO

inf

——— H/(W_iHe ® H®, ) ~——— F9/F0 N\ (W_i He ® H, )

| |

H) = H =Hc®H & H, 0F0,

Given x € Fipr = Hglf, we choose an element z of F° having the same image as x in

H/(W_1Hc & H dd) Then x — z € H belongs to W_; Hc & H ad and its class in Lie G =
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W_1Hc & Hgdd/?{) N(W_1Hc ® H;)dd) is independent of choices of z. Therefore, we get a
well-defined map Lie Fi,y — Lie G.

In the other direction, the functor //llLa“ — MHSM; sends a Laumon 1-motive
[ugs X tinf : Fer X Fing = G] to the object H = (H, H3y4, HS ¢, ) of MHSM, described
as follows. Let Hyz be the fiber product of ug : Fg — G and exp : Lie G — G, which
comes equipped with « : Hy — Fg and B : Hy — Lie G. We set

WoHz = Hyz O W_1Hz = ker(a) = ker(exp) = H1(G, Z)
2 W_Hy = ker(H(G, Z) — H(Gan, Z))
2 W_3Hz =0,

where G,}, is the maximal Abelian quotient of G. Put Hi%f := Lie Fjp¢ and Hrgdd =
Lie G g4, where G,qq is the additive part of G. Finally, we set

F0 .= ker(Hc & Hgdd ® Hi%f — Lie G),

where Hg — Lie G is induced by g, Hz?dd = Lie G,qq — Lie G is the inclusion map, and
Hi%f = Lie Fijnf — Lie G is induced by ujn¢s. The Hodge filtration F*®Hc is determined by
the condition Definition 1 (1-b).

3.7.

Let us consider the Cartier duality functor (//llLau)"p — ,//llLau. The corresponding
functor H?p — H; admits a simple description as Hom(—, Z)(1) [15, 4.1]. By rewriting
it through §3.4 and § 3.5, we find that the functor

MHSM[? — MHSM;, H > H"(1)

gives a duality that is compatible with the Cartier duality via the equivalence in
Corollary 8. Here Vv and (1) denotes the dual and Tate twist (see §2.8 and §2.9).

4. Cohomology of a variety with modulus

In this section, X is a connected smooth proper variety of dimension d over C, and
Y, Z are effective divisors on X such that |Y|N|Z| =@ and such that (Y 4+ Z).eq is a
simple normal crossing divisor. Put U = X \ (YU Z) and let us consider the following
commutative diagram

U (12)

Jz

X\Z v X\Y
i

Pl

)

iy iz
where all the maps are embeddings. The aim of this section is to construct an object
H"(X,Y, Z) of MHSM for each integer n.
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4.1.

In this subsection, we assume that Y and Z are reduced. We consider the relative

cohomology
H":=H"(X\Z,Y,Z) = H"(X, Zx|v.z) (13)

for each integer n, where Zy|y,z 1= R(jz)*(jg,)!ZU. It carries a mixed Hodge structure as
in [8, 8.3.8] or [19, Proposition 5.46]. By applying R(jz)« to an exact sequence

0 — (jyhZy — Zx\z — (iy)«Zy — 0,
we get a canonical distinguished triangle
[+1]

Zx\yy,z = R(jz)s«lx\z — (iy)xZy —> (14)
and therefore a long exact sequence
cov—> H" > H'"(X\Z,Z) > H'(Y,Z) > H"T' — ... (15)

The assumption |Y|N|Z| = @ immediately implies
Zxy.z = R(jz)«UyhZy = Gy R(jz)«Ly. (16)
By applying (jy): to a distinguished triangle

. . . [+1]
(i)« (Ri) ' Zx\y — Zx\y — (Rjy)sZy ——>,

we get a canonical distinguished triangle

. . . [+1]
(i2)«(Riz)'Zx — UrhZx\y — Zxyy,z —>— . (17)

(Note that (iz)s = (iz); and (Ri’Z)!ZX\y = (Riz)'Zx by excision.) Therefore, we get a
long exact sequence
o= HYX,Z) — H'(X\Y,Z) > H" — HJ"'' (X, Z) — - (18)

Both (15) and (18) are long exact sequence of MHS (see [12]).
We set
Qy.z = Qylog(Y +2)) @ Ox (=Y,

where Q‘; (log(Y + Z)) is the sheaf on the analytic site of X of p-forms with logarithmic
poles along (Y + Z). It defines a subcomplex Q;“Y’Z of (jz)*Qg(\Z. For the definition of

Qfﬂy , in the case where Y or Z is non-reduced, we refer to §4.2.
We recall the construction of the mixed Hodge structure on H” and show that its
Hodge filtration can be described in terms of the complex Q% y.z as follows.

Proposition 9. Suppose that Y and Z are reduced, and let n be an integer.
(1) There is a canonical isomorphism
HE = H"(X, Qyyy.2)- (19)
For every integer p, the induced map
H"(X, Q57 ,) — HE
is injective, and its image agrees with the Hodge filtration FPHR C HG.
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(2) Let p,q be integers. If GerGrlv,VwH(c is non-trivial, then we have p,q € [0, n]. If

further n > d, then we have p,q € [n—d, d].

Note that the isomorphism (19) is the one induced by the canonical quasi-isomorphism
Cxjv.z > Q%)y.z (see, for example, [9, Remarques 4.2.2 (c)]).

The mixed Hodge structure on H" will be constructed from the cohomological
mixed Hodge complex K = (Kz, Kg, K¢) on X (in the sense of [8, 8.1.6]), and K is
constructed as a cone of K — KY where K and KY are cohomological mixed complexes
that produce the mixed Hodge structures on H*(X \ Z,Z) and H"(Y, Z), respectively.
Therefore, we first need to recall the construction of K4 and K.

We recall from [8, 8.1.8] the description of K# and use, to do so, the notation for
filtered derived categories from [8, 7.1.1]. Let KZZ := Rjz+«Zx\z € DT (X, Z). Define a
filtered object (Ké, W) e DYF(X,Q) by

K§ = Rjz:Qx\z. W K§ :=r1<,K§.

where 7¢, denotes the canonical truncation. Define a bifiltered object (K Z W, F ) €
DT F,(X,C) by

KZ = Q%(ogZ), FPKE:=QY " (ogZ), W,KE:=W,Q%(og2),

0 (g <0
Wy Qy(ogZ) = 1 QF " AQ%(log2) (0<q<p)
Qf (log Z) (p < q).

We have an obvious isomorphism KZZ ROQ=E Ké as well as an isomorphism (K%, W) ®
C = (K4, W) deduced from the Poincaré lemma. The triple K% = (KZ, Ké, Ké) together
with these isomorphisms is a cohomological mixed Hodge complex that produces the
mixed Hodge structure on H" (X \ Z, Z) (see [8, 8.1.7 and 8.1.9 (ii)]).

Next we recall from [10, 3.2.4.2] the description of K. Let I be the set of irreducible
components of Y. For each k > 0, we write Y¥! for the disjoint union of Nye; T, where
J ranges over subsets of I with cardinality k + 1. Write 7% : YI¥I — X for the canonical
map. Fixing an ordering on I, we obtain a complex Qy) and a double complex Q’;M of
sheaves on X:

Qyia = [7PQy — #NQym — -+ = H»Eq](@y[ql — -],

Q*;[,] = [niO]Q’;[O] — nE]Q’;m — .. niq]Q’;[q] — -]
Let K} :=iy,Zy € DT (X, Z). Define a filtered object (K}, W) € DTF(X, Q) by
K(é = Qy[o] WqK(é = 0'2—41((57

where o _, denotes the brutal truncation. Define a bifiltered object (K YW, F ) €
DTF,(X,C) by

K& = Tot(Qn),  FPKE :=Tot(0ssp Q). WeKE = Tot(0ez—g Q1)
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We have a Mayer—Vietoris isomorphism K% RQ= Ké as well as an isomorphism
(KXY, W)®@C = (KX, W) deduced from the Poincaré lemma. The triple KY =
(KY, Ké, K{) together with these isomorphisms is a cohomological mixed Hodge complex
that produces the mixed Hodge structure on H" (Y, Z).

We construct a morphism K4 — KY of cohomological mixed Hodge complexes. By
applying Rjzs« to the restriction map Zx\z — i}, Zy, we get

K% = Rjz:Zx\z — Rjzsiy, Ly = ivsZy = KJ.
Similarly, we have
K& =Rj j [0] =K}
G = RjzxQx\z = iy« Qyi1 > 7.7 Qyie1 = Ko,
i*
K¢ = @y (log 2)>mlQ% ) —> Tot(Qh.) = K.

They respect filtrations and define a morphism ¢ : K% — K. We then apply the mixed
cone construction [19, 3.22] [10, 3.3.24] to obtain K := Cone(¢)[—1] which produces the
mixed Hodge structure on H" = H*(X \ Z, Y, Z). Proposition 9 (1), (2) is a consequence
of [8, 8.1.9 (v)] and Lemma 10, while Proposition 9 (3) follows from [8, 8.2.4] and (15).

Lemma 10. Set Q?qy,z = Qf{(IOg(Y‘i‘Z))@ﬁx(—Y). Define a bifiltered object
(K¢ W', F'y € DTF,(X,C) by

I ° P! . 0>17 I °
K(C T QX|Y,Z7 F K(C T QXTY,Z’ W‘IK(C T WqQX\Y,Z’

0 (g <-=p)
WoSyy.z = Q;{i A 10g V) © Ox (1) (-p<q<0)
T ek AQfog(y +2) @ Ox(-Y) (0<q < p)
L.z (p<q).

Then there is a canonical map K(/C — K¢ inducing an isomorphism (K, W', F') =
(Kc, W, F) in DT F>,(X, C).

Proof. The map exists since the composition of K(E: — K(g — K(g is the zero map. Let us
verify that K — Kc is a quasi-isomorphism. This is a local statement; thus, it suffices
to show it over X \Y and X \ Z. The assertion becomes obvious over X\ Y, and over
X\ Z, it follows from a standard fact

Cone(Cx — iy+Cy)[—1] = jynCx\y = Q%(ogY) ® Ox(-Y).
A direct calculation shows that the filtrations are transformed as described. O
Remark 11. Let a : X — Spec(C) be the structural morphism. By [22, 23], the mixed

Hodge structure on H" can also be described using the six operations in the theory of
mixed Hodge modules as the nth cohomology group of the object agc(jz)*%(j)/,)?{@gf

of the derived category DbMHSé of the Abelian category MHS& of graded polarizable
mixed Q-Hodge structures.
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4.2,

We now drop the assumption that ¥ and Z are reduced. In this subsection, we provide
an alternative description of Hg. We define

QY .z = QUog(Y + Z)red) ® Ox (=Y +Z — Zred) C jz+ -
In particular, we have (recall that d = dim X)
Qyz=Ox(—Y+Z—Zeq) and Qfy, = Q% ® Ox(Yrea —Y + 2).

They form a subcomplex Q;(|Y 4 of jZ*Q}\Z. When Y and Z are reduced, this complex
agrees with the one considered in the previous subsection and is consistent with the
notation in Lemma 10. For another pair of effective divisors Y’ and Z’ on X, we have

Q%y,z CQyrz Y >2Y and Z< Z' (20)

In particular, we have a commutative diagram of complexes in which all arrows are
inclusion maps:

Q3(|Yz (21)

Xere\ lered z

Xered Zred”

The following proposition plays an important role in this work.

Proposition 12. All maps in (21) are quasi-isomorphisms. Consequently, we have
HE = H'(X, Q%,.,)
for all x € {Y, Yieq}, ¥ €{Z, Zreq} and n. (See Proposition 9 (1).)

Proof. The assertion for the left lower arrow is proved in [4, Lemma 6.1] (under a weaker
assumption that ¥ and Z have no common irreducible component). The same proof
works for the other arrows without any change. However, we include a brief account here
because of its importance in our work.

By induction, it suffices to show the following;:

(1) For any irreducible component T of ¥, Q% %iv.z/ 2y 41,7 18 acyclic.
(2) For any irreducible component T of Z, Q% X\v.z+1 / QX|Y » is acyclic.

In what follows, we outline the proof of (2) by adapting that of [4, Lemma 6.2] (which is
precisely (1)). The complex in question can be rewritten as

Q9 17 it Q! % t Q2 0 I
X7, 247 ®OT = %1y, 7247 ® U1 — %1y, 747 ® O — -+~
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We have an exact sequence

P P Resp poi
0— Qx(IOg((Y +ZDred —T)) — Qx(log(y + Z)red) — wr 0,

where a); = Q’T’(log(Zred —T)|r) and Resg is the residue map. By taking tensor product
with Ox (=Y +Z — Z.cq+ T) ® Or, we obtain another exact sequence

0> Ox(—Y+Z—Zyea+T) Q) — Qg’(l””@m

Res;T p—1
ST OX(~Y +Z = Zyoed + T) @™ — 0,

by which we regard Ox (=Y +Z —Zeq+T) ® a)i as a subsheaf of Q‘;lY’ZJrT ® Or. Then
a direct computation shows

p—1 P p+l_up
dy oRes; r +Res; 7 odp = e~1d9§|xz”®m,

where e = —ordy(Z). We get a homotopy operator that proves (2). O

4.3.

For any integers k and p, we define

p .
qWr . | Sivze Hp <k
Xv.z = _, .
U yeaz P 2K

QY (log(Y + Z)rea) ® Ox(—Y) if p <k,
QI;( (og(Y + Z)red) ® Ox(—Yred + Z — Zred) if p > k.

For each k, they form a subcomplex Qg?l);z of jZ*Q}\Z. We have a sequence of inclusion
maps
_ od+De (d)e (De 0O _
Q%Y. Zvea = xpv.z C Rxjyz C  C Qyjyz C Ry z = yy,ea.20 (22)

which fits the middle row of the diagram (21). We have ng‘);red’ Zood = X (Voo Zooy fOT

any k. Similarly to (20), we have for another pair of effective divisors ¥’ and Z’ on X and
for any k
k)e k)e .
¥y, c iy, Y=Y andz<Z. (23)
Remark 13. Some cases of the complex Qg?l); 7 have been used in the literature. When
d=1,Q%)} , =[0x(~Y) > Q) ® Ox(Z)] has been used in [14]. When k = d and Z = #,

Qg?\);,(/) agrees with the complex S} used in [15].

For integers n and k, we define

HM(X. Y. Z) = H"(X, Q%) ). (24)
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i, 2= o
G/ (X, Y, Z) = H"(X, Q).
- Ox(=Yred)
H"E X,Y):=H" 1 X, Q< (loe Y Ox(“hed) )
Ox(Z—-7Z
Hi’lll’f(x’ Z) = Hn_l <X, Q;fk(log Zred) & %) .

By definition, we have ngl);%k =Q§§|);ifz, ng‘);}k =Qg’;|);<zlied, and, therefore,

FrR(X, Y, Z) = F"(X, Yyeds Z), (H/F)"K(X, Y, Z) = (H/F)"M(X, Y, Zyea).

Theorem 14. Let n and k be integers.
(1) Let a and b’ be the maps induced by the inclusion maps from (23):

LT T Ty

HK(X, Y, Zred) I (X, Y, Z) FH (X, Yeeds 2).
\i/ \‘a/ .....
Then there are canonical maps b and a’ such that boa = id and b’ oad’ = id.

(2) We have canonical isomorphisms

. Ox(Z—-Z
Coker(a) = Hyif (X, 7) = H" (X Q37" log Z,eq) @ ZXE~Zred) > fed)) ,
X

Ox(=Yred)
ker(h) = H™  (x.v) = H" [ X, Q% (log . X Tred] )
er(b) a4 Y) < .Sy (log Yred) ® Ox(—Y)

a
(3) The sequence
0= F KX, Y, Z) - HK(X, v, Z) L5 (H/PX, Y, Z) > 0
is exact. Hereafter, we regard F*F(X, Y, Z) as a subspace of H"K(X, Y, Z).
(4) We have
a(T"M(X, Y, Zreq)) € FT*H(X, Y, 2),
b'(F"HX, Y, 2)) = T (X, Yred, Z).

(Note, however, that a’ and b do not preserve F"X.) Moreover, there are
commutative diagrams with exact rows and columns

0 0
H"(X, Z) H"(X, Z)

! !

0—= KX, ¥, Z) —= H"K(X, Y. Z) —= (H/F/" (X, Y. Z) —= 0

! fa I

0 — T (X, Y, Zyeq) = H" (X, Y, Zyeq) = (FH/F)" (X, Y, Zyea) =0

! !

0 O’
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and
0 0
Hoja (X, ¥) === H}33(X, ¥)

| v

0 —= "X, Y. Z) —= H"N(X., Y, Z) — (H/T)"(X. ¥, 2) —0
I W v

0 — F"5(X, Yred, Z) = H" (X, Yyred, Z) = (H/F)" (X, Yred, Z) = O

| |

0 0.

(5) The inclusion map from (22) induces a map

ok H kXL Y, Z) - HYNXL Y, Z2)

and it holds that T"*(F**(X,Y, Z)) c F"*~ (X, Y, Z). The same map also induces

maps
k k k—1

Tl HS (XL Y) — HSTNXL Y,
nk . gynk n,k—1

T © Hinf X,Z2) — Hinf (X, 2).

Proof. We introduce complexes Qg?l);z and Qg?l);'z by setting

p : p :
QXIY,Zred if p <k, Q(k)”p . QX|Y,Z if p <k,

p . ’ P .
QX|Y,Z if p >k, QXeredsZ if p>k.

Altogether, they fit in a diagram extending (21) in which all arrows are inclusions:

Q;(|Y,Z \ (25)

(k)'e / (k)"e

QX|Y,z QXIY,Z
(k)e
Q;(\Y,Zrc wa,z\ Q;qymd,z
/ /
Q(k)o (k)e
leﬁzred leredsz
Q;(lyredvzred '

The map a is induced by . The cokernel of the degree p part of Bow is given by

ﬁX(_Y +Z—Zred)

for p <k,
Ox(—Y) P

Q[;( (log(Y + Z)red) ®
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ﬁX(_Yred +Z- Zred)
ﬁX(_Yred)

QY (10g(Y + Z)red) ® for p > k,

but since |Y|N|Z| = @, we have

Ox(=Y+Z—Zreq) ~ Ox(=Yved + Z — Zyeq) ~ Ox(Z = Zred)
Ox(—Y) Ox(—Yred) ox

It follows that the cokernel of 8 o« is isomorphic to that of the lower right arrow in (21),
hence acyclic by Proposition 12. We have shown that fooa is a quasi-isomorphism.
We define b to be the composition of H"(B) and H"(Boa)~ !, showing the first half
of (1). Since we have seen that a is injective for any n, we also get Coker(a) =
H" (X, Coker()), which is nothing but the right-hand side of the first displayed formula
in (2). Similarly, as we have seen that b is surjective for any n, we get Coker(a) = ker(b) =
H"~ (X, Coker(B)) = Hi”n’é‘(X, Z), proving the first half of (2). The rest of (1) and (2) is
shown by a dual argument.
To prove (3), we consider a diagram

(k)e=k f (k)e 4 (kye<k
XlYreaZ 7 X Vea.z T X Yyeq.Z

ST TN N

ek [ (k)e (ke g (k)e<k
QX‘Y,Z QX‘Y,Z QXIYredered S-ZX‘Yredered‘

By Proposition 9 (2), g’ induces surjections on cohomology, hence so does g. It follows
that f induces injections on cohomology, hence so does f’. We have shown the injectivity
of i. A dual argument proves the surjectivity of p. (3) follows.

The first half of (4) is obvious. The rest is obtained by taking cohomology of the

diagram:
0 0
Mok (D)
XY Zpeq XIY.Zpeq
(k)ok (k)e (kyo<k
0 > Qxyz Qxiy.z 2xiv.z =0
(k)ok (k)e (kye<k
0= Uy Zes — " Xi¥ziea 7 Xir2ea 0
0 0
and its dual diagram. (5) is obvious. O
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Corollary 15. We have H;(’ikd(X, Y) = Hi';l’f(X, Z) =0 if one of the following conditions
15 satisﬁed:

(1) k
(2) k<n—d+1;
(3) k > d;
(4) k > n.
Proof. Since the sheaves Ox(—Yoq)/Ox(=Y) and Ox(Z — Zieq)/Ox are supported in

a closed subvariety of dimension d —1, (1) and (2) follow from the definition (24).
Theorem 14 (2) implies the cases (3) and (4). O

4.4.

We arrive at our main definition.

Definition 16. For each integer n, we define an object

H'(X,Y, Z)=(H", H30, HZ, ")

inf
of MHSM as follows. Let H" be the mixed Hodge structure considered in §4 1. We deﬁne
two objects H.'? and H.}% of Vecg to be (HI’;?(X, 7), rﬁl’f)k and (H dd(X Y), Tadd)k’
respectively. For each k € Z, we have
HK(X, Y, Z) = HK(X, Yyed, Z) @ HISH(X, Y)
= H (XY, Zred) © Hy, f<x z)
= HK(X, Yeeds Zred) ® HI (X, V) @ HIE (X, 2).
k
= HE @ H" (X, V)@ H (X, 7).

Here we applied Theorem 14 (1-2) (to (X, Y, Z), (X, Yied, Z), and (X, Y, Zred)) and for
the last isomorphism, we used Proposition 9 (1). We then define 3% Hl®H "o H add
to be the subspace corresponding to F%(X, Y, Z) ¢ H"K(X, Y, Z), using Theorem 14 (3).
Theorem 14 (4-5) implies that they satisfy conditions (1-a)—(1-d) in Definition 1.

4.5.

Let (X, Y, Z) and (X', Y’, Z") be two triples as in the beginning of §4. Let f : X — X’ be
a morphism of C-schemes such that f(X) ¢ |Y'|U|Z’|. If f verifies the conditions

Y < f*Y/, red (f Z )reda Z— Zred > f*(Z/ - Z;ed)a (26)

then it induces a morphism f* : H" (X', Y’, Z') — H"(X, Y, Z) for any n. To see this, we
first note that the first two items in (26) implies that f restricts to X \ Zyeq — X"\ Z] 4
and to Yieq — Y]re . Hence, we have a pull-back map f*: H”(X/\Zred, red’Z) —
. . k)e
H"(X\ Zyed, Yred» Z) in MHS. We next note that (26) implies Qle*Y,’f*Z, C Qg(l)Y,Z
for any k € Z. Hence, we have a pull-back map f*:H" (X', Y, Z") - H"K(X,Y, Z)
induced by the maps of complexes Qg?’)l.Y’,Z’ — f*Qg(l;*Y, Frz = f*QgﬂY #» which
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verifies f*(F"K(X',Y',Z')) Cc F"*(X,Y,Z). By Theorem 14 (2), it induces f*:
HZ&Z(X’, Y — H:&Z(X, Y) and f*: Hi’;é‘(X’, Z" — Hi’;’é‘(X, 7). These maps define the
desired morphism.

Remark 17. Composition of two morphisms satisfying (26) need not satisfy (26). Here is
an example: (SpecC, @, ¥) — (]P’l, @, — (]P’l, x, ¥), where the first map is the immersion
to a closed point x, and the second map is given by the identity.

4.6.
As an example, we give an explicit description of H = H!(X, Y, Z) when d = 1. Write H =
(H, H® Hz:dd’ F*) so that H = Hl(X\Z, Y,Z). If k # 1, then we have Hi];f = H:I;dd =0

and hlerice H* = He, F*% = FKHe. We have
He = H'(X, [Ox(~Yred) > Q% ® Ox(Zred))),
F'He = H(X, Q4 ® Ox(Z1eq)), F?Hc = He, F°He =0,
Hyyq = H(X, Ox(~Yyed)/Ox(—=Y)) = HO(X, Q% ® (Ox/Ox (Yrea — Y))),
Hy o= HY(X, Ox(Z — Z1ea)/ Ox) = H*(X, Q% ® (0x(2)/ Ox (Z1eq))),
H' = H' (X, [0x(Y) - @k @ Ox(2)) = Hco H! @ H.
' = HOX, @ ® 0x(2)).

These gadgets are considered in [14, Propositions 10, 14 and Definition 13].

5. Duality

Throughout this section, let X be a connected smooth proper variety of dimension d over
C, and let Y, Z be effective divisors on X such that |Y|N|Z| = @ and such that (Y + Z)eq
is a simple normal crossing divisor. The main result of this section is the following.

Theorem 18. For every integer n € 7, there exists an isomorphism in MHSM
H'(X, Y, 2)" =X, Z, V) (@)

where (=)V is the duality functor described in § 2.8, and (=)(d) (resp. (=) ) is the Tate
twist (resp. free part) introduced in §2.9 (resp. §2.7).

5.1.

Let us first assume that Y, Z are reduced. For a C-scheme V with structural map a :
V — Spec A, let DE(V, A) be the bounded derived category of sheaves of A-modules
with (algebraically) constructible cohomology and Dy := RHom(—, a'A) : DE(V, A) —
DE’(V, A) be the Verdier duality functor, where A is Z, Q, or C. Since we have Dy (Ay) =
Ay(d)[2d] as U = X \ (Y|U|Z]) is smooth of dimension d, we have

Dx(Axyy,z) = Dx(Rjz+jyAv) = jz1Rjy,Du(Av) (27)

D RiyeipAu(@2d] = Ax|z.y(d)[2d),
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where we used the notations from (12) for the maps jy, etc. (see (16) for (x)). The induced
pairing Ax|y,z ® Ax|z,y — Ax factors through

Axyy,z ® Axiz.y = (ju)iAu (28)

since (Ax|y,z)y =0 for all y € Y and (Ax|z x); =0 for all z € Z (as extension by zero).
Therefore, we obtain a pairing

H"(X\Z,Y,A)@ H¥ (X \Y, Z, A)(d) = H**(U, A)d) = A, (29)

where the last isomorphism is the trace map. As this pairing is perfect, up to torsion
when A = 7Z, we obtain an isomorphism

Homu (H"(X\ Z,Y, A), A) = H*™"(X\ Y, Z, A)(d)y,. (30)

(Here (—)g makes no effect if A =Q or C.)
We have a canonical pairing

Q;qy’z ® Q;qz,y — Q= Q% 10g(Y + Z)red) ® Ox(—Yred — Zred) (31)
defined by the wedge product. Since 2}, is a resolution of (jy)Cy, we obtain a pairing
H"(X, Q%y.2) ® H* (X, Q%2.y) — HX(U.C)=C, (32)

where the last isomorphism is the trace map.
The two pairings (29) (with A=C) and (32) are compatible with respect
to the isomorphisms H™(X\Z,Y,C) = H"(X,Q%.,) and H¥-"(X\Y,Z, C)=

H¥—" (X, Q;q 4 y) from Proposition 9. This follows from a commutative diagram

Cxyy,z®Cxz,y — (ju)Cy

| |

L] ° C L]
Q¥ v,z ® Rz y —

where the horizontal maps are (28) and (31).

Lemma 19. The morphism (30) defines an isomorphism of mized Hodge structures
H'X.Y,Z)" S H¥ (X, Z,V)(d)g.

Proof. Since we already know that it is an isomorphism of underlying Abelian groups,
it suffices to prove that it is a morphism of MHS. (This is known when ¥ =@ or Z = 0;
see [12].) This amounts to showing that under the pairing (29),

FPH"(X\Z,Y,C) and F'"P(H?**"(X\ Z,Y,C)(d)) = FIt'"PH*"(X\ Z,Y,C)
annihilate each other, and the same for
W H"(X\Z,Y,Q) and Wy ((H* 7" (X\ Z, Y, Q)(d)) = Waa—q-1 H** (X \ Z, Y, Q).
Both immediately follow from the description of the filtrations given in Lemma 10. [

Remark 20. Alternatively, one can prove this lemma in the same way as (27) upon
replacing DE’(V, A) by the category of mixed Hodge modules MHM(V, Q) [22].
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5.2.

Let C*®, D*® be complexes of sheaves of C-vector spaces on X. Let A : C*® D*®* — “Qyp; be
a morphism of complexes. The map A together with the trace map induces a morphism

H (X, C*) ®c B2 (X, D*)(d) > B (X,°Q})(d) > HX (U, O)d) > C
that defined a canonical morphism
H*~/(X, D*)(d) — H' (X, C*)". (33)
Note that Q¢ = Q4 by definition.
Lemma 21. Assume that C' and D' are locally free Ox-modules for all i and that C' =

D' =0ifi €[0,d]. If the map A induces an isomorphism C' = Hom g, (D4, Q‘)i() for
all i, then the morphism (33) is an isomorphism for every integer i.

Proof. Let n € [0, d] be the greatest integer such that C" # 0. Consider the truncated
complexes C’* = C*<" and D'* = D*>?%" so that we have the exact sequences of
complexes of sheaves of C-vector spaces on X

0—> C'[-n] > C*—>C"*—>0, 0— D*— D*— D' "[n—d]— 0.

These sequences, together with the pairing A and the trace map, induce a morphism of
long exact sequences

- —H*7(X, D'*)(d) — H*7 (X, D*)(d) — H* "/ (X, D"[n — d)(d) — - --
o — s H(X,C*)Y —=H(X,C)Y — = H (X, C"[-n])Y ——— .
Let Z = D" and r = 2d — i — n. Note that
H (X, C"[—n]) = H' (X, Hom g, (F, Q%)) = Extl; (F, Q%)

and H' (X, D"[n —d]) = H" (X, .Z). Hence, we are reduced by induction to showing
that the map
Extl, (F,Q%) — H' (X, #)"

induced by the canonical pairing
T
Extly (F, Q) x H" (X, 7) - HY(X, Q%) = C

is an isomorphism. This is Serre duality from [24] (see also [13, Theorem 7.6]). O

5.3.

Let us come back to the general assumption of Theorem 18 (that is, ¥ and Z may not
be reduced). Let k € Z be an integer. Then we have a canonical pairing

. oke (d+1—k)e .
A Qxyz®cyzy = Q
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that induces a morphism (for every n € Z)
H" (X, Y, Z2) @c HM ™+ 1k(x 7, v) - H*(X,°Q}) = C
and therefore via the trace map, a morphism
H-mdtl=k(x 7 y) > HK(X, Y, Z)". (34)

By Lemma 21, applied with C* = Qg?l);z and D® = Q%E};k”, we see that the morphism
(34) is an isomorphism for every integer n, k € Z. Theorem 14 (2) also implies that (34)

induces isomorphisms

k ~ rpy2d—n,d+1—k

HIG (X, Y)Y = G5, (35)
n,k V o~ py2d—n,d+1—k

H"(X,Z)Y = H2Y] (X, Z).

To prove Theorem 18, it suffices to show the following lemma.

Lemma 22. Under the duality of (34), F"K(X,Y,Z) is the exact anmihilator of
:Ter—n,d-H—k(X’ Z,Y).

Proof. They annihilate each other for the simple reason of degrees. Thus, it suffices to
show
dimH" (X, Y, Z)/F" (X, Y, Z) = dim FH "4+ 1-k(x 7 v).

By (2) and (6), the left-hand side is equal to

dim H"(X\ Z, Y, C)/FFH" (X \ Z, ¥, C) +dim H (X, Y),
while by (4) and (6), the right-hand side is equal to

dim FOHIF g2 (X \ Y, Z, ©) +dim H25 TR X, Y).

The first terms coincide by Lemma 19, and the second terms also agree since we have
the isomorphisms (35). O

This completes the proof of Theorem 18.

5.4.

Let (X', Y’, Z') be another triple as in the beginning of this section and set d’ = dim X’.
Let f: X — X’ be a morphism of C-schemes such that f(X) ¢ |Y'|U|Z’|. If f verifies
the conditions

Yied 2 (f*Y/)red7 Y —Yied 2 f*(Y/_Yr/ed)» Z< f*(Z/)a (36)
then by Theorem 18 and §4.5, we obtain an induced map
fo UMK Y, D@ — IO Y 2

which is dual to f*: H"(X',Z",Y") — H" (X, Z,Y).
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6. Picard and Albanese l-motives

6.1.

Let (X, Y, Z) be as in the beginning of §4, and let us consider the objects H!' (X, Y, Z)
and H??~1(X, Y, Z) in MHSM from Definition 16. Proposition 9 (3) and Corollary 15
show that 7! (X, Y, Z)(1)g and F??~1(X, ¥, Z)(d)s, belong to MHSM; (see §3.3), where
(m) denotes the Tate twists and (—)g denotes the free part (see §2.9 and §2.7).

Definition 23. We define the Picard and Albanese I1-motives Pic(X,Y,Z) and
Alb(X,Y,Z) to be the Laumon I-motive that corresponds to H'(X,Y, Z)(1)g
and H2V(X, Y, Z)(d)s, respectively, under the equivalence MHSM, ’E///lLau from
Corollary 8.

In view of § 3.7 and (9), Theorem 18 shows that Pic(X, Y, Z) and Alb(X, Z, Y) are dual
to each other under the Cartier duality.

6.2.

Let (X,Y,Z) and (X’,Y’,Z’) be two triples as in the beginning of §4 and put d =
dimX and d’ = dimX’. Let f: X — X’ be a morphism of C-schemes such that f(X) ¢
|Y'|U|Z'|. If conditions (26) are satisfied, then by §4.5, there is an induced map f*:
HYX', Y, Z)(1) - H' (X, Y, Z)(1) and hence we obtain

f*:Pie(X',Y', Z') — Pic(X, Y, Z).

Similarly, if conditions (36) are satisfied, then by §5.4, there is an induced map f; :
HU-V(X, Y, Z)(d)g — H2=U(X', Y, Z')(d)s, and hence we obtain

fit AIb(X, Y, Z) - AIb(X', Y, Z)).

6.3.

Suppose d = 1. In this case, we have Pic(X,Y, Z) = Alb(X, Y, Z) and we write it as
Jac(X, Y, Z). We give its geometric description. Note that Jac(X, Y, Z) and Jac(X, Z,Y)
are Cartier dual to each other.

In [14, Definition 25], we considered a Laumon 1-motive LM(X, ¥, Z). Explicitly, this is
given as follows (see [14, §5.2]). Let Xy be a proper C-curve that is obtained by collapsing
Y into a single (usually singular) point (see [25, Chapter IV, §3-4]). Let G(X,Y) be
the generalized Jacobian of X with modulus Y in the sense of Rosenlicht—Serre [25] or,
which amounts to the same, the Picard scheme @O(Xy) of Xy. Let Fee (X, Z) = Div% (X)
be the group of degree zero (Cartier) divisors supported on Z. Define F(X, Z)int by
Lie F(X, Z)int = HO(X, Ox(Z — Zyeq)/Ox). Put F(X, Z) := Fs(X, Z) x Fint(X, Z). Let
ugt © Fgr (X, Z) = G(X,Y) be the map that associates to a divisor its isomorphism class.
(We identify Z with its image in Xy.) Let ujnf : Fing(X, Z) — G(X, Y) be the map such
that Lie uj,f is given by the composition of

Lie Fipp(X, Z) = HY(X, Ox(Z — Z1ed)/ Ox)
= HY(Xy, Oy, (Z — Zred)/ Ox,) 3 H'(Xy. Ox,) = Lie G(X. Y),
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where () is the connecting map with respect to the short exact sequence
0— Ox, - Oxy(Z—Zyoq) > Oxy(Z —Z1eq)/Oxy, — 0.
Put u = ugt X uinf, and define
LM(X,Y,Z)=[u: F(X,Z) > G(X,Y)].

By [14, eq. (29)], its Deligne part [Fg (X, Z) — G (X, Y)sal agrees with Degline’s 1-motive
HY(Xy\ Z)(1) from [8, 10.3.4]. Here G(X,Y)sa denotes the maximal semi-Abelian
quotient of G(X, Y).

Proposition 24. We have LM(X, Y, Z) = Jac(X, Y, Z).

Proof. Let £’ be the object of MHSM; corresponding to LM(X,Y, Z), and set £ =
(L, L;dd’ Li.nf’ G®) :=L/(—1). Let H := J—CI(X, Y, Z) be the object described in §4.6 and
write H = (H, H;;dd’ Hi.nf’ F°). It suffices to show that £ = K.

We first show that L = H as mixed Hodge structures. Let us consider a commutative
diagram

P Xy

NP

X\Z—=U:=Xy\Z,
p

in which i and i’ are closed immersions, j and j’ are open immersions, and p and p’ are
finite morphisms. By applying Rj, to an exact sequence

0— ZU — p;ZX\Z — (p/oi/)*ZY — 0,
we obtain
Rj,Zy = Rj,Cone(p,Zx\z — (p' 0i")sZy)[—1]
= COHG(P*RJ‘*ZX\Z — pyisxZy)[—1]
= p«lix|v,Z-

It follows that H'(U, Z) = H'(X, Zxy.z) = H. On the other hand, we have L = H!(U, Z)
by [8, 10.3.8], whence L = H.
By definition, we have (see §3.6)

Hilnf = Lilnf = HO(X’ ﬁX(Z - Zred)/ﬁX)v
Hlyq = HOX, Ox(~Yyeq)/ Ox (—Y)),
Ll4q =LieG(X,Y)dd.

where G (X, Y)aqq denotes the additive part of G(X, Y). It follows H;dd = L;dd by [14,

Lemma 24]. In particular, we get L' =K' Finally, we have

(%)
G' = ker(£' — LieG(X,Y)) = ker(K' — H (X, Ox(=Y))) = T,

where for (x), we used [25, Chapter V, §10, Proposition 5]. We are done. O
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The construction of LM(X, Y, Z) works over any field of characteristic zero. Thus, one
can ask the following question.

Question 25. Can Pic(X,Y,Z) and Alb(X,Y,Z) be constructed over any field of
characteristic zero when d > 17

When Z = ¢, this has been done by Kato and Russell [15, §5] (see the next subsection)
and extended by Russell to arbitrary perfect base field [21].

6.4.

We now consider a smooth projective variety X of dimension d and an effective divisor D
on X. Kato and Russell defined in [15, §6.1] objects H!(X, D;)(1) and H**~'(X, D_)(d)
of their category H; (see §3.2) and gave their explicit description in [15, §6.3, 6.4]. The
Laumon 1-motive corresponding to H??~1(X, D_)(d) has trivial formal group part, that
is, it can be written as [0 — AIbXR(X, D)] where AIbXR(X, D) is a commutative algebraic
group, and AIbX®(X, D) is Kato-Russell’s Albanese variety of X with modulus D.

Let us denote by H'(X,D;)(1) and H2?~1(X, D_)(d) the objects in MHSM,
that correspond to H'(X, D,)(1) and H*~1(X, D_)(d) under the equivalence from
Proposition 7. Suppose now that D..q is a simple normal crossing divisor in X. By
comparing our construction of H"(X, Y, Z) with [15, §6.3, 6.4], we obtain

HU(X, D)) ZH'(X,0,D)(Dg, HX X, D_)(d) = H¥ (X, D,0)(d)g.

Therefore, we obtain the following.
Proposition 26. We have Alb(X, D, 0) = [0 — AIbXR(X, D)].

6.5.

Lekaus [17] has defined Laumon 1-motives Pic} (U) and Alb, (U) for an equidimensional
quasi-projective C-scheme U of dimension d such that its singular locus is proper over
C. Their associated Deligne 1-motives agree with the cohomological Picard and Albanese
l-motives Pic™(U) and Alb™(U) constructed by Barbieri-Viale and Srinivas [3]; hence,
they correspond to the objects H' (U, Z)(1) and H**~1(U, Z)(d) of MHS; under Deligne’s
equivalence //11)‘31 = MHS; from [8, §10]. (Lekaus has also defined Laumon I-motives
Pic, (U) and Alb, (U) whose associated Deligne 1-motives correspond to the homology
groups of U.)

We may define objects H'(U), H2¢~1(U) of MHSM as follows. Let H! and H??~! be
the objects of MHSM; that correspond to Pic} (U) and Alb} (U) under the equivalence
A = MHSM; from Corollary 8. Then we define ! (U) := H'(~1) and H*~'(U) :=
g_CZd—l (—d)

Question 27. Can the definition of H"(U) be extended to n # 1,2d — 17

Remark 28. The nature of Pic;,"(U ) and Albj(U ) are rather different from our
Pic(X, Y, Z) and Alb(X, Y, Z). For instance, suppose that U is an affine irreducible curve
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and let U be a good compactification. Then the Laumon 1-motive PicI(U ) = Alb;’(U ) =
[Fgt X Fing — G] verifies

G =Pic’(U). Fe = Divy, ;). Lie Fint = H'(U. Op).

(In particular, Fi,¢ depends only on U as long as U is affine.) On the other hand, let
X be a smooth proper curve and let Y, Z be effective divisors with disjoint support,
and let U := Xy \ Z be the curve considered in §6.3. Then Pic(X, Y, Z) = Alb(X, Y, Z) =
Jac(X, Y, Z) is written as [Fg X Fi’nf — G] using the same Fg and G as above, but

Lie F{,¢ = H(X, Ox(Z — Zred)/ Ox).

7. Relation with enriched and formal Hodge structures

7.1.

Let \f’\eJcE: be the subcategory of Z°Vecc (see §2.1) formed by the objects V* from (1)
such that V* are trivial for all sufficiently small k and such that r{j are isomorphic for
all sufficiently large k. For an object V* of Vec(.c, we denote by V' the projective limit

go’k : V*° — V* the canonical map. For a mixed Hodge structure

of (V¥, t‘lﬁ)kez and by t
H, we define an object of Vec(zj by

Hc/F® = (--- — Hc/FYHe — He/F*"'He — ---),

where all maps are the projection maps. We have Hc/F*® = Hc.

Recall from [6] that an enriched Hodge structure is a tuple E = (H, V*, v®, s) of a mixed
Hodge structure H, an object V* of \’/73/(:&7 a morphism v® : V®* — Hg/F*® of \’/Zcé, and
a C-linear map s : Hc — V' such that v® os = id. A morphism between two enriched
Hodge structures is a pair of morphisms of MHS and of \ffgc?c that is compatible with
structural maps (v®, s). The category of enriched Hodge structures is denoted by EHS.
Let EHSA be the full subcategory of EHS consisting of objects (H, V*®, v®,s) such that
vk are isomorphic for all sufficiently large k (hence, s = (v®)~!). Recall from §2.3 that
we have defined a subcategory MHSM, 4q of MHSM.

Lemma 29. The categories EHSA and MHSM,qq are equivalent.
Proof. Take an object (H, V*,v®,s) of EHSA. We define an object (H, H;;dd*o’ F°) of
MHSM,qq by setting for each integer k

HE o= ker(Wb),  F* = ker(Hc @ ker(v") — V),

where the last map is defined by r‘io Kos Hc — V¥ and the inclusion map ker(vk) <
VK. This yields a functor EHSA — MHSM, 4. Next, take an object (H, H2.4,0,3%) of
MHSM, qq. We define an object (H, V*, v°®,s) of EHSA by setting for each integer k

vk = (Hc® HY )/F*, o vE - He/FRHE, 5= ™),

where v is induced by the composition of the projection maps HC@Hgdd — Hc —

Hc/F¥Hc. This yields a functor EHSA — MHSM,4q. It is easy to see that these two
functors are quasi-inverse to each other. O
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Remark 30. One can construct a category that contains both EHS and MHSM as follows.
Let \7;;03 be the subcategory of Z°?Vecc formed by the objects V*® such that V¥ are
trivial for all sufﬁciently large k and such that rv are isomorphic for all sufficiently
small k. We define MHSM to be the category of tuples (H,H
of an object (H, H ¢, H2yy) of MHS x Vec(c X VecC and a linear subspace F* of H¥ =
Hc & H o ® H* 2qq for each k € Z, subject to conditions (1-a)-(1-d) in Definition 1. Then
EHS is identified with a subcategory MHSM,qq of MHSM consisting of objects such
that HS .= 0. Note that the functor R from §2.10 cannot be extended to MHSM. Note
also that VE‘% (resp. @g) is not Noetherian (resp. Artinian); hence, m&;@ is

neither Noetherian nor Artinian, while Vec. and MHSM ® Q (as well as MHS ® Q) are
both Artinian and Noetherian.

H;dd’ F*) consisting

mf’

7.2.

Let n be a positive integer. We write MHS" for the subcategory of MHS consisting of
mixed Hodge structures H such that Grererrq Hc =0 unless p, g € [0, n]. Denote by
EHS" the full subcategory of EHS consisting of objects E = (H, V*, v®, s) such that Hg
belongs to MHS", V¥ =0 for any k <0, and t&o‘k are isomorphic for any k > n. Let
EHS’, be the intersection of EHS" and EHSA. We define a functor A, : EHS" — EHS’,
by An(H, V®,v®,5) = (H, V3, v3,id), where

4 ifk <n
‘ vE ifk<n ‘ v ik <n
Vp = Ty, =1 os ifk=n+1 Vyi=
He ifk >n, idg, ifk>n.
idge ifk>n+1,

According to Mazzari [18] a formal Hodge structure of level < n is a tuple (E, U, u)
of an object E = (H, V*,v*, (v*°)~"!) of EHS" "\, a finite dimensional C-vector space U,
and a C-linear map u : U — V". The category of formal Hodge structures of level < n is
denoted by FHS". We identify the subcategory of FHS" formed by objects of the form
(E,0,0) with EHS',.

Let MHSM{; be a full subcategory of MHSM consisting of objects H =
(H,H add’ 1nf’ 3"‘) such that H belongs to MHS" H add = = 0 unless k € [1, n], and HF =

inf —
0 for all k ;é n. Let MHSMZ be the full subcategory of MHSMF, consisting of objects
= (H, H}y4, H3 ¢, F°) such that the composition map H;} ; < J—( ' HI/TT s the
Zero map.
Lemma 31.

(1) The categories FHS" and MHSM[ are equivalent.
(2) The categories EHS" and MHSMY are equivalent.
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Proof. () Take an object ((H,V®,v®s),U,u) of FHS". We define an object
(H, H}y4, Hyy ¢, 7°) of MHSM by setting for each integer k

U k=n
0 k#n,

HY,y o= ker(Wh), HE

a inf *

ker(Hc @ ker@W) U — V") k=mn
ker(He & ker(v¥) — V¥), k #n,

where the last map is defined by t‘cjo’k os: Hc — V¥, the inclusion map ker(vf) — V¥,
and u: U — V" This yields a functor FHS" — MHSMp,. Next, take an object H =
(H, H}44, Hyy ¢, F°) of MHSME. Let E be an enriched Hodge structure that corresponds
to Haqq = nadd(ﬂ-f) (see (5)) under the equivalence in Lemma 29. Then E = (H, V*, v°, s)
belongs to EHS’,, and we have vk = kdd/ggdd' Set U = H/ ;. We define a linear map
u:H— g{add/ dq as the composition of

Hl’l

o B0 BT S I /T,

where the last isomorphism is from (4). We have defined an object (E, U, u) of FHS".
This yields a functor MHSM{ — FHS". It is easy to see that these two functors are
quasi-inverse to each other, proving (1).

(2) There is a full faithful functor o, : EHS" — FHS" given by
= (H’ V’? U.v S) i d (AH(E)v ker(UOO)’ u)a

where u is the composition of the inclusion map ker(v>°) < V> and I‘C;O’” 1V - VT Its
essential image is formed by objects ((H, V*,v®,s), U, u) of FHS" such that v" ou = 0.
(See [2, Proposition 4.2.3] for the case n = 1. Formal Hodge structures satisfying the
last condition are called special in [18].) Under the equivalence from the first part of the
lemma, the last condition is translated to H} ; — 3 /7 . being the zero map by (7). O
Lemma 32. Denote by t, : FHS" — MHSM the composition of the equivalence functor
FHS" = MHSM{, from Lemma 31 and the inclusion functor MHSM{, C MHSM". Then,
for any objects D, D' of FHS", we have

Extpgg (D, D) = Extygan D, ta D).
Proof. By Lemma 31, it suffices to show that MHSMp is a thick Abelian subcategory
of MHSM. This follows from Remark 5. O

7.3.

Let n be an integer and let X be a proper irreducible variety over C of dimension d.
Bloch and Srinivas constructed an enriched Hodge structure Hé’S(X) =(H,V*, v, s)
as follows. (There are variants; see [6, Corollary 2.2].) Let H = H"(X,Z) be Deligne’s
mixed Hodge structure. Take a smooth (proper) hypercovering 7 : X, — X. Then we
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have H"(X,, Q;(jk) = Hc/F¥Hg, and there is a commutative diagram

H"(Xy, C) — == H"(X,. Q%) — H"(X., 255

He —> H"(X,C) — = H"(X, Q") —= H"(X, 25°™).

We define an object Hgg(X) of EHS" by setting V¥ := H"(X, Q;fk) if k <dand V¥ :=
H"(X, Q;f’”l) if k > d. This belongs to EHS? if n > d.

In [18, Definition 3.1], Mazzari defined a similar object Hﬁ"’k(X) of EHS', for each
k=1,...,n. Let us have a look at a special case Huzd_l’d(X) from [18, Example 3.2,

which actually belongs to EHSdA and the same as Ad(HéfSFl (X)). We write ﬂ-CZAd*1 (X) for
the corresponding object of MHSM under the equivalence from Lemma 31. By Lemma 32,
Mazzari’s result [18, Proposition 3.5] can be rewritten as follows.

Proposition 33. Let X be an irreducible proper variety over C of dimension d. Denote
by AY(X) the Albanese variety of X in the sense of Esnault-Srinivas—Viehweg [11]. Then
there is an isomorphism

Ad(X) = Extimen (Z(—d), 771 (X)).
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