
Is Quantum Mechanics Pointless?

Frank Arntzeniusy

There exist well-known conundrums, such as measure-theoretic paradoxes and problems of

contact, which, within the context of classical physics, can be used to argue against the

existence of points in space and space-time. I examine whether quantum mechanics provides

additional reasons for supposing that there are no points in space and space-time.

1. Introduction. Our standard account of regions and their sizes, has some
bizarre features. In the first place, one cannot cut a region exactly in two
halves. For if one of the two regions includes its boundary (is closed), then
the other does not include it (is open). One might reasonably think that this
difference between open and closed regions is an artifact of our math-
ematical representation of regions that does not correspond to a difference
in reality. Secondly, regions of finite size are composed of points, each of
which have zero size. One might think it rather strange that when one
gathers together countably many points one must have a region of size
zero, while if one gathers together uncountably many points, one can form
a region of any size. Thirdly, finite sized regions must have parts that have
no well-defined size, that is, are unmeasurable. One might swallow parts
that have zero size, but parts that cannot have any well-defined size could
lead to gagging. Fourthly, Banach and Tarski have shown that one can
break any finite sized region into finitely many parts that can then be
reassembled without stretching or squeezing, to form a larger or smaller
region. There are also problems about contact: physical objects that occupy
closed regions can never touch, indeed they must always be a finite
distance apart. Now, I do not say that problems such as these are a decisive
argument against the standard account. But I do say that they form a good
reason to devise a geometry that does not have these problems, and to see
whether modern physics can plausibly be set in such a geometry.
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Caratheodory, and others following him, have devised such ‘‘pointless
geometries’’ (see Caratheodory 1963, Skyrms 1993). Let me give an ex-
ample of such a pointless geometry. Start by designating the collection of
all open intervals on the real line as regions. Then declare that the union of
any countable set of regions is a region, declare that the intersection of any
two regions is a region, declare that the complement of any region is a
region, and declare that these are all the regions that there are. This
collection of regions is the so-called ‘‘Borel algebra’’ of regions. Now this
collection of regions includes point-sized regions, regions that differ only
in being open or closed, and more generally distinct regions whose
differences have size 0. Let us get rid of all such differences by regarding
as equivalent any regions such that the differences between those regions
have size 0. That is, let us declare regions to be equivalence classes of
regions that differ at most by (Lebesque) measure 0. This collection of
regions, and their sizes, comprises an example of a pointless geometry.
Since any distinct points differ by measure 0, all points will correspond to
one and the same region, namely, the ‘‘null region,’’ which is the
complement of the region consisting of the entire space. Any other region
has well-defined finite size (measure). Breaking up and reassembling never
changes the size of a region. Regions can always be cut exactly in half.
And there are no problems about contact between objects since there are no
differences between open and closed regions.

This seems very pleasing. It therefore seems worthwhile to examine
whether physics can be done in such a setting. In this paper I will take a
look at quantum mechanics. I will argue that the formalism of quantum
mechanics strongly suggests that its value spaces, including physical space
and space-time, are pointless spaces.

2. Continuous Observables in Quantum Mechanics. It is well known
that, strictly speaking, on the standard account of the state-space of quan-
tum mechanics as a separable Hilbert space, continuous observables do not
have eigenstates. For instance, there exists no quantum mechanical state
jx = 5>which is an eigenstate of the position operator X corresponding to the
point x = 5 in physical space. Indeed, there exists no quantum mechanical
state such that a measurement of a position in that state will, with proba-
bility equal to one, yield a particular value. For if there were position eigen-
states there would have to be uncountably many mutually orthogonal states,
but a separable Hilbert space has only countably many dimensions.

What is not often noted is that there is a more general conclusion that can
be drawn from the assumption that the quantum mechanical state-space is a
separable Hilbert space, namely, that wave functions are functions on
pointless spaces. To be more precise, it is a consequence of the fact that
wave functions are representations of states in a separable Hilbert space that
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each wave function is not simply a square integrable function, but rather an
equivalence class of square integrable functions that differ in their values at
most on a set of (Lebesque) measure 0. The reason for this is pretty
straightforward. One of the axioms of the theory of Hilbert spaces is that
there is a unique vector whose norm (inner product with itself) is zero. In the
position representation, the norm of a wave function f(x) is mjf(x)j2dx. But
there are many different functions for which mjf(x)j2dx = 0. So, in order for
wave functions to be representations of vectors in a Hilbert space one needs
to assume that wave functions correspond to equivalence classes of (square
integrable) functions that differ at most on a set of measure 0. Now one can
show that mappings (homomorphisms) on pointless spaces correspond
exactly to equivalence classes of functions that differ at most on a set of
measure 0 (see Skyrms 1993). Thus wave functions are functions on point-
less spaces. Quantum mechanics thus provides us with evidence that the
value-space for any continuous observable is a pointless space. However, let
me now turn to two ways in which point values for continuous observables
can be reintroduced into quantum mechanics.

3. Rigged Hilbert Spaces. There is a standard way of reintroducing eigen-
states of continuous observables in a rigorous way, namely, the ‘‘rigged
Hilbert space’’ formalism. Let me outline this formalism (for more detail
see Böhm 1978).

Let us use the simplest example, the harmonic oscillator. I will assume
that the reader is familiar with the construction of the ‘‘ladder’’ of eigen-
states Fn = (a+)nF0/Mn! of the number operator N, which starts ‘‘at the
bottom’’ with the state F0 which has the feature that NF0 = 0. Let us now
consider all and only the finite superpositions of these states, that is, the
states of form f = �cnfn, where we superpose only finitely many fn. Let
us denote this linear space of states as Y. Using the standard scalar product
(f,y) and norm jyj2 = (y,y) one can then define the standard Hilbert space
topology on the space Y, and the accompanying standard notion of con-
vergence: fk!f iff jfk�f|!0 as k!E. Given this topology the space Y
is not ‘‘complete,’’ that is, there exist Cauchy sequences (converging se-
quences) that have no limit point in Y. If one now completes Y by adding
all such limit points, one obtains the standard Hilbert space H of the
harmonic oscillator. It is important to note that this has as a consequence
that the Hilbert space H will contain ‘‘infinite energy’’ states: there will
exist Cauchy sequences of states f1 = c1E1, f2 = d1E1+d2E2, f3 =
e1E1+e2E2+e3E3, . . . , such that as n!E, the expectation value of
Energy = (1/�jcij2)(�jcij2Ei)!E (each Ei denotes an energy eigenstate).
By the completeness of the Hilbert space H there must exist a limit state
corresponding to each Cauchy sequence. Hence there will exist a state that
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one can reasonably call an ‘‘infinite energy’’ state, even though this state,
strictly speaking, is not in the domain of the energy operator.

Let us now define a different topology, a ‘‘nuclear’’ topology, on Y and
the accompanying different, ‘‘nuclear’’ notion of convergence: fk!f iff
((fk�f),(N+1)p(fk�f))!0 as k!E for any p. Roughly speaking, the
factor (N+1)p is a factor designed to weigh the higher-number eigenstates
heavier than the lesser-number eigenstates, so that differences in the higher-
number coefficients have to converge to 0 very rapidly if the norm ((fk�f),
(N+1)p(fk�f)) is to converge to 0 as k converges to infinity. Thus, any
sequence of states in Y that is a Cauchy sequence according to the nuclear
topology, is also a Cauchy sequence according to the Hilbert space
topology, but not vice versa. Now let us complete Y according to the
nuclear sense of convergence. Of course, this will add only a proper subset
of the states that get added when one completes Y according to the Hilbert
space topology. We then obtain a ‘‘linear topological’’ space of states A.

It is interesting to note that A does not contain infinite energy states.
The reason for this is that the coefficients of higher-number (higher-
energy) states have to drop to 0 very rapidly (faster than any polynomial)
in order for the sequence to be a Cauchy sequence according to the Nuclear
topology. This might seem to be a rather appealing feature of space A.

We need just a little more machinery in order to construct such point-
valued states. A so-called ‘‘antilinear functional’’ F on a linear space Q is a
function F(u), often denoted as hujFi, from elements u of Q to complex
numbers, such that hc1u1+c2u2jFi = c1*hu1jFi+c2*hu2jFi. (Here the ci
denotes complex numbers, and * denotes complex conjugation.) The
space Q

X of linear functionals on a linear space Q is linear itself, and is
called the space ‘‘conjugate to’’ Q. It is easy to see that each vector f in a
linear space Q with a scalar product (u,D) defines an anti-linear functional
F as follows: hujFi = (u,f). It is also fairly easy to show that for a Hilbert
space H, there is a one-to-one correspondence between antilinear func-
tionals jDi and vectors hDj, so that H and HX can be taken to be the same
space. This, however, is not true for the space A that we obtained from Y
by completing it according to the nuclear topology. Rather, one can show
that AoHoAX. This triplet of spaces is known as a ‘‘rigged Hilbert
space,’’ or a ‘‘Gelfand Triplet.’’ Corresponding to any continuous linear
operator A on states in A there exists an adjoint operator AX on states in
AX, which is defined by the demand that hfjAXjFi = defhfjAXFi = hAfjFi
for all hfj and all jFi. Now we can define so-called ‘‘generalized’’ eigen-
vectors of an operator A on A. A ‘‘generalized’’ eigenvector of A cor-
responding to the ‘‘generalized’’ eigenvalue l is an antilinear functional
FaAX such that: hAfjFi =hfjAXjFi = l*hfjFi for all hfjaA, which may
also be stated as AXjFi = l*jFi. One can then show that, for our harmonic
oscillator system, there is a continuum of generalized eigenvalues and
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eigenvectors of both the X and P operators. And one can show, for our har-
monic oscillator system, that any state jfi in AX that corresponds to a state
hfj inA, has a unique expansion in terms of a measure over the generalized
eigenvectors jxi of the position operator X, and a unique expansion in terms
of a measure over the generalized eigenvectors jpi of the momentum oper-
ator P. This all seems great. Let us now consider some unappealing features
of rigged Hilbert spaces.

A rigged Hilbert space, that is, a Gelfand triple AoHoAX, is not as
simple and natural a state-space as a Hilbert space. Just look at the ma-
chinery that I needed above in order to explain the basics of rigged Hilbert
spaces, and compare it to the simplicity and naturalness of (the axioms of)
the normal (separable) Hilbert space formalism. Moreover, a rigged Hilbert
space is a rather nonunified, cobbled together, state-space that consists of
three quite distinct parts A, H and AX, where states in the distinct parts
have distinct properties. For instance, given any two states f and y in H,
one can take their scalar product hfjyi, which is a complex number. But
the scalar product hfjgi of states f and g that are in AX but not in H, is not
an ordinary complex number. The scalar product in AX exists only in a
distributional sense, that is, it is defined as the distribution that satisfies
hfjfi = mdghfjgihgjfi for all f in A. And there is the awkward, but
essential, use of two distinct topologies, the one corresponding to the usual
inner product, the other being the ‘‘nuclear’’ topology. It’s all rather messy.

A more serious problem is the following. Since one cannot spectrally
decompose a position eigenstate in terms of the eigenstates of such an
observable, one cannot make sense of probabilities of the results of a
measurement of such an observable when the object is in a position
eigenstate. More generally, in a state f one can only make sense of the
ratios of expectation values hf jAjf i/hf jBjf i of ‘‘admissible’’ observables
A and B, where an observable A is said to be admissible iff Ajf i belongs
to the domain of hf j (see, for example, Bogolubov, Logunov, and Todorov
1975, ch. 4).

In the specific case of the observable Energy, matters are even worse.
There is a relatively clear sense in which position eigenstates are ‘infinite
energy’ states. Consider any sequence of wave functions {yi(x)} such that
each yi(x) has a well-defined finite expectation value for its energy, which
becomes more and more concentrated around a given point in space, that is,
suppose that in the limit as i goes to infinity the wave functions yi(x)
become arbitrarily well confined to arbitrarily small regions around that
point in space. One can then show that the expectation value of energy of
this sequence of states must increase without bound as i goes to infinity.1

1. Although this is a rather suggestive fact one has to be a bit careful as to what it means.

For instance, it is not true that this sequence of wave functions converges to the corre-
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It seems that we have a a bit of a dilemma. Either position eigenstates
are physically possible, in which case, in a rather clear sense, gross vi-
olations of energy conservation are possible. This seems implausible. Or
they are not physically possible, in which case it is unclear why one would
go to such lengths in order to introduce such states into the quantum me-
chanical state-space. This dilemma can be brought out a bit more sharply by
considering the dynamics of quantum states.

What is the Hamiltonian time evolution of position eigenstates? If one
initially has a probability distribution over values of observables that cor-
responds to a state in the ordinary Hilbert space H, then, as long as the
development is a Hamiltonian development, the state will always be in the
ordinary Hilbert space H. Thus, if at any time the state is in the ordinary
Hilbert space, then the rest of the rigged Hilbert space is redundant. If, on
the other hand, at any time the state is a position eigenstate, then it will
always be in an eigenstate of a continuous observable, and never return to
the ordinary Hilbert space H.

On the other hand, suppose that one believes that during measurements
the dynamics is governed by the projection postulate. And suppose that
exact position measurements were possible. Then one could, with cer-
tainty, create an ‘‘infinite energy’’ state by measuring the exact position of
a particle. While this could be a great boon or a great disaster to humanity,
it seems implausible that it could ever happen. However, if position
eigenstates could not possibly be produced by such measurements, nor
by a unitary dynamics, why introduce the mathematical artifice of position
eigenstates in the first place?

In general it would seem that eigenstates of continuous observables, at
best, are redundant. Since, in addition, they complicate the mathematical
formalism, it seems best to not countenance them in the first place.

4. Recovering Point Values in the Algebraic Approach. Hans Halvorson
(Halvorson 2001a and 2001b) has recently proposed a different way, set
within the algebraic approach to quantum mechanics, to introduce quantum
mechanical states corresponding to point values for continuous observables.
Let me sketch the basic idea behind his reintroduction of points.

Suppose that physical space is pointless. And suppose that in order to
completely specify the locational state of an object one has to specify for
each region whether the object is entirely confined to that region. It would
then seem that, despite the fact that no point-sized regions exist, there
nonetheless can be point-sized objects with point-like locational properties.
For instance, suppose that the locational state of an object is wholly

sponding position eigenstate in the sense that the inproduct of this sequence with that

position eigenstate converges to 1.
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confined to each of the following regions: (�1,1), (�1/2,1/2), (�1/4,1/4)... .
The only possible understanding of that collection of locational properties is
surely that it is a point particle that is located exactly at point x = 0. Of
course there is no region that corresponds to this point. But it seems
impossible to understand the locational properties of the object in any other
way: it is smaller than any region, so it cannot have finite size, and it is
located in each of a set of regions that ‘‘converge’’ to point x = 0. Thus it
appears that the fact that space is pointless does not rule out states of objects
that correspond to the occupation of a point-sized location. This, in essence,
is the way in which Halvorson reintroduces point values in the algebraic
approach to quantum mechanics.

In the algebraic approach one identifies a quantum mechanical state, of
a system characterized by an operator algebra A, with a linear map from
operators to complex numbers such that any observable O (self-adjoint
operator O) gets mapped onto a positive real number, the expectation value
of O. In particular, states will assign expectation values to projection oper-
ators. The expectation value of a projection operator is just the probability
that the value of that projection operator is 1, since projection operators
only have 1 and 0 as possible values. Given a continuous observable Q one
can form a Boolean algebra {Qs} of projection operators Qs where S is a
range of values on the real line R, and Qs corresponds to the claim that the
value of Q lies in range S. When one does this, regions S that differ by
measure 0 will all correspond to one and the same projection operator.
Thus, for example, all measure 0 regions correspond to one and the same
(null) operator. Indeed this algebra is isomorphic to the Borel algebra of
equivalence classes of regions on the real line R which differ at most by
(Lebesque) measure 0, which I previously called a ‘‘pointless geometry.’’

Nonetheless, as I explained with my analogy, on the algebraic account of
quantum states there can be states, so-called ‘‘singular states’’ that corre-
spond to point values for continuous observables. For consider a state that
assigns a probability of 1 or 0 to every projection operator in the algebra
{Qs}. Such a singular state determines for any region of possible values of
Q whether the value of Q is inside that region or not. In particular there will
be a set of regions that converge to a point value for Q such that the value of
Q is, with probability 1, in each of these regions. Thus on the algebraic
approach one can introduce states corresponding to point values for con-
tinuous observables, and this is exactly what Halvorson suggests doing.
Indeed, one can even fit all of these algebraic states into a single nonsepa-
rable Hilbert space. Now let me quickly evaluate the merits of Halvorson’s
proposal.

Let me begin by noting that Halvorson’s singular states will violate count-
able additivity, that is, ‘‘singular’’ algebraic states will correspond to prob-
ability distributions that violate countable additivity. My own view is that
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violations of countable additivity are perfectly acceptable in this case.2

However, this is a somewhat involved issue that I cannot satisfactorily ad-
dress in a couple of paragraphs. Other than a brief indication of my view in
footnote 2, I will therefore set this issue aside.

In other respects, the problems with Halvorson’s approach are very
similar to the problems with the rigged Hilbert space approach. A non-
separable Hilbert space that includes all the eigenstates of continuous ob-
servables does not appear to be as mathematically attractive as the standard
separable Hilbert space. For instance, the fact that it is a nonseparable
Hilbert space means that standard forms of reasoning in terms of finite or
countable superpositions do not go through. Also, as in the case of the
rigged Hilbert space, the nonseparable Hilbert space decomposes into two
quite distinct parts: the part that corresponds to the standard separable
Hilbert space (that is, the eigenstates of discrete observables plus their
countable superpositions), and the part that corresponds to the ‘‘singular’’
states (the eigenstates of continuous observables). Moreover, as before, a
unitary Hamiltonian dynamics cannot take one into, or out of, the standard
separable Hilbert space. Finally, position eigenstates do not have well-
defined expectation values for momenta and energies. And one cannot
make sense of probabilities of results of measurements of observables that
have a complete set of eigenvectors in the standard Hilbert space (the
Schrodinger representation). All of this suggests that we should stick with
the standard Hilbert space.

5. Pointless Spaces and Finite Energies in Quantum Mechanics. Let me
now suggest a modification of the standard Hilbert space approach. As I
noted before infinite energy states occur in the standard Hilbert space H.
Should we not get rid of all infinite energy states from the standard Hilbert
space? A natural way in which to remove all infinite energy states is to go
back to the rigged Hilbert space construction, and to let the state-space be
the space A that is the completion, with regard to the nuclear topology, of
the space Y of finite superpositions of energy eigenstates. As I previously
noted this space A contains only states with finite expectation values for
energy. It also has some other attractive features. One can show that there

2. Here is a very brief indication of why I think violations of countable additivity are

acceptable in this case. The sense in which countable additivity is violated in Halvorson’s

theory is that the probability of a countable Boolean disjunction can be 1 even though the

probability of each of the disjuncts is 0. Normally countable additivity violations imply that

there exists a countable Dutch book. However, that is not so in this case. The reason for this

is that in this case truth need not ‘‘distribute over countable Boolean disjunction,’’ that is,

one can have it that each of countably many disjuncts is false, while the countable

disjunction is true (which is not normally the case).
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exists a large algebra of operators such that the expectation value of every
Hermitian operator in this algebra is finite for every state, and that every
operator in this algebra is everywhere defined. In the case of the harmonic
oscillator the relevant operator algebra consists of all finite polynomials in
the position and momentum operators. So in space A one does not have the
problems that one has when one has unbounded operators in a Hilbert
space, namely ‘‘infinite expectation values’’ and operators that do not have
the entire Hilbert space as their domain. At the same time, it has to be
admitted that A, in other ways, is not as natural as the standard Hilbert
space H: A makes essential the use of two different topologies, and it does
not contain all countable superpositions that have norm equal to one. So, as
yet, it is not obvious which state-space is the better candidate. Now let us
shift the discussion from quantum mechanics to quantum field theory.

6. Pointless Space-Time in Quantum Field Theory. In quantum field
theory, the fundamental observables from which all other observables are
built, are field observables, such as field strengths, rather than particle
observables, such as position, or region, occupation. It would then seem
that no conclusions about the existence or nonexistence of points in space,
or space-time, can be drawn from the existence or nonexistence of point
values for continuous observables. In fact, one might think that since the
fundamental observables are field-strengths at points in space-time, there-
fore quantum field theory actually presupposes the existence of points in
space-time. However, this is not so.

In quantum field theory there are no well-defined field operators as-
sociated with points in space-time. Rather than field operators defined at
points, there are ‘‘smeared’’ field operators associated with weighted
regions. Let me explain how this is done in more detail in order to make
clear that the procedure whereby such smeared field operators are defined
does not presuppose the existence of space-time points.

A quantum field A(f) is defined as a linear map from ‘‘test functions’’
f(x) to operators. The test functions are functions on space-time, and the
operators are operators on a Hilbert space (or on a rigged Hilbert space). If
one takes, for example, a test function f(x) which is 0 everywhere except in
some space-time region R, and is 1 everywhere in region R, then the op-
erator A(g) corresponds to the average value of the field in region R. How-
ever, one does not usually use such a test function since it is not continuous.
If one instead uses a function f(x) that varies smoothly, then one obtains a
field operator corresponding to the weighted average of the field values,
where the weight is given by the value of the function. Each such linear map
from test functions f to operators A(f) is usually represented as an integral
A(f) = mA(x)f(x)dx, where the integration is over all of space-time. One
might think that this construction presupposes the existence of points in
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space-time, since the smeared field operators are defined in terms of inte-
grations of A(x) and f(x), where A(x) and f(x) are supposed to have well-
defined values at points x in space-time. If that were correct then the exis-
tence of points in space-time would be, after all, presupposed in quantum
field theory.

In order to disarm this argument I need to explain why one can represent
linear maps from test functions to operators as integrations. Let us start by
assuming that A(x) and f(x) are ordinary functions from space-time to the
real numbers, and let us take for granted that all the functions that we are
dealing with are suitably integrable. In that case any function A(x) will
indeed induce a linear map from test functions f(x) to the real numbers, via
the formula A(f) = mA(x)f(x)dx. However, even then, the formula A(f) =
mA(x)f(x)dx does not generate a one-to-one correspondence between
functions A(x), and functionals A(f). There are two reasons for this.

In the first place, there exist linear maps A(f) that are not generated by
functions A(x), but instead are generated by sequences of functions An(x).
For instance, consider a sequence of functions y5n (x) such that, as n
increases, the functions y5n become more and more peaked around x = 5,
while, for each n, satisfying my5n (x)dx = 1. Then, for any test function f(x)
that is continuous at x = 5, the integral my5n (x)f(x)dx will approach f(5) as
n goes to infinity, and thus the sequence of integrals can be said to map f(x)
to f(5). This map from f(x) to f(5) is a linear map from functions to
numbers that is generated, not by a single function, but by a sequence of
functions. The reason why this map cannot be generated by a single func-
tion is that there exists no limit function to which the functions y5n
converge as n goes to infinity. One can however introduce the notion of
a ‘‘distribution,’’ and define the ‘‘distribution’’ y(5) to be such that
my(5)f(x)dx = f(5) for functions f that are continuous at x = 5, while being
careful not to use the distribution y(5) in contexts other than such an
‘‘integration.’’ This will allow us to represent all linear maps from test
functions to reals as integrations.

Secondly, note that if A(x) and AV(x) are functions, which differ at most
on a set of points of (Lebesque) measure 0, then the map A(f) and AV(f)
will be the same. Similarly if test functions f(x) and f V(x) differ at most on a
set of points of (Lebesque) measure 0, they will be mapped onto the same
number by any A. So, rather than taking functions f(x) and A(x) as the
objects that we use to construct smeared fields, we should take as our
objects equivalence classes of functions [f(x)] and [A(x)] that differ at most
on (Lebesque) measure 0. Indeed, we must do so, in order to maintain that
A([f]) = m[A(x)][f(x)]dx generates a one-to-one correspondence between
[A(x)] and A([f]).

To summarize, one can indeed think of smeared field operators as being
generated by integrations of two types of underlying quantities. But the
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underlying quantities are equivalence classes of functions that differ by at
most (Lebesque) measure 0. Rather than presuppose that space-time
contains points, this procedure instead strongly suggests that space-time
contains only extended regions, that is, that space-time is pointless, since
that is the natural habitat of such equivalence classes of functions.

7. Conclusion. There are well-known conceptual oddities, such as mea-
sure theoretic paradoxes and problems of contact, associated with the
existence of points in space and space-time. In quantum particle me-
chanics there are additional reasons to reject states that correspond to point
values for continuous observables, including positions. In the first place,
such states cannot exist in the standard separable Hilbert space formu-
lation. They can be introduced, but only at the expense of a prima facie less
natural formulation of quantum particle mechanics. Moreover, exact value
states for one observable imply undefined expectation values for many
other observables. Indeed, it seems hard to make sense of the probabilities
of the results of measurements of perfectly ordinary observables when one
starts out, for example, in a position eigenstate.

There exist (at least) two fairly natural quantum particle state-spaces
that avoid such problems: the standard (separable) Hilbert space H, and the
‘‘nuclear’’ space A. Whichever of those two options one prefers, the spaces
consisting of all possible values of continuous observables, including po-
sitions, are then pointless spaces. Furthermore, quantum field theory sup-
plies an independent argument that space, and space-time, are pointless.
For in quantum field theory there are no operators defined at points in
space-time. There are only smeared operators, and these ‘‘live’’ in a point-
less space-time.
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