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Abstract : Exposure to cosmic rays may have both a direct and indirect effect on Earth’s organisms.

The radiation may lead to higher rates of genetic mutations in organisms, or interfere with their ability
to repair DNA damage, potentially leading to diseases such as cancer. Increased cloud cover, which
may cool the planet by blocking out more of the Sun’s rays, is also associated with cosmic rays. They

also interact with molecules in the atmosphere to create nitrogen oxide, a gas that eats away at our
planet’s ozone layer, which protects us from the Sun’s harmful ultraviolet rays. On the ground, humans
are protected from cosmic particles by the planet’s atmosphere.

In this paper we give estimated results of wavelet analysis from solar modulation and cosmic ray
data incorporated in time-dependent cosmic ray variation. Since solar activity can be described as
a non-linear chaotic dynamic system, methods such as neural networks and wavelet methods should be

very suitable analytical tools. Thus we have computed our results using Morlet wavelets. Many have
used wavelet techniques for studying solar activity. Here we have analysed and reconstructed cosmic ray
variation, and we have better depicted periods or harmonics other than the 11-year solar modulation
cycles.
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Introduction

Cosmic rays play a significant role in the natural mutation

and evolution of life on Earth. Indeed, cosmic rays can ser-

iously damage DNA, and if the damaged DNA cannot be

repaired by the cell, then the cell may die. If the damage is

copied into more cells, then a mutation could occur. The risks

for cancer, cataracts and neurological disorders may be in-

creased by exposure to large amounts of cosmic rays.

People in more northern and southern latitudes are ex-

posed to more of this radiation from the Sun, thus the rates

of cancer death are higher in these regions than near the

equator. On average, the oscillation in cancer deaths was be-

tween 10 and 15% during the period of the study.

Weather is affected by the Sun. Cosmic rays are an indi-

cation of the Sun’s activity, and thus weather patterns have

been correlated to cosmic ray behaviour. There was a period

between the years 1645 and 1715, called the Maunder

Minimum, when there was low solar activity and few sun

spots. Coincidently, during the same time there was a period

called the Little Ice Age, when temperatures became cooler

in North America and Europe. Variation in the Earth’s

magnetic field is also a factor triggering mutation and affect-

ing the evolution of life. The Earth’s magnetic field shuts out

the inflow of cosmic rays (charged particles) such as the solar

wind to the Earth’s surface.

This paper presents an attempt to use a wavelet technique

form which resolves any pattern at a given point within

different scales, enabling it to be applied to the problem under

consideration.

Unlike conventional spectral analysis, the wavelet trans-

form is a suitable tool for the description of non-stationary

processes containing multi-scale features, detection of singu-

larities and analysis of transient phenomena. However, this

approach is not frequently used for cosmic ray time series.

Starting with the cosmic ray variation curve given by the

Moscow neutron monitor (http://helios.izmiran.troitsk.ru/

cosray/main.htm), we first analysed this variation function

and decomposed it in Morlet wavelets ; we then proceeded,

for reconstruction and extrapolation, to zoom and predict

new periods, details or singularities hidden behind the orig-

inal curve describing cosmic rays variations in time.

The continuous wavelet transform (CWT) is used to de-

compose a signal into wavelets – small oscillations that are

highly localized in time. Whereas for the Fourier transform

a signal is decomposed into sines and cosines of infinite

length, effectively losing all time-localization information, the

CWT’s basis functions are scaled and shifted versions of the

time-localized mother wavelet.

When the wavelet coefficient magnitudes are plotted for the

scale and the elapsed time, a so called scalogram is produced

(Mallat 1999, Chao & Naito 1995). Time-varying harmonics

are detected from the position and scale of high amplitude

wavelet coefficients. The inverse wavelet transform is then

used to calculate the corresponding time series. New wavelet

spectra are finally calculated for each partial time series.

International Journal of Astrobiology 8 (3) : 169–174 (2009) Printed in the United Kingdom

doi:10.1017/S1473550409990085 f Cambridge University Press 2009

169

https://doi.org/10.1017/S1473550409990085 Published online by Cambridge University Press

https://doi.org/10.1017/S1473550409990085


The following section examines those properties of the

wavelet transform which are relevant for our scheme. The

multiple level decomposition technique is described in detail,

and the reconstruction and extrapolation or prediction of

structures follows.

Morlet wavelet methods

The wavelet theory involves representing general functions

in terms of simple, fixed building blocks at different scales

and positions. We use translations and dilations of one fixed

function for wavelet expansion. Sophisticated wavelets are

more powerful in revealing hidden detailed structures ; for

example, the Morlet wavelet has been used to examine the

processes, models and structures behind the variability of

solar activity (Lundstedt et al. 2005, Grzesiac et al. 1997).

Using the same wavelet expansion, we present in this work a

mathematical zoom to discover the hidden structures and to

extrapolate unknown aspects in cosmic variation.

The CWT is an ideal tool for mapping the changing

properties of non-stationary signals and also for determining

whether or not a signal is stationary in a global sense. CWT is

then used to build a time-frequency representation of a signal

that offers very good time and frequency localization (Kudela

et al. 1991; Mallat 1999; Kudela et al. 2001).

Wavelet analysis is more complicated than Fourier analy-

sis ; in fact, one must fully specify the mother wavelet from

which the basis functions will be constructed. While Fourier

analysis uses complex exponential (sine and cosine) basis

functions, wavelet decomposition uses a time-localized oscil-

latory function as the analysing or mother wavelet. The

mother wavelet is a function that is continuous in both time

and frequency and serves as the source function from which

scaled and translated basis functions are constructed. The

mother wavelet can be complex or real, and it generally in-

cludes an adjustable parameter controlling the properties of

the localized oscillation.

The Morlet wavelet is defined as a complex sine wave

(Morlet et al. 1982), localized with a Gaussian. The frequency

domain representation is a single symmetric Gaussian peak,

and frequency localization is very good. This wavelet has

the advantage of incorporating a wave of a certain period,

as well as being finite in extent.

Results and discussion

Decomposition in Morlet wavelets

When decomposing a non-linear time series into time-

frequency space, wavelet analysis is a useful tool both to find

the dominant mode of variation and also to study how it

varies with time (Attolini et al. 1975; Mallat 1999). The

wavelet transform of a function y(t) uses spatially localized

functions called wavelets and is given by

w(a, b)=ax1=2

Z+O

xO

y(t)g*
txb

a

� �
dt, (1)

where a is the scale dilation, compressing and stretching

of the wavelet g used to change the scale, b is the trans-

lation parameter, the shifting of g used to slide in time,

and g* the complex conjugate of g. The Morlet wavelet is a

complex sine wave multiplied by a Gaussian envelope and

given by

g(t)= exp iv0tx
t2

2

� �
(2)

where we have taken v0=2p and the period was fixed to

T=1 year.

To analyse a discrete signal y(ti) we need to sample the

continuous wavelet transform on a grid in the timescale plane

(b, a) by setting a=j and b=k.

The wavelet coefficients vj,k are

wj, k=jx1=2

Z+O

xO

y(t)g*
txk

j

� �
dt: (3)

It is computationally impossible to analyse a signal using

all wavelet coefficients (Figs 1(a) and (c)), so one may wonder

if it is sufficient to pick a discrete subset of the upper half-

plane to reconstruct a signal from the corresponding wave-

let coefficients (Mallat 1999). One such system is the affine

system for some real parameters j>1, k>0.

The method implemented employs a multi-level decompo-

sition scheme via the Morlet wavelet transform, and inter-

active weighted recomposition. Different reconstruction

strategies are discussed.

Only the real component of complex wavelet in the time

domain (Figs 1(a) and (c)) determines the real wavelet. The

frequency domain transform of a real wavelet is symmetric

about frequency 0 and contains two peaks. The nature of an

oscillation with the CWT spectrum will vary greatly with

whether the wavelet is real or complex (Figs 1(a) and (b)). The

complex wavelet will evidence a constant power across the

time duration of the oscillation. Otherwise, a real wavelet

produces power only at those times where the oscillation is

at an extreme or where a sharp discontinuity occurs.

We have used data from the Moscow neutron monitor for

cosmic ray variation corresponding to years ranging from

1958 to 2007, and have reproduced the main details of the

curve of cosmic ray variation in time. We have then decom-

posed and analysed the corresponding variation of cosmic

rays in Morlet wavelets. The following figures show the real

and imaginary coefficients of decomposition.

The coefficients of decomposition of real and imaginary

components were calculated and plotted versus scale dilation

and translation parameters j and k :

wR
j, k=jx1=2

Ztb

ta

y(t)gRj, k(t)dt, gj, k=
txk

j

� �

wI
j, k=xjx1=2

Ztb

ta

y(t)gIj, k(t)dt:

(4)
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For discretization we have used the following expression,

for a 49-year period of study:

wR
j, k=jx1=2

X49
l=1

y(tl)g
R
j, k(tl) (5)

Reconstruction – zooms in cosmic rays variation

We have reconstructed the cosmic ray variation function; we

were interested in the real component of the reconstructed

function:

y(t)=
X
j, k

wj, kgj, k(t): (6)

We searched for a reconstruction strategy to gain resol-

ution of diffuse loops in cosmic ray variation. We report the

results which arose from applying our technique to cosmic

ray variation data from the Moscow neutron monitor, regis-

tered from 1958–2007 (Fig. 2(a)). The original figures for

cosmic ray variation, determined by the Moscow neutron

monitor along with reconstruction examples are seen in

Figs 2(a)–(f).

The wavelet transform can also detect and characterize

transients with a zooming procedure across scales. Sharp

single transitions create large amplitude wavelet coefficients.

Singularities are detected by following across scales the local

maxima of the wavelet transform. The proposed technique

for the reconstruction of structures consists of more than

one level of decomposition via the Morlet wavelet transform.

In a first phase, scales are assigned for fixed values of j and

for a varying values of translation parameter k (Fig. 2(b)).

For scale parameter j=1 the original curve is reproduced

without details and the main 11-year cycle is apparent.

For j=2 to 30, periods of j years are then zoomed, and we

can see 2-, 3-, and 5-year cycles or fluctuations, and a longer

cycle of 30 years arises (Fig. 2(f)).

In a second step we have rewritten a program where we

have considered fractional scaling values. Thus the details

of original curve describing cosmic ray variation occurs

(Fig. 2(c)). Once the effect of each integer and fractional

(a) (b)

(c) (d)

Fig. 1. (a) and (c) real components of decomposition coefficients ; (a) whole coefficients 100,100; (c) a part of coefficients 30,80;

(b) imaginary components of coefficients ; (d) a cut showing highest real components wR and more important periods.
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scaling are seen, we have plotted the curves corresponding to

the total effect of both fractional and integer scales (Fig. 2(d)

and (e)). These plots were determined after computing via

a program in which we have considered both types of scaling.

It is worth noting that the effect of fractional scaling is very

important with respect to integer scaling in our framework.

(a)

(b)

(c) (d)

(e) (f)

Fig. 2. Different levels of wavelet reconstruction for cosmic ray variation described by the origin curve of Moscow neutron monitor

(Fig. 3(a)) ; for all curves the study begins in 1958, so the year 1958 and all time axes have been translated to zero.
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We show that wavelet analysis gives more complete and

quantitative results. The idea behind this method is to resolve

any pattern at different locations with variable resolution.

By studying cosmic ray variation within various scales one

can learn about the space-time evolution of the process as a

whole.

Extrapolation and prediction

In this step of our work we extrapolated the time of study

from 49 years to 100 years to see how cosmic ray variation

will behave, and to investigate whether there may be other

types of modulation or periods. We used a number of strate-

gies ; before varying scale and translation parameters j and k,

we increased the time of the study to 100 years; then we

changed the variation interval of j. We also varied the interval

of translation parameter k. We derived the variation of cos-

mic rays for fractional j and we compared the corresponding

variations for the same interval of variation from integer and

fractional j. For a fixed value of j we examined the zoom in

and out of cosmic ray variation in other terms for j and 1/j,

for example, for scale parameter k=2 and 0.5, or 3 and 0.33

and so on. In the same program we summed the contributions

of integer and fractional j to see the total effect of variation of

j. In these strategies we always maintained the same primary

period T=1 year, v0=2p ; we have seen the extrapolation but

did not succeed in maintaining the original reconstructed

signal (Fig. 3(a)).

In a second phase we varied the base period to T=0.25

year, v0=8p. New long periods of 50 years appear with

extrapolation, after the 50 years of the study period (after

2008), and the reconstructed original curve for the first

50 years of study is also improved.

Detected periods

The curves showed in Fig. 4 and Fig. 1(d) give a summary for

the highest coefficients magnitudes (0.9) of the main period-

icity already found around 12 years. In fact, during the whole

period the 11-year timescale solar cycle period is dominant.

Timescale spectra present interesting properties such as

deterministic periodic or semi-periodic structures mapped on

the graphs. The information can appear until 100 years from

the year 1958, so the extrapolation has succeed for about

50 years ahead after 2008.

Conclusions

Structures and periodicities revealed particularly in Morlet

extrapolations for cosmic ray variabilities provide us at least

a qualitative aspect for variations in cosmic rays for many

years ahead. The well-known 11-year solar activity period is

the main modulation, thus modulating human health and life.

Looking for the contribution of significant periods, differ-

ent research teams have analysed time variabilities in cosmic

ray records. In particular, CWT has been used recently, and is

(a)

(b)

Fig. 3. Extrapolation for 50 years ahead after 2008 (additional

effects fractional and integer scaling j), in both basis (a) v0=2p and

(b) v0=8p.

Fig. 4. Higher magnitudes of decomposition coefficients are found

around a 12-year period.
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useful for data series with non-stationary processes when

dealing in terms of time-frequency decomposition.

The most important step is the wavelet choice; the wavelet

type influences the time and frequency resolution of the

results. Indeed while the Derivative of Gaussian wavelet

provides a poor frequency resolution but a good time local-

ization, on the other hand we found, as expected, that the

Morlet wavelet choice gives a high frequency resolution. The

wavelets can then be used as a mathematical microscope to

reveal structures at different scale lengths j and at different

locations, k.

The results of modelling solar activity are presented in this

work. Regularities and periodicities were derived, and will be

also investigated using a neural network. The 11-year main

cycle dominated as expected, but also more detailed pictures

appeared.

A dominant 11-year periodicity is found in all neutron

monitors, and in all wavelet reconstructions graphs. We also

report short-term periodicities in the power of rapid cosmic-

ray fluctuations of 2 years, appearing in cosmic ray power

fluctuation since 1958. Three- and 5-year periods also are

present, and other long periodicities are found of around

30 years and 50 years.

We demonstrated, in the example of cosmic ray variation,

that wavelet analysis helps reveal event patterns in the

available phase space, providing quantitative measures for

typical features in terms of location b and scale a. Moreover,

we have found that the wavelet plots present an ideal tool to

discover, through analysis coefficients and reconstruction

periodicities, small details and space irregularities versus time

hidden before decomposition, and better wavelet plots give

a prediction for modulation of cosmic ray variation for

50 years ahead or even longer.
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