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The motion of two drops in a uniform electric field is considered using the leaky
dielectric model. The drops are assumed to have no native charge and a dielec-
trophoretic effect favours translation of the drops toward one another. However,
circulatory flows that stem from electrohydrodynamic stresses may either act with
or against this dielectrophoretic effect. Consequently, both prolate and oblate drop
deformations may be generated and significant deformation occurs near drop contact
owing to enhancement of the local electric field. For sufficiently widely spaced drops,
electrohydrodynamic flows dominate direct electrical interactions so drops may be
pushed apart, though closely spaced drops almost always move together as a result
of the electrical interaction or deformation.

1. Introduction
Externally applied electric fields provide a well-known means for manipulating

suspensions of drops and bubbles (Arp, Foister & Mason 1980). Common applications
span a variety of multiphase flows (Byers & Amarnath 1995), including enhanced
coalescence, emulsion breaking and demixing operations for dispersions (Ptasinski
& Kerkhof 1992), electrophoretic migration of charged drops (Baygents & Saville
1991a,b), enhanced heat and mass transfer owing to electroconvection (e.g. Scott
1989), electrospraying (Harris & Basaran 1993) and aqueous two-phase partitioning
(Brooks et al. 1984). A fundamental understanding of the microstructural response
of these processes may be sought by describing the fluid motion for isolated drops
and drop pairs exposed to electric fields. The former subject has been well-studied,
but there is a dearth of information regarding the behaviour of drop pairs in viscous
liquids exposed to electric fields. In this paper we report an investigation of this latter
subject, treating in particular drop deformation and hydrodynamic interactions.

A seminal contribution to the understanding of the behaviour of isolated emulsion
drops in electric fields was made by Taylor (1966). Motivated by the experiments
of Allan & Mason (1962), Taylor demonstrated that conductive processes play an
important role in determining how a drop, which is dispersed in another liquid,
deforms in response to the imposed field. Taylor’s analysis was predicated on a
model which has since come to be known as the leaky dielectric. Taylor argued that
real dielectric liquids were not perfect (a perfect dielectric being one which passed
no current) insofar as they would conduct a small amount of electrical current
(for example, owing to the presence of ions in solution). Subsequent investigations
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have confirmed the essential premise that conduction processes cannot be altogether
ignored, and have shown the leaky dielectric to be a useful quantitative and conceptual
model (Torza, Cox & Mason 1971; Baygents & Saville 1989; Vizika & Saville 1992).

Drop deformation in these systems depends on the electrical properties of the fluid.
If the fluids are treated as perfect dielectrics, then the electrical stresses act only
normal to the interface, an isolated drop deforms into a prolate spheroidal shape, and
the final equilibrium state is one with no fluid motion. Accounting for conduction
processes according to the leaky dielectric model shows that tangential electrical
stresses act at the drop surface and drive steady circulation in and about a fluid body.
Viscous stresses generated by the flow are now capable of producing both prolate and
oblate drop distortions. Furthermore, these circulation patterns have been recognized
to be of practical consequence inasmuch as they may lead to enhanced heat and mass
transfer and, as a result of the associated viscous stresses, drop deformation occurs.
As our presentation unfolds, it will become evident that the circulation patterns also
play a substantive role in the pairwise response of emulsion drops: the hydrodynamic
interactions that occur owing to the circulations can be significant and even dominate
the direct electrical interactions between the pair.

There have been several investigations on the effect of a uniform electric field on two
neighbouring drops, though most studies invoke approximations more suited to the
description of aerosols rather than emulsions. For example, Brazier-Smith (1971) and
Brazier-Smith, Jennings & Latham (1971) considered the finite deformation of highly
conductive (water) drops but neglected viscous effects. Their work was stimulated by
that of Taylor (1968) and Latham & Roxburgh (1966) on drops and bubbles dispersed
in air, which is essentially a non-conducting medium. Specifically, Taylor studied the
coalescence of closely spaced soap bubbles held in place by a ring device, as well
as the coalescence of water drops held at the ends of hypodermic needles, while
Latham & Roxburgh studied adjacent water drops supported on Teflon rods. Taken
together, these studies illustrated the significant role played by electrical interactions
between the drops. Nevertheless, for the systems investigated, viscous hydrodynamic
interactions played at most a subordinate role.

The case of viscous interactions between drop pairs has been has been investigated
recently by Zhang, Basaran & Wham (1995), who used a population dynamics
approach to model electrically enhanced drop collision and coalescence in emulsions.
The analysis of Zhang et al. is noteworthy because, among other reasons, it provides
a framework for characterizing the increased coalescence rate owing to an applied
electric field. However, the types of emulsions studied – perfectly conducting drops
dispersed in a perfect dielectric liquid – do not involve the sort of coupling of the
electric field and the viscous flow that is present in leaky dielectric systems. Thus, the
electrically driven circulations, first elucidated by Taylor (for an isolated drop), are
absent.

Use of the leaky dielectric model to analyse the two-drop problem has been made
previously by Sozou (1975), who examined the situation in the limit that drop
deformation was negligible and that there was no relative motion of the drops.
These two stipulations left unanswered several fundamental questions regarding the
electrically driven, temporal evolution of the microstructure of an emulsion. For
example, what is the role of deformation in bringing the drop surfaces into close
proximity, and what is the relative motion of the drops? Here we address the basic
two-drop problem using integral equation methods to follow the changing drop shapes
and the relative motion of the drops. The numerical study is nevertheless restricted
to an axisymmetric geometry and drops of equal sizes, as was the analytical study of
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Figure 1. Axisymmetric two-drop problem with an electric field aligned with the line of centres.

Sozou (1975). The use of the integral equation representations for both the electric
field and the viscous flow follows in the spirit of Sherwood (1988) who analysed the
low-Reynolds-number deformation of an isolated drop in an electric field. An analysis
of the deformation of a perfect dielectric drop for the limit of slender shapes was
given by Sherwood (1991) and for conically tipped drops by Li, Halsey & Lobkovsky
(1994); see also Stone, Lister & Brenner (1998).

We begin in §§ 2.1 and 2.2 with a complete description of the equations governing the
electric field, the viscous flow, and the boundary conditions which couple the electrical
stresses to the flow. Analytical results for isolated spherical drops in uniform electric
fields are summarized in § 2.3 since the solutions prove useful for characterizing
the response of the two-drop problem. Integral equation representations for the
electric and velocity fields, and a brief description of the numerical implementation
in this free-boundary problem, are given in § 2.4 and § 2.5, respectively. After first
summarizing some simple scaling arguments in § 3.1, numerical results for perfect
dielectric drop pairs are presented in § 3.2 and conduction processes, studied within
the leaky dielectric model, are examined in § 3.3.

2. Governing equations
Consider two equal-size, uncharged drops with identical material properties. The

drops have undeformed radius a, viscosity λµ, dielectric constant ε̄ and electrical
conductivity σ̄, and are suspended in a Newtonian fluid with corresponding properties
µ, ε and σ, respectively. The interfacial tension is denoted γ and is assumed to be
constant and independent of the electric field. An electric field E∞, uniform at large
distance, is applied parallel to the line of centres of the drops (see figure 1). Electric
(Maxwell) stresses produce deformation of the drops and also drive fluid motions, the
strength and character of which depend substantially on whether the fluids behave
as perfect (σ = σ̄ = 0) or leaky dielectrics. Both electrical interactions and fluid
flow produce translation of the drops, which is coupled to shape distortions that
occur owing to electrical and viscous stresses. In this section we summarize the basic
equations for electrohydrodynamic investigations based upon Taylor’s leaky dielectric
model.

2.1. The electric field

Taylor introduced the leaky dielectric model to account for the presence of (possibly
weak) conduction processes in common dielectric fluids owing to the inevitable
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presence of ions. Typically the propagation time of electromagnetic waves is very fast
compared to the times characteristic of the electrohydrodynamic motions (Melcher
1973) and thus, for times longer than the charge relaxation time εε0/σ, which is
typically less than a second, any free charge is confined to the interfacial region. It
follows that the electric field in the two fluid phases is irrotational (∇ ∧ E = 0,E =
−∇φ) and so according to Gauss’ law

∇ · E = 0 or ∇2φ = 0 for x ∈ V , (1a)

∇ · Ē = 0 or ∇2φ̄ = 0 for x ∈ V̄ . (1b)

The boundary conditions at the fluid–fluid interfaces S1 and S2 are

n · E =
σ̄

σ
n · Ē and t · E = t · Ē for xs ∈ Si (i = 1, 2) , (2a)

E → E∞ as |x| → ∞. (2b)

Here x is the position vector, xs is a position vector to a point along the fluid–fluid
interface, V is the domain of the suspending fluid, V̄ the drop fluid, and n and t are
the unit normal and tangent vectors at the interface (see figure 1). When both phases
are perfect dielectrics the dielectric constant ratio ε̄/ε replaces the conductivity ratio
in (2a).

The discontinuity in electrical properties at the drop–suspending fluid interface
causes a jump in the Maxwell stress tensor TE:

TE = εε0

(
EE − 1

2
E2I
)
. (3)

The corresponding jump in the electrical stress across the fluid–fluid interface is
([[ ]] ≡ ‘external’ - ‘internal’)

[[ n · T E ]] = εε0

{
1

2

[
E2
n

(
1− ε̄/ε

(σ̄/σ)2

)
− E2

t

(
1− ε̄

ε

)]
n+ EtEn

(
1− ε̄/ε

σ̄/σ

)
t

}
, (4)

where En = n · E and Et = t · E denote, respectively, the normal and tangential
components of the electric field evaluated just outside the drop surface. In the
absence of an applied flow field, the Maxwell stresses are responsible for fluid motion
and drop deformation. We note that for a perfect dielectric, it is consistent to replace
σ̄/σ by ε̄/ε and in this case the interfacial stress jump is purely normal to the interface
(and so drives no steady fluid motion in isolated drops), with the value

[[ n · TE ]]
perfect

dielectric

= 1
2
εε0

(
E2
n +

ε̄

ε
E2
t

)(
1− ε

ε̄

)
n. (5)

2.2. Electrohydrodynamic fluid motion at low Reynolds numbers;
non-dimensionalization

Assuming the Reynolds number is small and gravitational influences may be neglected,
the velocity, pressure, and stress fields (u, p,TN) in each Newtonian fluid phase obey

µ∇2u− ∇p = ∇ · TN = 0 where TN = −pI + µ
(
∇u+ (∇u)T

)
. (6)

The velocity is continuous across the interface, u = ū for xs ∈ Si, and at the interface
the jump in the total stress (viscous plus electric) is balanced by the interfacial tension:

[[n · TN + n · T E]] = γn∇s · n. (7)

Here ∇s ≡ (I − nn) · ∇ is the surface gradient operator and ∇s · n is the mean curvature
of the interface.
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It follows from the boundary conditions that electrohydrodynamic viscous flows
have typical velocities u = O(εε0E

2
∞a/µ). Thus, in the analysis and simulations given

in the remainder of the paper, electric fields, velocities, and times are scaled by
E∞, u, a/u, while the pressure and stress fields in the exterior and drop fluids are
scaled, respectively, by µu/a and λµu/a. Also, viscous stresses cause drop deformation,
whose magnitude typically depends on the interfacial tension, and is characterized by
the electric capillary number Ce:

Ce =
εε0E

2
∞a

γ
. (8)

The two-drop electrodynamic problem may then be characterized completely by
specifying the dimensionless parameters ε̄/ε, σ̄/σ, λ and Ce. The (dimensional) initial
separation of the centres of mass of the two initially spherical drops is denoted 2h. We
note that the low-Reynolds-number approximation upon which the hydrodynamic
analysis is based requires that R = ρεε0E

2
∞a

2/µ2 � 1. At small inter-drop separations
the above estimates are not expected to be so representative since the neighbouring
second drop enhances the local electric field. As a final remark, we note that boundary
condition (2a) requires that the electric Reynolds number, Rel = ε2ε2

0E
2
∞/µσ, which

represents the ratio of the charge relaxation time εε0/σ to the typical convection time
a/u = µ/εε0E

2
∞ in the fluid, must be small, and this is consistent with many (though

not all) experiments (e.g. Torza et al. 1971; Vizika & Saville 1992). In our numerical
work we have studied a wide range of electrical property values, 10−1 < ε̄/ε < 100
and 10−2 < σ̄/σ < 102 (e.g. see figure 7) and such values span the range investigated
experimentally (Allan & Mason 1962; Torza et al. 1971; Vizika & Saville 1992).

2.3. An isolated spherical drop in a uniform electric field

The shape and fluid motion of an isolated nearly spherical drop in a uniform electric
field is a classical problem in electrohydrodynamics. This simple solution is useful
for understanding several qualitative and quantitative features of the electrical and
hydrodynamic responses of the two-drop system.

The dimensionless electric fields external and internal to an isolated spherical
conducting drop are

E(r) = E∞ +

(
σ̄/σ − 1

)(
σ̄/σ + 2

) [3E∞ · rr
r5

− E∞

r3

]
, (9a)

Ē(r) =
3(

σ̄/σ + 2
)E∞ (a uniform field), (9b)

where r is the position vector measured from the drop centre.
The electric field gives rise to a dimensionless tangential interfacial electric stress

(equation (4))

t · [[ n · TE ]] =
9
(
σ̄/σ − ε̄/ε

)(
σ̄/σ + 2

)2
(E∞ · t) (E∞ · n) , (10)

which drives fluid motion. The external and internal velocity fields, scaled by
εε0E

2
∞a/µ, are, respectively (note: E∞ · E∞ = 1),

u(r) =
9

5(1 + λ)

(σ̄/σ − ε̄/ε)
(σ̄/σ + 2)2

{
r−5(E∞ · r)E∞ + 3

2

(
r−5 − 5

3
r−7
)

(E∞ · r)2r

− 1
2

(
r−3 − 5

3
r−5
)

(E∞ · E∞)r
}
, (11a)
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ū(r) = − 9

5(1 + λ)

(
σ̄/σ − ε̄/ε

)
(σ̄/σ + 2)2

{
3
2

(
1− 5

3
r2
)

(E∞ · r)E∞

+ (E∞ · r)2r − 1
2

(
1− r2

)
(E∞ · E∞)r

}
. (11b)

One important physical feature may be deduced from this solution. In spherical
coordinates, the velocity tangent to the surface is

uθ(r = a, θ) = −
9
(
σ̄/σ − ε̄/ε

)
5 (1 + λ)

(
σ̄/σ + 2

)2
cos θ sin θ, (12)

where θ, measured from the positive z-axis, is the angle between the imposed field
E∞ and the position vector r. Thus, from (10) or (12), we observe that the sign of
(σ̄/σ − ε̄/ε) determines the sense of the convection. External convection generates
viscous stresses that favour formation of prolate shapes for ε̄/ε < σ̄/σ and oblate
shapes for ε̄/ε > σ̄/σ, though the detailed shape of the drop is influenced by electrical
stresses too (see equation (14) below).

The corresponding drop deformation D was originally calculated by Taylor (1966)
and has the form (Torza et al. 1971)

D =
L− B
L+ B

=
9Ce
16

fd
(
σ̄/σ, ε̄/ε, λ

)(
2 + σ̄/σ

)2
, (13)

where

fd

(
σ̄

σ
,
ε̄

ε
, λ

)
=

(
σ̄

σ

)2

+ 1− 2
ε̄

ε
+

3

5

(
σ̄

σ
− ε̄

ε

)
(2 + 3λ)

(1 + λ)
. (14)

Here L is the end-to-end length of the drop measured along the axis of symmetry and
B is the maximum breadth in the transverse direction. By convention, fd > 0,= 0,
or < 0 correspond to prolate, spherical or oblate shapes, respectively. For perfect
dielectrics, equation (14) shows that the shapes are always prolate. Also, fd is only a
weak function of λ. Note that D depends on Ce and fd, so that deformations may
possibly be small even when Ce = O(1).

2.4. Integral equation representations for the velocity and electric fields

The form of the governing equations allows integral equation representations to be
developed for both the electric and velocity fields internal and external to the drop
(Sherwood 1988), and these equations are particularly useful for the multiple drops
and non-spherical shapes that are of interest here. In particular, it is straightforward
to use the usual integral equation solution for the electric potential φ to derive an
integral equation for the electric field. Since the tangential component of the electric
field is continuous at the interface while the normal component undergoes a jump
whenever the drop and suspending fluid have different electrical properties, we find

E∞(x)+

(
σ̄/σ − 1

)
4πσ̄/σ

∫
Si

(x− y)

|x− y|3En(y) dSy =


E(x), x ∈ V , (15a)
1
2

[
E(x) + Ē(x)

]
, xs ∈ Si = S1 + S2, (15b)

Ē(x), x ∈ V̄ , (15c)

where E∞ is the external electric field (not necessarily uniform). The unknown normal
component of the electric field (evaluated from the continuous phase) for points on
the boundary, En(xs), may be determined by solving an integral equation of the second
kind, which is obtained by taking the inner product of equation (15) with n(xs) at
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points xs along the interface and using boundary condition (2a):

En(xs) =
2σ̄/σ

1 + σ̄/σ
n(xs) · E∞(xs) +

(
σ̄/σ − 1

)
2π
(
σ̄/σ + 1

)n(xs) · ∫
Si

(xs − y)

|xs − y|3
En(y) dSy . (16)

Equation (16) determines the distribution of En(xs) as a function of the conductivity
ratio and the drop shapes Si. Once En(xs) is known, the tangential component,
t · E = Et, of the electric field is obtained by an integration of (15). Related integral
equation treatments for this problem have been given, for example, by Miksis (1981).

Integral equation methods for determining the velocity field in Stokes flows are
also now standard. In the case that there is no imposed flow at large distances, the
velocity in a two-phase Stokes flow follows from an integral representation (Rallison
& Acrivos 1978, Pozrikidis 1992; Tanzosh, Manga & Stone 1992)

−1

µ

∫
Si

[[ n · TN ]] · J dSy−(1− λ)
∫

Si

n · K · u dSy =


u(x), x ∈ V , (17a)

(1 + λ)

2
u(xs), xs ∈ Si, (17b)

λū(x), x ∈ V̄ , (17c)

where the jump in the Newtonian fluid stress across the interface is given by equation
(7) and J and K are known kernel functions. Hence,

−
∫
Si

[
C−1
e n∇s · n− [[ n · T E ]]

]
· J dSy − (1− λ)

∫
Si

n · K · u dSy

=


u(x), x ∈ V , (18a)

1 + λ

2
u(xs), xs ∈ Si, (18b)

λū(x), x ∈ V̄ , (18c)

which is an integral equation of the second kind that may be solved for the interfacial
velocity u(xs). The drop shape evolves according to

dxs
dt

= u(xs), (19)

though it is frequently best from the standpoint of a numerical implementation to
evolve marker points, which are distributed along the boundary, by moving with the
local normal component of velocity only.

The standard numerical approach for this free-boundary problem is to first solve
equation (16) to obtain the normal component of the electric field, then determine the
tangential component Et according to (15). After calculating the electrical stress from
(4) and evaluating the curvature ∇s · n for the given shape Si, the interfacial velocity
calculated from (18) and (19) is used to step the shape forward in time using a simple
Euler method. The calculation is repeated sequentially for each shape generated.

2.5. Numerical implementation

In this paper we are only concerned with axisymmetric two-drop configurations. In
this case, as is well-known, the azimuthal part of the surface integrations in each of
the integral equations can be performed analytically (e.g. Lee & Leal 1982; Sherwood
1988). N node points are distributed along the interface of each (identical) drop and,
as a consequence of the symmetry, it is only necessary to determine the unknown
values on one of the drops. Typically we chose N = 61; calculations with a larger
number of points did not significantly change the results. The resulting equations
are discretized by assuming that the unknown En and u distributions vary linearly
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Figure 2. The tangential component of the electrical stress along the surface of one drop when
two drops are placed in an electric field. A comparison of the numerical results (symbols) with the
analytical results of Sozou (1975, figure 1) (solid curves). Centre-to-centre spacing is 2h = 2.2a. (a)
σ̄/σ = 0.05, ε̄/ε = 1; (b) σ̄/σ = 10, ε̄/ε = 1. θ is the usual polar angle measured from the positive
z-axis.

between node points along the interface, after which the integral equations reduce
to a linear system of equations that are solved numerically using standard IMSL
routines. As xs → y the integrands are singular, though integrable, and we subtract
a small region about the singularity and perform the integration analytically. The
free surface shape is represented using an arclength (s) description (e.g. Stone & Leal
1990), where the radial and axial node points, ri(s) and zi(s), are fitted with cubic
splines. The normal and curvature along the surface are computed from these cubic
spline representations. Integrations were performed in double precision using both
four- and seven-point Gaussian quadrature routines, as well as the quadpack routine
(dqags), and the results were essentially identical.

2.6. Comparison with available analytical and numerical results

We verified the numerical code by first evaluating the electric field, electric stresses, and
velocity field for an isolated spherical drop placed in a uniform field. The numerical
results were in excellent agreement with the theoretical predictions. Secondly, we
compared the numerical results with available analytical results for two spherical
drops (Sozou 1975). The largest fields and electrical stresses are generated for close
separations. In figure 2 we show the agreement between the numerical calculations
and Sozou’s results for a centre-to-centre spacing 2h = 2.2a and two conductivity
ratios, σ̄/σ = 10 and σ̄/σ = 0.05, for ε̄/ε = 1. (Note that there are typographical
errors in Sozou’s equations (9) and (26).
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The final check was to compare the deformations calculated with this numerical
code with Sherwood’s result (1988) for an isolated drop. The results were in good
agreement (typically within a few percent), though Sherwood only reported cases
where the distortions were prolate. In § 3 we also study cases where oblate distortions
occur.

3. Numerical results
3.1. Scaling arguments: electrical versus electrohydrodynamic interactions

For the two-drop configuration, three qualitatively and quantitatively different interac-
tions are possible that either substantially change the initial centre-of-mass separation
distance or promote interface contact: (i) there is an electrically driven centre-of-mass
motion owing to one drop appearing, to leading order, as a dipole in the far-field
electrical disturbance produced by the second drop – this dielectrophoretic motion is
always attractive and produces a relative velocity that scales proportional to O(a/h)4;
(ii) electrohydrodynamically driven centre-of-mass motion owing to a bulk fluid flow,
caused by tangential electrical stresses at the surface of each drop, which, in turn,
causes a nearby drop to translate with a velocity that scales proportional to O(a/h)2 –
this relative motion can be either attractive or repulsive depending on the sense of the
circulation produced by the tangential electrical stresses; (iii) deformation-induced
contact characteristic of low interfacial tensions (higher Ce) and small separation
distances. Note that mechanism (ii) does not arise for the perfect dielectric and/or
perfectly conducting drops because, in such systems, tangential electrical stresses do
not obtain unless the drops carry a native surface charge.

The electrically driven interactions of mechanism (i), on the other hand, are always
present. Because each drop is electrically neutral, when exposed to a uniform electric
field, a dipole response (equation (9a)) is produced with an electrical field that decays
as O(r−3). As is well-known in dielectrophoresis (Pohl 1978), a dipole at position x1,
which has a strength proportional to the magnitude of the applied field E∞, experiences
a force proportional to E∞ · ∇E∞(x1, x2), where ∇E∞(x1, x2) is the disturbance electric
field gradient at x1 due to a drop positioned at x2 (Rivette & Baygents 1996). This
force, with magnitude O(εε0E

2
∞a

6/h4) is balanced by viscous stresses on the translating
drop and so, for two drops a distance h = |x2 − x1| apart, the relative velocity UT is

UT = O

(
εε0E

2
∞a

5

µh4

)
. (20)

On the other hand, electrohydrodynamic stresses at the drop interface produce a
hydrodynamic dipolar far field which has a velocity that decays as O(r−2) (equa-
tion (18a)). A neutrally buoyant drop translates at leading order with this local
disturbance velocity and so moves with speed

UT = O

(
εε0E

2
∞a

3

µh2

)
. (21)

As shown below, these far-field arguments are, not surprisingly, in good agreement
with the numerical calculations.

We now illustrate the typical kinds of interactions that we have observed in
our numerical studies of two deformable drops. First, perfect dielectric drops are
considered and, then, the interactions of two drops according to the leaky dielectric
model are discussed.
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Figure 3. Deformation and approach of a pair of perfect dielectric drops; ε̄/ε = 8, λ = 1, Ce = 1.
Initially h = 3a.
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|UT |

Figure 4. Drop velocity of perfect dielectric drops as a function of centroid (centre-to-centre)
position. Dashed lines show the expected h−4 dependence of the electrically-driven centre-of-mass
velocities. (a) ε̄/ε = 5, λ = 1, Ce = 0.1, 1% maximum deformation; (b) ε̄/ε = 0.4, λ = 1, Ce = 1,
5% maximum deformation; (c) ε̄/ε = 8, λ = 1, Ce = 1, 57% maximum deformation.

3.2. Perfect dielectric drop pairs

We begin in figure 3 with a typical interaction of two initially spherical perfect
dielectric drops with ε̄/ε = 8,Ce = 1 and λ = 1. With an initial separation of 2h = 6a,
the drops first deform into prolate ellipsoidal shapes, which would have an aspect ratio
L/B = 3.65 if the drops were instead isolated in a uniform electric field. The drops
subsequently translate toward one another, which thereby increases the disturbance
electric field causing enhanced prolate distortions of the drops, and, in particular,
substantial deformation in the near contact region. Indeed, the interfaces in the gap
region neck toward one another until the simulation is stopped just before contact.

In order to study the electrically driven interaction (or perhaps it would be better
to say dielectrophoretically driven interaction), we show in figure 4 the velocity of
the centre of mass as a function of the dimensionless separation distance 2h/a for
three different ratios of dielectric constants; the capillary numbers are small enough
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Figure 5. Three types of behaviour characteristic of drop deformation and interaction in the leaky
dielectric model: (a) drops deform oblately and come together; σ̄/σ = 2, ε̄/ε = 8, λ = 1, Ce = 1;
(b) drops deform prolately and come together; σ̄/σ = 6, ε̄/ε = 8, λ = 1, Ce = 1.5; (c) drops deform
prolately and move apart; σ̄/σ = 1.04, ε̄/ε = 0.2, λ = 1, Ce = 1.5.

that distortions are modest. The numerical results are in good agreement with the
asymptotic prediction UT ∝ h−4 discussed in § 3.1. When distortions are large the
numerical results deviate noticeably from the h−4 scaling when h < 4a (figure 4,
case c). On the other hand, when distortions are smaller, the h−4, scaling for the
centre-of-mass velocity holds for separations as small as h ≈ 2a− 3a.

For perfect dielectric drops the electrical stresses always act normal to the drop
surface (Melcher & Taylor 1969; Sherwood 1988), which limits the range of behaviour
observed: the drops always deform prolately and are always drawn together by
electrical interactions. The only qualitative variations occur as the deformation is
varied. When D � 1, the close approach of the drops is resisted by lubrication
forces. An indication of this effect can be seen in figure 4 where the rate of change
of velocity with separation distance decreases for the perfect dielectrics with small
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Figure 6. Drop velocity of leaky dielectric drops as a function of centroid (centre-to-centre)
position. Dashed lines show the expected (h/a)−4 dependence of the electrically-driven centre-of-mass
velocities. ◦, σ̄/σ = 4, ε̄/ε = 8, λ = 1, Ce = 1, 7% maximum deformation; �, σ̄/σ = 5, ε̄/ε = 8,
λ = 1, Ce = 1, 6% maximum deformation; 4, σ̄/σ = 1.04, ε̄/ε = 0.2, λ = 1, Ce = 0.1, 2% maximum
deformation.

deformations even though the electrical interactions, which drive the translation,
become progressively stronger. For D = O(1), the drop surface is more compliant,
and so as the separation between the drops diminishes, the electrical interactions give
rise to field-enhanced deformation and the drop surfaces are pulled together with
little resistance by viscous stresses. Thus, in figure 4, case c the numerical results for
a very deformable perfect dielectric drop illustrate a substantially increasing velocity
as the centroid separation decreases.

3.3. Leaky dielectric drop pairs

Leaky dielectric drops exhibit a much richer variety of microstructural responses to
the imposition of the electric field. As shown in figure 5, for a fixed initial separation
2h = 5a, three classes of behaviour are observed depending on the ratios σ̄/σ and
ε̄/ε: the drops first deform oblately – that is, they stretch orthogonal to the axis
of symmetry – and then translate together (figure 5a); the drops deform prolately
and translate together (figure 5b); or the drops deform prolately and move apart
(figure 5c). These classes of behaviour are generally observed provided that h/a is
sufficiently large, and Ce sufficiently small, to ensure that the drop surfaces are not
brought into close proximity simply as a result of interface deformation.

These different responses occur because of tangential electrical stresses that result
from conduction processes. The fluid motion produced by these interfacial stresses
decays as r−2 and so is much stronger than the typical dielectrophoretic translational
motion. The sense of the circulation depends on the sign of the quantity σ̄/σ− ε̄/ε and
so determines whether the fluid motion brings the two drops together or pushes them
apart. If σ̄/σ < ε̄/ε, the electrically driven circulation about one drop pulls the second
drop closer, as in figures 5(a) and 5(b); if σ̄/σ > ε̄/ε, the sense of the circulation
changes and the flow pushes the second drop away, as in figure 5(c). Irrespective of the
sign of (σ̄/σ − ε̄/ε), the drop velocities will vary as (h/a)−2 for h/a� 1. This scaling
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Figure 7. (a, b) Qualitative circulation patterns according to the leaky dielectric model for an
isolated drop in a uniform electric field and (c) a map of the expected shape response, which has
a significant influence on the interaction, as a function of the conductivity and dielectric constant
ratios. (a) σ̄/σ < ε̄/ε: flow is drawn in along the axis of symmetry and expelled in the equatorial
plane; (b) σ̄/σ > ε̄/ε: flow is drawn in from the equatorial plane and expelled along the axis
of symmetry. (c) The zero deformation curve, equation (14), and the line for perfect dielectric,
σ̄/σ = ε̄/ε, delineate three combinations of deformation and circulation: (i) oblate deformation and
circulation as in (a); (ii) prolate deformation and circulation as in (a); (iii) prolate deformation and
circulation as in (b).

is documented in figure 6, which reports the numerically determined centre-of-mass
velocities for nearly spherical drops as a function of the separation distance for three
different sets of conductivity and dielectric constant ratios.

The qualitative features of the three types of responses described above for the drop-
pair interactions can be understood by constructing a map of the (σ̄/σ, ε̄/ε) parameter
space as shown in figure 7. As discussed earlier (equation (14)), a discriminating
function fd(σ̄/σ, ε̄/ε, λ) distinguishes conditions giving rise to oblate or prolate drop
shapes. The discriminating function is a weak function of λ and is plotted in figure
7 for λ = 1. Also, included in figure 7 is the σ̄/σ = ε̄/ε line, which distinguishes
electrically driven circulation patterns (see figure 7a, b) that are attractive from those
that are repulsive. This ‘map’ of property values thus makes it easy to predict the
approximate shape of the drops, at least for sufficiently large separation distances.
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Figure 8. Drop deformation and translation as a function of the initial separation distance h/a;
σ̄/σ = 5, ε̄/ε = 4, λ = 1, and C = 1. (a) Initial centre-to-centre separation distance is 4 radii and
the drops touch owing to deformation; (b) initial centre-to-centre separation distance is 5 radii
and the drops translate together owing to dielectrophoretic interactions; (c) initial centre-to-centre
separation distance is 12 radii and the drops deform and drift apart slowly owing to the induced
circulatory flows which are repulsive in character.

Hence, it is reasonably straightforward to characterize conditions leading to oblate
drop shapes that translate together, prolate drop shapes that translate together, and
prolate drop shapes that translate apart.

However, it is important to note that not all of the qualitative features of the
electrically driven microstructural response of the drop pair can be deduced from
the far-field properties of equations (9) and (18) or, equivalently, from figure 7(c).
To illustrate this point we show in figure 8 numerical simulations of the drop shape
varying the initial separation distance with Ce = 1, σ̄/σ = 5 and ε̄/ε = 4, from which
far-field considerations would lead one to expect prolate deformations that drift apart.
The associated centre-of-mass velocity as a function of separation distance is shown
in figure 9. In this case, we find that sufficiently large initial separations are dominated
by the electrohydrodynamic response; for smaller separation distances, though, the
drops drift and deform together. In particular, since σ̄/σ > ε̄/ε, the hydrodynamic
interactions are repulsive and, for separations in excess of approximately 9.8, the
drops indeed move apart, although they do so slowly and the velocity only goes over
to the (h/a)−2 scaling slowly. However, when h/a < 9.8, the drops translate toward
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Figure 9. Centre-of-mass velocity versus separation distance; σ̄/σ = 5, ε̄/ε = 4, λ = 1, Ce = 1.

each other as a result of significant electrical interactions. In this case, the attractive
electrical interactions can more than counterbalance the influence of the circulation
patterns.

4. Conclusions
We have presented a numerical investigation of the interaction of two drops in

a uniform electric field. The leaky dielectric model is used to describe the electrical
influences of the fluid. In particular, conduction processes produce viscous stresses
that are capable of deforming isolated drops, as is well known. Here we also observed
the effect of circulatory flows, driven by electrohydrodynamic stresses, on the motion
of the drop pairs. Whereas dielectrophoresis of the two drops always leads to attractive
interactions, electrohydrodynamic stresses may cause sufficiently widely spaced drops
to be pushed apart. Scaling estimates for the relative translation speed of the drops
are in good agreement with the numerical simulations when either dielectrophoretic
motions or electrodynamic flows dominate.

In closing we compare the strength of the electrohydrodynamic flows to elec-
trophoretic motion of the drops, which would result from a native surface charge
density q. An electrokinetic velocity scale is qE∞/κµ, where κ is the Debye screening
parameter. The strength of the electrokinetic motion relative to the electrohydrody-
namics is given by q/aκεε0E∞, provided the viscosity of the drops does not greatly
exceed that of the surrounding fluid. In poorly conducting media, surface charge
densities and Debye screening parameters tend to be small, due to the low dielectric
constant of the fluids (Kuo & Osterle 1967; Stotz 1978; Ehrlich & Melcher 1982).
Additionally, applied field strengths can be appreciable, i.e. O(105 V m−1) and higher.
Using the characteristic values q = 10−6 C m−2, κ = 106 m−1 and ε = 3, one finds that
q/aκεε0E∞ is approximately 4× 10−5 for a cm-sized drop. Thus, except at the larger
separations, relative motion of the drops appears to be dominanted by electrohy-
drodynamics. Of course under different circumstances (e.g. smaller drops, lower field
strengths, aqueous media, etc.), electrokinetic effects are significant and presumably
cannot be ignored.
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