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We have performed fully resolved simulations of turbulent flows over various
submerged rigid canopies covering the wall of an open channel. All the numerical
predictions have been obtained considering the same nominal bulk Reynolds number
(i.e. Reb = UbH/ν = 6000, H being the channel depth and Ub the bulk velocity).
The computations directly tackle the region occupied by the canopy by imposing
the zero-velocity condition on every single stem, while the outer flow is dealt
with a highly resolved large-eddy simulation. Four canopy configurations have been
considered. All of them share the same in-plane solid fraction while the canopy to
channel height ratios have been selected to be h/H= (0.05, 0.1, 0.25, 0.4). The lowest
and the highest values lead to flow conditions approaching the two asymptotic states
that in the literature are usually termed the sparse and dense regimes (see Nepf (Annu.
Rev. Fluid Mech., vol. 44, 2012, pp. 123–142)). The other two h/H selected ratios
are representative of transitional regimes, a generic category that incorporates all the
non-asymptotic states. While the interaction of a turbulent flow with a filamentous
canopy in the two asymptotic conditions is relatively well understood, not much is
known on the transitional flows and on the physical mechanisms that are responsible
for the variations of flow regimes when the canopy solidity is changed. The effects
of the latter on the flow developing in the intra-canopy region, on the outer flow
and on their mutual interactions have been numerically explored and are reported
in this work. By systematically varying the canopy height, we have unravelled the
main character of the different regimes that are generated by the interplay between
the outer flow structures, the emerging instabilities driven by the canopy drag and
the interstitial flow between the canopy stems. The key role played by the relative
positions of the inflection points of the mean velocity profile and the location of the
virtual wall origin (as seen from the outer flow) is put forward and used to define a
new condition to infer the canopy flow regime when the solidity is changed. Finally,
the presence and the effects of an instability occurring close to the bed, nearby the
interior inflectional point of the mean velocity profile is highlighted together with
its consequences on the flow structure within the canopy region. To the best of our
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knowledge, this is the first time that the emergence of close-to-the-bed coherent
structures induced by the inner inflection point is reported in the literature.

Key words: turbulence simulation, boundary layer structure

1. Introduction
Surfaces covered by arrayed, filamentous layers anchored to a substrate and exposed

to viscous flows are commonly found in nature, and increasingly seen in bio-inspired
technology (Mars, Mathew & Ho 1999; Wilcock et al. 1999; Ghisalberti & Nepf 2002;
Luhar, Rominger & Nepf 2008). Living organisms use surfaces with complex textures
and their interaction with surrounding fluid flows for a number of tasks: decrease skin
friction drag (e.g. seal fur, see Itoh et al. (2006)), control of flight aerodynamics (e.g.
birds’ feathers, see Brücker & Weidner (2014)), increase nutrient and light uptake
(e.g. vegetative canopies, see Finnigan (2000)), form-drag control via reconfiguration
(e.g. tree foliage, see Leclercq & de Langre (2016)). Ciliated walls and flagella are
also commonly found in living organs participating in a number of physiological
processes like locomotion, digestion, circulation, respiration and reproduction (see
any cellular biology textbook, e.g. Lodish, Berk & Kaiser (2007)).

All the mentioned examples clearly show that the geometrical configuration and the
mechanical properties of the various filamentous surfaces found in nature conform to
the task that needs to be tackled. Thus, the number of free parameters that define
a specific type of ciliated layer, or of a specific canopy, is quite large (e.g. density
ratios, flexibility, aspect ratios, sizes, levels of submersion, active or passive motions,
. . . ) and to incorporate all of them in a comprehensive parametric investigation is
an almost impossible task. Here, as in many other previous research efforts, we will
focus only on a reduced set of canopy flows where the solidity of the layer is the
only feature that differentiates every single realisation. This choice aligns with recent
investigations on aquatic plants carried out by Nepf (2012) and collaborators that used
a classification of canopy flows based on only two geometrical properties. The first
one is the ratio between the flow depth H and the canopy height h (i.e. the level
of submersion, see figure 1), to classify canopies as emergent (H/h = 1), shallow
submerged (1<H/h< 5) and deeply submerged (H/h> 10). This definition allows us
to classify canopy flows according to the relative importance of the turbulent stresses
and the flow-driving pressure gradient (Nepf & Vivoni 2000).

In emergent canopies, the turbulence length scale is imposed either by the stem
diameter d or by the average spacing between filaments 1S when the latter is smaller
than the former (Nepf 2012). The momentum equation for emergent canopy flows
reduces to a balance between the drag force and the driving pressure gradient, leading
to a self-similar velocity profile which only depends on the ratio a(y) of the frontal
area dh and the canopy volume of influence 1S2h (Lightbody & Nepf 2006), i.e.
a(y)= d(y)/1S2.

Submerged canopies substantially differ from the emergent ones as they feature
different regimes whose individual genesis depends on a large number of parameters.
A key one is the canopy solidity, defined as the ratio of the frontal area of the canopy
and the bed area,

λ=

∫ h

0
a(y) dy. (1.1)
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FIGURE 1. Geometrical parameters governing canopy flows according to Nepf (2012).
In our simulation, the filaments are randomly distributed on the canopy bed, each one
occupying an average area 1S2.

It is known that, for extreme values of λ, the flow reaches two asymptotic regimes
(Poggi et al. 2004; Nepf 2012). If λ is much smaller than a threshold value (i.e.
λ � 0.1) then the flow velocity within and above the canopy shows a behaviour
comparable to the one observed in a turbulent boundary layer over a rough wall
with a dominance of bed drag over canopy form drag (a condition termed sparse
regime). Conversely, for large values of λ (i.e. λ� 0.1), the drag produced by the
bed becomes negligible when compared to the canopy one. In this situation, termed
dense regime, the drag discontinuity at the tip of the canopy induces the appearance
of an inflection point in the mean velocity profile at the canopy edge. Another, often
overlooked, inflection may form closer to the bed, where the boundary layer at the
wall merges with the mean profile that develops in the core of the canopy.

In a dense regime, these two inflection points divide the intra-canopy flow into
separate regions: an inner region, very close to the bed, an outer region, mostly located
outside the canopy, and a central region sandwiched between the two. Within this
mid-portion of the canopy, it can be assumed that a peculiar Couette flow takes place
with a large portion of the short-wavelength fluctuations produced by the meandering
of the flow in between the canopy elements. This conceptual, three-layer structure of
dense canopy flows was first proposed by Belcher, Jerram & Hunt (2003).

Poggi et al. (2004) carried out an experimental campaign on rigid canopy flows
in which they varied the canopy density (the number of stems per unit bed surface,
i.e. 1S2). They were able to show that the mean velocity profile does not present
a clear inflection point at the canopy edge for values of λ < 0.04 (i.e. within the
sparse regime). Conversely, when λ > 0.1, the mean velocity profile clearly featured
a pronounced inflection point at the tip of the canopy layer in agreement with the
observations of Nepf (2012). Poggi et al. (2004) also proposed a phenomenological
classification for canopy flows: in the sparse regime, the flow is assumed to behave
like a boundary layer over a rough wall, while in the dense regimes, the flow can be
modelled using a weighted superposition of three distinct zonal flow behaviours
determined by the size of the largest eddy that can be locally accommodated.
Following the spirit of classical Prandtl’s mixing-layer models, each zone was assumed
to set a different length scale. Specifically, in the canopy inner region, i.e. y/h� 1,
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the flow field is assumed to be characterised by vortices shed by the canopy elements
whose size and intensity depend on the diameter of the stems. Supported by the
observations of other authors (Raupach, Finnigan & Brunei 1996; Finnigan 2000),
the outer region, i.e. y/h� 2, is postulated to behave like a classical boundary layer
over a rough wall. Finally, within the region overlapping the innermost and outermost
zones, the flow is assumed to be dominated by a mixing layer of constant thickness.

The formation of a mixing-layer flow by the canopy edge is induced by the
inflected mean velocity profile that triggers a Kelvin–Helmholtz (KH)-like instability.
The latter eventually leads to large scale spanwise vorticity rollers. The size of these
structures is comparable to the height of the canopy for unsaturated regimes: i.e.
whenever the thickness of the filamentous layer is short enough for the outer flow to
be conditioned by the presence of the impermeable, bottom wall (coarse to marginally
dense regimes). This system of spanwise vortices, that is believed to govern the bulk
of the momentum transport between the outer and the inner regions in dense canopies
(Nepf 2012), has also been reported by other authors in other contexts (for example,
in turbulent wall flows over porous media, see Jiménez et al. (2001)). Raupach et al.
(1996) observed that within the developed mixing layer near the canopy tip, the
most unstable streamwise wavelength of the KH instability, Λx, is spatially preserved.
Moreover, they also suggested that the ratio of Λx and the mixing-layer vorticity
thickness δω = 1U/(∂U/∂y)max falls within the range, 3.5 < Λx/δω < 5 (Finnigan
2000). The same authors (Raupach et al. 1996) also showed that, for dense canopies,
the ratio between the KH most unstable wavelength and a measure of the vorticity
thickness Ls = U(h)/∂yU(h), obtained by considering the velocity gradient at the
canopy tip only, is found to be within the range 7 < Λx/Ls < 10. Indeed, several
experiments have confirmed this bound and have put forward an even more stringent
relation given by Λx'8.1Ls. Another three-layer model for dense submerged canopies,
similar to the one put forward by Poggi et al. (2004), has been proposed by Nezu &
Sanjou (2008). They conjectured that the flow behaviour within each layer develops
as a consequence of a single dominant generation mechanism enhancing the observed
local features while inhibiting the coexistence of other vorticity structures pertaining
to neighbouring layers.

The bibliographic survey that has been presented above is just a limited sample of
the large body of literature addressing submerged canopies. The main research tool
behind the majority of these studies is of experimental nature, thus limited by the
presence of the filamentous canopy that renders the use of localised measurements
difficult (e.g. laser Doppler velocimetry or particle image velocimetry). Despite these
limitations, the literature presents an increasing proliferation of canopy-flow models
that need verification and validation through techniques that can provide more detailed
insight into the flow fields arising in canopy flows. In particular, the determination
of a proper scaling and of robust criteria able to deliver an a priori prediction on
the insurgence of particular canopy-flow regimes are still open topics and available
analysis and predictions only cover specific situations. Moreover, the condition for
the emergence of different intra-canopy flows at intermediate flow regimes and their
detailed characterisation are still not well documented, let alone the understanding of
the interplay between physical mechanisms as the flow transitions from one regime to
another. This lack of understanding is particularly evident in the transitional regime
scenario where the main features of the coarse and dense regimes combine in a non-
trivial way. As will be shown in the results section, this regime establishes when the
positions of the virtual wall seen by the outer flow and the innermost mean velocity
inflection point cross. In physical terms, the transition between the two asymptotic
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regimes corresponds to the formation of a central region in the canopy where the
outer flow overlaps with the portion of the flow developing in the region close to the
bottom wall. Other potentially relevant mechanisms that have not been considered in
depth concern the role of KH-generated spanwise vorticity rollers, their modification
by the outer flow structures and their role in redistributing the local momentum within
and outside the canopy (Monti, Omidyeganeh & Pinelli 2019).

Without pretending to offer a final say on general canopy flows and only by varying
the frontal solidity of the canopy λ, the research presented in this work addresses
some of the mentioned research topics where no reliable or validated understanding
is available. In particular, through the analysis of the flows arising when changing
the canopy solidity λ, we will identify the dominant scales of motions that are either
enhanced or weakened in different regimes. This understanding allows us to establish
a robust macroscopic criterion able to predict the dominant features of canopy flows
when λ is varied. The latter is based on the relative positions of the inflection points
of the mean velocity profile and the virtual origin seen by the outer flow.

The approach that we have considered to tackle those questions relies on the
analysis of a set of highly resolved simulations of a turbulent flow in an open
channel bounded by rigid canopies of various solidities, assembled with vertically
mounted filaments. The value of λ is set within a range of values that generate canopy
flows nominally varying from sparse to dense regimes. In particular, we report results
obtained using a formulation that directly resolves the intra-canopy flow stem by stem
by imposing a zero-velocity condition on each element of the filamentous layer. The
manuscript is organised as follows. Section 2 describes the numerical method used
to undertake the simulations. Section 3 describes the obtained results. Their analysis
is mainly carried out by comparing the statistical and instantaneous characterisations
of the canopy-flow fields realised with four different values of the solidity λ. Finally,
§ 4 outlines the most important conclusions with emphasis on the new findings that
mainly concern the introduction of a generalised scaling approach for the mean
flow statistical values, a novel criterion to predict the canopy-flow regime and new
observations on the flow structure of the close-to-the-bed intra-canopy region which
is strongly influenced by the internal mean velocity inflection point.

2. The numerical technique
We have simulated the turbulent flows over rigid canopies using an incompressible

Navier–Stokes solver developed in house (SUSA, Omidyeganeh & Piomelli 2013a). In
particular, we adopted a large-eddy simulation (LES) formulation where the governing
equations are obtained from the full Navier–Stokes equations by filtering out the
velocity and pressure fluctuations taking place on all length scales smaller than a
spatial filter which width falls within the inertial range of turbulence. In a Cartesian
frame of reference, indicating with x1, x2 and x3 (i.e. x, y and z) the streamwise,
wall-normal and spanwise directions and with u1, u2 and u3 the corresponding velocity
components (i.e. u, v and w), the dimensionless incompressible LES equations for
the resolved fields u and p read as

∂ui

∂t
+ uj

∂ui

∂xj
=−

∂P
∂xi
+

1
Reb

∂2ui

∂xj∂xj
+
∂τij

∂xj
+ fi,

∂ui

∂xi
= 0. (2.1)

In (2.1), Reb = UbH/ν is the Reynolds number based on the bulk velocity Ub, the
open-channel height H and ν is the kinematic viscosity; τij= uiuj− uiuj is the subgrid

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

15
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.155


891 A9-6 A. Monti, M. Omidyeganeh, B. Eckhardt and A. Pinelli

Reynolds stress tensor (Leonard 1975) that was modelled using the integral length
scale approximation approach recently proposed by Piomelli, Rouhi & Geurts (2015)
(see also Rouhi, Piomelli & Geurts (2016)). The incompressible LES equations (2.1)
are space discretised using a second-order accurate, cell centred finite volume method.
Pressure and velocity are co-located at the centres of the cells and the approach
of Rhie & Chow (1983) is used to avoid pressure oscillations. The equations are
advanced in time using a second-order, semi-implicit fractional-step procedure (Kim
& Moin 1985). In particular, the implicit Crank–Nicolson scheme is implemented for
the wall-normal diffusive terms while an explicit Adams–Bashforth scheme is applied
to all other terms. The Poisson pressure equation, that needs to be solved at each time
step to enforce the solenoidal condition of the velocity field, is transformed into a
series of two-dimensional (2-D) Helmholtz equations in the wavenumber space using
a fast Fourier transform along the spanwise direction. Each of the resultant elliptic
2-D problems is then solved using a preconditioned Krylov method. In particular, we
found the iterative biconjugate gradient stabilised method with an algebraic multigrid
preconditioner (boomerAMG, see Henson & Yang 2002) to behave quite efficiently.
The code is parallelised using the domain decomposition technique implemented
via the MPI message passing library. Further details on the code, its parallelisation
and the extensive validation campaign, that have been carried out in other flow
configurations, can be found in previous publications (Omidyeganeh & Piomelli 2011,
2013a,b; Rosti, Omidyeganeh & Pinelli 2016).

Unlike other approaches (e.g. Bailey & Stoll 2016), our formulation can be
considered as a coarse direct numerical simulation in the outer portion of the
flow that progressively becomes highly resolved as the canopy is approached. In
the outer flow region, the subgrid stress contribution plays only the role of a very
mild and stabilising numerical dissipation. Indeed, the ratio between the total and
the subgrid energies averaged in time and in the two homogeneous directions, shown
in figure 3(a) along the channel height, is always below 10−5 for all the canopy
configurations. A further indication that the LES filter operates at the end of the
turbulence cascade is provided in figure 3(b), showing that the ratio between the
time and space averaged eddy viscosity and the physical one is always of order
unity or less throughout the whole channel for all the considered stems distributions.
In the intra-canopy region, we resolve the canopy stems one by one without the
introduction of any model. In particular, the stems embedded in the canopy are
represented as rigid, solid, slender cylindrical rods of finite cross-sectional area
perpendicularly mounted onto the impermeable bottom wall. To enforce the boundary
conditions that each rigid cylinder imposes on the fluid (i.e. zero velocity at the
surface of each stem) we used an immersed boundary method (IBM). The latter
deals with the presence of the rods, whose locations do not conform with the actual
fluid grid, by using a set of nodes distributed along the length of each canopy
element (termed Lagrangian nodes). More specifically, the employed IBM associates
with each Lagrangian node a set of distributed body forces defined on a compact
support centred on each node. At each time step, the intensity of those forces is
determined by enforcing a Dirichlet condition, i.e. zero velocity of the fluid, on all
the nodes used to discretise each element of the canopy. The size of the support
is related to the local grid size and also defines the hydrodynamic thickness of the
filament that in our case can be estimated to be 2.21x (Monti et al. 2019), or 2.21z,
since the mesh spacing is the same in the x and z directions. The adopted IBM
and its properties are described and discussed in Pinelli et al. (2010) and Favier,
Revell & Pinelli (2014). The assessment of the IBM, including the calibration of the
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Nominal regime Canopy height h/H Solidity λ Case Symbol

Marginally sparse 0.05 0.07 MS E
Transitional 0.10 0.14 TR C
Marginally dense 0.25 0.35 MD @
Dense 0.40 0.56 DE +

TABLE 1. Considered canopy configurations: nominal regimes (Nepf 2012), canopy height
and solidity and corresponding acronyms and symbols. Note that we have used a total of
48× 36 stems. All tiles, where the stems are mounted on the bed, are identical squares
with an edge of 1S' 0.13 H.

support of each Lagrangian node required to deliver a resolution comparable to an
interface resolved immersed boundary formulation (Fadlun et al. 2000) can be found
in Monti et al. (2019). In particular, in the given reference we show that, although
the details of the boundary layers forming on each stem cannot be properly captured,
the wake structure and the drag on each stem are very well predicted. To distribute
the stems on the bottom wall, we have subdivided the latter into a Cartesian lattice
of uniform squares of area 1S2 (see figure 1 and table 1). Each filament has been
attached orthogonally to each square-shaped tile, with its local positioning determined
according to a uniform random distribution. The use of a random assignment on
each tile prevents eventual flow channelling effects within the canopy, i.e. preferential
flow corridors, or repeating, ordered flow patterns as in a staggered configuration. A
sketch of the computational domain that includes the distribution of the stems on the
channel bottom wall is shown in figure 2. The tile size and the filament height h can
be adjusted to match any solidity value λ, defined in (1.1). For stems with a uniform
cross-sectional circular area of diameter d, the solidity simply reads as

λ=
dh
1S2
=

d
h
·

(
h
1S

)2

. (2.2)

The results that will be presented correspond to values of λ obtained by keeping
constant the tile and the stem cross-sectional areas (i.e. 1S and d in (2.2)), whilst
varying the height h of the canopy (i.e. all stems share the same height h). In
particular, in (2.2) we have set 1S/d ≈ 5.5 and selected four canopy heights
or equivalently, four λ values, that nominally lead to the emergence of different
canopy-flow regimes (Nepf 2012), as detailed in table 1.

The four cases share the same computational box of size Lx/H = 2π, Ly/H = 1
and Lz/H = 3/2π, similar to the one used by Bailey & Stoll (2013) for the case of
a nominally dense canopy-flow regime. The numerical domain is set to be periodic
in both the streamwise (i.e. x) and the spanwise (i.e. z) directions. The choice of
selecting a streamwise periodic condition, even for the densest case, is motivated
by the experiments of Ghisalberti & Nepf (2004) whose observations highlighted
the presence of a mixing layer near the canopy edge that preserved its thickness in
the streamwise direction. At the bottom wall, i.e. the canopy bed, a zero-velocity
boundary condition is imposed while, at the top surface, a free slip condition is set
to mimic an open-channel free surface.

The four simulations have been carried out using a Cartesian grid with a uniform
distribution in the x and z directions, and with a mildly stretched distribution of the
nodes in the bed-normal direction. While the grid on every x–z plane has been kept
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xy

z

H

h

FIGURE 2. Sketch of the computational domain. The bottom wall of the open channel is
covered with a uniform distribution of square tiles with an area 1S×1S. On each tile,
a stem is mounted orthogonally at a location that is randomly chosen. In the figure, H is
the open-channel depth, while h is the height of the stems. The bulk flow is driven along
the x direction. Also, y is the wall-normal coordinate and z is the spanwise direction.

0
y/H y/H

0 0.2 0.4 0.6 0.8 1.0

1

2

k s
gs

/k
to

t

˜ s
gs

/˜

3(a) (b)
(÷ 10-6)

0.5

1.0

1.5

2.0

0.2 0.4 0.6 0.8 1.0

FIGURE 3. (a) Ratio between the subgrid energy and the total fluctuating energy in the
wall-normal direction. (b) Ratio of the eddy viscosity and the physical viscosity along
the channel height. In both panels the quantities have been averaged in time and in both
spatial homogeneous directions. Symbols as in table 1.

the same for the four simulations, the wall-normal distribution has been adjusted to
adapt to the variations of the height of the stems. The number of nodes in the x
and z directions is set to Nx = 576 and Nz = 432, respectively. In the y-direction, the
number of grid points ranges from a minimum value of Ny= 180 for the sparsest case
(case MS in table 1), to a maximum of Ny= 340 for the densest canopy (case DE in
table 1). With this choice, the x and z spacings in wall units inside the canopy are
kept below 3, i.e. 1x+in =1x · uτin/ν 6 3 and 1z+in =1x+in 6 3 (note that uτin =

√
τw/ρ,

where τw is the wall shear stress at the bed, i.e. at y= 0). In the portion of the flow
outside the canopy, the x and z spacings satisfy the inequalities 1x+out=1x ·uτout/ν611
and 1z+out = 1x+out 6 11, and are thus well within the standard values suggested for
wall-bounded flows (Kim, Moin & Moser 1987). In the previous definitions, uτout is
a friction velocity determined using the total stress at the y location corresponding
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Case Spacing at y= 0 Spacing at y= h Spacing at y=H

MS 1y= 10−3H 1y= 7.0× 10−4H 1y= 3.2× 10−2H
TR 1y= 10−3H 1y= 5.0× 10−4H 1y= 2.0× 10−2H
MD 1y= 10−3H 1y= 3.0× 10−4H 1y= 2.3× 10−2H
DE 1y= 10−3H 1y= 2.5× 10−4H 1y= 2.0× 10−2H

TABLE 2. Details on the node distribution in the wall-normal direction for the four
simulated canopies. Note that for cases MS and TR the max(1yj+1/1yj)6 1.03, ∀j, while
for cases MD and DE the max(1yj+1/1yj)6 1.04, ∀j.

to the virtual origin of the outer logarithmic boundary layer (further explanations are
provided in the next section and in Monti et al. 2019). Concerning the grid spacings
along the y-direction, two tangent hyperbolic distributions have been used inside and
outside the canopy, ensuring that the ratio between neighbouring cells in the interval
[0, h] ∪ [h, H] is kept below 4 %. Table 2 details the adopted grid spacings inside
and outside the canopy along the wall-normal direction. Further discussion on the
suitability of the numerical scheme and on the adopted resolution inside and outside
the canopy is provided in Monti et al. (2019), where the interested reader will also
find a detailed validation campaign based on a comparison with interface resolved
numerical simulations and the calibration required to produce reliable results using a
diffused interface, immersed boundary method. Finally, concerning the global channel
flow equilibrium, a uniform pressure gradient is applied in the streamwise direction. In
particular, at each time step, the mean streamwise pressure gradient is adjusted to fix
the volumetric flow rate to a constant value corresponding to a bulk Reynolds number
of Reb=UbH/ν=6000. Although the bulk Reynolds number is not the most important
indicator of the nature of the flow (Ghisalberti & Nepf 2004), we have chosen this
particular value as being very close to the one used in the experimental work of
Ghisalberti & Nepf (2004) and of Shimizu et al. (1991). A direct comparison with
the last set of experimental data, in particular with their R31 measurement campaign,
is provided in figure 4, showing the mean velocity profile and the Reynolds shear
stresses for the same canopy configuration, i.e. h/H= 0.65, λ= 0.83 and Reb = 7070.

3. Results
The four different values of λ reported in table 1 have been used to carry out

statistically converged simulations of the respective canopy flows. The results collected
in this section will be mainly illustrated by a direct comparison between the statistical
quantities and the structures of the four flow fields. In the next subsection, we will
start by considering the mean velocity profiles, whilst the following subsections will
discuss higher-order statistical distributions and the emergence and disappearance
of the coherent structures that characterise and govern the different regions of each
canopy flow.

3.1. Mean velocity profiles
We start by considering the effect of λ on the mean velocity profiles. In a non-sparse
regime (i.e. λ> 0.04), the mean velocity profile of a turbulent canopy flow is known
to exhibit two inflection points (Poggi et al. 2004; Nepf 2012), one at the edge of the
canopy and the other closer to the wall. The mean velocity profiles obtained for the
four considered λ values, shown in figure 5, exhibit this pair of inflection points.
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FIGURE 4. (a) Comparison of the predicted mean velocity profile (solid line) with the
experimental values for R31 of Shimizu et al. (1991) (dotted curve). (b) Reynolds shear-
stress distribution predicted versus the experimental value of R31 (Shimizu et al. 1991).
The dashed line represents the location of the canopy tip at y= h.

The inflection point at the canopy edge is due to the drag discontinuity arising as
a consequence of the sudden end of the stems, while the inner inflection point is a
result of the merging of the linear, close-to-the-bed velocity profile with the convex
shape of the mean velocity distribution at the canopy tip. The location of the inflection
points can be obtained by computing the zeros of the average, streamwise momentum
balance,

1
Reb

d2
〈u〉

dy2
=
∂P
∂x
+

d〈u′v′〉
dy
+ 〈D〉. (3.1)

In the above equation, the symbol 〈 〉 denotes the triple average operator obtained by
taking the mean values in time and along the two homogeneous spatial directions, x
and z. The first term of (3.1) represents the mean viscous force, the second the mean
pressure gradient, the third the mean Reynolds shear stress and the last one takes into
account the overall mean drag due to the canopy stems which is discontinuous at
y= h/H. The two inflection points enclose a transitional zone, where a mixing-layer-
like flow develops between the innermost and outermost boundary layers (Poggi et al.
2004). Along the wall-normal direction, the origins of these two boundary layers are
located at the solid wall and just below the canopy tip, respectively. The latter can be
interpreted as the location of a virtual wall seen by the outer flow, yvo. The position
of this virtual origin can be determined by enforcing the mean outer flow to take on
a canonical logarithmic shape, i.e.

〈u〉 =
uτ ,out

κ
log
(
(y− yvo)uτ ,out

ν

)
+ B. (3.2)

The above is one of the standard modifications of the boundary layer log laws for
flows over rough surfaces (Jiménez 2004). In (3.2), κ is the von Kármań constant and
uτ is the friction velocity computed using the value of the total stress at the virtual
origin yvo, i.e. uτ ,out = (τ (yvo)/ρ)

1/2, with

τ(yvo)= µ
d〈u〉
dy

∣∣∣∣
y=yvo

− ρ〈u′v′〉(yvo). (3.3)
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FIGURE 5. Mean velocity profiles for the four cases. The insets show an enlarged view.
The profiles are ordered left to right, top to bottom according to the λ value of each case:
(a) MS (λ= 0.07 and h/H= 0.05); (b) TR (λ= 0.14 and h/H= 0.10); (c) MD (λ= 0.35
and h/H = 0.25); (d) DE (λ= 0.56 and h/H = 0.40). The three lines parallel to the bed
indicate: the location of the first inflection point (dotted line), the location of the virtual
origin (dashed line) and the location of the canopy height, i.e. the second inflection point
(dash-dotted line).

If the total stress profile is known, the logarithmic law (3.2) can be seen as an implicit
equation for the unknown yvo (for further details see Monti et al. (2019)).

The virtual origin of the external flow and the locations of the two inflection points
of the mean velocity profile of a canopy flow represent a signature of the actual flow
regime. In particular, their mutual signed distances define the level and the nature of
the interaction between the inner and the outer boundary layers. In our methodology,
the canopy becomes sparser as its height h is shortened, leading to a narrower
transition zone corresponding to an increase in the size of the overlapping region
between the internal and external boundary layers. As the canopy height becomes
shorter, the virtual origin asymptotically moves towards the canopy bed and the two
inflection points gradually merge, eventually collapsing into a single location. This
condition is typical of very sparse canopy regimes (i.e. λ< 0.04) or, more generally,
of turbulent boundary layer flows over canonical rough surfaces. Figure 6(a) shows
the locations of the two inflection points and of the virtual origin for the four λ cases
that we have considered (see table 1). Note that the location of the virtual origin
has been determined by setting the von Kármán constant to κ = 0.41 in (3.2). The
choice of another κ value within the experimentally credible range 0.37 6 κ 6 0.42
would lead to variations of the coordinate of the virtual origin within a 0.05h/H
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FIGURE 6. (a) Mean locations of the two inflection points and of the virtual origin along
the canopy stem (virtual origin: – – –; inner inflection point: ··········; outer inflection point:
– - – - –). (b) Location of the virtual origin in a reference system for which zero is set at
the canopy tip. Note that the small dot on the left of the horizontal axis (bottom in a and
top in b) represents a flow on a smooth surface (i.e. no canopy). The vertical continuous
lines represent the stems.

margin (see Monti et al. (2019)). Figure 6(a) shows that, as the height of the canopy
is reduced (i.e. reducing the value of λ), the wall-normal location of the virtual
origin moves closer to the bed while the innermost inflection point approaches the
canopy tip (i.e. the second inflection point) at y = h. For the sparsest cases that we
have considered (i.e. cases MS and TR in table 1), the location of the virtual origin
is below the inner inflection point, indicating that the outer boundary layer has a
strong interaction with the intra-canopy flow although the values of λ for the MS and
the TR cases are above the sparse/dense threshold identified by Nepf (2012). More
generally, figure 6(a) indicates that the signed distance between the virtual origin
and the inner inflection point is a function of λ that has a zero within the interval
λ ∈ (0.14, 0.35). We suggest using the value of λ for which the coordinate of the
virtual origin coincides with the interior inflection point as a sharp criterion defining
the inception of the dense regime.

Figure 6(b) shows the variations of the distance between the virtual origin and
the outer inflection point (i.e. the canopy tip). From the figure, it appears that h −
yvo approaches a constant value as the canopy becomes denser (i.e. increasing the λ
value). This asymptotic saturation of the location of the virtual origin corresponds to
a decoupling of the outer flow from the inner one: for large values of λ, the outer
turbulent flow does not see a wall-bounded canopy but a set of stems whose height
becomes progressively independent of λ.

A heuristic model able to explain the variations of the locations of the virtual
origin and of the mean profile inflection points as a function of λ can be developed
by considering the ratio of the size of the eddies populating the close-to-the-canopy
region and the geometric dimensions of the canopy. In particular, (1S − d)/h (or,
equivalently, 1S/h for slender stems where d/h� 1) defines the magnitude of the
in-plane canopy voids as compared to the canopy depth (see figure 7). If 1S/h< 1,
only vortices of diameter φeddy <O(1S) will be able to fully penetrate the canopy. In
this case, the typical length scale close to the canopy tip is 1S itself (the tips of the
stems produce eddies of a length scale comparable to their spacings) and therefore
only eddies with a size '1S can be hosted in between the stems (see the sketch
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FIGURE 7. Sketch of the largest vortex size able to penetrate from the outer layer into
the canopy. The vortex is represented as a circle with diameter 1S− d or h.

in figure 7). As a consequence, the virtual origin of the canopy seen by the outer
flow will saturate close to the edge at a distance from the tip of O(1S). The given
description is not very dissimilar from the d-type roughness scenario proposed by
Perry, Schofield & Joubert (1969) that envisaged a situation in which stable vortices
form in between roughness elements.

When 1S/h > 1, the mean filament distance, 1S, does not anymore set an upper
bound on the size of the eddies that can penetrate the canopy. In this case, the distance
from the cores of the eddies to the bottom wall determines the allowed depth by
which the outer eddies can leak into the canopy. In this condition, for sufficiently
tall canopies, yvo becomes a function of h/H (or λ), a situation that recalls a k-type
roughness behaviour (Schultz & Flack 2009).

Using the heuristic argument explained above, we can estimate the value of the
canopy height for which the virtual origin collapses into the innermost inflectional
point (i.e. the condition that we propose to establish the inception of a dense regime).
This occurs when 1S− d' h:

1S− d
h
' 1→

h
H
' (1− 0.182)

1S
H
→

h
H
' 0.1063→ λ' 0.15. (3.4)

In the above equation, we have inserted the specific geometric data used in our
simulations where the only free parameter is h/H. Specifically, the values are:
d ' 0.1821S, 1S ' 0.13H and λ = 0.14h/H. The above estimate matches the
numerical value corresponding to the crossing between yvo and the internal inflection
point of figure 6(a), showing that this simple geometric argument allows the prediction
of the threshold value h/H that defines the establishment of a dense regime canopy
flow. Note that this value is also the value indicated by Schlichting (1936) to
distinguish between the sparse and the dense k-type roughness regimes. For values
of h/H exceeding the threshold value, the canopy becomes denser and the depth
of the virtual origin saturates towards a value '1S. Under these conditions, for
large values of h/1S, it is expected that the outer and the internal boundary layers
almost decouple with very weak interactions. Finally, in figure 8, we present three
sets of snapshots that provide a qualitative assessment of the conceptual model
that has been previously introduced to predict the transition throughout different
canopy-flow regimes. In particular, figure 8(a) shows the instantaneous distribution
of the streamwise vorticity on a y–z plane for the four canopy heights. Figures 8(b)
and 8(c) show isovalues of the streamwise and wall-normal velocity fluctuations
extracted at the same cross-sectional plane. All the figures clearly show that the
canopy acts as a filter for the external flow field, allowing the outer flow to penetrate
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FIGURE 8. Instantaneous isovalues of the streamwise vorticity fluctuations (a) and of
the streamwise (b) and wall-normal (c) velocity fluctuations for the four canopy-flow
configurations. Each panel is composed of four images, where the canopy frontal solidity
increases clockwise from the left top image (from case MS, top left corner to case DE,
bottom right corner). Data have been extracted from a y–z cross-plane. Red colour is
used for positive values while blue is for negative ones. The velocity fluctuation range
is u′/Ub ∈ [−0.7, 0.7] and v′/Ub ∈ [−0.5, 0.5] for all plots. The range of the streamwise
vorticity is ωxH/Ub ∈ [−10, 10].
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FIGURE 9. Mean velocity profiles normalised using both the inner wall units (below
y+in ' 4) and the outer ones (above y+out ' 10, symbols and continuous red lines). The
abscissa ỹ+ represents the wall-normal coordinate rescaled with the inner or outer wall
units considering an origin located either on the canopy bed or at the virtual origin yvo: i.e.
ỹ+ = uτ ,iny/ν or ỹ+ = uτ ,out(y− yvo)/ν, respectively. The solid black line without symbols
refers to the profile of the plane channel flow at Reτ = 950 by Hoyas & Jiménez (2008).
Symbols as in table 1. Note that, although the slopes of the external velocity profiles are
the same, they do not match because the virtual origins are located at different coordinates.

within a depth ∼1S for the densest cases and ∼h for the coarsest one. In particular,
figure 8(a,b) shows how the large logarithmic coherent structures are chopped by the
canopy stems and how the increase in canopy height enhances the intensity of the
outer flow fluctuations that are progressively less influenced by the constraint of the
bottom wall.

3.2. Statistical characterisations of the intra-canopy and outer flows
To characterise the structure of the regions of the considered canopy flows, we start by
considering the mean velocity profiles in semi-logarithmic axes, as shown in figure 9.
The profiles are made dimensionless using two different friction velocities inside and
outside the canopy. In particular, for the inner boundary layer, the friction velocity is
defined as uτ ,in = (τw/ρ)

1/2, with τw the skin friction at the bottom wall (i.e. y/H =
0). The external profile is normalised with a different velocity scale, uτ ,out, computed
using the total stress evaluated at the virtual origin yvo as in (3.3).

Figure 9 reveals that, close to the bed, the velocity profiles obtained with different
values of λ collapse together only in the viscous sublayer region where, independently
of the canopy sparsity, the wall friction dominates over the drag offered by the stems.
Further away from the bed, the shape of the buffer layers is highly affected by the
value of λ that determines the importance of the local hydrodynamic effects versus
the inrush of momentum from the outer layer. Unlike the intra-canopy region, the
outer flow velocity profiles, scaled with uτ ,out and with the corresponding viscous
length scale δν = uτ ,out/ν, follow a universal, logarithmic distribution for all λ values.
The effect of the canopy sparsity is limited to the shift of the logarithmic layer,
revealing that, seen from the outer flow, the canopy stems can be simply interpreted
as roughness elements for which the height is determined by the value of λ.
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FIGURE 10. Equivalent sand roughness ks/k seen by the outer flows of the canopy versus
the effective solidity λeff . As in Jiménez (2004, p. 179, figure 1a), ks/k has been corrected
with the drag coefficients CD computed at the stem mid-location where the local flow is
unaffected by the ends. The dashed line represents a theoretical case where ks/k ∝ λeff .
Open symbols refer to non-circular roughness element: A, spanwise fences (Schlichting
1936);C, spanwise fences (Webb, Eckert & Goldstein 1971); +, spanwise cylinders (Tani
1987). Filled symbols refer to present results:u case MS,s case TR,p case MD andt
case DE.

Consider the logarithmic law for a turbulent boundary layer over a rough wall, that
can be written as

U+out = κ
−1 log(y+out)+ 5.5−1U+out, (3.5)

where 1U+out, termed the roughness function (see Hama 1954; Perry et al. 1969;
Jiménez 2004), is a wall offset that takes into account the increased friction due
to roughness. Figure 10 shows that the roughness function increases monotonically
with the value of λ (or, equivalently, with h/H), approaching an asymptotic value
as the canopies become denser. This behaviour is related to the previously discussed
saturation of the location of the virtual origin for increasing λ values that, in turn,
determines the roughness solidity seen by the outer flow, i.e. λeff = d(h − yvo)/1S2.
Apart from the roughness function 1U+, the effect of the roughness on the mean
flow can be measured by other, interchangeable quantities (Jiménez 2004) such as
the effective sand roughness ks (Nikuradse 1933) defined via the modified log law,

U+out = κ
−1 log

(
y− h

ks

)
+ 8.5. (3.6)

By assuming that the outer turbulent flow sees the canopy as a rough wall, the portion
of the canopy that goes from the virtual origin to the canopy tip can be interpreted
as a surface covered by cylindrical obstacles characterised by height,

k+ =
kuτ ,out

ν
=
(h− yvo)uτ ,out

ν
. (3.7)

All of the four considered cases are characterised by a value of k+� 1, a situation
in which the drag due to the elements dominates the viscous one. This type of
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roughness, termed k-type (Jiménez 2004), may induce two different flow regimes the
inception of which depends on the relationship between the ratio ks/k and the solidity
λeff (Schlichting 1936). Specifically, for values of λeff . 0.15, ks/k linearly increases
with λeff . For λeff & 0.15, the roughness elements start shielding one each other and
ks/k starts decreasing as ks/k∝ λ

−p
eff , with p ∈ [2, 5] (Jiménez 2004).

Figure 10 shows the ratio ks/k as a function of λeff for the four cases considered
in this work. Note that the ratio ks/k has been corrected with the drag coefficient
value suggested in figure 1(a) of Jiménez (2004). From figure 10, it appears that
all of the considered cases appear to belong to the sparse-k-type regime with the
values corresponding to h/H= 0.25 and h/H= 0.40 in the range of the sparse–dense
transition. Also note that, when yvo saturates, h− yvo ' h and λeff ' λ, thus, although
the definition of dense and sparse canopies differs from the one used for the rough
surface seen by the outer flow, when approaching the dense regime for the outer flow
the separation value between rough regimes can be inferred using either λ' 0.15 or
λeff ' 0.15.

Before introducing the Reynolds stress distributions, we briefly discuss the selection
of appropriate velocity and length scales enabling a direct comparison between the
four canopy flows. The velocity scale that we have chosen is based on the local value
of the total shear stress,

uτ ,l(y)=

√
µdy〈u〉 − ρ〈u′v′〉
ρ(1− y/H)

. (3.8)

This definition, incorporating the effect of the mean drag exerted by the canopy on
the flow, allows the dimensionless total stress to vary linearly with the wall-normal
distance (Monti et al. 2019). We can associate with the friction velocity (3.8) a local
Reynolds number Reτ ,l(y)= uτ ,l(y)H/ν based on the total channel height.

The appropriateness of using a local friction velocity as a scaling factor has been
previously appraised by other authors for both smooth and manipulated walls (Jiménez
2013; Tuerke & Jiménez 2013; Sharma & García-Mayoral 2018). The well-behaved
scaling properties of (3.8) are also confirmed by the present results. In particular,
figure 11 shows a comparison between the diagonal Reynolds stresses normalised
with the external friction velocity uτ ,out obtained using the total stress at the virtual
origin (3.3) (plots in a,c,e), as opposed to the ones obtained by normalising with
the local friction velocity defined in (3.8) (plots in b,d, f ). Figure 11(a,c,e) clearly
shows that the diagonal Reynolds stresses obtained for different values of λ do not
collapse inside the region occupied by the canopy, also indicating that the values of
the maxima decrease monotonically when increasing λ. This systematic decrease of
the peak values of the stresses is induced by the variations in the mean drag offered
by the canopy. When the dimensionless stress values are defined using the velocity
scale (3.8), which includes the mean drag contribution to the stresses, the variations in
the values of the maxima are largely reduced (as shown in figure 11b,d, f ) leading to
an almost total collapse for all components in the sparsest cases. In the two densest
cases, the peaks of the streamwise and of the wall-normal components increase,
while the spanwise fluctuations show a different behaviour, decreasing in the denser
cases. Concerning the choice of the length scale, we have considered both an outer
and an inner scaling. The former is based on the external length scale (in our case,
the depth of the open channel H), while the latter employs an inner viscous scale,
δν = ν/uτ . The appropriateness of H as a length scale for the outer flow is clearly
visible in figure 11 that shows a collapse of all the diagonal stress distributions when
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FIGURE 11. Diagonal Reynolds stress distributions versus the wall-normal, external
coordinate y/H: (a,b) streamwise component; (c,d) wall-normal component; (e, f ) spanwise
component. The distributions in (a,c,e) are made non-dimensional with the friction velocity
computed at the virtual origin, uτ ,out, whilst the distributions in (b,d, f ) are rescaled with
the local friction velocity uτ ,l (3.8). Symbols as in table 1; line styles are: —— u′rms;
– - – - – v′rms and – · – · – w′rms.

moving away from the canopy, independently of the choice of the velocity scale.
A more comprehensive comparison of the distribution of the velocity fluctuations
away from the region occupied by the canopy is shown in figure 12, where we have
also incorporated the data from the direct numerical simulation of a plain channel
flow over smooth walls at Reτ = 950 of Hoyas & Jiménez (2008). A good collapse
is obtained for all fluctuations in all cases, except in the region y/H ' 1, where
the comparison between a full channel and an open channel cannot be made. The
marginal difference between the Reynolds stress distributions obtained in a smooth
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FIGURE 12. Wall-normal distribution of the diagonal Reynolds stresses in the outer region
(i.e. above the canopy) made dimensionless with the local friction velocity uτ ,l, defined in
(3.8), as a function of the wall-normal coordinate y/H. Line styles as in figure 11 and
open symbols as in table 1. The grey lines refer to the diagonal Reynolds stresses of a
channel flow over a smooth wall at Reτ = 950 (Hoyas & Jiménez 2008).

and in rough turbulent channel flow was also highlighted by Scotti (2006), who
analysed the flow over a set of transitional, k-rough type surfaces.

Concerning the most relevant internal length scale, the choice is between several
possibilities since the filamentous layer covering the bed introduces several extra
geometrical and physical scales, e.g. the height, h, and the diameter of the stems, d,
the average separation between them, 1S, the location of the mean velocity profile’s
inflection points and the location of the virtual origin for the outer flow, yvo. In an
attempt to find a length scale delivering a unified behaviour, we introduce a scaled
viscous unit, y+α , defined using the localised friction velocity (3.8) corrected with a
stretching factor α:

y+α =
1
α

uτ ,ly
ν
. (3.9)

The role of α in the above definition is to adapt the scaling to conditions that depend
on the sparsity of the canopy (i.e. on the eventual saturation of length scales that
depend on the value of the solidity λ). Figure 13(a) reveals that, in denser canopies,
the stretching factor should be set to the dimensionless canopy height, h/H, thus
leading to the definition

y+h =
uτ ,ly
ν

H
h
=

y
h

Reτ ,l. (3.10)

Differently, for sparser canopies, e.g. cases MS and TR, figure 13(b) suggests that an
appropriate value for the stretching factor α could be the average stem-to-stem spacing
1S/H. With this choice, the dimensionless wall-normal coordinate reads as

y+1S =
uτ ,ly
ν

H
1S
=

y
1S

Reτ ,l. (3.11)

Although in this work we do not consider the effects of the variations of the in-plane
density (i.e. 1S), in view of the previously exposed conceptual model and previous
works on k-type roughness (Leonardi, Orlandi & Antonia 2007), it seems physically
sound to assume that it is the ratio 1S/h that sets the size of the eddies that can
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FIGURE 13. (a,b) Wall-normal distributions of the diagonal Reynolds stresses within
the intra-canopy region. The stresses are made dimensionless using the local friction
velocity uτ ,l, defined in (3.8). In (a) only the dense cases MD and DE are represented
using as a wall-normal coordinate the non-dimensional variable y+h , defined in (3.10).
In (b) the distributions are shown for the sparse cases (MS and TR) and for the
marginally dense case MD using as a wall-normal coordinate the dimensionless variable
y+1S defined in (3.11). (c) Wall-normal distributions of the viscous ·········· and Reynolds
shear stresses – – – made dimensionless with the local shear ρu2

τ ,l. The wall-normal
coordinate corresponds to the non-dimensional variable y+α , as in (3.9), with α= h/H for
the denser cases MD and DE, and α =1S/H for the sparser cases MS and TR. For all
panels, symbols as in table 1 and line styles as in figure 11.

penetrate the canopy in a sparse canopy-flow regime. Finally, figure 13 shows that
the intermediate case MD, where h/H = 0.25, exhibits a consistent profile that is
independent of the chosen α factor, possibly because of the transitional nature of this
specific case.

A confirmation of the validity of the proposed scaling is provided in figure 13(c)
where we present the wall-normal distribution of the viscous and Reynolds shear
stresses (made dimensionless with ρu2

τ ,l) versus the dimensionless coordinate y+α
defined in (3.9). Selecting the values of α defined above as a function of the actual
regime, we obtain a good collapse for all the distributions.

The two different length scales that we have defined for the intra-canopy and the
outer flow will be used separately in the two regions to determine the non-dimensional
wall-normal coordinates. In the particular case of dense canopy regimes (e.g. cases
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MD and DE), the separation between the inner and outer regions is not fixed by the
tips of the stems but by the location of the virtual origin: the inner region spanning
the interval between y/H=0 and y/H∼ yvo/H and the outer one between y/H∼ yvo/H
and y/H= 1. In the neighbourhood of yvo, the two regions eventually overlap with the
separation between regions becoming sharper for increased values of the solidity.

We close the discussion on the mean behaviour of the considered canopy flows
by providing a brief, comparative analysis of the root mean square distribution of
the velocity fluctuations. Further analysis of the contribution of the flow structures
to the genesis of the fluctuations specific to each regime will be provided in the
following subsection. Figure 13 shows the wall-normal distribution of the mean
diagonal Reynolds stresses and of the total stresses. The distributions are displayed
using two different non-dimensional coordinates in two separate panels: the left panel
concerns the dense cases (the non-dimensional y being the one given in (3.10)), the
right one the sparser ones (non-dimensional y as in (3.9)).

We start by observing that the maxima of the streamwise velocity fluctuations
decrease as the canopy sparsity is increased and that the most sparse case MS is
characterised by an almost flat distribution within the canopy except in the region
close to the bed. This behaviour is consistent with the alternating presence of the
stems that locally decelerate the flow driven by the imposed pressure gradient.
Clearly, the value of λ determines the intensity of the stem blockage effect that
becomes weaker for sparser conditions.

Concerning the wall-normal component of the Reynolds stresses, it is observed
that the two denser cases DE and MD present a distribution that substantially does
not differ from the one of a standard, smooth-wall channel flow (see for example
Hoyas & Jiménez (2008)). This behaviour is easily understood by noticing that denser
canopies can be regarded as porous media with a high wall-normal permeability that
does not hinder sweeps and ejections from and towards the outer flow taking place in
a medium bounded by a distant, impermeable bed. The sparser cases show a different
behaviour with the wall-normal velocity fluctuations decreasing when the solidity is
decreased and the impermeability condition becoming more influential on the outer
flow structure.

Finally, the spanwise velocity fluctuations show a behaviour that does not follow the
variations of λ monotonically. In particular, we notice an overall increase in 〈w′w′〉
when moving from the DE to the MD case, an almost unchanged distribution for
the transitional cases MD and TR and a final decrease in the MS case. The increase
in the spanwise velocity fluctuations observed in the transitional cases, MD and TR,
has been explained by Monti et al. (2019) in terms of spanwise deviations of the
intra-canopy flow that preferentially penetrates the layer through wall-normal sweeps
and ejections generated by the dynamics of the outer, logarithmic layer structures. The
complete interpretation of the wall-normal distribution of the velocity fluctuations will
be presented in the following subsection.

3.3. The structures of the canopy flows
Further insight into the emergence and the organisation of the large coherent structures
that characterise the various flow regimes when different solidities are considered can
be obtained by looking at the spectral energy content of the fluctuations of the velocity
components.

We start by considering figure 14 that shows the magnitude of the one-dimensional
premultiplied cospectra of the Reynolds shear stress, |κxΦu′v′/u2

τ ,l| (or |κzΦu′v′/u2
τ ,l|,
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FIGURE 14. Magnitude of the premultiplied cospectra of the streamwise and spanwise
velocity fluctuations u′ and v′ as a function of the wall-normal coordinates in outer units.
Panels (a–d) refer to the dependence on the streamwise wavelengths (in outer units) for
increasing values of λ (i.e. λ = 0.07, 0.14, 0.35 and 0.56); contour levels range in the
interval [0, 0.4] with an increment of 0.02. Panels (e–h) refer to the spanwise wavelengths
for the same increasing set of λ values; contours extracted in the [0, 0.5] range with an
increment of 0.05. Vertical solid lines: red is h/H, green is 1S/H. Horizontal dashed
lines: yellow is the location of the inner inflection point, red is the canopy height (outer
inflection point), cyan is the location of the virtual origin; the green dotted line is the
location of maximum curvature of the mean velocity profile.

where uτ ,l(y) is the local friction velocity defined in (3.8)), as a function of
the distance from the bed and of the streamwise (a–d) and the spanwise (e–h)
wavelengths. Each row incorporates four plots corresponding to the cospectra
that have been obtained using the four considered λ values. In this figure and in
the premultiplied spectra of the velocity fluctuations (to be presented later), the
wavelengths and wall-normal distances have been made dimensionless with the
open-channel height, H. Both the cospectra and premultiplied spectra have been
plotted using log–log axes to facilitate the interpretation of the results within the
intra-canopy region.

Observing the cospectra of figure 14 obtained for different solidities, we notice that
all of them present at least two distinct peaks whose locations move towards the y
coordinates of the two inflection points of the mean velocity profile (yellow and red
horizontal, dashed lines in every figure) as λ is increased. More precisely, the outer
peak approaches asymptotically the tip of the canopy for increasingly dense conditions
with the associated streamwise and spanwise wavelengths of sizes O(H). Since 〈u′v′〉
is a good indicator of spanwise-oriented coherent structures, the outer peak suggests
the presence of a set of rollers centred at the canopy tip. Their presence is confirmed
by visual inspection of the streamlines plotted on the x–y side of the computational
boxes of the four considered cases in figure 15 (streamlines obtained by spanwise
averaging an instantaneous realisation of the u′ and v′ velocity components).

The appearance of spanwise-oriented rollers is a ubiquitous feature of many flow
fields over textured surfaces that induce an inflection point in the mean velocity profile,
e.g. flow over canopies, see Nepf (2012) or Finnigan, Shaw & Patton (2009), or
porous and ribbleted walls, see Jiménez et al. (2001) and García-Mayoral & Jiménez
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FIGURE 15. Instantaneous isosurfaces of streamwise velocity fluctuations. The streamlines
drawn on the lateral sides have been obtained by averaging the instantaneous velocity
fluctuations along the normal to the considered faces: the spanwise direction (〈u〉z, 〈v〉z)
for the left lateral side and the streamwise direction (〈v〉x, 〈w〉x) for the frontal face. Panels
(a–d) correspond to the cases MS, TR, MD and DE respectively. The plane indicated with
the red lines corresponds to the tip of the canopy, while the blue line indicates the plane
at a distance yvo from the bed.

(2011). In our case, the outer inflection point is generated by the discontinuous
drag imposed by the canopy on the mean flow at its tip. As observed by other
authors, the resulting scenario resembles that of a plane mixing layer (Raupach et al.
1996; Finnigan 2000; Nepf 2012) sharing with it also the appearance of a system of
spanwise rollers that form as a consequence of a Kelvin–Helmholtz-like instability.
The streamwise wavelength Λx associated with these rollers in dense canopy flows
(i.e. λ� 0.1) has been found to be within the range 7<Λx/Ls < 10 (Raupach et al.
1996), where Ls is a measure of the vorticity thickness above the canopy tip,

Ls =
〈u〉tip
∂y〈u〉tip

=
1
2
δω. (3.12)

Raupach et al. (1996), after analysing data from several experiments on dense canopy
flows, provided a sharper estimate as Λx = 8.1Ls. In figure 16, we compare this
last estimate of Λx with the one computed in our canopy flows associated with the
outer peaks of figure 14, as a function of the shear length, Ls. Clearly, the estimate
provided by Raupach et al. (1996) holds only for the two denser scenarios while for
the two sparser canopies MS and TR the correlation is not verified, showing a linear
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FIGURE 16. Streamwise wavelength Λx of the large coherent motions triggered by the
KH-like instability versus the shear length Ls. The solid line represents Λx = 8.1Ls
(Raupach et al. 1996), whilst the dashed line represents Λx = 19.5Ls − 4. Symbols as in
table 1.
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FIGURE 17. Mean velocity profiles for the four cases normalised with the bulk velocity
in (a) and the local friction velocity in (b), as functions of the distance from the wall
normalised with the canopy height h. The red markers indicate the locations of the
inflection point closer to the solid wall, while the red dashed line indicates the location
of the canopy edge. Symbols as in table 1.

relation Λx= 19.5Ls− 4 instead. A possible explanation for this inconsistency can be
attributed to the fact that the mean velocity in the inner canopy region can no longer
be neglected and that (3.12) is no longer a valid estimate of the vorticity thickness
above the canopy.

Concerning the inner peak of the 〈u′v′〉 cospectra, it is noticed that its wall-normal
location matches the position of the inner inflection point for all the considered λ
values and that, for increasing values of the canopy solidity, the interior maxima
correspond to modes with λx/H ' h/H and λz/H '1S/H. From figure 17, showing
the mean velocity profile inside the canopy, it is also noticed that Fjørtoft’s criterion
(i.e. a necessary condition for an inviscid flow instability, see Drazin & Reid 1981),
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FIGURE 18. Case DE. Instantaneous contours of velocity fluctuations on planes parallel
to the wall. Panels (a,d,g,j): red u′/uτ ,l = 3, blue u′/uτ ,l = −3; (b,e,h,k): red v′/uτ ,l = 2,
blue v′/uτ ,l = −2; (c, f,i,l): red w′/uτ ,l = 3, blue w′/uτ ,l = −3. The planes are located at:
y/H = 0.059 (location of the lower inflection point), (a–c); y/H = 0.275 (location of the
virtual origin), (d–f ); y/H = 0.40 (location of the upper inflection point, i.e. the canopy
edge), (g–i); y/H = 0.50 (outer region), ( j–l).

given by
∂yy〈u〉(y)[〈u〉(y)− 〈u〉(ys)]< 0, (3.13)

for all y in the neighbourhood of the inflection point ys, is satisfied at the interior
inflection point (see figure 17b) of the mean velocity profile. This observation leads
to the conjecture that the inner peak in the cospectra of 〈u′v′〉 may be responsible
for the emergence of another, internal shear instability inside the canopy. A series
of snapshots offering a visual indication on the structure of the velocity field inside
the canopy is provided in figure 18. Although these snapshots only offer isovalues
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of the velocity components at selected sets of x–z planes for case DE, it clearly
appears that the velocity fluctuations at the location of the inner inflection point
(a–c) do not seem to inherit the same organised pattern that characterises planes that
are further away from the bottom wall ( j–l). This variation of the structure of the
velocity field along the normal direction inside the canopy becomes quite evident
when considering the streamwise component of the fluctuating velocity. In particular,
on the x–z plane corresponding to the inner inflection point location, i.e. panel (a),
a set of spanwise-oriented wave-like shapes emerge with a pattern that appears to
be totally uncorrelated with the streamwise-oriented streaks characterising the outer
region shown in ( j). Differently, the pattern that can be observed in (a), reminiscent
of a KH-like instability with a streamwise modulation, seems to correlate with the
structure of the wall-normal velocity in the plane corresponding to the location of the
virtual origin shown in (e). In the latter, the wall-normal ejections and sweeps are
clearly visible in (e). The wall-normal fluctuations pervade all the canopy because of
the high wall-normal permeability, however, panel (b) shows that they cannot reach the
region close to the wall because of the impermeability condition. Here, the solenoidal
condition on the velocity field deviates the v′ fluctuations, generating modulations of
the fluctuations of the other two velocity components (see a,c,d, f ). In particular, we
notice that each strong sweep in (e) corresponds to a strong divergence of w′ in (c).
The meandering behaviour of u′ and w′ on finer length scales is observable in all the
panels extracted within the canopy and can be attributed to the presence of the stems.
At the edge of the canopy, the short-wavelength fluctuations are still visible, but
now the large scale fluctuations are directly inherited from the outer flow structures,
i.e. long elongated streamwise velocity streaks and quasi-streamwise vortices leave
their footprint in the elongated contours of u′ (see g, j) and in the contours of v′
(h,k) and w′ ( j,l). Before looking in detail at the structure of the fluctuating velocity
fields, following earlier studies (Raupach & Shaw 1982; Nikora et al. 2007; Ben
Meftah & Mossa 2013; Ben Meftah, De Serio & Mossa 2014), we consider the field
resulting from the time average only. In principle, this average allows us to highlight
the presence of the wake behind the elements that contribute to the budget of the
kinetic energy, especially in the case of coarse canopies, where the dispersive stresses
induced by the presence of the stems become comparable to the Reynolds stresses
(Yuan & Piomelli 2014). In the present case, the random distribution of the stems
on each tile makes it very difficult to determine the structure of the time-averaged
field. An attempt to reconstruct a hypothetical field behind a single filament can be
done by considering a time average coupled with a tailored ensemble average over
the tiles. The procedure that we have envisaged proceeds in three stages. Firstly, we
obtain a time-averaged field over the whole canopy. This mean field is not particularly
meaningful as it contains local behaviours inherited from the random distribution of
the filaments over the tiles. To remove this effect, in a second stage, we consider a
virtual cuboid with a 21S × 21S base and a height h. All the velocity fields over
each tile volume are then translated in such a way that the location of their respective
stems matches the centre of the cuboid base. The resulting, translated fields that will
fill the cuboid are then ensemble averaged to produce an intermediate mean field.
Finally, to obtain the double-averaged field over a 1S×1S tile, analogous to the one
that would correspond to a uniform filament distribution, we average on the cuboid
over the x and z directions, exploiting the periodicity and the parity of the averaged
velocity field. The double-averaged fields obtained through this procedure for the four
canopy configurations are shown in figure 19. Panel (a) of the figure shows that, in
the MS case, the wall-normal velocity, close to the canopy tip, presents sweeps on
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both the frontal and the lee sides of the stem. However, when moving deeper into
the canopy, the mean wall-normal velocity becomes negative at the leading edge and
positive at the rear, producing a strong mean deflection of the streamlines around
the filaments in the region close to the bottom wall. A similar, although smoother,
scenario can also be appreciated in (b) for the TR case. For the denser cases, MD
and DE, panels (c,d) show a different distribution of the averaged field with the
wall-normal velocity having a mean sweep and ejection on both the lee and wind
sides of the stems independently of the distance from the canopy edge. Also, the
streamlines in the horizontal planes appear to be much smoother and representative
of a typical flow around a two-dimensional cylinder.

To shed further light on the structure of the fluctuating velocity fields obtained when
different solidity values are considered, we turn our attention to the premultiplied
spectra of the velocity fluctuations. In figure 20 we present the spectra associated
with the fluctuations of the three velocity components as a function of the streamwise
wavelength and the distance from the bed. Figure 21 shows the spectra as a
function of the spanwise wavelength instead. These two figures are organised as
a 4 × 3 matrix of panels in which each panel (i, j) represents the spectra of the
fluctuations associated with the jth velocity component and the ith solidity value (i.e.
λi=1,...,4 = [0.07, 0.14, 0.35, 0.56]).

All the spectra of figures 20 and 21 share the presence of a peak located outside the
canopy. In particular, the streamwise velocity fluctuations show a clear external peak
above the canopy tip characterised by a very long streamwise wavelength associated
with a large scale modulation in the spanwise direction. These outer, large scale,
streamwise velocity structures take on the shape of elongated velocity streaks typical
of the logarithmic region of wall-bounded flows (Jiménez 2018). The u′ premultiplied
spectra, obtained for different λ values, clearly indicate that the coherence length of
these streaks scales in outer units. The presence of these large velocity streaks is
also visually confirmed by the streamwise isosurfaces of the snapshots of figure 15.
By looking at the y–z sides of the computational boxes of the snapshots of the
four considered cases in figure 15 (streamlines obtained by streamwise averaging an
instantaneous realisation of the v′ and w′ velocity components), we notice that the
outer streamwise velocity streaks are flanked by a set of large streamwise vortices
that occupy all of the wall-normal portion of the flow outside the canopy. The
presence of these streamwise-oriented vortices is confirmed by the outer peaks of
the premultiplied peaks of v′ and w′ in figures 20 and 21. We next consider the
spectra within the canopy region, starting from the densest case DE for which the
last rows of figures 20 and 21 show the presence of two distinct, interior peaks in the
energy content of the three velocity fluctuation components. The leftmost peaks in
the spectra of u′ and w′ (figure 21j,l) are associated with a spanwise length λz '1S
and are therefore related to the internal meandering motion imposed by the presence
of the stems (also visible by the fine spanwise textures of the velocity isocontours
(a–d) and (c–f ) of the planar snapshots of figure 18). The leftmost peaks of u′ and
w′ in figure 21( j–l) show that the associated streamwise wavelength takes on a value
between h and 1S which is probably related to the coherence length of the wakes
formed around the stems.

For sparser conditions, the leftmost peak of u′ and w′ is still observable in figure 21
(i.e. spanwise structures) just below the location of maximum curvature of the mean
velocity profile. Differently, figure 20 (i.e. streamwise structures) shows a trend of the
leftmost peak in merging with the rightmost peak when the value of λ is decreased. It
is also noticed that the leftmost peaks associated with the v′ fluctuations in figures 20
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FIGURE 19. Time- and tile-averaged flow fields (see text for details on the averaging
procedure) corresponding to the four frontal ratios. Panel (a,b) corresponds to the coarse
(a) and semi-coarse case (b) (i.e. MS and TR); panel (c,d) to the semi-dense (c) and dense
case (d) (i.e. MD and DE). In the figures the volume over which the average has been
carried out is repeated by half of its size in the positive and negative x and z directions
exploiting the periodic conditions. The isocontours on the cross-planes correspond to the
time- and ensemble-averaged y velocity component. Blue shows negative values (i.e. mean
sweeps), red shows positive values (i.e. mean ejections). Contours extracted in the range
[−0.015, 0.027]Ub. The horizontal planes are extracted at 5 %, 50 % and 95 % of the
canopy height. On these planes, the oriented lines correspond to the three-dimensional
streamlines of the double-averaged velocity field.

and 21 are located in the same locations as the ones of the cospectra of 〈u′v′〉 shown
in figure 14.

The rightmost peaks inside the canopy of the premultiplied spectra of u′ and w′

are associated with larger space scales and thus generated by a different physical
mechanism. As briefly mentioned before, when focusing on the dense case DE (panels
( j) and (l) of both premultiplied spectra of u′ and w′) and looking at figure 18(a,c),
we realise that a new set of structures is introduced, with the u′ and w′ fluctuations
organised in stripes that are highly coherent in the spanwise direction in the u′ case
and along a diagonal direction for the w′ case. This organisation explains why the
spectra of u′ do not have a clear second peak in figure 21( j) while w′ does in panel
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FIGURE 20. Premultiplied spectra of the velocity components as a function of the
streamwise wavelength and the wall-normal coordinates in wall units. Panels (a,d,g,j):
κxΦu′u′/u2

τ ,l with grey levels range in [0, 0.8] with a 0.1 increment; (b,e,h,k) κxΦv′v′/u2
τ ,l

with grey levels range in [0, 0.3] with a 0.03 increment; (c, f,i,l) κxΦw′w′/u2
τ ,l with grey

levels range in [0, 0.5] with a 0.05 increment. Panel (a–c) refers to the MS case; panel
(d–f ) refers to the TR case; panel (g–i) refers to the MD case; panel ( j–l) refers to the
DE case. Coloured lines have the same meaning as in figure 14.

(l) of the same figure. Considering again figure 18 and comparing panels (a) and (c)
(corresponding to planes located by the wall-normal position of the rightmost peak in
the spectra of u′ and w′) with panels extracted further away from the wall, it becomes
quite evident that the flow structure is very different. This observation leads to the
conclusion that the region close to the bed is almost decoupled from the regions of
the canopy closer to its tip, at least in the denser cases.

The spectra of figure 21 show that the rightmost peaks of u′ and w′ share the same
wavelengths as the rightmost peak of v′ (in the outer flow, or by the canopy tip)
although located at different distances from the wall. This correlation is also visually
evident from the snapshots of figure 15 showing a large penetration of the outer quasi-
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FIGURE 21. Premultiplied spectra of the velocity components as a function of the
spanwise wavelength and the wall-normal coordinates in wall units. Panels (a,d,g,j)
κzΦu′u′/u2

τ ,l with grey levels range in [0, 1.05] with a 0.15 increment; (b,e,h,k) κzΦv′v′/u2
τ ,l

with grey levels range in [0, 0.3] with a 0.05 increment; (c, f,i,l) κzΦw′w′/u2
τ ,l with grey

levels range in [0, 0.5] with a 0.05 increment. Row ordering as in figure 20 and coloured
lines have the same meaning as in figure 14.

streamwise vortices into the canopy in the wall-normal direction. Since the canopy
acts as a porous medium with a y permeability much larger than the in-plane x–z
ones, the flow that reaches the bottom wall must deflect its momentum to preserve
the wall impermeability and the solenoidal condition, thereby generating new scales
for the u′ and w′ components.

All the aforementioned structures, i.e. the ones triggered by the two inflection
points as well as the ones driven by the outer coherent large scale motions, mostly
interact along the wall-normal direction due to the high y permeability of the canopy
(compared to the x–z, in-plane permeability components). The high wall-normal
permeability also sets the location of the interior inflection point in a situation that
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resembles the one of a set of planar jets of average cross-section 1S − d striking
normally into the bed (Banyassady & Piomelli 2015).

4. Conclusions

In this article, we have considered detailed numerical simulations of rigid, fully
submerged canopy flows in different nominal regimes. The nature of the actual
fluid mechanic regime in a fully submerged canopy flow is mainly controlled by
two geometric quantities: the ratios d/h and h/1S. The first one takes into account
the slenderness of the stems (i.e. ratio of the diameter and the height), the second
measures the ratio of the elements’ height and their average spacing. When the
ratio d/h is small, it is possible to use only the frontal solidity λ = (dh)/1S2 to
determine the onset of a particular canopy-flow regime (Nepf 2012). In this work, the
solidity λ has been modified only by changing the ratio h/1S which, for very slender
elements in a fully submerged canopy, is the only non-dimensional group built with
the geometrical values that characterise the canopy that matters. To our knowledge,
this is the first time that resolved simulations are used to explore the nature of
different canopy-flow regimes and ways to infer a priori their onset. In particular, the
most salient outcomes of this research have been: (i) a detailed characterisation of
the coarse and dense regimes obtained through the analysis of the spectral structure
of the velocity fields of the turbulent flows arising inside and outside the canopy;
(ii) a description of the interaction between internal and external flows and how this
changes when varying the frontal solidity; (iii) a proposal for extended and generalised
scaling laws covering all submerged canopy flows regimes; (iv) the identification of a
criterion to establish when transition through different regimes takes place that only
relies on the shape of the mean velocity profile: the virtual origin of the external
flow and the two inflection points; (v) the recognition of the importance of the most
internal inflection point that can potentially bring in another inflectional instability. Of
course, the obtained results must be viewed with caution as we have considered the
effect of varying only one non-dimensional parameter and their generalisation needs
further exploration that includes the effect of the planar solidity as well.

The basic mechanism responsible for the different behaviours arising in different
regimes is the selection process by which the canopy geometry discriminates the
structure of the outer flow structures that can penetrate into the filamentous layer.
This selection process determines the coordinate of the virtual wall seen by the
external turbulent shear flow. If h>1S, the virtual wall is located at y'1S, while
if 1S> h then the location of the virtual origin is a function of the canopy height h
only. Clearly, a transitional condition takes place when 1S' h. We have shown that
when this matching condition occurs the frontal solidity takes on the value λ' 0.15.
This value is commonly accepted as the one that separates dense from sparse regimes
in canopy flows (Nepf 2012) and turbulent flows over k-type roughness (Schlichting
1936). Our simulations have also proved that in this condition the location of the
virtual origin and of the internal inflection point collapse and that increasing h/1S
further separates those two locations, leading to a fully dense canopy-flow regime.

The internal and the canopy tip inflection points are common features of the mean
velocity profiles obtained with the frontal solidity values considered in this work. The
outer inflection point is a direct consequence of the drag discontinuity at the tip of
the canopy. The inner inflection point arises as a consequence of the merging of a
convex, boundary layer profile in the region close to the bed to a concave shape
characterising the mean velocity profile underneath the canopy tip. An upper bound
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to the location of the inner inflection point can be estimated by assuming that the
flow in the canopy resembles the one obtained by a set of jets of diameter 1S −
d impinging on the bed. This similarity, inspired by the canopy high wall-normal
permeability, suggests that this array of jets would generate a boundary layer by the
bed where the impermeability condition must be met. In this scenario, the induced
mean streamwise (i.e. x) velocity would present an inflectional point at a distance from
the wall of yint ' 0.4φ (φ being the diameter of the jet, see Banyassady & Piomelli
2015). Figure 6(a) shows that, when increasing the value of the frontal solidity, the
location of the internal inflection point quickly saturates. In particular, it turns out
that the asymptotic coordinate of the internal inflection point location is at yint '

0.4(1S− d).
Since we have shown that it is the signed distance between the virtual origin and

the internal inflection point that sets the actual type of the canopy flow, an a priori
criterion to determine the ongoing flow regime can be put forward by using the above
estimates. In particular, since h − (1S − d) is an upper bound for the virtual origin
location yvo, we could predict the onset of a dense regime whenever the inequality
h − (1S − d) > 0.4(1S − d) is verified. Equating the two sides of the previous
inequality, we also obtain a regime transition criterion: h/(1S− d)= 1.4. If the value
of d/1S used in our simulations (see § 3.1) is used in the previous crude estimate,
the corresponding λ value is λ= 0.208, which is a close approximation to the value
λ= 0.15 mentioned above.

The spectral analysis of the velocity fluctuations in different regimes has allowed
us to highlight a number of differences between the structures of the corresponding
velocity fields. These differences are especially remarkable within the canopy region.
In dense regimes with a net separation between the virtual origin and the internal
inflection point, the flow structure in the close-to-the-bed region is coupled to the
external flow only through the sweep and ejection events that are mainly driven by the
coherent quasi-streamwise vortices that populate the outer flow and the neighbourhood
of the canopy edge (Monti et al. 2019). In fact, when the outer coherent structures
approach the tip of the canopy, the spanwise coherence of the external flow is
shredded by the stem spacings 1S. At the same time, all the streamwise wavelengths
larger than O(h) are also filtered out by the stems. When the canopy is more shallow,
it is uniquely its height that sets the size of the high-pass filter that discriminates the
spanwise and streamwise sizes of the outer eddies allowed inside the canopy.

Apart from the influence of the wall-normal momentum driven by the outer
logarithmic structures, the flow inside the canopy is also strongly influenced by
the effects of the inflectional instabilities associated with the presence of the two
aforementioned inflection points of the mean velocity profile. An analysis of the
cospectra of 〈u′v′〉 shows the existence of spanwise energetic structures with spanwise
and streamwise coherent sizes of the order of the channel height. These large
structures are linked to the inflection point at the tip of the canopy and have been
reported by several authors in several obstructed turbulent flows, such as canopy flows
and flows over porous media with various permeability properties. In the particular
case of canopy flows, these structures generate localised Kelvin–Helmholtz rollers that
travel along the canopy tip, further enhancing the wall-normal momentum exchange
between the intra-canopy region and the outer flow.

In the case of dense canopies we have reported the existence of another mechanism
taking place in the bed region. Here, the lower inflection point may trigger a spanwise
coherent modulation of the streamwise velocity components. This modulation has an
associated streamwise length scale of the order of the distance of the interior inflection
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point to the bed. Its presence, associated with the effects of the sweep events driven
by the outer flow and the canopy tip rollers, induces a diagonal modulation of the
spanwise component of the velocity field, probably energised by the momentum
transfer that must take place at the wall to verify the impermeability condition. To
our knowledge, this is the first time that this mechanism, driven by the presence of
the internal mean velocity profile inflection point, has been reported in the literature.
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