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SUMMARY
In this paper, we demonstrate a multi-phase genetic
programming (MPGP) approach to an autonomous robot
learning task, where a sumo wrestling robot is required to
execute specialized pushing maneuvers in response to
different opponents’ postures. The sumo robot used has a
very simple, minimalist hardware configuration. This exam-
ple differs from the earlier studies in evolutionary robotics
in that the former is carried out on-line during the
performance of a robot, whereas the latter is concerned with
the evolution of a controller in a simulated environment
based on extended genetic algorithms. As illustrated in
several sumo maneuver learning experiments, strategic
maneuvers with respect to some possible changes in the
shape and size of an opponent can readily emerge from the
on-line MPGP learning sessions.

KEYWORDS: Multi-phase genetic programming (MPGP);
Autonomous robots; Sumo tasks; Maneuver learning; Evolution-
ary robotics.

1. INTRODUCTION
In recent years, researchers have tackled various computa-
tional and applicational issues in evolutionary robotics.
Generally speaking, evolutionary robotics has been con-
cerned with the use of evolutionary algorithms to obtain
control strategies or structural configurations for a robot.
Examples of evolutionary algorithms used include genetic
algorithms, genetic programming, and their variations. By
applying evolutionary algorithms, robot designers need only
to specify the optimal performance or structure require-
ments of a robot rather than to hard-code the detailed
motion primitives that control how the robot may interact
with its environment. Once the initial conditions and
parameters of an evolutionary algorithm are defined, the
robot that utilizes such an algorithm can readily evolve its
reactive behavior, without human interventions, in order to
adapt to the external environment.

Broadly speaking, the problems of evolutionary robotics
can be viewed from three aspects: (A) the end product of
evolution – what is to be evolved, (B) the process of
evolution – which evolutionary method is to be used, and
(C) the implementation – whether the evolution is imple-

mented on a physical robot or just in a simulated world – in
order to become tractable, the right balance is desired that
takes into consideration the computational costs and the
evaluation of candidate solutions.

In what follows, we will highlight some of the previous
work in evolutionary robotics corresponding to the above-
mentioned three aspects.

A. The end product of evolution – What to evolve?
Previous studies in evolutionary robotics have investigated
various robotic tasks for complex (e.g. unstructured,
dynamically changing) environments. Readers can readily
find examples of such tasks as well as the general issues
involved from some representative papers.1–6 The end
product of applying an evolutionary algorithm in those tasks
frequently concerns an effective motion control system for a
physical or simulated robot. The evolved controllers often
include artificial neural networks, classifier systems, and
computer control programs in either high-level languages or
machine codes.

For instance, Miglino et al. have applied a genetic
algorithm to evolve the weights of an artificial neural
network for controlling a robot in an enclosed environment.
The performance requirement of the robot is to move in
high-speed while avoiding any collision with obsta-
cles.7 The main reason that the design of a neural network
is employed for a robot control system is that the neural
network design is well suited to the control problem. That
is, the inputs of a neural network correspond to a robot’s
sensory inputs whereas the outputs of a neural network
control the motion execution units of the robot. Other
researchers have adopted similar methods of evolving
motion controllers to enable robots to perform different
tasks, although with slight differences in the forms of neural
networks or genetic algorithms implemented. Among them,
Nolfi et al. have developed a physical robot named Khepera
to perform the tasks of grasping and releasing objects or
avoiding obstacles.8,9 Floreano and Mondada have explored
the emergence of navigation and obstacle avoidance behav-
iors in the Khepera robots.10 Gomez and Miikkulainen’s
research deals with evolving a complex robot behavior by
using an incremental NE (neural-evolution) method.11

Recently, Floreano and Urzelai have noted that it is more
credible to evolve the mechanism of parameter selection
than to directly evolve parameters themselves.12,13 In the
evolutionary robotics example used in our work, we are
concerned with the evolution of a robot’s action sequences,
called maneuvers, in response to different opponent pos-
tures in a sumo contest. In this work, the evolution involves
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the search for effective strategic maneuvers among many
candidates.

B. The process of evolution – How to evolve?
In the above-mentioned studies, genetic algorithms have
been often used to evolve the parameters of neural networks
acting as controllers. Other evolutionary methods that have
also been applied include genetic programming, self-
organizing adaptation, as well as their variations. As they
are related to our present work, let us take a look at some of
the previous studies that explored the use of genetic
programming to evolve computer control programs for
achieving various adaptive behaviors.

Reynolds developed a system that utilized a method of
steady-state genetic programming for evolving obstacle-
avoidance and corridor-following behaviors.14,15 Nordin and
Banzhaf illustrated a compiling genetic programming
system (CGPS) that evolved a robotic control program in
machine codes.16 Besides robot motion control, Martin
demonstrated a method of evaluating traditional robot
vision programs using simulated CCD images as inputs.17

The rationale for applying genetic programming in the
above examples is that genetic programming has a flexible
chromosome design, which enlarges the scope of evolution-
ary objectives and robot control strategies. In our present
work, we propose an approach, called multi-phase genetic
programming, to evolving robot specialized maneuvers in a
sumo contest. The advantage of evolving the maneuvers of
different composition granularities during the different
phases of evolution is that it can accelerate the convergence
of adaptive behavior learning.

In addition to genetic programming, other designs of
evolutionary algorithms have also been proposed, catering
to certain robotic tasks or performance objectives. For
instance, Hornby et al. combined an evolutionary algorithm
with a Lindenmayer system in order to create a generative
design system of a specific objective.18,19 Colombetti and
Dorigo evolved a classifier system using a distributed
genetic algorithm. Their results indicated that complex
behaviors, such as preying and escaping, can readily emerge
from basic behaviors.20 Steels implemented an on-line
selectionist mechanism for a robot to acquire its new
behavior.21 Xiao et al. performed extended genetic opera-
tions directly on a path population in order to find an
optimal solution in a robot path-planning task.22

C. The problem
This work is concerned with the design and development of
an on-line evolutionary robotic system that incorporates
evolution based on simulated robot-environment interaction
and real-world validation with the best individual from each
generation of the evolution. Central to this on-line behavior
learning system is a multi-phase genetic programming
(MPGP) approach that is aimed at enabling the robot to
gradually acquire sumo maneuvers.

Our present work differs from Nordin and Banzhaf’s on-
line genetic programming for evolving behavior to control a
miniature robot in real-time.16,23 As in our work, the evolved
individual is a sequence of basic behaviors, instead of
machine codes as in Nordin and Banzhaf’s work.

2. MULTI-PHASE GENETIC PROGRAMMTNG
(MPGP)
Genetic programming (GP) applies genetic manipulations to
the functions and operators of a control program or other
representations of a controller in an autonomous system. It
was first proposed by John Koza in 1992.24 Generally
speaking, in GP, the entities to be evolved consist of a
function set and a terminal set. The function set often
corresponds to the set of ordinary arithmetic functions and
conditional operators, whereas the terminal set corresponds
to the set of variables and constants. For detailed back-
ground on GP, readers are directed to reference [24].

GP and their variations can readily be implemented to
model and acquire a robot’s adaptive behavior in an
unknown environment. As illustrated by an experimental
example given in reference [24], GP has been used to evolve
a subsumption architecture for simulated robots capable of
performing reactive wall-following and box-moving behav-
iors in an environment.

A. Characteristics
In commonly-used GP formulations, there is no fixed
structure for evolved objects. As a result, the space for
searching an optimal program can become enormously
large. Another shortcoming that may limit real-world GP
applications is that the performance of GP can sometimes be
undermined during the evolution of a program as the genetic
manipulations are carried out at a predefined granularity,
i.e. there is no differentiation among the function or
terminal sets as far as their complexities are concerned. We
believe that in order to make GP most effective, the
granularity of function and terminal sets should match the
granularity of task constraints. That is, the right GP
granularity should match the right problem characteristics
(the characteristics may be reflected in the sensory
measurement of a robot).

In order to speed up the evolutionary process in GP and,
at the same time, to enable the dynamic adaptation of GP
granularity, we have developed a multi-phase genetic
programming (MPGP) approach. In the formulation of
MPGP, the evolutionary process varies its granularity in
light of the characteristics of a problem on hand. The
granularity of MPGP is adjusted by changing the granularity
of function and terminal sets through different phases.

3. THE PROPOSED METHOD OF LEARNING
SUMO MANEUVERS
In this case study of MPGP, we are interested in evolving
effective maneuvers for a sumo robot with respect to certain
performance requirements. This problem is in essence a
problem of genetic programming that is aimed at synthesiz-
ing strategic maneuvers for the robot.

In our implementation, the evolutionary process is
operated in two different phases by adopting two action
granularities, general and specialized, respectively. During
the first phase, the values of units from a terminal set are
fixed or limited within a scope. Thus, the fitter functions are
evolved first and saved for the next phase evolution. During
the second phase, the terminal set is evolved with the
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functions that are limited in the fitter function set as evolved
from the previous phase.

In this section, we will describe the task, the sumo robot,
the MPGP formulation of learning, and the detailed
algorithm for our case study.

A. The robot task
The task addressed in this paper is as follows: A sumo
contest is to be played in a closed rectangular environment
of size M� N. One robot player of palm size (PM� PN) is
required to perform necessary sumo maneuvers that can
effectively push its opponent out of the contest arena.

Here, by necessary sumo maneuvers it is meant success-
ful eye-body-coordinated motions against opponents of
varying postures and weights.

For the sake of maneuver learning, the player is allowed
to communicate with an offboard controller responsible for
passing advice to the player in order to improve its
performance. Suppose that the opponent to this player is
capable of showing different standing postures as well as
different degrees of resistance (as if different weights) in an
attempt to undermine the strength of the player.

Figure 1 shows a sumo contest arena with two mobile
robots. The physical robot can execute a maneuver as
evolved by an offboard controller, and measure and
communicate the performance of the maneuver back to the

controller. The evolution and selection of maneuvers by the
controller are based on the above-mentioned multi-phase
genetic programming (MPGP) approach.

A.1. The sumo agent and its controller. The sumo player,
named JUNIOR, is a physical micro-mobile robot. Its
objectives are to follow the maneuver commands from an
offboard controller and to try out various strategic maneuv-
ers against its opponent. JUNIOR can readily utilize its two
limit-switch arms, two infra-red eyes, an onboard actuator
controller with encoder-feedback, a memory board, and a
communication device. This offers JUNIOR a number of
basic capabilities. For instance, the arms can effectively
push and at the same time sense its opponent. The two infra-
red sensor-based eyes are capable of detecting the presence
of the opponent. The onboard actuator controller with
encoder-feedback enables JUNIOR to perform a specific
maneuver with its two arms and two wheels (located right
below its eyes). The communication infrastructure serves as
a channel of information between JUNIOR and an offboard
controller. In other words, what JUNIOR sees and feels will
be communicated through such a channel back to the
offboard controller for maneuver learning. At the same time,
the maneuver selected by the offboard controller will also
be sent to JUNIOR.

A.2. The opponents. In order to readily demonstrate as
well as evaluate the effectiveness of maneuver learning, in
this case study, we will use dummy players as opponents.
The dummy players will have different sizes and shapes,
which correspond to opponents holding different standing
postures and different degrees of resistance (as if different
weights) in an attempt to undermine the strength of the
robot player.

Figure 2 presents the dummy players of different
postures, i.e. flat, curved, corner, and circular postures,
respectively. More specifically, as shown in the figure, the
vertical axis corresponds to the weight of an opponent,
whereas the horizontal axis corresponds to three types of
engagement contact, i.e. surface, corner, and point contact.Fig. 1. A rectangular sumo contest arena.

Fig. 2. The possible standing postures and degrees of resistance that an opponent may generate. They are simulated using dummy
players of different engagement contact types and/or weights.
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The weight difference of an opponent is considered only in
the case of a flat posture.

B. MPGP-based action learning
In this section, we will provide the detailed MPGP
formulation and algorithm for the task of sumo maneuver
learning.

B.1. General vs. specialized actions. In our case study, we
represent the actions of a sumo robot with two different
granularities. The optimal maneuvers at a right granularity
for a given opponent posture will be evolved using the
MPGP approach.

First, we define a set of general actions, i.e. forward
move, backward move, left turn, right turn, and stop, that
can readily be executed by JUNIOR through controlling the
angular displacements and directions of its wheels. These
general actions are regarded as low-granularity actions.
Next, we add some subtle movements into each general
motion and thus obtain a set of high-granularity actions. The
high-granularity actions are more specialized and refined
than the low-granularity ones, and can be used by JUNIOR
to create specialized actions. The general and specialized
actions are summarized in Table I.

In Table I, Md denotes the step size of a moderate forward
action or a moderate backward action, whereas Ms denotes
the discrepancy between a fast or slow action and a
moderate action. Ta denotes the angular displacement of
turning left or right. It should be pointed out that the turning
center is not fixed in each situation. Specifically, when
JUNIOR executes the specialized actions of LSRF and
LSRB, the turning center will be at its left wheel. When
JUNIOR executes the specialized actions of LFRS and
LBRS, the turning center will be at its right wheel. And,
when JUNIOR executes the specialized actions of LFRB

and LBRF, the turning center will be the robot’s geometric
center.

B.2. Maneuvers and their chromosome representations.
In the formulation of sumo maneuver learning, we represent
a sequence of l actions as a single maneuver. Based on the
preceding section, we can readily define the function and
terminal sets to be used in the process of MPGP, as given in
Table II.

Figure 3 presents an illustrative diagram showing a two-
phase MPGP formulation. In the figure, the action types, F,
B, L, R, and S, can be viewed as functions, whereas the
action degrees, 0, 1, 2, and 3, can be viewed as terminals.

B.3. The two-phase implementation of MPGP. In the
MPGP formulation, we split the evolutionary process into
two distinct phases.* In one phase, general maneuver
learning is concerned only with general function evolution,
i.e. to select a sequence of general actions. In another phase,
specialized maneuver learning deals with sub-function
evolution, i.e. to select a sequence of specialized actions.
The objective of this phase is to derive fine-tuned maneuv-
ers. The representations of chromosomes for general and
specialized maneuvers are illustrated, respectively, in Figure
3.

B.4. The fitness function. The evaluation of individuals in
a population is a crucial step in both GP and MPGP. In
MPGP, the fitness of a candidate chromosome corresponds
to the performance of a maneuver specified in that
chromosome. The performance is estimated according to
the effectiveness of JUNIOR with respect to its opponent in

* This is why this evolutionary approach is called multi-phase
genetic programming (MPGP).

Table I. The set of general and specialized actions that can be executed by a sumo robot.

General Action
(low-granularity)

Symbol
in MPGP

Specialized Action
(high-granularity)

Symbol
in MPGP

Displacement Turning
Angle

F: forward move F0 FF: fast forward
MF: moderate forward
SF: slow forward

F1

F2

F3

Md +Ms

Md

Md �Ms

0
0
0

B: backward move B0 FB: fast backward
MB: moderate backward
SB: slow backward

B1

B2

B3

�Md �Ms

�Md

�Md +Ms

0
0
0

L: left turn L0 LSRF: 1-wheel stall
r-wheel forward

LBRS: 1-wheel backward
r-wheel stall

LBRF: 1-wheel backward
r-wheel forward

L1

L2

L3

0

0

0

Ta

Ta

Ta

R: right turn R0 LFRS: 1-wheel forward
r-wheel stall

LSRB: r-wheel backward
1-wheel stall

LFRB: 1-wheel forward
r-wheel backward

R1

R2

R3

0

0

0

Ta

Ta

Ta

S: stop S0 S: stop S(1 2 3) 0 0

Sumo maneuver64

https://doi.org/10.1017/S0263574703005356 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574703005356


executing the maneuver. Specifically, the fitness function f
of a chromosome C with l number of actions Xi is composed
of several sumo performance requirements. Generally
speaking, the fitness function measures how JUNIOR
positions itself and acts with respect to its opponent. A good
maneuver means that JUNIOR can constantly face and see
the opponent with both-eye sensing and try to actively
engage the opponent with its arms. The fulfillment of these
requirements can be measured by using the following fitness
function:

f=�l

i=1

wai���n

j=1

� j (Xi )+�m

k=1

(� k (Xi )+� k (Xi ))� (1)

where � j (Xi ), �
k (Xi ), and � k (Xi ) will return 1, if JUNIOR

finds the opponent with its eye j, its arm k holds onto the
opponent, and the arm is in contact with the opponent
during action Xi, respectively. Otherwise, they will return 0.
The measurements of � j (Xi ), �

k (Xi ), and � k (Xi ) can readily
be determined by JUNIOR via its sensors. In addition, l

denotes the number of actions in a maneuver (which is set
to 4 in our experiments). n denotes the number of eyes. m
denotes the number of arms. wai denotes a positive weight
for action Xi.

Using the above definition, the fitness of each candidate
chromosome can be evaluated once its corresponding
maneuver is performed.

In our present case study, JUNIOR will not empirically
test all the candidate maneuvers encoded in the population.
Instead, we will utilize a computational model of player-
opponent interaction to predicate the performance of such
maneuvers. This computational model is aimed at capturing
the effect of a maneuver similar to that of a physical contact
pushing situation, and hence reduce the time required for
the evaluation. Details of the computational model based
evaluation will be given in the following section.

B.5. A computational model of interaction. In our
computational model of interaction, we define the dynamics
of player-opponent interaction by introducing a notion of
artificial repulsive force. The model of artificial repulsive
forces between a player and an opponent is based on Hook’s
law, i.e. spring-like model, as follows: When the player
executes an action against its opponent with one of its arms
near the region of its opponent, it will exert an artificial
repulsive force on the opponent. The direction of this force
is the same as that of the arm’s movement, and the
magnitude is proportional to the depth in which the arm
moves into the original region of the opponent, as illustrated
in Figure 4. Therefore, the force with which the player
applies on its opponent is the net force from the player’s two
arms. Similarly, the net torque applied by the player on its
opponent is also determined from the forces of the two
arms.

Based on the illustration of Figure 4, we can calculate the
force that a player exerts on its opponent, i.e the magnitude
and direction of the net force as follows:

F1
�=Cf · C1 A1

�; F2
�=Cf · C2 A2

�; F�=F1
�+F2

� ;

J1 =d1 · � C1 A1 �; J2 =�d2 · � C2 A2 �; J=J1 +J2 (2)

where Cf is a positive coefficient. F1 and F2 denote the forces
exerted by two arms on the opponent, respectively. F
denotes the net force. J1 and J2 denote the torques applied to
the opponent. J is the net torque.

From the net force and torque that an opponent receives,
its resulting linear and angular displacements can therefore
be predicted as follows:

L�=Cd · F�;

�=C� · J · (3)

where Cd and C� denote two positive coefficients.
With the above definitions and assumptions, we can

efficiently estimate the fitness of each chromosome.

C. The evolutionary algorithm for MPGP-based action
learning
During the process of MPGP-based sumo maneuver learn-
ing, the population at each evolutionary step consists of two

Table II. The function and terminal sets as used in the MPGP case
study.

Function Set Terminal Set

F 0
B 1
L 2
R 3
S

Fig. 3. An illustration of a two-phase MPGP. Here we assume that
the length of an action sequence l is 4. The larger font letters or
numbers in a chromosome indicate the general or specialized
actions to be evolved.
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Fig. 4. The calculation of an artificial repulsive force as created by the arms of a moving player against its opponent. In the
computational model, the shape of the opponent is rectangular. The player moves forward to push its opponent. In the figure, points P
and O denote the centroids of the player and the opponent, respectively. A1 and A2 denote the right and left arms of the player,
respectively. A�1 and A�2 denote the new locations of player’s arms after forward move, respectively. C1 and C2 correspond to the
intersections between the paths of two arms and the border of the opponent. d1 and d2 correspond to the orthogonal distances from the
centroid of the opponent, O, to the directions of two arm forces. It is assumed in this illustration that the player moves forward; for other
actions the force can be calculated in a slightly different fashion.

Fig. 5. An outline of the algorithm for the MPGP case study in sumo maneuver learning. Here the conditions are different in different
phases. In the general maneuver evolution phase, if there is no large fitness improvement for k steps, the system will switch to a higher-
granularity phase in order to acquire finer actions. While in the specialized maneuver learning, the condition will become whether or
not the opponent is outside the arena or the number of generations exceeds a predefined threshold.
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parts: the seed population and the randomly produced
population. The best candidate maneuver will be selected by
an offboard controller and sent to JUNIOR for execution.
After JUNIOR executes the selected sumo maneuver, the
actual performance of such a maneuver will be evaluated by
JUNIOR using its sensors. This feedback will then be
communicated to the controller. Thereafter, the controller
will keep this maneuver along with its fitness in the seed
population for further maneuver learning.

The seed population will be updated according to the
fitness values of maneuvers and the life span of each
evolution step. That is, both the lowest-fitness and the oldest
maneuver will be eliminated. The rule for updating the seed
population of size Ns can be stated as follows:

i ⇒ eliminated if f i
s =min( f j

s � f j
s =yj

s · f j, 	j � Ns) (4)

where y j
s denotes an aging factor of individual j in the seed

population.

Figure 5 presents an outline of the algorithm (i.e. the
reproduction, crossover, and selection of a population) as
used in our MPGP case study.

4. EXPERIMENTS AND DISCUSSIONS
In our experiments, we use five dummy objects, simulating
five different types of opponent postures and/or weights. As
illustrated in Figure 2, the five dummies used represent the
opponents with: (i) lightweight flat posture; (ii) heavy-
weight flat posture; (iii) lightweight curved posture; (iv)
lightweight corner posture; and (v) lightweight circular
posture, respectively.

Figure 6 presents the performance of a sumo learning
robot. Specifically, it records the evolved specialized
maneuvers of the robot, overlaid on the schematic diagram
of five opponent types as given in Figure 2. Each of the
overlaid pictures in Figure 6 shows a sequence of actions in
a respective maneuver actually performed, in which the

Fig. 6. Traced trajectories for the five specialized maneuvers evolved in the presence of five different opponent postures, respectively.
In each of the five overlaid maneuver pictures, the equal-length line segments show the front of JUNIOR at different action steps while
performing a specialized maneuver. The captured maneuvers are: (i) straight push for lightweight flat postures, (ii) intermittent impact
for heavyweight flat postures, (iii) stall turning for lightweight curved postures, (iv) corner-to-edge alignment for lightweight corner
postures, and (v) alternating twist for lightweight circular postures.
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Fig. 7. The changes in the fitness function over 50 generations of the MPGP evolution to deal with lightweight flat posture opponents.
The dotted-circle line, dashed-star line, and solid line show the values recorded under three conditions of maneuver learning, left-eye
view only, right-eye view only, and both-eye view, respectively.

Fig. 8. The changes in the fitness function over 50 generations of the MPGP evolution to deal with heavyweight flat posture opponents.
The dotted-circle line, dashed-star line, and solid line show the values recorded under three conditions of maneuver learning, left-eye
view only, right-eye view only, and both-eye view, respectively.
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equal-length line segments (some are overlapped) indicate
the position and orientation of the robot front at consecutive
action steps, and the line that connects the centers of those
orientation line segments indicates the actual trajectory of
the robot in performing a specialized maneuver.

A. The fitness function revisited
Let us now take a close look at the changes in fitness values
during the course of the MPGP-based maneuver evolution.
Specifically, here by fitness values (or fitness curves) we
mean only those for the early defined fitness function, as it
directly concerns the performance of specialized maneuver
learning.

We will examine one set of fitness values for each of the
five specialized maneuvers. Our objectives are two-fold: (1)
to study the effectiveness of the MPGP-based maneuver
evolution as well as the difficulty of the problem with
respect to a specific posture, and (2) to study the role of
sensory feedback (i.e. the infra-red sensors) in the perform-
ance of evolution – the question here is whether or not the
sensory feedback requirement has anything to do with the
uncertainty involved in the problem.

In order to achieve the above objectives, we will examine
three fitness curves for each of the MPGP-based maneuvers,
namely,

1. Fitness curve recorded (i.e. the dotted-circle line in
Figures 7–11) when involving only left infra-red sensor
(i.e. left-eye view or sensing).

2. Fitness curve recorded (i.e. the dashed-star line in
Figures 7–11) when involving only right infra-red sensor
(i.e. right-eye view or sensing).

3. Fitness curve recorded (i.e. the solid line in Figures
7–11) when involving both infra-red sensors (i.e. both-
eye view or sensing).

Also, it should be mentioned that the fitness curves being
examined here correspond to the measured values for the
best individuals from single generations.

A.1. Lightweight or heavyweight flat posture. As shown
in Figures 7 and 8, in the cases of lightweight or
heavyweight flat posture opponents, we note that f is very
sensitive at the beginning and stabilized after about 15–20
generations. Also, the dotted and dashed fitness lines are
shorter than the solid line. In other words, the MPGP-based
learning enables JUNIOR to quickly find a good way to face
to its opponent with a both-eye view. Thereafter, it
concentrates on the evolution of specialized maneuvers,
straight push or intermittent impact, involving both arms.

Such performance is in fact quite consistent with the
merit requirement as represented by f. As we know in these
cases, both-eye sensing and both-arm pushing are not only
necessary but also convenient, since the flat posture creates
very little uncertainty in terms of sensing and movement.

The lightweight and heavyweight maneuver learning
cases are similar, as far as switching from a single-eye view
to a both-eye view is concerned. Their key difference is that

Fig. 9. The changes in the fitness function over 50 generations of the MPGP evolution to deal with lightweight curved posture
opponents. The dotted-circle line, dashed-star line, and solid line show the values recorded under three conditions of maneuver learning,
left-eye view only, right-eye view only, and both-eye view, respectively.
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the maneuvers with a single-eye view in the latter case are
not as effective as those in the former case, as we can
observe from their fitness curves. In addition, the spe-
cialized maneuvers in the latter case utilize a sequence of
fine-tuned actions for high-impact intermittent push. In
other words, the controller using the MPGP approach can
find a niche maneuver of intermittent impact for JUNIOR to
score high-fitness values when facing a heavyweight
opponent.

A.2. Lightweight curved posture. In the case of a
lightweight curved posture opponent, the f values show a
ruggedly increasing trend, in all three sensing modes (i.e.
right-eye view only, left-eye view only, and both-eye
view).

The lines of Figure 9 differ from those in the preceding
two cases. First, the solid line for the both-eye sensing mode
increases not as fast as those in the previous cases. This is
primarily because the curved posture is relatively harder to
keep a both-eye view and hence slightly more difficult to
improve the f values. Secondly, the dotted-circle line for the
left-eye sensing mode advances longer and higher than the
flat posture cases. This indicates that (1) such a sensing
mode can be present for some generations before an
effective specialized maneuver is found, and (2) with the
feedback information coming from only the left eye, it is
still feasible to evolve a specialized maneuver to improve
the f values. Similarly, we can also make such observations
in the case of right-eye sensing (i.e. the dashed-star line).

As can readily be noted from the fitness curves in the
preceding three cases, a phase transition occurred at about
generation 10–13, indicating that the MPGP-based evolu-
tion successfully selected a high-fitness general maneuver
and then moved onto the next phase of specialized
maneuver learning.

A.3. Lightweight corner posture. Figure 10 shows the f
values in the case of a lightweight corner posture opponent.
As can be noted, the both-eye view of the opponent
becomes impossible in this case. That is why the solid line
is short.

Due to the uncertainty in the environment, i.e. the
difficulty in predicting the direction of an opponent’s
movement, the evolved maneuvers with a single-eye view
are not as effective as those in the preceding three cases.
This can also be observed from their f values. In the present
case, the fitness function converges to a certain level,
revealing that the performance of JUNIOR is still achieva-
ble with the evolved general maneuvers.

A.4. Lightweight point posture. Figure 11 gives the f
values corresponding to the MPGP-based learning of
specialized alternating twist maneuvers, in the case of a
lightweight point posture opponent. It can be noted that the
evolved maneuvers are slightly more effective than those in
the previous case. This is because the movement uncertainty
in the point posture case is less, as it does not involve any
engagement contact transitions.

Fig. 10. The changes in the fitness function over 50 generations of the MPGP evolution to deal with lightweight corner posture
opponents. The dotted-circle line, dashed-star line, and solid line show the values recorded under three conditions of maneuver learning,
left-eye view only, right-eye view only, and both-eye view, respectively.
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Generally speaking, we have found that:

1. f is less sensitive to the above corner and point postures.
2. The role of sensory feedback in the maneuver learning is

largely constrained by the uncertainty involved in the
problem on hand.

B. Comparison between the MPGP and GP approaches
In order to compare the maneuver learning performance of
the MPGP and GP approaches, we conducted two sets of
experiments, one for each approach. Each set of experi-
ments consisted of 30 learning runs, started at the same
positions and orientations and terminated once JUNIOR
successfully pushed a prototype opponent out of the sumo
arena. We recorded the average number of generations for
the on-line sumo learning and performance.

Figure 12 shows the experimental results of our
comparative studies. From the figure, we note that good-
performance maneuvers can more readily be evolved with
MPGP than with GP. We should point out that the
parameters for the experiments, including the initial loca-
tions of a sumo robot and an opponent as well as their
orientations, were all kept the same.

Figure 13 presents the conventional GP algonthm as used
in this study.

C. Experimental settings
Table III summarizes the parameters as used in the above-
mentioned MPGP and GP experiments. Also listed in Table

III are the geometric dimensions of a sumo arena and a
sumo robot.

5. COMPARISON WITH RELATED WORK
In this section, we will compare our MPGP formulation to
those of related work on evolutionary robotics and evolu-
tionary algorithms, and discuss the distinct features and
advantages of different approaches.

A. Comparison with Nordin et al.’s Work
Nordin et al. developed an evolutionary robotic system that
utilized genetic programming to evolve machine codes and
to control a miniature robot, Khepera, on-line.16 Their
system differs from our MPGP approach in the following
ways:

1. In Nordin et al.’s work, variable-length machine codes
were designed and operated genetically. The advantage
of this approach is that the system does not need to
translate a conventional program into machine codes,
which in turn improves the efficiency of the system.
Nordin et al. named their genetic programming approach
Compiling Genetic Programming System (CGPS).

In our approach, we divide the actions of a robot into
actions of different granularities. Each individual in
MPGP, i.e. an action sequence, is composed of general or
specialized actions, and is evolved in different phases
according to their granularities. Our approach directly
evolves, and hence puts more emphasis on, the behavior

Fig. 11. The changes in the fitness function over 50 generations of the MPGP evolution to deal with lightweight point posture
opponents. The dotted-circle line, dashed-star line, and solid line show the values recorded under three conditions of maneuver learning,
left-eye view only, right-eye view only, and both-eye view, respectively..
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of an agent. The representation of an individual in this
case is straightforward to implement without too much
human intervention. In addition, from the results that we
have obtained, emergent behavior, i.e. strategic maneuv-
ers, can readily be noted.

2. Nordin et al. adopted a Steady-State Genetic Program-
ming (SSGP) to perform genetic operations. In SSGP,
each of the selected individuals was evaluated on a
physical robot, Khepera. This might cause some ‘unfair’
evaluations in which good individuals may get poor

Fig. 12. The average numbers of steps in learning and performing sumo maneuvers using the MPGP and GP algorithms, respectively,
in the presence of five different opponent postures. For each case, 30 experiments were carried out.

Fig. 13. An outline of the GP algorithm as used in the case study.
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fitness because of the different initial environments that
they encountered.

In Nordin et al.’s system, all individuals were
evaluated on a physical robot, whereas in our approach,
only the best individual selected from a computational
model at each step is validated on a physical robot. Thus,
our system maintains a good-efficiency evolution, as we
do not validate every individual on a physical robot.

3. Our system keeps a repository of selected maneuvers.
This repository is updated according to the fitness values
as well as the ages of the individuals. Thus, our system
incorporates a learning capability into the evolutionary
process.

4. Last but not least, the architectures of the two approaches
are different, as illustrated in Figures 14 and 15,
respectively.

B. Comparison with Floreano et al.’s work
Floreano, Urzelai, and Mondada studied an evolutionary
approach to the on-line self-organizing control of mobile
robotic systems.13,25,26 In their approach, they utilized a

discrete-time neural network to evolve and control a
physical robot. The differences between their approach and
ours can be summarized as follows:

1. They adopted a genetic algorithm to evolve the weights,
or rules for defining the weights, of neural networks.
This approach is commonly used in evolutionary robot-
ics. The input to neural networks is connected to a
robot’s sensors, whereas the output unit is used to control
a robot’s wheels. In our approach, we do not predefine a
neuro-controller system, instead the evolved maneuvers
are sent directly to control a robot’s behavior.

2. Floreano et al.’s work adopted an evolutionary process
similar to that of Nordin’s, where all individuals were
evaluated on a physical robot. Although the environ-
mental conditions for the robot may be different,
adaptive behaviors, such as navigation and obstacle
avoidance, can be acquired after a number of genera-
tions.

In our approach, the individuals of the same genera-
tion share the same simulated environment. Only will the
best individual selected from the simulated environment
be validated on a physical robot, and used to update the
behavioral repository of the robot, from which the
population, i.e. potential maneuvers, is in turn selected.
Thus, our approach can be relatively less time-consum-
ing than Floreano et al.’s, as it does not physically
validate all individuals but only the best one from the
computational model-based evaluations.

C. Comparison with Harvey’s SAGA
Another related approach is Harvey’s Species Adaptation
Genetic Algorithm (SAGA).27–29 The objective of SAGA
was to simulate a long-term evolutionary process in
adaptive species. In order to achieve this objective, two
issues were addressed: (1) changing the length of a

Table III. The parameters as set in the MPGP-based and GP-based
sumo maneuver learning.

M 650 mm n 2
N 420 mm l 4
PM 60 mm Np 8
PN 60 mm Ns 4
C� 0.001 Preproduce 0.25
Cf 1 Pcrossover 0.75
Cd 1 wa1 1
Md 40 mm wa2 1
Ta 
/12 wa3 1
Ms 20 mm k 3
m 2 Ft 200

Fig. 14. A schematic diagram of Nordin et al.’s on-line design.
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genotype during the evolutionary process, and (2) converg-
ing a population while keeping the genotype length
constant. The SAGA approach adjusts mutation rates in
order to make the evolutionary process converged and to
escape from local optima.

In our approach, the populations are also grouped into
different ‘species’, according to different action granular-
ities. The advantage of our approach is that it is relatively
easier to implement, as it does not require an explicit
mechanism for genotype length or mutation rate adapta-
tion.

CONCLUDING REMARKS
In this paper, we have demonstrated a multi-phase genetic
programming (MPGP) approach to a sumo learning task.
From the obtained results of comparison with the conven-
tional GP approach, it was shown that the MPGP approach
is relatively more efficient, as it focuses on general (or
grouped) solutions (e.g. general maneuvers) first and then
moves onto specialized ones (e.g. specialized maneuvers)
based on the obtained high-fitness general solutions (e.g.
inheriting general sumo expertise).
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