The Knowledge Engineering Review, Vol. 35,el7, 1 of 21. © Cambridge University Press, 2020
doi:10.1017/S0269888920000260

A blockchain-based decentralized booking system

NAIPENG DONG"*@®, GUANGDONG BAI', LUNG-CHEN HUANG’,

EDMUND KOK HENG LIM” and JIN SONG DONG"’

ISchool of Information Technology and Electrical Engineering, University of Queensland, General Purpose South Building
(Building 78), St Lucia Campus, University of Queensland, Brisbane QLD, 4072, Australia

e-mails: n.dong @ugq.edu.au, g.bai@uq.edu.au

2School of Computing, National University of Singapore, COM1, 13 Computing Drive, 117417, Singapore

e-mails: lungchenhuang @u.nus.edu, 0335737 @u.nus.edu

3School of Information and Communication Technology, Griffith University, NA4 2.28, 170 Kessels Road Nathan, QLD, 4111,
Australia

e-mail: desdjs@nus.edu.sg

Abstract

Blockchain technology has rapidly emerged as a decentralized trusted network to replace the traditional
centralized intermediator. Especially, the smart contracts that are based on blockchain allow users to
define the agreed behaviour among them, the execution of which will be enforced by the smart contracts.
Based on this, we propose a decentralized booking system that uses the blockchain as the intermedi-
ator between hoteliers and travellers. The system enjoys the trustworthiness of blockchain, improves
efficiency and reduces the cost of the traditional booking agencies. The design of the system has been for-
mally modelled using the CSP# language and verified using the model checker Process Analysis Toolkit.
We have implemented a prototype decentralized booking system based on the Ethereum ecosystem.

1 Introduction

The blockchain technology has rapidly emerged in recent years (Nakamoto, 2019; Buterin, 2019; Swan,
2015), especially when the concept of smart contract was first introduced to and later relied on the tech-
nology (Morris, 2019; Cachin, 2019; Schwartz et al., 2014). Once the smart contract code is deployed
to the blockchain, it can be executed by any computer node that keeps the same historical record of
transactions as other nodes. This makes it difficult to be compromised with a single node on the net-
work, unlike centralized platforms that could be easily breached and prone to the failure of single point.
However, decentralized platforms are still in its infancy. Although some communities and companies
have proposed some applications to use them, for example, in the logistics (DHL, 2019; Marr, 2019)
and insurance industry (CBInsights, 2019; Sarasola, 2019), its full potential is yet to be exploited in
other domains. To give a more concrete example of using the smart contract, we design a fundamental
architecture of a decentralized hotel booking system.

Most travellers would usually spear no effort in booking for a suitable hotel room by browsing through
pages of entries on online travel agencies such as Booking.com or Agoda.com. This can be both tedious
and time consuming that each time a search result appears on the screen, they have to delve into the deals
one by one, which could be overlapping in the previous search results. To alleviate this monotonous
experience, we shall leverage the blockchain technology and allow our search requests to be deployed as
smart contracts such that the process of discovery is left to the decentralized system, where hoteliers can
easily match their rooms with the criteria required by the traveller.

Our approach is to provide users with an interface where they can draft their booking request with
the requirement of a hotel room in a domain-specific language, which is similar to a real contract in a

https://doi.org/10.1017/50269888920000260 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000260
https://orcid.org/0000-0002-8248-3362
https://Booking.com
https://Agoda.com
https://doi.org/10.1017/S0269888920000260

2 N.DONG ET AL.

Process P, Q) ==
Stop — deadlock
| Skip — termination
|[b]P — state guard
le > P —event prefixing
le{program} - P — data operation prefixing
|c?d - P(d) — channel input
lc!d > P — channel output
|P; Q - sequence
|[Pn@Q — internal choice
|PoO@ — external choice
|if b then P else @Q - conditional branch
|P||Q — synchronous
|P|||@ — asynchronous

where P and @ are processes, b is a condition, e is a simple event, program is a block of code
that is atomically executed and c is a synchronized communication channel.

Figure 1 CSP# syntax

human-readable form. Thereafter, the interface compiles the request into a machine-readable form and
injects some predefined functions. Later, the user can deploy the request onto the blockchain. Once the
request is visible to other nodes, hoteliers can propose offers by invoking a function in the request. When
the user is notified of new proposals, the interface automatically starts a selection process of the proposals
depending on the request criteria from the user, showing the matched results. At the end, the user and one
of the hoteliers seal a deal.

To ensure the correctness of the design, we model the system using the CSP# (Communicating
Sequential Programs sharp) formal language (Sun and Chen et al., 2009), as CSP# integrates the high-
level modelling operators of CSP with low-level procedural codes in C# language and supports custom
data structures, which will be convenient to represent the behaviours of the blocks and the blockchain.
We verify the system design using the model checker PAT (Process Analysis Toolkit, available at
pat.comp.nus.edu.sg) (Sun and Pang er al., 2009), which supports the CSP# models as input. The for-
mal model is comprehensive, containing not only the behaviour of the smart contract, the hoteliers and
the travellers, but also the underlying blockchain mechanism.

In addition, we have implemented a prototype booking system based on the Ethereum ecosystem
(Ethereum, 2019), and tested the prototype system on an Ethereum virtual machine (EVM). The booking
system contains three components: the hotelier, the traveller and the smart contract. The EVM mainly
contains the EVM nodes and the miner nodes. We use Truffle to compile the smart code and deploy
the compiled bytecode to the EVM nodes. In addition, we installed a web server to test the hotelier and
traveller web pages.

2 Background

The system design is formally modelled in the CSP# language, and its verification is supported by the
automatic model checker PAT. The syntax of this language and the model checker PAT are briefly intro-
duced in the first subsection. Following that, we briefly introduce some concepts in blockchain and smart
contract. The EVM, which our implementation is based on, is described in the final subsection.

2.1 CSP# and process analysis toolkit

The CSP# is a rich modelling language that contains both high-level modelling operators in the traditional
CSP language and programmer-favoured low-level constructs like variables, arrays, if-then-else, while,
etc. It offers great flexibility to model systems with complicated structures, like blockchain. A system is
modelled as a process in CSP#, where the operators in CSP# are defined as follows (in Figure 1).

https://doi.org/10.1017/50269888920000260 Published online by Cambridge University Press

https://pat.comp.nus.edu.sg
https://doi.org/10.1017/S0269888920000260

A blockchain-based decentralized booking system 3

The deadlock process is Stop, meaning that the process does absolutely nothing. Process Skip means
that the process terminates immediately. Process [b]P is a guarded process—the process behaves as P
if b is satisfied. Process e — P is event prefixing—the process performs event e (a simple event is a
name for representing an observation) and then behaves as P. Process e{program} — P is similar to
event prefixing. The difference is that the {program} attached with event e allows us to write assignments
which update global variables. Process c?d — P(d) is channel input—the process reads a value d from
channel c, thus d is known in the subsequent process P. Process c!ld — P is channel output—the process
outputs value d in channel c. Process P; Q concatenates two processes P and Q sequentially. Process
P11 Q is internal choice—the process chooses either P or Q to execute. If P performs an event first, then
P takes control; otherwise Q takes control. Process PLIQ is external choice. Differing from the internal
choice, the external choice is resolved by the environment. Process if b then P else Q is straightforward:
if b is true, the process behaves as P; otherwise behaves as Q. Both P||Q and P|||Q model that processes
P and Q run in parallel. The difference is that the former one requires P and Q to synchronize on the
shared events, whereas in the latter process P and Q interleave.

PAT is a self-contained framework which supports simulating, reasoning and verifying concurrent
systems. It has user-friendly interfaces, a featured model editor and an animated simulator. Most impor-
tantly, PAT implements various model checking techniques catering for different properties such as
deadlock-freeness, reachability and LTL (Linear Temporal Logic) properties that are useful for our sys-
tem verification. To achieve good performance, advanced optimization techniques are implemented in
PAT, for example partial order reduction, symmetry reduction, process counter abstraction and parallel
model checking (PAT, 2019).

2.2 Blockchain and smart contract

Proposed in the digital currency—bitcoin, blockchain technique is initially used as a way to replace the
central bank to mint digital coins with the ability to prevent double spending (as long as the major-
ity of participants called miners are honest). Following bitcoin, a large number of decentralized digital
currencies have been invented. Essentially, blockchain relies on a peer-to-peer network with distributed
nodes. Each node holds a copy of the ledger of the currency transactions, and thus even when some
nodes (minority) malfunction, the ledger is still safe, since majority of nodes keep the correct ledger. The
blockchain mechanism also uses cryptography to ensure its tamper-resistance, for example using digital
signature to ensure that every transaction has its owner, and using hash pointer to ensure no transaction
is tampered (for more details, see Narayanan et al., 2016).

With the popularity of blockchain, it has been discovered that blockchain can be useful in a wide range
of applications other than digital currency. To facilitate building applications on top of blockchain, a few
platforms have been developed. The most well-known platform is Ethereum, which provides a language
Solidity to allow developers to program the agreements between participants on the blockchain. These
agreements are called smart contracts. The execution of the smart contracts that are deployed on the
blockchain will be enforced, as the execution (presented as state change of the smart contract) is logged
and accepted by the majority of the nodes. Thus, whenever a condition/state of the contract is reached,
the corresponding actions will be enforced, and no one can modify it (for details, see Chinchilla, 2019).

2.3 Ethereum

The Ethereum ecosystem serves as a runtime environment for smart contracts. It provides a language
Solidity to write smart contracts. The smart contracts need Gas to be executed. And Gas can only be
bought using the cryptocurrency Ether Provided by Ethereum. It mainly involves the following parts
(Ethereum, 2019; Modi, 2019; Buterin, 2019):

e EVM nodes: The EVM runs smart contract bytecode. Each node runs an instance of the EVM. Once
written, the contracts have to be deployed on the EVM. Users can interact with the contracts that are
on the EVM. The EVM node is a host for the Ethereum network. There can be many EVM nodes
serving one network, in that sense the Ethereum network is decentralized.

https://doi.org/10.1017/50269888920000260 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000260

4 N.DONG ET AL.

e Mining nodes: The mining nodes (a.k.a. miners) form the basic blockchain. Each block contains data
and smart contract code, and holds a copy of the blockchain. The mining nodes are required to verify
and add blocks to the chain and in the process get paid in Ether. Every transaction requires Gas to run.
Gas is the measure of the amount of Ether that is required to run.

e Externally owned account: It represents a user. When a new account is created, a private—public key
pair is created. The externally owned account is the public key of the account.

o Wallet: It is a software that is associated with user accounts. One user may have more than one account
in one wallet. The wallet is an important component as it is the software that tracks the amount of Ether
that one user has. Mining nodes also require a wallet to store the Ether earned. Most wallets will show
transactions made; these transactions are identified by their hash values.

e Smart contracts: Smart contracts are programs that exist on the EVM. They can accept inputs and,
based on the inputs, can produce an action whether it is to read a value from the blockchain or to write
a value to the blockchain. Smart contracts are the key to interacting with the blockchain.

e User interface: It refers to any interface that is interacting with a smart contract on the EVM. User
interfaces together with smart contracts are known as DApps or decentralized apps.

The underlying blockchain consensus was initially proof-of-work (PoW) protocols using a memory-
bound puzzle. Due to the criticism of PoW, for example energy waste and mining centralization,
Ethereum is moving from PoW to proof-of-stake (PoS). Before moving to pure PoS, the two consensus
PoW and PoS both exist in Ethereum. In this work, the PoW concept is used to illustrate how the
blockchain works. Which consensus is used in EVM will not influence the booking system, which is on
a higher abstract level. We highlight that the modelling of blockchain is also general and can be adopted
to PoS.

3 System design

Compared to some existing blockchain-based booking solutions, such as Locktrip (2020), Winding Tree
(2020) and GOeureka (2020), which build their own blockchain and sell their own tokens, this work
chooses to build the system based on existing platform, aiming only to illustrate the design. Among
all the platforms that support Decentralized applications, Ethereum is the most well-known one with
convenient development language and tool support.

Using the Ethereum environment, we will not need to consider the blockchain in the system design, as
the EVM provides interfaces to communicate with the underlying blockchain. Thus, what we need in the
system design is mainly three parts: the smart contract, the traveller behaviour and the hotelier behaviour.
To more clearly illustrate the workings of our system, the system sequence diagram in Figure 2 describes
how travellers and hoteliers interact on the decentralized booking platform.

Once the smart contract is deployed on the EVM, a traveller can put a request to the smart contract
and then listens to the contract for any response. A hotelier listens to the contract and once discovers a
request he proposes his offer. After that the hotelier listens to the contract for response. When the traveller
accepts the offer, he settles the request and then pays the deposit. On receiving the deposit payment, the
hotelier change the room into unavailable and informs the smart contract. Finally, the traveller will then
complete and close the request.

Note that for the smart contract to run, we need to additionally consider the underlying blockchain.
Thus, the entire system contains three roles: user, miner and the smart contract. In more details,

e Auser could be a traveller or hotelier who sends a transaction by invoking a function that includes
the address of the user, function name, gas and gas price. A traveller can invoke Fetch to acquire the
latest set of proposals submitted by hoteliers, or to Settle for a specific proposal. A hotelier can invoke
Propose to send their proposals to the smart contract.

e Miners form the basic blockchain network. Each miner has its own transaction pool TxPool that
continuously receives a new transaction with gas greater than zero. Moreover, TxBlock, to be executed
by a miner, also finds the new transactions with more than or equal to a specified transaction gasPrice
from the pool.

https://doi.org/10.1017/50269888920000260 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000260

A blockchain-based decentralized booking system 5

Request

Traveller Hotelier

(Smart Contract)

Deploy the request—p:;

Event listen to

hotelier proposals

H—Discover the request:
i«¢—Propose offers——————

Event listen to
-
the settlement

Settle the request :E Pay for the offer———— M —p-

Event listen to
. —_—
the reservation result

i«¢————————Change the state

Turn off the request contract—»&

Figure 2 Overview of the system design

enum {off, on, switchOp, proposeOp, fetchOp, settlelp, ProposeFunction, na,
SwitchFunction, FetchFunction, SettleFunction, newcomer};

Figure 3 Constants declaration

e The smart contract is named as the Request. The request deployed on the blockchain is a smart
contract that accepts proposals and can be invoked by the users.

4 System modelling

We model the entire system in the formal language CSP# as it is more comprehensive and precise.

First of all, we define a list of constants that are used in the model in Figure 3. Then we divide the
model into two parts: the user behaviour in Section 4.1 and the Miner behaviour in Section 4.2. The
miner part includes the behaviour of the EVM nodes, the mining nodes and the smart contract. Since
these behaviours are closely connected, we do not separate them.

In Figure 3, off and on are used to indicate whether the smart contract is still available; the switchOp,
proposeOp, fetchOp and settleOp are the four operations that the users can perform; na indicates the
empty data; SwitchFunction, FetchFunction and SettleFunction are the names of the three functions
provided by the smart contract; and newcomer is used to indicate a new block in the model.

4.1 User

A user, with an address addr, executes function and pays a fund val plus some gas amount gas with
price gasPrice. This is modelled as a process User(addr, val, gas, gasPrice, function) (ul in Figure 4).
The reason that the user needs to specify the gas amount and gas price is that the gas price is changing
according to the demand and supply; to be clear on how much the user pays the miner for executing the
function, the user specifies the current gas price and the amount of gas the user would like to pay.

To call the function, the user broadcasts the transaction to miners. For simplicity, we assume the
user sends the transactions to all miners in order starting from miner O (x2 in Figure 4), as this will not
affect the results we would like to check. The process of sending a transaction to miner i is modelled as
TxBrdcst(i, addr, val, gas, gasPrice, function) (u3 in Figure 4). When the miner index i is correct (i.e.
i is smaller than the maximum number of miners—u5 in Figure 4), this process sends a transaction to

https://doi.org/10.1017/50269888920000260 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000260

6 N.DONG ET AL.

ul User(addr, val, gas, gasPrice, function) =
u2 TxBrdcst (0, addr, val, gas, gasPrice, function);

u3 TxBrdcst(i, addr, val, gas, gasPrice, function) =
ud atomicq
u5 if (1< M) {

ué mnet [i] 'addr.val.gas.gasPrice.function ->

u7 TxBrdcst(i+1, addr, val, gas, gasPrice, function) }
u8 else {

u9 Skip } };

Figure 4 The user process

pl TxPool(i) =

p2 mnet[i]7addr.val.gas.gasPrice.function ->

p3 if (userWallet[i] [addr] >= (val + (gas * gasPrice)) && gas > 0)
p4 {TxInsert(i, addr, val, gas, gasPrice, function) }

p5 else {TxPool(i) };

Figure 5 The transaction pool process

the i-th miner with the parameters addr, val, gas, gasPrice, function (u6), and then continues to send the
transaction to the next miner i + 1 («7). If the miner index reaches the top M (u8), meaning that the user
has sent to every miner, then the process terminates with Skip (49). The key word atomic (u4) prevents
interleaving actions from the other processes and ensures that the sending action is atomic.

4.2 Miner

The miner i has two processes running in parallel: process TxPool(i) which receives transactions and puts
them into a pool, and process TxBlock(i) which includes the transactions in the pool into a block and
initiates the mining.

4.2.1 Process TxPool

The miner i receives the transactions broadcast by the users in the process TxPool(i) (p1 in Figure 5).
On receiving a transaction with parameters, the miner first checks whether the sender, that is the user
with address addr, has enough funds and gas (p2); if so, the miner inserts the transaction into his trans-
action pool (p4), which is modelled by the process TxInsert(i, addr, val, gas, gasPrice, function) defined
in Figure 6); otherwise, the miner keeps waiting for another transaction, that is returning to process
TxPool(i) (p5 in Figure 5).

When inserting a transaction into a pool of miner i (Figure 6), the miner first checks whether the pool is
full (£2), that is the current transactions in i (PoolPtr[i] is smaller than the max poolSize). If not, the miner
receives the transaction in the pool by updating the address (#6), the value (7), the gas (¢8), the gasPrice
(#9) and the function (¢10) to the pool of miner i. At the end, we update the pointer of the transaction
pool to the next empty position (#11). After updating the transaction pool, the miner sends a signal of
newcomer to the channel datach for miner i to activate the block forming (¢12). Finally the process goes
back to TxPool(i) (¢13) to listen to a new transaction. Note that before updating the transaction pool, we
double check whether the current empty pool position is really empty by checking whether the gas for
the current position is 0 (¢£3). If the current position is not empty (¢14), the process moves to the next
position (¢15) and tries to insert the transaction to the pool (#16). If the transaction pool is full (¢17), the
transaction pointer is reset to 0 (#18) and then the transaction is inserted into the transaction pool for the
next block (¢19). We notice that if there are more than the maximum amount of transactions received in
the pool before a block is formed, the pool will be reset to new ones. However, in our experiment, the
total transactions are less than the maximum transitions in a pool, so this will not happen.

https://doi.org/10.1017/50269888920000260 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000260

A blockchain-based decentralized booking system 7

t1 TxInsert(i, addr, val, gas, gasPrice, function) =

t2 if (poolPtr[i] < poolSize) {

t3 if (poolTxGas[i] [poolPtr[i]] == 0) {

t4 txReceived

t5 var ptr = poolPtr[i];

t6 poolTxAddr[i] [ptr] = addr;

7 poolTxVall[i] [ptr] = val;

t8 poolTxGas[i] [ptr] = gas;

t9 poolTxGasPrice[i] [ptr] = gasPrice;

t10 poolTxFunction[i] [ptr] = function;

t11 poolPtr[i]++;} ->

t12 datach[i] Inewcomer ->

t13 TxPool(i) }

t14 else {

t15 next{poolPtr[i]++;} ->

t16 TxInsert(i, addr, val, gas, gasPrice, function) } }
t17 else {

t18 next{poolPtr[i] = 0;} ->

t19 TxInsert(i, addr, val, gas, gasPrice, function)l};

Figure 6 The transaction insertion process

4.2.2 Process TxBlock
The process TxBlock(i) (Figure 7) includes available transitions into a block. When the number of trans-
actions in the pool is smaller than the pool size (b2) and the channel for receiving transactions is not
empty (b3), the process receives a signal that a new transaction has been inserted into the transaction
pool (b4 — b35). If the pool is full, the process sets the pointer inPoolPtr(i) to 0 and goes back to the pro-
cess TxBlock(i) (b36). When the pool is not full yet but there is no further transactions from the channel,
as long as there are some transactions, the process starts mining (b34); Otherwise, the process goes back
to TxBlock(i) and wait for transactions to be included (b35).

On receiving the signal (b4), the miner checks whether the gas for this transaction is 0 (b5), which
indicates there is no transaction in the pool.

e If there is no transaction in the pool and the block size is bigger than 1 (b6), meaning that all the
transactions have been included in the block, the miner starts mining the block by calling Miner(i, 0)
(b7). If there is no transaction in the pool and the block size is smaller than 1, meaning that there is
no transaction in the block, then the process goes back to TxBlock(i) (b8).

o If there are transactions in the pool (b9), the miner checks whether the total gas for the current block
reaches the top limit (»10) and checks whether the current transaction in the pool provides enough gas
to execute the corresponding function in the transaction (b11). If so, the miner includes the transaction
in the block (b12 — b27), by copying the address (b15), value (b16), gas (b17), gas price (b18) and
function (b19) into the block. In addition, the miner updates the total gas of the block (»20) and sets
the position of the transaction in the pool to be 0 to indicate that the transaction in the pool has been
included into the block (b21 — b25). Furthermore, the pointer in the pool will be moved to the next
and the size of the block is increased by 1 (b26 — b27). After updating the current transaction in the
pool, the process goes back to TxBlock(i) (b28) to include the next transaction into the pool, until
all transactions have been included, that is the pointer inPoolPtr[i] is bigger than the poolSize. If the
current transaction in the pool fails to provide enough gas, the miner simply ignores the transaction and
moves to the next one (b29 — b30). If the total gas has reached the top limit and there are transactions
in the block, the miner starts mining (b31). If the total gas reaches the top, but somehow there is no
transaction in the block, the process goes back (b33).

https://doi.org/10.1017/50269888920000260 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000260

8 N.DONG ET AL.

bl TxBlock(i) =

b2 if (inPoolPtr[i] < poolSize) {

b3 if (!call(cempty, datach[i])) {

b4 datach[i] ?newcomer ->

b5 if (poolTxGas[i] [inPoolPtr[il] == 0) {

b6 if (blkSize[i] >= 1) {

b7 Miner(i, 0)}

b8 else { TxBlock(i) } }

b9 else {

b10 if (blkTotalGas[i] + poolTxGas[i] [inPoolPtr[i]] <= blkGasLimit) {
b1l if (poolTxGasPrice[i] [inPoolPtr[i]] >= gasPriceCondition) {
b12 txIncludeq{

b13 var pIter = inPoolPtr[i];

b14 var bIter = blkSize[i];

b15 blkTxAddr [i] [bIter] = poolTxAddr[i] [pIter];

b16 blkTxVal[i] [bIter] = poolTxVall[i] [pIter];

b17 blkTxGas[i] [bIter] = poolTxGas[i] [pIter];

b18 blkTxGasPrice[i] [bIter] = poolTxGasPrice[i] [pIter];
b19 blkTxFunction[i] [bIter] = poolTxFunction[i] [pIter];
b20 blkTotalGas[i] = blkTotalGas[i] + poolTxGas[i] [pIter];
b21 poolTxAddr[i] [pIter] = 0;

b22 poolTxVal[i] [pIter] = O;

b23 poolTxGas[i] [pIter] = O;

b24 poolTxGasPrice[i] [pIter] = 0;

b25 poolTxFunction[i] [pIter] = 0;

b26 inPoolPtr[i]++;

b27 blkSize[i]++;} —>

b28 TxBlock (i)}

b29 else {nextTx{inPoolPtr[i]++;} ->

b30 TxBlock(i)}}

b31 else if (blkSize[i] >= 1) {Miner(i, 0)}

b32 else {nextTx{inPoolPtr[i]++;}->

b33 TxBlock(i)}}}

b34 else if (blkSize[i] >= 1) {Miner(i, 0)}

b35 else { TxBlock(i) }2}

b36 else {nextTx{inPoolPtr[i] = 0;} -> TxBlock(i)};

Figure 7 The process of including transactions into a block

ml Miner(i, iter) = if (iter < blkSize[i]) {LockUp(i, iter)}
m2 else { BlkUpdate(i, 0)};

Figure 8 The miner process

The mining process Miner(i, iter) in Figure 8 starts with a checking on whether the block index iter
is smaller than the block size of the miner i. If so, the miner locks up the total value and executes the
functions in the block (m1). If not, that is the functions have been fully executed, the block will be updated
in process BlkUpdate(i, 0) (m2).

To lock up the total value, the miner i calculates the amount to lock by adding the fund value and the
gas value as the locked total amount (/4 — 7 in Figure 9). The remaining amount for the user with address

https://doi.org/10.1017/50269888920000260 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000260

A blockchain-based decentralized booking system 9

11 LockUp(i, iter) =

12 weilLockUp{

13 var addr = blkTxAddr[i] [iter];

14 var val = blkTxVal[i] [iter];

15 var gas = blkTxGas[i] [iter];

16 var gasPrice = blkTxGasPricel[i] [iter];

17 var lockedTotal = val + (gas * gasPrice);

18 userWallet[i] [addr] = userWallet[i] [addr] - lockedTotal;
19 lockedWallet[i] = lockedTotal;} —>

110 TxExec(i, iter);

Figure 9 The lock up process

el TxExec(i, iter) =

e2 case {

e3 blkTxFunction[i] [iter] == SwitchFunction:

ed if (contractOwner == blkTxAddr[i] [iter]) {

eb GasConsume (i, iter, UPDATE) || Execution(i, iter)}
e6 else { LockedReturn(i, iter, false) }

e7 blkTxFunction[i] [iter] == ProposeFunction:

e8 if (contractSwitch[i] == on) {

e9 GasConsume (i, iter, UPDATE) || Execution(i, iter)}
el0 else {LockedReturn(i, iter, false)}

ell blkTxFunction[i] [iter] == SettleFunction:

el2 if (contractOwner == blkTxAddr[i] [iter]) {

el3 GasConsume(i, iter, UPDATE + TRANSFER) || Execution(i, iter)}
eld else {LockedReturn(i, iter, false)}

elb blkTxFunction[i] [iter] == FetchFunction:

el6 if (contractOwner == blkTxAddr[i] [iter]) {

el7 GasConsume (i, iter, FETCH) || Execution(i, iter)}
el8 else {LockedReturn(i, iter, false)}};

Figure 10 The overall process of transaction execution

addr (13) is also calculated by deducting the locked amount (/8). Once the amount for a transaction iter
is locked (19), the miner executes the transaction by calling TxExec(i, iter) (110).

To execute a transaction ifer (Figure 10), the miner reads the function in the transaction. There are
four functions provided in the smart contract: SwitchFunction, ProposeFunction, SettleFunction and
FetchFunction, which are defined as constants.

e When SwitchFunction is called (e3), the miner checks whether the user who calls the function is
the contract owner (e4). If so, the miner executes the transaction and updates the gas with price of
UPDATE (e5); Otherwise returns false to indicate that the function is not successfully executed (e6).

e When ProposeFucntion is called (e7), the miner checks whether the contract is switched on (e8). If
so, the miner updates the gas with price of UPDATE and executes the transaction (e9); Otherwise
returns false (e10).

e When SertleFunction is called (ell), the miner checks whether the user who calls the function is
the contract owner (el12). If so, the miner executes the transaction and update the gas with price
of UPDATE + TRANSFER (e13); Otherwise returns false (el14). Differing from the previous two
functions, this function costs more, including the updating fee and the transferring fee.

e When FetchFunction is called (el5), the miner checks whether the user who calls the function is the
contract owner (el16). If so, the miner executes the transaction and updates the gas with the price of
FETCH (el7); Otherwise returns false (e18).

https://doi.org/10.1017/50269888920000260 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000260

10 N.DONG ET AL.

gl GasConsume(i, iter, opcode) =
g2 if (estimatedGas[i] [iter] + opcode > blkTxGas[i] [iter]) {

g3 ExecFail(i, iter)}

g4 else {

g5 consuming{

g6 var gasPrice = blkTxGasPricel[i] [iter];

g7 var price = opcode * gasPrice;

g3 minerCoinbase[i] = minerCoinbase[i] + price;

g9 lockedWallet[i] = lockedWallet[i] - price;

gl10 estimatedGas[i] [iter] = estimatedGas[i] [iter] + opcode;} ->
gll consumed ->

gl2 Skip};

gl3 ExecFail(i, iter) =
gl4 lockedReset{ lockedWallet[i] = 0;} ->
gl5 BlkDetect(i, iter, false);

Figure 11 The gas update process

In any function call, before executing the functions in the transaction, the miner first checks whether
the transaction has enough gas (€5, €9, e13, e17). This is modelled in Figure 11 (g2). If not, the execution
fails, as modelled in the process ExecFail(i, iter) (g3, g13 — g15). If there is enough gas, the miner
updates the gas by deducting the amount (specified in the parameter according to different functions)
from the locked wallet and adding them to the miner’s wallet (g5 — g10). Then the miner initiates the
execution, modelled by the synchronized event consumed (g11).

Once the event consumed is synced (c1), the miner executes the function (c2 — c10). We model the
execution of a function Execution(i, iter) by giving the transaction a unique ID (c3) and storing the trans-
action owner (c4), contract address (c5), transaction function (¢6) and transaction fee in a set of arrays
(c9) to indicate that the function of the smart contract in that transaction has been executed (Figure 12).
Thus, the process returns true by calling process LockedReturn(i, iter, true) (c11). Then the miner returns
the remaining locked gas to the user (r1 — r6). Before the miner executes the next transaction, she checks
whether there is any block from another miner (7). If so, the miner chooses to execute the first block she
receives, modelled in process BlkDetect(i, iter, success) (d1 — d3).

Recall that the miner process starts with a check on whether the block index is smaller than the block
size of the miner i (m2 in Figure 8). If not, that is the transaction pool for the miner is full, the miner
updates the block (a2 — al0), rewards the miner (a1l — a12) and broadcasts the block (al3), which is
modelled in the process BlkUpdate(i, iter) in Figure 13. To broadcast a block, the miner sends the block
number and block ID to other miners (s3 — s5 Figure 14. Note that s2 avoids that a node sends the block
to himself/herself). Once this has been done, the miner increases the block ID by 1 (s7) and appends the
block to her chain (s8 process BlkAppend(i, i, newBlockNum, blockid)). In the process BlkAppend(i, i,
newBlockNum, blockid) defined in Figure 15, the minder appends the latest block (k2 — k4) and updates
the state in the blockchain (k5).

The process of updating the blockchain actually updates the results of the functions as shown in
Figure 16. When the operation is FetchFuction (h4), we add a fetch event to denote it (h5); When the
operation is SwitchFunction (h7), the process switches the smart contract from the current state on/off
to the alternative state off /on (h8 — h10); When the operation is ProposeFunction (h12), the process
executes a propose event (h13 — h19), where the proposal initiator (217) and the proposal state (218) are
recorded; When the operation is SettleFunction (h21), the process executes a settle event (h22 — h26),
which records the one who settle the deal (425) and the corresponding transaction state (£26). Once an
operation is finished, the process goes back to itself for the operation in the next transaction (h6, k11, h20,

https://doi.org/10.1017/50269888920000260 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000260

A blockchain-based decentralized booking system

11

c2
c3
c4d
cbh
c6
c7
c8
c9
cl10
cl1

r3
r4
r5
r6

cl Execution(i, iter) = consumed ->

execution{
pendUid[i] [iter] = txUid;
pendFromAddr [i] [iter] = blkTxAddr[i] [iter];
pendToAddr[i] [iter] = contractAddr;
pendOp[i] [iter] = blkTxFunction[i] [iter];
pendField[i] [iter] na;
pendState[i] [iter] = 1;

blkTxValli] [iter];

pendValue[i] [iter]
txUid++;} ->
LockedReturn(i, iter, true);

rl LockedReturn(i, iter, success) =
r2 returnGas{

var addr = blkTxAddr[i] [iter];

var return = (blkTxGas[i] [iter] - estimatedGas[i] [iter]) * blkTxGasPricel[i] [iter];
userWallet[i] [addr] = userWallet[i] [addr] + return;

lockedWallet[i] = 0; } —>

r7 BlkDetect(i, iter, success);

d1l BlkDetect(i, iter, success) =
d2 if (call(cempty, bnet[i])) {Miner(i, iter+1)}
d3 else {bnet[i]?j.newBlockNum.blockid -> BlkAppend(i, j, newBlockNum, blockid)};

Figure 12 The actual execution process

al BlkUpdate(i, iter) =
a2 if (iter < blkSize[il) {
a3 update{

ad block[blockUid] [iter] = pendUid[i] [iter];

ab txFromAddr [pendUid [i] [iter]] = pendFromAddr[i] [iter];
a6 txToAddr [pendUid[i] [iter]] = pendToAddr[i] [iter];

a7 tx0p [pendUid[i] [iter]] = pendOpl[i] [iter];

a8 txField[pendUid[i] [iter]] = pendField[i] [iter];

a9 txState[pendUid[i] [iter]] = pendStatel[i] [iter];} ->

al0 BlkUpdate(i, iter+1)}

all else {reward{minerCoinbase[i] = minerCoinbase[i] +
al2 succAppendPrice; rewardCount++;} ->

al3 BlkBrdcst(i, 0, blockNum[i], blockUid)};

Figure 13 The block update process

s1
s2
s3
s4
sb
s6
s7
s8

BlkBrdcst (i, iter, newBlockNum, blockid) =
if (i == iter && iter < M) {BlkBrdcst(i, iter+1, newBlockNum, blockid)}
else if (iter < M) {
bnet [iter]!i.newBlockNum.blockid ->
BlkBrdcst (i, iter+1, newBlockNum, blockid)}
else {
updateBlockUid{blockUid++;} ->
BlkAppend(i, i, newBlockNum, blockid)l};

Figure 14 The block broadcasting process

https://doi.org/10.1017/50269888920000260 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000260

12 N.DONG ET AL.

k1 BlkAppend(i, j, newBlockNum, blockid) =
k2 append{chain[i] [newBlockNum] = blockid;
k3 blockNum[i]++;

k4 blkSize[i] = blkSize[jl;} —->

k5 ChainUpdate(i, 0, blockid);

Figure 15 The block appending process

hl ChainUpdate(i, iter, blockid) =
h2 if (iter < blkSize[i]) {
h3 case {

h4 tx0p[block[blockid] [iter]] == FetchFunction:

hb fetch ->

h6é ChainUpdate(i, iter+1, blockid)

h7 tx0p[block[blockid] [iter]] == SwitchFunction:
h8 switch{var id = block[blockid] [iter];

h9 if (contractSwitch[i] == off) {contractSwitch[i] = on;}
h10 else {contractSwitch[i] = off;}} ->
hii ChainUpdate(i, iter+1, blockid)

h12 tx0p [block[blockid] [iter]] == ProposeFunction:
h13 propose{var id = block[blockid] [iter];

hi4 var addr = txFromAddr[id];

hi5 var data = txStatel[id];

h16 var ptr = proposalPtr[i];

h17 proposalFrom[i] [ptr] = addr;

h18 proposall[i] [ptr] = data;

h19 proposalPtr[il++; } ->

h20 ChainUpdate(i, iter+1, blockid)

h21 tx0p[block[blockid] [iter]] == SettleFunction:
h22 settle{var id = block[blockid] [iter];

h23 var addr = txFromAddr[id];

h24 var data = txState[id];

h25 settledWith[i] = data;

h26 userWallet[i] [data] = userWallet[i] [data] + txValue[id]; } —>
h27 ChainUpdate(i, iter+1, blockid)}}

h28 else {Reset(i, 0) I};

Figure 16 The chain updating process

h27). Note that the process first checks whether all the transaction has been updated. If so, the process
resets the transaction container in process Reset(i, 0) (h28).

In the reset process, the miner clears each transaction container by setting the values to 0 shown as
follows in Figure 17 (f2 — f16). Once all the transactions in a block is cleared, the miner clears the block
by setting the gas and size to 0 (f17 — f19) and going back to process TxBlock for the next round.

To summarize, the flow of the processes can be abstractly represented as in Figure 18. In the figure,
the arrow A — B indicates that process A calls process B; and the dashed arrow A — B means that process
A sends a message to process B.

The user initiates a transaction (process User) and broadcasts to miners (process TxBrdcst). The trans-
action is received by the process TxPool. If there is enough gas, the transaction is added to the pool in
process TxInsert. Once the pool is full or there is no further transactions, the process TxInsert triggers the
block forming by sending a command to the process TxBlock. The process forms a block and calls the

https://doi.org/10.1017/50269888920000260 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000260

A blockchain-based decentralized booking system 13

f1 Reset (i, iter) =

f2 if (iter < blkSize[i]) {clearTx{

£3 pendUid[i] [iter] = 0;

f4 pendFromAddr [i] [iter] = 0;
f5 pendToAddr [i] [iter] = 0;

£6 pendOp[i] [iter] = O;

£f7 pendField[i] [iter] = 0;

£8 pendState[i] [iter] = 0;

f9 pendValue[i] [iter] = 0;

f10 blkTxAddr[i] [iter] = 0;

f11 blkTxVal[i] [iter] = 0;

12 blkTxGas[i] [iter] = 0;

£13 blkTxGasPrice[i] [iter] = 0;
f14 blkTxFunction[i] [iter] = O;
f£15 estimatedGas[i] [iter] = 0;} ->
£16 Reset (i, iter+1)}

f17 else {clearBlk{

£18 blkTotalGas[i] = O;

£19 blkSize[i] = 0;} ->

£20 TxBlock(i)};

Figure 17 The reset process
User

(" TxBrdcst - »vTxPoor 7)

.

“TxInsert > TxBIocI{

}

Miner

LockUp BIkUpdatef

}

TxExec B|kBArdcst)

l
Execution—LockedReturn GasConsume

ExecFail

"« BlkDetect

l

BlkAppend <«

Reset «— ChainUpdatef)
Figure 18 An overall relation between the processes

miner (process Miner). The miner locks up the gas (calling process LockUp) for each transaction; until
no more transaction left, the miner updates to form a new block (process BlkUpdate).

e If the gas is locked, a transaction is passed to the process TxExec to further execute. Depending on
different functions in the transaction, the process TxExec deducts different gas (process GasConsume)
and executes different functions (process Execution). If anything wrong happens, the process TxExec
goes to LockedReturn to release the locked gas. Similarly, if error happens during execution in process

https://doi.org/10.1017/50269888920000260 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000260

14 N.DONG ET AL.

Table 1 Formalization of the property

Property Formalization in PAT
Deadlockfree deadlockfree

GasRunOut estimatedGas[0][0] > gasLimit
SameBlockNumEventually &&i:{0.M} @ blockNum[i] == 1
ReceiveSettlement &&i:{0..M} @ settledWith[i] == 1
ProposalReceived proposalPtr[0] >=1

ql ProposerExecution = User(1l, O, gasLimit, 5, ProposeFunction) |||
q2 (I111:{0..M-1} @ (TxPool(i) ||| TxBlock(i)));

Figure 19 An overall system model with only one user

Execution, the process LockedReturn is called. In the process GasConsume, if there is no enough gas,
ExecFail will be triggered. ExecFail resets the locked wallet. At this point, a new block from other
miners may be sent, so the process calls the process BlkDetect. If a new block is received, the process
appends the block to the chain BlkAppedn and sends a message to trigger the process BlkBrdcst in
which new blocks will be broadcasted.

o In the case where the block is updated (process BlkUpdate), the block is broadcasted to others in the
process BlkBrdcst, and the block is also appended to the chain in process BlkAppend.

Once the chain is appended, the process ChainUpdate is called by the process BlkAppend to update
the actual chain. If it does not succeed, the whole process will be Reset.

4.3 The overall process

In summary, the proposed blockchain-based booking system can be modelled as the User process and
the miner process running in parallel. And the miner process is the transaction pool process TxPool and
the blockchain process TxBlock running in parallel.

5 System verification

In order to show that the system design (formally modelled in CSP#) satisfies a set of desired require-
ments, we perform formal verification to the above formal model. In this section, we discuss the properties
that the booking system aims to achieve, define the executions for verifying each property and finally
present the verification results.

5.1 Properties

We verified five properties that the system needs to satisfy, which are defined as follows:

Deadlockfree: No deadlock situation occurs in the system.

GasRunOut: Each transaction in a block has enough gas to be executed to completion by miners.
SameBlockNumEventually: Each miner reaches the same block number eventually.
ReceiveSettlement: The request (smart contract) owner has settled with some proposer, and thus each
miner receives the same transaction.

e ProposalReceived: Proposals have been accepted by the request.

Each property is formalized as an assertion in PAT for automatic formal verification as shown in
Table 1. Note that the symbol && is logical ‘and’. Thus, the formula &&si : {0..M} @ blockNum[i] ==

https://doi.org/10.1017/50269888920000260 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000260

A blockchain-based decentralized booking system 15

Table 2 Formalization of executions

ProposeExecution User(1, 0, gasLimit, 5, ProposeFunction)|||
(11i:{0..M — 1} @ (TxPool(i)|||TxBlock(i)));
ListenerExecution User(1, 0, gasLimit, 5, ProposeFunction)|||Listener(contractOwner)|||

(i : {0..M — 1} @ (TxPool(i)|||TxBlock(i)));
UnavailabeExecution User(contractOwner, 0, gasLimit, 5, SwitchFunction)|||

(li: {0..M — 1} @ (TxPool(i)|||TxBlock(i)));
NotOwnerExecution User(0, 0, gasLimit, 5, FetchFunction)|||

(i : {0..M — 1} @ (TxPool(i)|||TxBlock(i)));
MultipleUsersExecution (||]i: {0..C — 1}@User(i, 0, gasLimit, 5, ProposeFunction))|||

(i : {0..M — 1} @ (TxPool(i)|||TxBlock(i)));
SettlementExecution User(contractOwner, 200, gasLimit, 5, SettleFunction)|||

(i : {0..M — 1} @ (TxPool(i)|||TxBlock(i)));

Listener(addr) = listen[addr]?function -> listenerReceiving ->

User(addr, O, gasLimit, 5, function);

Figure 20 The process Listener

means blockNum[0] == 1 A blockNum[1] == 1 A ... A blockNum[M] == 1. Similarly, the formula
&&i: {0..M} @ settledWith[i] == 1 means that Vi € {0..M} : settledWith[i] == 1.
For each property, we match one execution. And the five executions are listed as follows:

e ProposerExecution: A user submits proposals to the request (smart contract).

e ListnerExecution: A user submits proposals to the request, and the request owner listens to the
‘proposal’ event from the request.

e UnavailableExecution: The request owner turns off the request, and no more proposals are allowed to
be accepted by the request.

e NotOwnerExecution: A user who is not the request owner fetches the proposals from the request.

e MultipleUsersExecution: Many users submit their proposals at the same time.

e SettlementExecution: The request owner seals a deal.

The formalization of the executions is defined in Table 2. Note that the ‘ProposeExecution’ dif-
fers from the ‘MultipleUsersExecution’ in the number of users; the executions ‘ProposeExecution’,
‘UnavialableExecution’, ‘NotOwnerExecution’ and ‘SettlementExecution’ differ in the function
parameters (ProposeFunction, SwithchFunction, FetchFunction and SettelFunction respectively).
The ‘ListenerExecution’ adds one more process to the ‘ProposeExecution’. The additional process
Listener(contractOwner) is shown in Figure 20, which defines a user interface that listens to the state
change.
The assertions that match the property with the executions are defined as follows:

Assertion 1: ProposerExecution Deadlockfree

Assertion 2: ProposerExecution| = []!GasRunOut

Assertion 3: ProposerExecution reaches SameBlockNumEventually
Assertion 4: ListenerExecution| = ProposalReceived — listenerReceiving
Assertion 5: UnavailableExecution| = []!ProposalReceived

Assertion 6: NotOwnerExecution| = [|\Fetch

Assertion 7: MultipleUsersExecution reaches SameBlockNumEventually

Assertion 8: SettlementExecution reaches ReceiveSettlement

https://doi.org/10.1017/50269888920000260 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000260

16 N.DONG ET AL.

#define C 5; // # of hoteliers or travelers

#define M 2; // # of miners

#define chainSize 5; // The length of each blockchain

#define maxTx 20; // The maximum number of transaction for each block
#define blkGasLimit 20000; // The maximum gas limit for each block, which is
calculated from a bunch of transactions with gas limit

#define channelBufferSize 5;

#define succAppendPrice 1000000; // reward for successfully appending the
valid block

#define contractAddr 9494; // smart contract address

#define FETCH 10; // gas consumption in terms of opcode

#define TRANSFER 500; // gas consumption in terms of opcode

#define UPDATE 100; // gas consumption in terms of opcode

#define gasLimit 1000; // gas consumption limit per transaction

#define gasPriceCondition 3; // miner’s selection of gas price per transaction
#define contractOwner 2; // the smart contract’s owner address

#define poolSize 100; // pool size to receive transactions for each miner
#define proposalPoolSize 10; // pool size for received proposals

#define dataSize 100;

Figure 21 The experiment settings

The Assertion 1 states that the execution ProposerExecution is deadlock free. The Assertion 2 ensures
that each transaction has enough gas to be executed. The symbol ‘| =’ reads as ‘satisfies’, which states
that the execution satisfies the claimed LTL property on the right-hand side. The symbol ‘[]’ reads as
‘globally’ meaning that every state in the system execution shall satisfy the subsequent LTL formula.
The Assertion 3 states that in the execution ProposerExecution, each miner reaches the same block. The
Assertion 4 ensures that if the proposal is received by the smart contract, then the listener must have
received the proposal. The Assertion 5 says that if the smart contract is turned off, then the proposal will
not be received. The Assertion 6 states that when a user, who is not the smart contract owner, fetches
the proposal, she will never succeed. The Assertion 7 ensures that when there are multiple users, the
execution can still reach the same block eventually. The Assertion 8 means that when the smart contract
owner seals a deal, the deal must have been settled.

5.2 Verification settings

For the simplicity of verification, we assume the following settings: there are five hoteliers or travellers
and two miners; and the length of blockchain is five with the maximally 20 transactions in a block. The
maximum gas limit for a block is set to be a large number 20 000, which is the gas limit for a transaction
times the maximum number of transaction in a block. We set the reward for successfully appending the
valid block to be a large number as well, so that there is enough Ether and Gas to perform the functions.
We assume the gas consumption of each functions (FETCH, TRANSFER and UPDATE) is an integer.
We define asynchronized channels with buffer size of 5 to model the network delays. In addition, we set
smart contract address and the smart contract’s owner address as integers as well. Furthermore, we set the
gas consumption limit, miner’s selection of gas price per transaction, the pool size to receive transactions
for each miner and pool size for received proposal, and the data size as shown in Figure 21.

5.3 Verification results

Our experiment shows that the outcome of the assertions from PAT with respect to different configura-
tions of C users and M miners. We can see from Table 3 that the properties are all satisfied when there
are five users and two miners. Note that in the table, we also show the checked states, state transactions

https://doi.org/10.1017/50269888920000260 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000260

A blockchain-based decentralized booking system 17

Table 3 The assertion results with C=5and M =2

Assertion States State transitions Time(s) Result
Assertion 1 8328 18 823 1.76 Valid
Assertion2 13413 30563 2.68 Valid
Assertion 3 285 336 0.04 Valid
Assertion4 13413 30563 2.76 Valid
Assertion 5 13413 30563 2.73 Valid
Assertion 6 4537 11 940 0.78 Valid
Assertion 7 504 521 0.05 Valid
Assertion 8 362 605 0.06 Valid

Table 4 The assertion results with C =5 and M = 10

Assertion States State Transitions Time(s) Result
Assertion 1 6774 622 68 280 939 3647.43 Incomplete
Assertion 2 169 626 2 165 266 112.52 Incomplete
Assertion 3 297717 415 836 21.45 Valid
Assertion 4 230 685 2897974 415.428 Incomplete
Assertion 5 169 929 2168902 111.65 Incomplete
Assertion 6 317 081 1511 802 189.67 Incomplete
Assertion 7 10312 10 425 0.98 Valid
Assertion 8 3313 604 3233 2261 1607.98 Incomplete

Table 5 The assertion results with C =5 and M =50

Assertion States State Transitions Time(s) Result

Assertion 1 512033 523985 201.99 Incomplete
Assertion 2 12 140 1240978 194.12 Incomplete
Assertion 3 1005 567 1034 176 659.31 Incomplete
Assertion 4 15 906 1 500 982 124.36 Incomplete
Assertion 5 15972 1507 186 130.03 Incomplete
Assertion 6 181 892 907 271 510.04 Incomplete
Assertion 7 239 832 240 425 102.25 Valid

Assertion 8 650 388 667 096 224.03 Incomplete

and the time used for verification using PAT. Generally speaking, model checking in PAT verifies all the
possible reaching states (defined by the state variables) and detects whether a bad state that some of the
assertions are violated. States are connected by transitions, which defines the possible execution traces of
the system behaviour. However, when C and M are set larger, the state space is too large to be verified.
The states and transactions increase exponentially as shown in Tables 4 and 5. The increasing numbers of
miners lead to more state variables and thus increase the states exponentially. Similarly, since the miners
work in parallel with interleaving actions, the number of possible actions (i.e. the transactions) grows
steeply; especially as the model includes peer-to-peer broadcasting, the increasing numbers of miners
lead to exponential growth of the broadcasting messages.

https://doi.org/10.1017/50269888920000260 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000260

18 N.DONG ET AL.

6 System implementation

We have implemented a prototype system (https://github.com/naipengdong/Knowledge_engineering
_Review), which contains three main components:

e Hotel HTML Page (Hotel_Proposals.html)
e Customer HTML Page (requester.html)
e Hotel Smart Contract (Hotel.sol)

Hotel and Customer HTML Page contains web3.js javascript that interacts with the Hotel Smart
Contract. Hotel and Customer HTML Page will each have their own account—the Hotel has
an account: Oxfdd7aa0blbcbb77df50b9ef2a5559808d07396d7 and the customer has an account:
Ox1c5f708395f2c13cb3471ea3e4332b1b3ab6408ca.

The implementation of the Hotel Contract DApp demonstrates the application where

. A traveller is able to set up a contract.

. A hotelier is able to view the contract.

. A hotelier is able to propose an offer.

The customer is able to pay with Fiat money or Ether.

. Payment will be withheld in contract.

. Contract will release payment to hotel once customer checks out.
. Hotel and customer are both able to view past transactions.

To test the implementation, we set up an Ethereum environment, including a local Ethereum net-
work using GETH as EVM node, Truffle for compilation and deployment of contracts, XAMPP to host a
HTTP webserver and Metamask plugin + Chrome to be the web3 Javascript enabled browser to talk to the
EVM. In the EVM, only one miner was used. Transactions are fired every 5 seconds, for both payment and
checkout actions. The number of transactions allowed per minute/second is handled by the Ethereum plat-
form, and in the test, the rate at which the transactions were fired is 12 transactions per minute (one every
5 seconds). The mining difficulty was set as low as possible at 1. In a test run of the code, 1000 users were
auto-generated with a script which simulated the users booking and purchasing packages, subsequently
another script was ran to simulate checkouts in 8 hours. This generated 2002 transactions, of which 2000
transactions were from user payment and subsequent checkout, while 2 transactions were from creating
the packages. Note that this test only demonstrates that the system works. It takes 8 hours to host 2000
transactions because there is the only miner deal with 1 transaction per time. By enlarging the number of
miners and the block size, for example by allowing 2000 transactions per block, the system can host much
more transactions. And this depends on the blockchain setting, for example the number of miners, the
block size, the difficulty of mining, etc. which is beyond the application level that this system is focusing.

7 Related work

There has been a growing number and range of applications being built using blockchain as a plat-
form/service (a.k.a. blockchain 2.0), following the well-known applications in cryptocurrencies (a.k.a.
blockchain 1.0).

Blockchain-based applications. Smart contract supported by blockchain (e.g. Ethereum) enables
complex processes and interactions between participants without a centralized authority. The capabilities
and applications of smart contracts have been explored by both academic and industry. For instance,
depending on their application domains, blockchain has been used in integrity verification, such as
intellectual property management (e.g. De La Rosa et al., 2017), insurance (e.g. Vo et al., 2017) and
provenance (e.g. Kim and laskowski,2016), Governance, such as citizenship (e.g. Lee, 2018), smart
cities (e.g. Biswas and Muthu, 2016) and voting (Hsiao et al., 2018), Internet of Things (e.g. Nova,
2018), healthcare management (e.g. Patel, 2018), privacy and security (Liang et al., 2018), business and

https://doi.org/10.1017/50269888920000260 Published online by Cambridge University Press

https://github.com/naipengdong/Knowledge_engineering_Review
https://github.com/naipengdong/Knowledge_engineering_Review
https://doi.org/10.1017/S0269888920000260

A blockchain-based decentralized booking system 19

industry, such as supply chain (e.g. IBM, 2020) and energy sector (e.g. Kyriakarakos and Papadakis,
2018), education (e.g. Bore et al., 2017), data management (e.g. Yang et al., 2018) etc. (Casino et al.,
2019).

Blockchain in travel industry. One of the popular industry domain of blockchain-based applications
is travelling, where some of the travel agency functionalities can be decentralized using blockchain, to
increase transparency, reduce monopolies and prevent cheating, which are currently challenging in the
travel industry. The applications include decentralized booking marketplaces, loyalty schemes, identity
services, baggage tracking and travel insurance. Among them, decentralized booking has been adopted
by companies like Singapore Airlines, Travelport, Webjet, etc. (Rijmenam, 2019). As ticketing is a type
of contract, blockchain-based booking, including airplane booking and hotel booking, is a natural appli-
cation. There have been a few blockchain-based hotel booking systems that allow clients to book without
any commission fee and reduce cost, for example Locktrip (2020), Winding Tree (2020), GOeureka
(2020), Atlas Atlas (2020), BTU-Hotel (French, 2019), etc. (Krietemeyer, 2020), as well as patents like
the bidding system hold by Mastercard (Patent, 2020).

Evaluation on blockchain and smart contract. Most of the blockchain-based hotel booking appli-
cations, implemented as new blockchains or as smart contracts based on Ethereum, are following the
try-and-error style in order to quickly enter the market; no verification or proof of security has been
found on the design and implementation before deployment. This may potentially lead to various types
of attacks (e.g. Chen ez al., 2019). To evaluate the blockchain-based applications, existing software-based
approaches like testing (Wang et al., 2018) and debugging (Lin et al., 2017, 2018) can be applied. For
instance, static analysis tools working on the smart contract code has been proposed to detect vulnera-
bilities, for example OYENTE (Luu et al., 2016) and dynamic analysis methods, like fuzzing has been
used on smart contracts (Nguyen et al., to appear). These methods have the advantage of efficiency but
are limited in precision. The approach used in this work—formal verification of design—has the advan-
tage of reducing the potential design flaws. For instance, formal verification has been used to analyze
blockchain consensus, for example in Thin et al. (2018). And this work demonstrates that designs of
blockchain-based applications can be first formally verified before implementation and deployment to
make sure the design goals are achieved in a precise manner.

8 Conclusions and future directions

In this work, we designed a decentralized booking system that links the hoteliers and the travellers, based
on the blockchain techniques. The blockchain network replaces the traditional centralized travel agencies
that are often inefficient and costly. In addition, it makes the hotel booking business more transparent and
avoids the price tricks that can be played by the booking agencies. We have formally modelled the system
design including the blockchain using a formal language and verified a set of properties of the system
using a model checker. We implemented a prototype system based on Ethereum and demonstrated its
feasibility.

Limitations and future directions. Regarding formal verification, this work is limited to certain nodes
due to state space explosion. More efficient verification algorithms working on complex blockchain-
based applications are needed. In addition, the attacker behaviour in the current model is limited.
Advanced attacker models can be defined for not only security but also privacy properties, following the
style of (Dong and Muller, 2018), and the automatic verification algorithms need to be developed with
respect to the attacks, for example using logic reasoning of attacks such as (Li et al., 2017). In addition,
the formal verification in this work only focuses on the application design; the implementation may
introduce vulnerabilities; therefore, formal verification on the implementation is needed. There have
been notably a few works on the source code level, for example Bhargavan et al. (2016), Yang and Lei
(2019). However, they require the analysts to learn another language to reinterpret the applications; and
the learning curve of these languages is steep. It is still a challenge to directly verify the source code for
smart contracts. Regarding the application, an interesting direction is to analyze security of the deployed
systems, for example using dynamic monitoring, to ensure the reliability of the application even in an
untrusted environment with potentially vulnerable components.

https://doi.org/10.1017/50269888920000260 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000260

20 N.DONG ET AL.

References

Atlas. Atlas - A Universal Blockchain Platform for The Travel Industry. https://atlas.world/viewer/whitepaper.html,
visited at 9 March 2020.

Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A. Gonthier, G., Kobeissi, N., Kulatova, N., Rastogi,
A., Sibut-Pinote, T. & Swamy, N. 2016. Formal verification of smart contracts: Short paper. In ACM Workshop
on Programming Languages and Analysis for Security, 91-96.

Biswas, K. & Muthukkumarasamy, V. 2016. Securing smart cities using blockchain technology. In 2016
IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th
International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), 1392-1393.

Bore, N., Karumba, S., Mutahi, J., Darnell, S.S., Wayua, C. & Weldemariam, K. 2017. Towards blockchain-enabled
school information Hub. In Ninth International Conference on Information and Communication Technologies and
Development, 19.

Buterin, V. 2019. Ethereum White Paper. https://github.com/ethereum/wiki/wiki/White-Paper/
£18902f4e7tb21dc92b37e8a0963eec4b3f4793a, visited at 15 June 2019.

Cachin, C. 2019. Architecture of the Hyperledger Blockchain Fabric. https://www.zurich.ibm.com/dccl/papers/
cachin_dccl.pdf, visited at 15 June 2019.

Casino, F., Dasaklis, T. K. & Patsakis, C. 2019. A systematic literature review of blockchain-based applications:
Current status, classification and open issues. Telematics and Informatics 36, 55-81.

CBInsights. How Blockchain Could Disrupt Insurance. https://www.cbinsights.com/research/blockchain-insurance-
disruption/, visited at 15 June 2019.

Chen, H., Pendleton, M., Njilla, L. & Xu, S. 2019. A Survey on Ethereum Systems Security: Vulnerabilities, Attacks
and Defenses. https://arxiv.org/abs/1908.04507.

Chinchilla, C. 2019. A Next-Generation Smart Contract and Decentralized Application Platform (Ethereum White
Paper). https://github.com/ethereum/wiki/wiki/White-Paper, 2019, visited at 14 March 2020.

De La Rosa, J. L., El-Fakdi, A., Torres, V. & Amengual, X. 2017. Logo recognition by consensus for enabling
blockchain implementations. Frontiers in Artificial Intelligence and Applications 300, 257-262.

DHL Trend Research. Blockchain in Logistics. https://www .logistics.dhl/content/dam/dhl/global/core/documents/
pdf/glo-core-blockchain-trend-report.pdf, visited at 15 June 2019.

Dong, N. & Muller, T. 2018. The foul adversary: formal models. In International Conference on Formal Engineering
Methods (ICFEM), 37-53.

Ethereum. https://www.ethereum.org/, visited at 14 June 2019.

French, J. 2019. BTU Protocol Launches BTU Hotel at CES, Drives Commissions to 0%. https://blocktelegraph.
io/btu-protcol-hotel-ces/, January 6, 2019, visited at 9 March 2020.

GOeureka. GOeureka: Next-Gen Solution Shaping the Future of Online Hotel Booking. https://goeureka.io/, visited
at 9 March 2020.

Hsiao, J. H., Tso, R., Chen, C. M. & Wu, M. E. 2018. Decentralized E-voting systems based on the blockchain tech-
nology. In Advances in Computer Science and Ubiquitous Computing, Lecture Notes in Electrical Engineering,
474, 305-309.

IBM Corporation. IBM Sterling Supply Chain. https://www.ibm.com/au-en/supply-chain, visited at 6 March 2020.

Kim, H. M. & Laskowski, M. 2016. Towards an Ontology-Driven Blockchain Design for Supply Chain Provenance.
http://arxiv.org/abs/1610.02922, submitted 2016, visited at 6 March 2020.

Krietemeyer, M.-L. 2020. Blockchain Technologies Influence on Hotel Bookings. https://pdfs.semanticscholar.
org/aa84/35b68db2a6f2081e877925¢cbf0ef3aeb7598.pdf, visited at 9 March 2020.

Kyriakarakos, G. & Papadakis, G. 2018. Microgrids for productive uses of energy in the developing world and
blockchain: a promising future. Applied Sciences (Switzerland) 8(4), 580.

Lee, J.-H. 2018. BIDaaS: blockchain based ID as a service. IEEE Access 6, 2274-2278.

Li, L., Dong, N., Pang, N., Sun, J., Bai, G., Liu, Y. & Dong, J.S. 2017. A verification framework for stateful security
protocols. In International Conference on Formal Engineering Methods (ICFEM), 262-280.

Liang, G., Weller, S. R., Luo, F., Zhao, J. & Dong, Z. Y. 2018. Distributed blockchain-based data protection
framework for modern power systems against cyber attacks. IEEE Transactions on Smart Grid. 10, 3162-3173.

Lin, Y., Sun, J., Tran, L., Bai, G., Wang, H. & Dong, J.S. 2018. Break the dead end of dynamic slicing: localizing
data and control omission bug. In 33rd IEEE/ACM International Conference on Automated Software Engineering
(ASE), 509-519.

Lin, Y., Sun, J., Xue, Y., Liu, Y. & Dong, J.S. 2017. Feedback-based debugging. In 39th ACM SIGSOFT
International Conference on Software Engineering (ICSE), 393—403.

Locktrip. BlockChain Hotels & Rentals Travel Marketplace with 0% Commissions. https://locktrip.com/, visited at
9 March 2020.

Luu, L. Chu, D.-H., Olickel, H., Saxena, P. & Hobor, A. 2016. Making smart contracts smarter. In ACM SIGSAC
Conference on Computer and Communications Security, 254-269.

https://doi.org/10.1017/50269888920000260 Published online by Cambridge University Press

https://atlas.world/viewer/whitepaper.html
https://github.com/ethereum/wiki/wiki/White-Paper/f18902f4e7fb21dc92b37e8a0963eec4b3f4793a
https://github.com/ethereum/wiki/wiki/White-Paper/f18902f4e7fb21dc92b37e8a0963eec4b3f4793a
https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf
https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf
https://www.cbinsights.com/research/blockchain-insurance-disruption/
https://www.cbinsights.com/research/blockchain-insurance-disruption/
https://arxiv.org/abs/1908.04507
https://github.com/ethereum/wiki/wiki/White-Paper
https://www.logistics.dhl/content/dam/dhl/global/core/documents/pdf/glo-core-blockchain-trend-report.pdf
https://www.logistics.dhl/content/dam/dhl/global/core/documents/pdf/glo-core-blockchain-trend-report.pdf
https://www.ethereum.org/
https://blocktelegraph.io/btu-protcol-hotel-ces/
https://blocktelegraph.io/btu-protcol-hotel-ces/
https://goeureka.io/
https://www.ibm.com/au-en/supply-chain
http://arxiv.org/abs/1610.02922
https://pdfs.semanticscholar.org/aa84/35b68db2a6f2081e877925cbf0ef3aeb7598.pdf
https://pdfs.semanticscholar.org/aa84/35b68db2a6f2081e877925cbf0ef3aeb7598.pdf
https://locktrip.com/
https://doi.org/10.1017/S0269888920000260

A blockchain-based decentralized booking system 21

Marr, B. 2019. How Blockchain Will Transform The Supply Chain And Logistics Industry. https://www.forbes.com/
sites/bernardmarr/2018/03/23/how-blockchain-will-transform-the-supply-chain-and-logistics-industry/#50e51e6d
Sfec, visited at 15 June 2019.

Morris, D. Z. 2019. Bitcoin is not just Digital Currency. It’s Napster for finance. http:/fortune.com/
2014/01/21/bitcoin-is-not-just-digital-currency-its-napster-for-finance/, visited at 15 June 2019.

Modi, R. 2019. Introduction to Blockchain, Ethererum and Samrt Contracts. https://medium.com/
coinmonks/https-medium-com-ritesh-modi-solidity-chapter1-63dfaff08all, visited at 14 June 2019.

Nakamoto, S. 2019. Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.org/bitcoin.pdf, visited at 15
June 2019.

Narayanan, A., Bonneau, J., Felten, E., Miller, A. & Goldfeder, S. 2016. Bitcoin and Cryptocurrency Technologies:
A Comprehensive Introduction, Princeton University Press.

Nguyen, D. T., Pham, L. H., Sun, J., Lin, Y. & Tran M. Q. to appear. sFuzz: an efficient adaptive fuzzer for solidity
smart contracts. In 42nd International Conference on Software Engineering (ICSE).

Novo, O. 2018. Blockchain meets IoT: an architecture for scalable access management in IoT. IEEE Internet of
Things Journal 5(2), 1184-1195.

PAT. pat.comp.nus.edu.sg, visited at 15 June 2019.

Patel, V. 2018. A framework for secure and decentralized sharing of medical imaging data via blockchain consensus.
Health Informatics Journal 25(4), 1398-1411.

Patent Application (Mastercard). Method and System for Travel Itinerary Bidding via Blockchain (Patent
US20180157999). https://patents.justia.com/patent/20180157999, visited at 9 March 2020.

Rijmenam, M. V. 2019. 5 Ways How Blockchain Will Change the Travel Industry. https://vanrijmenam.nl/
how-blockchain-changes-travel-industry/, August 21, 2019, visited at 9 March 2020.

Sarasola. M. R. 2019. So Maybe You Figured Out What Blockchain is But What Can You Do With It? https://
www.willistowerswatson.com/en-SG/insights/2018/06/emphasis-blockchain-use-in-insurance-from-theory-to-rea
lity, visited at 15 June 2019.

Schwartz, D., Youngs, N. & Britto, A. 2014. The Ripple Protocol Consensus Algorithm. Ripple Labs Inc, White
Paper 5.

Sun, J., Liu, Y., Dong, J. S. & Chen, C. Q. 2009. Integrating Specification and Programs for System Modeling and
Verification. In the 3rd IEEE International Symposium on Theoretical Aspects of Software Engineering (TASE),
127-135.

Sun, J., Liu, Y., Dong, J. S. & Pang, J. 2019. Pat: towards flexible verification under fairness. In International
Conference on Computer Aided Verification, 709-714. Springer.

Swan, M. 2015. Blockchain: Blueprint for a New Economy. OReilly Media, Inc.

Thin, W. Y. M. M., Dong, N., Bai, G. & Dong, J. S. 2018. Formal analysis of a proof-of-stake blockchain. In 23rd
International Conference on Engineering of Complex Computer Systems (ICECCS), 197-200.

Vo, H. T., Mehedy, L., Mohania, M. & Abebe, E. 2017. Blockchain-based data management and analytics for
micro-insurance applications. In ACM on Conference on Information and Knowledge Management, 2539-2542.

Wang, X., Sun, J., Chen, Z., Zhang, P., Wang, J. & Lin, Y. 2018. Towards optimal concolic testing. In 40th
International Conference on Software Engineering (ICSE), 291-302.

Windingtree.com. https://windingtree.com/, visited at 9 March 2020.

Yang, C., Chen, X. & Xiang, Y. 2018. Blockchain-based publicly verifiable data deletion scheme for cloud storage.
Journal of Network and Computer Applications 103, 185-193.

Yang, Z. & Lei, H. 2019. Fether: an extensible definitional interpreter for smart-contract verifications in coq. IEEE
Access 7,37770-37791.

https://doi.org/10.1017/50269888920000260 Published online by Cambridge University Press

https://www.forbes.com/sites/bernardmarr/2018/03/23/how-blockchain-will-transform-the-supply-chain-and-logistics-industry/#50e51e6d5fec
https://www.forbes.com/sites/bernardmarr/2018/03/23/how-blockchain-will-transform-the-supply-chain-and-logistics-industry/#50e51e6d5fec
https://www.forbes.com/sites/bernardmarr/2018/03/23/how-blockchain-will-transform-the-supply-chain-and-logistics-industry/#50e51e6d5fec
http://fortune.com/2014/01/21/bitcoin-is-not-just-digital-currency-its-napster-for-finance/
http://fortune.com/2014/01/21/bitcoin-is-not-just-digital-currency-its-napster-for-finance/
https://medium.com/coinmonks/https-medium-com-ritesh-modi-solidity-chapter1-63dfaff08a11
https://medium.com/coinmonks/https-medium-com-ritesh-modi-solidity-chapter1-63dfaff08a11
https://bitcoin.org/bitcoin.pdf
https://pat.comp.nus.edu.sg
https://patents.justia.com/patent/20180157999
https://vanrijmenam.nl/how-blockchain-changes-travel-industry/
https://vanrijmenam.nl/how-blockchain-changes-travel-industry/
https://www.willistowerswatson.com/en-SG/insights/2018/06/emphasis-blockchain-use-in-insurance-from-theory-to-reality
https://www.willistowerswatson.com/en-SG/insights/2018/06/emphasis-blockchain-use-in-insurance-from-theory-to-reality
https://www.willistowerswatson.com/en-SG/insights/2018/06/emphasis-blockchain-use-in-insurance-from-theory-to-reality
https://windingtree.com/
https://doi.org/10.1017/S0269888920000260

	Introduction
	Background
	CSP# and process analysis toolkit
	Blockchain and smart contract
	Ethereum
	System design
	System modelling
	User
	Miner
	Process TxPool
	Process TxBlock
	The overall process
	System verification
	Properties
	Verification settings
	Verification results
	System implementation
	Related work
	Conclusions and future directions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

