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Precessing cube: resonant excitation of modes
and triadic resonance
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Numerical simulations of the response flow in a fluid-filled rotating cube that is
subjected to precessional forcing are examined over a wide range of rotation,
precession and forcing frequencies. The responses are shown to correspond to
resonantly excited inertial modes of the rotating cube that have the same spatio-
temporal symmetry as the precessional forcing and, under certain conditions, the
response flow loses stability via symmetry breaking that is intricately associated
with a triadic resonance between the forced flow and two free inertial modes whose
spatio-temporal symmetries do not coincide with that of the precessional forcing.
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1. Introduction
The concept of small-amplitude mechanical periodic forcing being used to extract

a portion of the available rotational energy in a rapidly rotating contained body of
fluid and convert it into intense fluid motions via the resonant excitation of inertial
waves has been studied for some time (e.g. Greenspan 1964; Malkus 1968; Aldridge
& Toomre 1969; McEwan 1970), and continues to be of great interest (see the review
articles by Kerswell (2002), Le Bars, Cebron & Le Gal (2015)). While much of this
interest stems from geophysical and astrophysical phenomena, there is also interest in
further understanding the role inertial waves play in mixing and energy transfer in
confined rapidly rotating flows.

In a series of experiments studying grid-generated turbulence in a rotating
rectangular box, Bewley et al. (2007) and Lamriben et al. (2011) showed that
inertial waves were generated that altered the structure of the flow’s largest scales,
rendering the turbulence inhomogeneous. They found that wave mode frequencies of
the symmetric, but not the antisymmetric, inertial modes of the rotating container
coincide with the peaks in their experimentally measured spectra, but they were unable
to examine the spatial structure of the response flows and could not definitively assign
the peaks to modes of a particular wavenumber or symmetry. They concluded that,
while trying to generate homogeneous turbulence in a rotating container, inertial
wave modes of the container were generated instead. They also suggested that the
rapid effects of the inertial modes may preclude a container-independent law for the
evolution of energy in rotating turbulence. This motivates the need to predict the
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type of response flow a particular kind of forcing will trigger in contained rotating
systems.

A subsequent experimental study by Boisson et al. (2012) also used a rapidly
rotating cubic container, but the forcing was a harmonic modulation of the rotation
rate, commonly referred to as librational forcing. The librational forcing allowed
for a much better controlled flow with well-defined frequency and amplitude of
the forcing, resulting in very clear responses that were amenable to analysis. They
identified a number of inertial wave modes of the rotating cube as being resonantly
excited. These all had a particular symmetry, consistent with the symmetry of the
librational forcing. Their experiment was constrained to moderately small Ekman
numbers (the ratio of the viscous time scale to the time scale of the rotation), and so
the response peaks suffered from viscous detuning and broadening, and only a few
low-order modes were resonantly excited. The higher-order modes whose frequencies
lay within the band of forcing frequencies imposed did not appear as they are more
viscously damped. Subsequently, Wu, Welfert & Lopez (2018) numerically simulated
the experiments of Boisson et al. (2012), reproducing their observations, and then
reduced the Ekman number by a factor 20. They considered a broad range of forcing
frequencies from a little above zero to two and a half times the cube’s mean rotation
rate. They were able to associate inertial eigenmodes of a certain symmetry type
with many of the peaks in the response. Other peaks in the response corresponded to
retracing edge beams. In periodically driven contained rotating flows, the imbalance
between momentum fluxes in boundary layers that are orthogonal and parallel to
the rotation axis leads to the emission of wave beams from the edges where these
boundary layers meet. These edge beams are oriented with respect to the rotation
axis according to the linear dispersion relation for inertial waves (Greenspan 1968)
that relates their orientation angle to their frequency. For certain response frequencies,
the edge beams reflect a small number of times off the walls that are orthogonal and
parallel to the rotation axis before either returning to the edge from which they came
or to another edge (Lopez & Marques 2014). For these, the response is more intense
due to constructive interference, accounting for the remaining peaks.

The rapidly rotating fluid-filled cube subjected to a different periodic forcing,
precessional forcing, has also attracted attention as a potential laboratory-scale system
in which a magneto-hydrodynamic dynamo may be driven (Goepfert & Tilgner 2016,
2019). Precessional forcing corresponds to the cube rotating steadily about one axis
which in turn rotates at another frequency about an axis that is tilted with respect
to the first. The simulations of precession-driven dynamos in a cube by Goepfert
& Tilgner (2016, 2019) were restricted to stress-free boundary conditions as the
computational demands of resolving the viscous boundary layers associated with the
physical no-slip boundary conditions were reported to be too costly. They recognized
the role of symmetry, and that symmetry breaking in the precessing cube involves
triadic resonances, but they were not very precise about this. Their simulations are
suggestive of a triadic resonance being present, but they noted that the lack of analytic
solutions for the inertial modes of the rotating cube and their lack of a numerical
computation of the modes meant that they could not unequivocally identify which
modes were involved in the triadic resonance. In precessing cylinder flows (Manasseh
1992; Meunier et al. 2008; Lagrange et al. 2011; Albrecht et al. 2015; Marques &
Lopez 2015; Lopez & Marques 2016; Albrecht et al. 2018; Lopez & Marques 2018),
the identification of triadic resonances is more straightforward, in part because of
available explicit analytic expressions for the modes (Lord Kelvin 1880). Here, we
have used the approach in Wu et al. (2018) to compute the modes in question, and
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FIGURE 1. Schematic of the precessing cube.

provide positive evidence of a triadic resonance in a precessing cube with no-slip
boundary conditions.

In the following, we report on flow responses obtained over a large range of
rotation, precession and forcing frequencies. Section 2 briefly describes the set-up
and the equations governing the problem, as well as the numerical techniques used to
solve them. Section 3 describes the spatio-temporal symmetries of the problem, which
combine into purely spatial symmetries and play a fundamental role in analysing the
flow responses obtained. We show how these responses, described in § 5, involve
inviscid inertial modes with the symmetries of the forced problem, which are briefly
described in § 4 and the details of how they are computed are given in appendix A.
The time-averaged response and the deviation of the full response from this average
are discussed in § 6. Evidence of triadic resonance involving modes with different
symmetries is highlighted in § 7. The results are further discussed in § 8, which
concludes with final remarks.

2. Governing equations and numerical technique

Consider a cube of side length L filled with an incompressible fluid of kinematic
viscosity ν. The length and time scales used to non-dimensionalize the system are L
and L2/ν. The cube is mounted at the centre of a horizontal table that rotates with
angular velocity Ωp pointing in the vertical direction, and the cube rotates with angular
velocity Ω0 about its axis; the cube axis is tilted an angle α relative to the vertical,
and is at rest relative to the table. A schematic of the set-up is shown in figure 1.

The governing equations are written using Cartesian coordinates r= (x, y, z) in the
non-inertial frame of reference attached to the cube, with the z direction aligned with
the precession axis and the origin at the centre of the cube. The corresponding velocity
is u = (u, v, w) and the vorticity is ∇ × u = (χ, η, ξ). In this non-inertial reference
frame the non-dimensional Navier–Stokes equations are

∂u/∂t+ (u · ∇)u+ 2(ω× u)+ ∂ω/∂t× r=−∇p+∇2u, ∇ · u= 0. (2.1)

The two body forces that appear in the governing equations due to the use of the
non-inertial cube reference frame are the Coriolis force 2(ω× u) and the Euler force
∂ω/∂t × r. In this cube reference frame, the no-slip boundary conditions are trivial,
u= 0. The total angular velocity of the cube is

ω=ωp sin α(cosω0t x̂+ sinω0t ŷ)+ (ω0 +ωp cos α)̂z. (2.2)
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The three independent non-dimensional parameters governing the flow appear in ω,

Cube rotation rate ω0 =Ω0L2/ν,

Precession rate ωp =ΩpL2/ν,

Tilt angle α.

 (2.3)

Other non-dimensional parameters can be defined in terms of these three parameters,
and are often used in describing precessing flows,

Poincaré number Po=ωp/ω0,
Reynolds number Re=ω0 +ωp cos α.

}
(2.4)

The axial component of ω provides the solid-body rotation of the cube around its axis
and the angular velocity orthogonal to the axis has modulus |ωp| sin α. A convenient
measure of the amplitude of the precessional forcing is

a= |Po| sin α. (2.5)

Although a is independent of the sign of Po, the resulting flow is not because of
the background rotation. We consider both positive and negative Po, corresponding
to prograde and retrograde precessional forcing, respectively.

The ratio between the forcing frequency in the viscous time scale, ω0, and the
axial component of the angular velocity of the cube, ω0 + ωp cos α, gives the linear
dispersion relation (Greenspan 1968)

2 cos β =ω0/(ω0 +ωp cos α)=ω0/Re= 1/(1+ Po cos α)=ω, (2.6)

where ω is the forcing frequency in the inertial time scale, and β is the angle
between the wave vector of an inertial wave and the mean rotation axis (in the
present coordinate system, the mean rotation axis points in the ẑ direction).

The Navier–Stokes equations in the cube reference frame (2.1) subject to no-slip
boundary conditions are solved numerically using a spectral-collocation method. It
is the same technique as was used in Wu et al. (2018) for the rapidly rotating cube
subjected to libration, the only difference being the form of the body force. Briefly,
the velocity and pressure are approximated by Chebyshev polynomials of the first
kind of degree N, associated with the Chebyshev–Gauss–Lobatto grid. The time
integration scheme used is a fractional-step improved projection method based on a
linearly implicit and stiffly stable, second-order accurate scheme. Here, we present
results at different cube rotation rates ω0 = 102, 103, 104, 105 and 4 × 105. For
each fixed ω0, we conduct a frequency sweep over 0.32 6 ω 6 2 using frequency
increments δω=0.002. This corresponds to a range in Poincaré number −0.56Po62,
but with a nonlinear increment in Po dictated by the dispersion relation (2.6). The
spatial resolutions used are N 6 72 for ω0 6 104, N = 96 for ω0 = 105 and N = 128
for ω0 = 4 × 105. Temporal resolution corresponds to 200 time steps per forcing
period, and typically 2000 forcing periods were needed to reach a periodic solution
synchronous with the forcing. For cases with large ω0, particularly when instability via
symmetry-breaking triadic resonance occurred, the quasiperiodic flow was simulated
for 2× 104 forcing periods in order to obtain sufficiently long time series to be able
to analyse the triadic resonance in detail.
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3. Symmetries
The system (2.1) is invariant to a number of symmetries. Due to the periodic

temporal forcing (precession), these are spatio-temporal in nature. Note that for a
precessing cube, there is no frame of reference in which the system is autonomous,
unlike the precessing cylinder in the table (gimbal) frame of reference, which is
autonomous (Marques & Lopez 2015). In the absence of precession (a = 0), the
system is invariant to two spatial symmetries. These are the reflection about the
midplane z= 0 and the rotation by angle π/2 about the rotation axis. The actions of
these on the velocity are

K : [u, v,w](x, y, z, t) 7→ [u, v,−w](x, y,−z, t), (3.1)
Rπ/2 : [u, v,w](x, y, z, t) 7→ [−v, u,w](−y, x, z, t). (3.2)

The non-precessing system is also time-translation invariant:

Tρ : [u, v,w](x, y, z, t) 7→ [u, v,w](x, y, z, t+ ρ), for arbitrary ρ. (3.3)

When the system is precessing (a 6= 0), it is invariant to neither K nor Rπ/2 nor
Tρ (for arbitrary ρ). However, being periodically forced, it is invariant to Tτ , where
τ = 2π/ω is the period of the forcing. Due to the harmonic nature of the periodic
forcing, the system is also invariant to space–time symmetries Tτ/2K and Tτ/4Rπ/2.
These symmetries combine into a purely spatial centrosymmetry C, whose action is

C : [u, v,w](x, y, z, t) 7→ [−u,−v,−w](−x,−y,−z, t), (3.4)

corresponding to a reflection through the centre of the cube. The symmetries are
used to compute the linear inviscid eigenmodes restricted to the symmetry subspace
in § 4, to identify specific modal responses to the precessional forcing in § 5 and
to analyse responses arising from symmetry-breaking instabilities associated with a
triadic resonance in § 7.

4. The inviscid inertial modes of the rotating cube
It is often useful to interpret the response of a rapidly rotating container of fluid to

small-amplitude periodic forcing in terms of the inviscid eigenmodes of the container
(Greenspan 1968). For some containers, such as the cylinder and the sphere, these
eigenmodes have analytic forms obtained via separation of variables. For the cube
(and the rectangular cuboid) the partial differential equation defining the eigenmode
problem only partially separates. The directions normal to the rotation axes, x and y,
are not separable, and the mode structure in (x, y) is expressed in terms of infinite
sums of Fourier modes in x and y, which are truncated in order to compute them
(Maas 2003). However, exploiting the symmetries of the eigenmode problem allows
one to efficiently and accurately compute eigenmodes of different symmetry types
separately (Wu et al. 2018). This is what is done here in order to compute the inviscid
eigenmodes that are excited via precessional forcing.

The inviscid inertial modes are the eigensolutions to the inviscid limit of the
governing equations (Euler equations written in the rotating frame of reference),
linearized about the state of solid-body rotation,

∂v/∂t+ 2(̂z× v)=−∇p, ∇ · v = 0, (4.1)
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where v is the perturbation velocity and p is the corresponding pressure. The boundary
conditions on v are zero penetration, i.e. the velocity components normal to the walls
of the cube are zero at the walls. The system (4.1) is invariant to the reflection
K, the rotation Rπ/2, and arbitrary time translations Tρ . The full nonlinear problem
with precessional forcing (2.1) is invariant to a smaller subset of symmetries: the
spatial centrosymmetry C and the spatio-temporal symmetries Tτ/2K and Tτ/4Rπ/2.
For sufficiently small-amplitude precessional forcing, one expects eigenmodes that
are both Tτ/2K and Tτ/4Rπ/2 invariant (and hence also C invariant) to be resonantly
excited when the forcing frequency is close to the eigenfrequency of the mode. This
motivates the use of basis functions with the appropriate spatio-temporal symmetries
to compute the modes. The details of how to construct the basis functions with
certain symmetries and formulate the corresponding eigenvalue problem are presented
in appendix A.

The modes that are both Tτ/2K invariant and Tτ/4Rπ/2 invariant are denoted
by M+2n−1.m, where n and m are positive integers. The integer 2n − 1 is the
half-wavenumber of the mode in the direction of the rotation axis z. Since the
targeted modes are Tτ/2K invariant, the axial half-wavenumber is odd. The integer m
defines an ordering of the eigenfrequencies, from largest to smallest, and does not
directly correspond to any spatial structure of the modes. In addition, modes with
other symmetries are also computed in order to analyse the flow dynamics when the
forced response becomes quasiperiodic and symmetries are broken as modes with
other symmetries are resonantly excited. The modes with both Tτ/2K and T−τ/4Rπ/2
symmetries are denoted as M−2n−1.m, where 2n− 1 and m have the same meaning as
in the previous case, and the negative sign in the superscript indicates that the mode
is T−τ/4Rπ/2 invariant. In § 7 we show that the M−2n−1.m and M−2n.m modes, which
have spatio-temporal symmetries that are not symmetries of the nonlinear precession
problem and hence are not directly excited via precession, are intrinsically involved
in triadic resonances in the precessing cube.

5. Response to precessional forcing
With librational forcing, it is straightforward to fix a fast mean rotation (large

ω0) and vary the libration frequency over a large range while keeping the forcing
amplitude at an arbitrarily small fixed level. The same is not true for precessional
forcing. Both the forcing amplitude a and frequency ω depend on the Poincaré
number Po = ωp/ω0 and the tilt angle α. To conduct a frequency sweep at a given
fixed ω0, either Po, α or both need to be varied, since ω= 1/(1+ Po cos α). This is
inconvenient numerically, and impractical to implement experimentally. With this in
mind, we present below results from frequency sweeps with fixed α= 1◦ and various
fixed values of ω0. This means that to vary ω, we are varying ωp (and hence varying
Po). We begin by presenting a response diagram describing how a global measure of
the flow varies with ω. The global measure used is the total kinetic energy of the
flow response in the cube frame of reference:

E(u)= 1
2

∫ 0.5

−0.5

∫ 0.5

−0.5

∫ 0.5

−0.5
|u|2 dx dy dz. (5.1)

It is useful to consider the kinetic energy relative to that of the unforced cube in solid-
body rotation, whose kinetic energy is

ESB =
1
2

∫ 0.5

−0.5

∫ 0.5

−0.5

∫ 0.5

−0.5
ω2

0(x
2
+ y2) dx dy dz= 1

12ω
2
0. (5.2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

98
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.984


Precessing cube: resonant excitation of modes and triadic resonance 887 A6-7

1.00.90.80.70.60.5
ø/2

0.40.30.2

0.03

a 0.02

0.01

0

101
M+

1.4

M+
1.3

M+
1.2

M+
1.1

M+
3.8
M+

5.22

M+
5.15

M+
3.4

M+
3.2

M +3.1
M+

3.3
M+

5.8

M+
5.4

M+
5.2

M+
9.4 M+

9.2

M+
7.15

M+
7.41

M+
7.4

M+
7.2100

10-1

¯e
(u

)˘/
a2

0.32.0 1.5 1.0 0.75 0.5 0.2 0.1
Po(a)

(b)

0 -0.1 -0.2 -0.3 -0.4 -0.5

ø0 = 102

ø0 = 103

ø0 = 104

ø0 = 105

ø0 = 4 ÷ 105

FIGURE 2. Variations with the forcing half-frequency ω/2= 0.5/(1+Po cos α) of (a) the
time-averaged relative kinetic energy 〈e(u)〉, scaled by a2, for α= 1◦ and ω0 as indicated,
and (b) the amplitude a= |Po| sin α = |1− 1/ω| tan α.

The relative kinetic energy is

e(u)= E(u)/ESB. (5.3)

We will consider the time-averaged relative kinetic energy

〈e(u)〉 =
1
τ

∫ τ

0
e(u) dt, (5.4)

where τ = 2π/ω is the forcing period.
Figure 2(a) is the response diagram showing how the time-averaged relative kinetic

energy scaled with the square of the forcing amplitude, 〈e(u)〉/a2, varies with the
forcing frequency ω= 1/(1+Po cosα) for α= 1◦ and various ω0 from 102 to 4× 105.
Note that ω= 1 corresponds to Po= 0, i.e. to zero forcing amplitude: a=|Po| sinα= 0
for Po= 0 and any α 6= 0. This results in solid-body rotation with 〈e(u)〉 = 0. Around
ω= 1, the ratio 〈e(u)〉/a2 remains a smooth continuous function of ω (and Po) as a
consequence of L’Hopital’s rule. Figure 2(b) shows how the forcing amplitude a varies
with the forcing half-frequency for the results in figure 2(a). Forcing frequencies ω<1
correspond to positive Poincaré numbers Po > 0 (prograde precession) and ω > 1 to
negative Poincaré numbers Po< 0 (retrograde precession).

The response diagram shows a number of broad features. For small ω0 . 104,
〈e(u)〉/a2 is small, does not vary much with ω (being precise is difficult as the
forcing amplitude a varies with the forcing frequency ω) and increases with ω0.
For ω0 & 104 and Po < 0, the response tends to become independent of both ω0
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FIGURE 3. Variation with ω0 of the time-averaged kinetic energy 〈e(u)〉, scaled by a2

for a selection of forcing frequencies ω as indicated.

and ω, except in small neighbourhoods of select values of ω where the response
shows Gaussian peaks which become narrower and taller with increasing ω0, typical
of a resonant response to periodic forcing of a damped oscillator. In fact, we have
identified each peak with an inviscid M+2n−1.m eigenmode whose natural half-frequency
σ+2n−1.m is slightly different from the forcing half-frequency ω/2 at the tip of the peak
as a result of viscous detuning. Each peak in the figure is labelled by the associated
mode, an arrow points to the peak of the response, and a horizontal bar at the end
of the arrow indicates the difference between the mode and forcing half-frequencies;
for ω0= 4× 105 the viscous detuning is quite small. Below, features of the nonlinear
response flow are compared and contrasted with those of the modes, but before those
are presented, we continue to describe some more broad features of the response.

Figure 3 shows how the 〈e(u)〉/a2 response varies with ω0 for a few select half-
frequencies ω/2; all but one correspond to peak response frequencies. For all cases
and ω0 . 10, the scaled relative kinetic energy is essentially the same and scales as
〈e(u)〉/a2

∝ ω2
0. For ω0 & 103, the scaled relative kinetic energy for most ω/2 cases

becomes independent of ω0, whereas that of ω/2= 0.343 grows as 〈e(u)〉/a2
∝ω0. For

increasing ω0, the response starts to grow for other cases as well, with approximately
the same linear scaling with ω0, and seemingly beginning at a higher ω0 level with
increasing ω. The only case which does not show this behaviour is the ω/2= 0.777
case for which there is no apparent peak in the response diagram, at least for the
range of ω0 considered.

Let us focus on the ω/2 = 0.343 case, which showed the most direct switching
from the 〈e(u)〉/a2

∝ ω2
0 scaling to the linear scaling, and is the largest peak in the

response diagram. Figure 4(a) shows amplitudes of the vorticity components normal
to the two planes x = 0 and z = 1/4 for a range of ω0. The vorticity amplitude is
determined by the maximum of the difference between the instantaneous and time-
averaged component of the vorticity at each collocation grid point in the plane over
one forcing period τ = 2π/ω. Consistent with the low-ω0 scaling from figure 3, the
flow does not show distinctive boundary layers until ω0 & 102. Below this ω0 level, the
flow is in a viscous dominated regime. It is a relatively simple overturning flow, much
like the basic state in a precessing cylinder at low ω0 (Marques & Lopez 2015), but
whereas in the cylinder case the flow is steady in the table (gimbal) frame of reference,
there is no frame in which the flow in the cube is steady. In the cylinder frame,
the precessing cylinder basic state is a rotating wave with azimuthal wavenumber
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1.1
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FIGURE 4. Amplitudes of the x-component of vorticity |χ | in the plane x = 0 and the
z-component of vorticity |ξ | in the planes (a) z = 1/4 at ω/2 = 0.343, and z = 1/6 at
(b) ω/2=0.507, (c) ω/2=0.686 and (d) ω/2=0.728, for ω0 as indicated. Also shown are
the vorticity amplitudes of the inviscid eigenmodes (a) M+1.1 whose half-frequency is σ+1.1=
0.3414, (b) M+3.4 with σ+3.4 = 0.5062, (c) M+3.2 with σ+3.2 = 0.6850 and (d) M+3.1 with σ+3.1 =
0.7272. The online movie movie-1.avi, available at https://doi.org/10.1017/jfm.2019.984,
animates these over one period.

equal to one. In the precessing cube, the square corners prevent the basic response
flow from being a rotating wave, but it closely resembles the cylinder rotating wave
flow with periodic distortions as the flow negotiates the corners. The low-ω0 flows in
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the cube for all ω are very much the same, differing in their frequency. Figure 4(a)
shows that, at ω/2= 0.343, this basic flow quickly transforms into a flow very closely
resembling the inviscid mode M+1.1, whose half-frequency is σ+1.1 = 0.3414, as ω0 is
increased beyond 104. The boundary layers progressively become thinner and more
intense with increasing ω0. The boundary layers on the ‘top’ and ‘bottom’, at z=±0.5,
are different to those on the ‘sides’, at x = ±0.5 and y = ±0.5. The mismatch in
the wall-tangential fluxes between these boundary layer flows results in shear layers
(so-called edge beams) emerging from the edges where the top and bottom walls meet
the sidewalls (Lopez & Marques 2014; Wu et al. 2018). These enter the interior at
angles determined by the dispersion relation; in this case at angles β = arccos(ω/2)=
arccos(0.343)≈±69.94◦, where these angles are the angles between the shear layers
and a plane orthogonal to the mean rotation axis. There is evidence of these shear
layers in the |χ | plot in the x = 0 plane at the largest ω0 = 5.6 × 104 case. For
ω0 > 5.6× 104 the flow suffers a symmetry-breaking bifurcation, which we show to
be associated with a triadic resonance in § 7. There is a small ‘kink’ in the 〈e(u)〉/a2

versus ω0 curve for ω0 > 5.6× 104 as a consequence of this instability.
Figure 4 also shows the development of the response flow with increasing ω0

for three other forcing frequencies, corresponding to the three largest peaks in the
response diagram (figure 2a) for Po< 0. They also evolve towards a resonant response
with a low-order inviscid mode, but do so at ω0 almost two orders of magnitude
larger than the ω/2= 0.343 case described above. There are various reasons for this
whose individual contributions are not easy to separate. On the one hand, the mode
that resonates at ω/2= 0.343 has axial half-wavenumber n= 1 whereas the other three
cases have n= 3. As a consequence, the bulk viscous damping of the n= 3 modes is
expected to be larger than that of the n= 1 mode. Secondly, the (x, y) structures of
the three n= 3 modes are more complicated with larger spatial gradients and, again,
subject to more viscous dissipation. A third factor is that the forcing amplitude a, as
shown in figure 2(b), is larger for the ω/2= 0.343 case than it is for the other three
cases, and a is different for each of those. Figure 3 also shows that these three cases
(ω/2= 0.507, 0.686 and 0.728) all saturate to the ω0-independent scaling of 〈e(u)〉/a2

by ω0 ∼ 103, one after the other, as ω0 reaches a level where the growth rate of the
resonantly excited mode exceeds its viscous damping rate, and they then evolve
towards their respective inviscid mode. The first to do this is the ω/2 = 0.686 case
which excites the M+3.2 mode. The last of these three is the ω/2= 0.728 case which
excites the M+3.1 mode. The forcing amplitude a is slightly larger for the ω/2= 0.728
case and the axial gradients of M+3.1 and M+3.2 are very similar, so all else being equal
one might expect the M+3.1 resonance to kick in at lower rather than higher ω0. But
all things are not equal. The response flow for ω/2= 0.728 has much stronger edge
beams (shear layers), as can be seen in figure 4(d) for the larger ω0 values. These
interfere nonlinearly with the resonantly excited mode structure and this nonlinear
interaction very likely accounts for the muted resonant growth.

Figure 4 shows vorticity amplitudes for some response flows and eigenmodes. While
this is a concise way to illustrate the results, it lacks spatio-temporal information. The
supplementary movie movie-1.avi shows animations of the four cases shown in the
figure at the largest ω0 for each, together with the corresponding animations of the
modes, over one period. In all cases, the response flow and the associated mode have
essentially the same behaviour. The main difference between the two is the presence
of edge beams in the nonlinear viscous response flow. These are most pronounced in
the ω/2= 0.728 case, where these shear layers are inclined at angles arccos(0.728)≈
±43.3◦ in the x=0 plane. In the z=1/6 plane the presence of four edge beams which
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FIGURE 5. (a) Amplitudes |χ | in the plane x = 0 and |ξ | in the plane z = 1/(2n) for
ω/2, and (b) the same for the associated resonated eigenmodes. The half-frequencies of
these modes are σ+3.8 = 0.3981, σ+5.15 = 0.4827, σ+3.3 = 0.5535, σ+5.8 = 0.5778, σ+5.4 = 0.6669,
σ+5.2 = 0.8447, σ+7.2 = 0.9112. The supplementary movie movie-2.avi animates these over
one period.

come from the edges where the sidewalls meet the top endwall at z= 0.5 can also be
seen. The cells in the z= 1/6 plane are clearly distorted by the beams, but they still
perform the elongations in the x= y and x=−y directions as they irregularly rotate
counter-clockwise. The vorticity associated with these beams is comparable to the
vorticity in the modal response of the flow for this case. In the other three cases shown
in the movie, the beams are relatively weaker than the modal response. The ω/2 =
0.343 case, which resonantly excites the M+1.1 mode, has the simplest spatio-temporal
structure, consisting of what is essentially a columnar dipole rotating in a counter-
clockwise direction about the mean rotation axis, with only minor distortions from
the corners. For the other three cases, having axial half-wavenumber n= 3, the cells
seen in the z= 1/6 plane are not columnar. The two cases, ω/2= 0.507 and 0.686,
corresponding to the resonantly excited modes M+3.4 and M+3.2, have cells that undergo
alignment and rearrangements in the x, x=−y, y and x= y directions, resulting in a
stilted clockwise rotation. The agreement between the spatio-temporal behaviour of the
forced response flow and the identified resonantly excited modes is very good, even
with the nonlinear interference from the beams.

Figure 2(a) shows many other peaks besides the four that have been discussed in
detail above. A sampling of the next largest peaks, for Po < 0 at ω0 = 4 × 105, are
shown in figure 5, together with the corresponding resonantly excited inviscid modes.
In all cases there is clear evidence not only of the modal structure but also of the edge
beams at angles β = arccos(ω/2). The supplementary movie movie-2.avi animates
these over one period. As with the cases shown in movie-1.avi, there is very good
agreement between the forced response and the excited mode, even when the edge
beams are relatively strong.
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6. Mean streaming flow

In the previous section, the response flow was analysed in terms of its amplitude
and time-averaged relative kinetic energy. Using the amplitude allowed for direct
comparisons with the amplitudes of the linear inviscid eigenmodes, as the time
average of an eigenmode is zero. There is, however, considerable interest in the
time-averaged response flow (Busse 1968; Malkus 1968; Tilgner 2007; Rubio, Lopez
& Marques 2009; Busse 2010; Le Bars et al. 2015; Lopez & Marques 2016), which
we shall refer to as the mean streaming flow

〈u〉 =
1
τ

∫ τ

0
u dt. (6.1)

The relative kinetic energy of the mean streaming flow, e(〈u〉), provides a measure of
the energy extracted from the background solid-body rotation to drive the response
flow. There are various processes contributing to this, including the oscillating viscous
boundary layers, the internal shear layers emerging from the edges where the top
and bottom endwalls meet the sidewalls and the resonantly driven inertial mode
responses. The extent to which these different processes contribute to the mean
streaming depends on the precessional forcing amplitude and frequency and the
degree to which viscous damping acts on the processes.

The difference between the time-averaged relative kinetic energy, 〈e(u)〉, and the
relative kinetic energy, e(〈u〉), of the mean streaming flow, 〈u〉, is the time-averaged
relative kinetic energy of the deviation of the response flow from the mean streaming
flow

〈e(u)〉 − e(〈u〉)= 〈e(u− 〈u〉)〉. (6.2)

This quantity is half the variance in the response flow, also known as the turbulent
kinetic energy of the flow in turbulence (Holmes, Lumley & Berkooz 1996,
equation 2.3). Figure 6 shows the response diagrams of e(〈u〉) and 〈e(u − 〈u〉)〉
for the same cases as shown in the response diagram of 〈e(u)〉 in figure 2. All three
response diagram clearly show the same resonance response peaks. The diagrams for
〈e(u)〉 and 〈e(u−〈u〉)〉 are almost identical as the mean streaming flow is quite weak;
the kinetic energy of the mean streaming flow is only a few per cent of the kinetic
energy of the full response flow for positive Po and even smaller percentage-wise for
negative Po. The scaling of a4 in the response diagram of e(〈u〉) is needed to make
the response smooth across Po = 0, whereas the scaling is a2 for both 〈e(u − 〈u〉)〉
and 〈e(u)〉.

Figure 7(a–d, f –i) shows the scaled kinetic energy 1
2 |〈u〉|

2/a4 of the mean flow
〈u〉 in the planes x= 0 and z= 0, for the four cases from figure 4 at the largest ω0
for the given ω/2. The contour levels shown range from 0 to max, the maximum
scaled kinetic energy. As noted earlier, these four cases correspond to resonant peaks
in the response diagrams of figures 2 and 6. Figure 7(e,j) is a case for which there
is no resonant peak in the response diagrams, at least at the level of ω0 considered.
These five cases are driven at the half-frequencies ω/2 considered in figure 3. For
the cases in figure 7(a–d, f –i), the contribution to the mean streaming flow from
the resonantly forced modal response can easily be recognized in both the vertical
x = 0 and horizontal z = 0 planes. In particular, the mean streaming flows exhibit
a z-dependence corresponding to the axial half-wavenumber of the forced modal
response. A significant contribution to the mean streaming flow from the edge beams
is particularly evident in figure 7(c, h). For the case without a forced modal response
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FIGURE 6. Variation with the forcing half-frequency ω/2= 0.5/(1+ Po cos α) of (a) the
relative kinetic energy e(〈u〉) of the mean streaming flow 〈u〉 scaled by a4, and (b) the
half-variance of the flow 〈e(u− 〈u〉)〉 scaled by a2, both for α = 1◦ and ω0 as indicated.

shown in figure 7(e, j), the mean streaming flow is dominated by the oscillatory
sidewall boundary layers that are driven by both pressure and viscous torques.
Note that the contour levels shown are from 0 % to 5 % of the maximum scaled
kinetic energy; the rest (not drawn) is concentrated in very thin boundary layers. The
low-level contours show the contribution from the edge beams in the z= 0 plane. The
values of a used in the a4 scaling are presented in figure 2(b); a varies considerably
with a< 0.01, so a−4 is a large factor. The shapes of the contours in figure 7 are not
affected by this scaling, but the magnitudes are, with max decreasing with increasing
ω/2. The values of max are listed in the figure caption.

7. Triadic resonance

Identifying triadic resonances in the precessing cube is complicated by the fact that
the inertial modes of the rotating cube do not have harmonic structure in the directions
(x and y) orthogonal to the mean rotation axis (z). The triadic resonance conditions
are only straightforwardly expressed for the frequencies and the half-wavenumbers in
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x 
= 

0
z =

 0
ø/2 = 0.343(a) ø/2 = 0.507(b) ø/2 = 0.686(c) ø/2 = 0.728(d) ø/2 = 0.777(e)

(f) (g) (h) (i) (j)

FIGURE 7. Scaled kinetic energy 1/2|〈u〉|2/a4 of the mean streaming flow in the planes
x= 0 (a–e) and z= 0 ( f –j) at ω/2 as indicated. The mean flow is forced at (a, f ) ω0 =

5.6 × 104 and (b–e, g–j) ω0 = 4 × 105, and ω/2 as indicated. The contour levels are
equispaced from white to blue in the range [0,max] for (a–d, f –i) and [0, 0.05 max] for
(e, j), where max is the maximum scaled kinetic energy in the entire cube. The values of
a used in the a4 scaling are presented in figure 2(b). The values of max are (a) 2.4× 1013,
(b, g) 1.9× 1013, (c, h) 9.2× 1013, (d, i) 8.2× 1011 and (e, j) 7.1× 1011.

the z direction. If f0 and n0 are the frequency and axial half-wavenumber of the forced
response, then it may be in triadic resonance with two free inertial modes of the
rotating cube if

f0 = | f1 ± f2| and n0 = |n1 ± n2|, (7.1a,b)

where f1,2 and n1,2 are the frequencies and axial half-wavenumbers of the two
free modes. These resonance conditions are due to the requirement that nonlinear
interactions (products) of the harmonic components of the two free modes result
in harmonic components of the forced response. One important consequence of the
axial wavenumber condition is that since n0 is odd due to the Tτ/2K symmetry of the
forced response, then n1 and n2 must have opposite parities; they cannot be both odd
or both even. With one of them even, the resulting flow is not Tτ/2K symmetric. So,
if there is a triadic resonance it must come about via a symmetry-breaking bifurcation.
It is not straightforward to track space–time symmetries; however, the breaking of the
Tτ/2K symmetry means that the response flow is no longer pointwise centrosymmetric.
The breaking of the centrosymmetry is easy to track via the measure

S= e(u− Cu)/e(u). (7.2)

What typically happens in the triadic resonance instability is that one or both of the
free modes involved are of higher order than the forced response, i.e. they have larger
spatial gradients and hence they are more viscously damped. This means that for the
free modes to have resonantly driven growth rates larger than the rates at which they
are viscously damped, ω0 and ωp need to be larger than some critical values. For
smaller ω0 and ωp, only the forced response grows and saturates nonlinearly, whereas
above the critical level the free modes are able to resonantly grow faster than they
are viscously damped. This critical level corresponds to the symmetry-breaking
bifurcation.
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FIGURE 8. Time series of (a) the symmetry parameter S and (b) the relative kinetic energy
e(u), for two simulations starting from the symmetric synchronous response flow at ω0=

5.6× 104 and ω/2= 0.343 (Po= 0.444), and impulsively changing ω0 to 5.7× 104 (blue
curves) and 5.8× 104 (black curves) at t= 0; time is shown as the number of precession
periods.

The above scenario is what we have found for the forced response near ω/2=0.343
as ω0 is increased beyond approximately 5.6 × 104. This is the reason for the gap
in the ω0 = 105 response curve shown in figure 2(a). The response in that gap is
a centrosymmetry-broken quasiperiodic flow. It is analysed in detail below and the
two free modes that are involved in the triadic resonance that leads to the symmetry
breaking are identified. Note that there are other gaps in the response curves in
figure 2(a), for example for ω/2 ≈ 0.30 and ω/2 < 0.24. These also correspond
to symmetry-breaking bifurcations, but we have not examined these in detail to
determine the free modes involved.

Figure 8 shows the temporal evolution (time is shown in terms of the number of
forcing periods τ = 2π/ω) of the symmetry measure S and the relative kinetic energy
of the response flow e(u) for two simulations. Both have the synchronous symmetric
response flow obtained at ω0 = 5.6 × 104 and ω/2 = 0.343 (Po = 0.444) as initial
conditions, and at t = 0, ω0 is impulsively changed to 5.7× 104 and 5.8× 104. The
relative kinetic energy quickly adjusts to the new ω0, within about 50 forcing periods
and remains essentially constant for several thousand forcing periods. However, the
response flow at these slightly higher ω0 is unstable to symmetry breaking. The time
series of S shows that for the first 100 forcing periods S remains essentially at levels
corresponding to machine zero, but then starts to grow exponentially. The exponential
growth rate for the ω0 = 5.7 × 104 case is approximately 0.7 % per forcing period
and that of the ω0 = 5.8× 104 case is approximately twice that. The ω0 = 5.8× 104

case saturates nonlinearly after approximately 4500 forcing periods; it is only in the
final stages (between 4000 and 4500 forcing periods) that the relative kinetic energy
registers the symmetry breaking. Monitoring the response energy, or even the velocity
at a point, one could incorrectly have concluded that the flow had reached a stable
synchronous symmetric state after only a few hundred forcing periods. The symmetry
breaking is only evident using those measures if one waits long enough. For the lower
ω0= 5.7× 104, the energy time series shows no hint of symmetry breaking until after
9000 forcing periods (not shown in the figure). In contrast, the symmetry measure S
indicates the instability very early on, and provides a growth rate for the instability.

Following the nonlinear saturation of the ω0 = 5.8 × 104 case, the response flow
is no longer synchronous with the forcing. Figure 9 shows the time series of the z-

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

98
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.984


887 A6-16 K. Wu, B. D. Welfert and J. M. Lopez

2018161412108642

t1

t3
t2

t4

0
Precession forcing periods

500

0

-500

√o

FIGURE 9. Time series of the z-component of velocity at the collocation grid point
(x, y, z) = (0.3967, 0.3967, 0.3967) for ω0 = 5.8 × 104 and ω/2 = 0.343. The symbols
labelled t1 through t4 corresponds to the times where snapshots of the flow are shown in
figure 12.
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FIGURE 10. Power spectrum density (PSD) of the z-component of velocity at the
collocation grid point (x, y, z) = (0.3967, 0.3967, 0.3967) for ω0 = 5.8 × 104 and ω/2 =
0.343. The response frequency f is scaled with Re so as to report it in the inertial scale,
and the PSD is normalized with the power of the dominant frequency f0 =ω.

component of velocity at the collocation grid point (x, y, z)= (0.3967, 0.3967, 0.3967)
of the response flow forced at ω/2=0.343 and ω0=5.8×104, over 20 forcing periods.
The time series shown is long after transients have decayed, and the forcing period
count has been reset to zero. The simulation was further continued for over 20 000
further forcing periods in order to obtain a well-resolved power spectral density (PSD)
of the time series, which is shown in figure 10. The PSD is normalized with the power
of the largest peak, corresponding to the forcing frequency used, ω = 0.686. For the
response flow driven at this ω, but at ω0 . 5.6× 104, the corresponding PSD consists
of a main peak at frequency f0 = ω together with progressively weaker peaks at the
harmonics kf0, for integers k > 1. The PSD at the higher ω0 in figure 10 has many
more peaks, but they are at frequencies that can all be written as linear combinations
of f0 and any other peak frequency that is not a harmonic of f0. We have chosen
(for reason that will be made clear below) this other frequency to be f1 = 1.094, and
have labelled all the peaks as linear combinations of f0 and f1. In particular, we have
labelled the second strongest peak f2 = f1 − f0 ≈ 0.408. This is all motivated by the
triadic resonance condition of the frequencies in (7.1).

By closely examining the response flow at different times, we have identified the
resonantly forced mode M+1.1 with half-frequency σ+1.1 ≈ 0.3414 ≈ f0/2 and the two
free modes that form the triad, M−1.1 with half-frequency σ−1.1 ≈ 0.5466 ≈ f1/2 and
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FIGURE 11. Amplitudes of ωx in the plane x=0 and of ωz in the planes (a,b) z=0.25 and
(c) z= 0, of the three modes involved in the triadic resonance at ω/2∼ σ+1.1= 0.3414. The
online movie movie-3.avi animates these vorticity components in the respective planes.

M−2.18 with half-frequency σ−2.18 ≈ 0.1953≈ f2/2. These not only satisfy the frequency
resonance condition but also the resonance condition on the axial half-wavenumbers
n0 = 1=−n1 + n2 =−1+ 2. The response flow is hence expected to be a nonlinear
combination of these three modes, with their respective contributions roughly in
proportion to the relative strengths of their PSD peaks. As such, the contribution
from M−1.1 should be relatively weak as its power is approximately 3 % that of M+1.1.
The power of M−2.18 is approximately 50 % that of M+1.1, so that its contribution is
expected to be more obvious. Furthermore, M−2.18 is K symmetric since it has an even
axial half-wavenumber, which is also easy to spot at times during the flow. Figure 11
shows the vorticity amplitudes of the three inviscid modes involved in the triadic
resonance at ω/2 ∼ σ+1.1 = 0.3414. The supplementary movie movie-3.avi animates
the vorticity components of these modes. The modes M+1.1 and M−1.1 behave like
rotating waves, one clockwise and the other counter-clockwise, but distorted by the
square geometry. They have features that fill the cube; they are ‘low-order’ modes. In
contrast M−2.18 has complicated (x, y) structure and there is no analogy with rotating
waves. The amplitude shows a very intricate D4 symmetric pattern, but the actual
mode has complicated spatio-temporal structure, with the cells lining themselves up
along x, then x= y, then y directions, and the cells making disparate reorientations in
between. This type of behaviour is considerably more complicated than that of the
modes shown in movie-1.avi and movie-2.avi.

Figure 12 shows snapshots of the x and z components of vorticity of the response
flows at ω = 5.8× 104 and ω/2= 0.343 in various x and z planes at the four times
indicated by red symbols in the time series in figure 9. The supplementary movie
movie-4.avi shows animations of these over the 20 forcing periods indicated in the
time series in figure 9. Note that the axial vorticity of eigenmodes with odd axial
half-wavenumbers vanishes in the midplane z= 0, whereas for modes with even axial
half-wavenumbers this component of vorticity is maximal in that plane. The animation
of the axial vorticity ξ in the midplane only shows behaviour that corresponds to
that component of vorticity of the mode M−2.18, as shown in movie-3.avi, displaying
the complicated choreography of the cells. In the plane z = 0.25, ξ of mode M−2.18
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x = 0(a) (b)x = 0.25 x = 0 x = 0.25

z = 0 z = 0.25 z = 0 z = 0.25

ç(t1)

≈(t1)

ç(t2)

≈(t2)

x = 0(c) (d)x = 0.25 x = 0 x = 0.25

z = 0 z = 0.25 z = 0 z = 0.25

ç(t3)

≈(t3)

ç(t4)

≈(t4)

FIGURE 12. Snapshots of χ and ξ in the indicated x and z planes at ω0 = 5.8 × 104,
ω= 0.343 and times t1 through t4 corresponding to the red symbols in the time series in
figure 9. The supplementary movie movie-4.avi animates these over 20 forcing periods.

vanishes, but ξ of both M+1.1 and M−1.1 is maximal. The response flow in the plane
z= 0.25 animated in movie-4.avi shows the counter-clockwise rotation of the dipole
ξ structure, very similar to that of M+1.1, but a little jerky with both spatial and
temporal irregularities. These irregularities are primarily due to the weak influence
from the clockwise rotating M−1.1 contribution. The planes x = 0 and x = 0.25 also
show contributions from the modes involved in the triadic resonance. The rotating
dipole structure from M+1.1 dominates in the x= 0.25 plane, but in the midplane x= 0,
we are able to distinguish the contribution from M−2.18 when the symmetry plane of
the dipole from M+1.1 aligns with the x= 0 plane. Here as well, the weak contribution
from M−1.1 leads to distortions. During these brief moments (such as at t= t1 and t3),
the n= 2 axial structure is clearly evident.

8. Discussion and conclusions
Precessional forcing of a rapidly rotating cube results in a system with spatio-

temporal symmetries consisting of a reflection about the axial midplane together with
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a half-period translation in time, and a one quarter rotation about the axis together
with a one quarter period translation in time. These symmetries, Tτ/2K and Tτ/4Rπ/2,
can be combined into a purely spatial symmetry, C, the centrosymmetry that is the
reflection through the centre of the cube. Using direct numerical simulations of the
Navier–Stokes equations with no-slip boundary conditions, we have shown that when
the mean rotation rate of the cube is sufficiently fast compared to viscous dissipation
processes, the primary response flows as the forcing frequency is varied can be
identified as resonantly excited inviscid eigenmodes of the rotating cube, with some
nominal viscous detuning. Obtaining the inviscid eigenmodes is not straightforward as
the eigenmode problem is not completely separable. However, by judicious choices of
the basis functions used to compute the eigenmodes, we have an efficient, accurate and
robust numerical technique to compute eigenmodes with designated spatio-temporal
symmetries. This has been instrumental in the detailed interpretation of the response
to forcing over an extensive range of forcing frequencies. Furthermore, as viscous
dissipation effects are reduced, not only are viscous detuning effects reduced and
more modes with larger spatial gradients resonantly excited, but there are also triadic
resonances excited. The particular spatio-temporal symmetry of the precessing cube
dictates that any triadic resonance with a forced primary response flow must involve
two free modes of which at least one must have a symmetry different from that of
the precessing cube system. Our ability to also compute these other modes has been
used to unequivocally identify the three modes involved in a triadic resonance.
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Appendix A. Linear inviscid modes of a rotating cube
The linear inviscid eigenmodes of a fluid-filled rotating cube are the solutions v to

the Euler equations, written in the rotating frame of reference and linearized about
solid-body rotation (4.1), subject to no-penetration boundary conditions v · n|∂ = 0 at
boundaries with normal vector n. These eigenmodes can be determined by exploiting
the separability of (4.1) in z, t and (x, y), as was done in Wu et al. (2018). They are
of the form

Mn(x, y, z, t) :=

un(x, y, t)
vn(x, y, t)

0
pn(x, y, t)

 cos(nπ[z+ 0.5])+

 0
0

wn(x, y, t)
0

 sin(nπ[z+ 0.5]), (A 1)

where n are positive integers, enforcing no-penetration boundary conditions at z =
±0.5, and correspond to the mode’s axial half-wavenumber. Substituting (A 1) into
(4.1) yields

∂vn/∂t+ 2Rvn =−∇pn, ∂wn/∂t= nπpn, ∇ · vn + nπwn = 0, (A 2a−c)
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with vn · n|∂ = 0 for each value of n and

vn =

[
un
vn

]
, R =

[
0−1
1 0

]
. (A 3a,b)

Elimination of pn and wn leads to

H ∂vn/∂t=−2Rvn, vn · n|∂ = 0, (A 4a,b)

where

H = I − (nπ)−2
∇∇·=

[
1− (nπ)−2∂xx −(nπ)−2∂xy

−(nπ)−2∂xy 1− (nπ)−2∂yy

]
(A 5)

is self-adjoint and positive definite with respect to the L2([−0.5, 0.5]2) inner-product
〈·, ·〉, with induced norm ‖ · ‖. In view of the third equation in (A 2),

〈Hvn, vn〉 = 〈vn, vn〉 − (nπ)−2
〈vn,∇(∇ · vn)〉 = ‖vn‖

2
+ (nπ)−2

‖∇ · vn‖
2, (A 6)

which is simply twice the kinetic energy of mode Mn. The skew-symmetry of R
implies that vn and Rvn are orthogonal to each other with respect to the standard
Euclidean inner product, and that the kinetic energy of the modes is conserved in
time.

Using −R = R−1, the first equation in (A 4) becomes

RH ∂vn/∂t= 2vn, (A 7)

so that

4vn = 2RH ∂vn/∂t= RHRH ∂2vn/∂t2
=−[1− (nπ)−2(∂xx + ∂yy)]∂

2vn/∂t2, (A 8)

which suggests time harmonic solutions of the form

vn = pn(x) cos(2σnt)+ qn(x) sin(2σnt), x=
[

x
y

]
, (A 9a,b)

with pn and qn eigenvectors of the Helmholtz operator [1 − (nπ)−2(∂xx + ∂yy)]
associated with ±σ−1

n . For non-trivial solutions, the modal half-frequencies σn 6= 0,
and the (semi-) positivity of −(∂xx + ∂yy) with respect to 〈·, ·〉 implies |σn|6 1.

The Poincaré equation (A 8), being second-order in time, admits more solutions than
(A 2) itself, from which it is derived. Substituting (A 9) directly into (A 4) yields the
symmetric definite generalized eigenvalue problem

σn

[
H 0
0 H

] [
pn(x)
qn(x)

]
=

[
0 R
−R 0

] [
pn(x)
qn(x)

]
. (A 10)

Clearly, (σn, pn, qn) is a solution of (A 10) if and only if (−σn, pn,−qn) is a solution.
Both solutions lead to the same vn in (A 9) so that, without loss of generality, we can
take σn > 0.

We now seek modes that have the same symmetries as (2.1), i.e. Tτ/2K and
Tτ/4Rπ/2. These can be expected to be excited in synchronous responses at or near
forcing frequency ω = 2σn. We also seek modes whose symmetries are associated
with symmetry-breaking bifurcations in the form of triadic resonances. All these
eigenmodes can be computed via expansions using specific basis functions which are
restricted to the corresponding symmetric subspaces. This approach provides better
numerical stability and efficiency compared to a more general approach amalgamating
the eigenmodes, and leads to a more explicit classification.
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A.1. The Tτ/2K-symmetric modes
In general, Mn in (A 1) satisfies KMn = (−1)nMn, so that modes with even n
are K-symmetric, while modes with odd n are K-antisymmetric. However, we are
interested in computing modes with specific spatio-temporal symmetries. Note that
the half-period-flip symmetry Tτ/2K acts on the modes as

Tτ/2KM2n =−M2n and Tτ/2KM2n−1 =M2n−1, (A 11a,b)

so that modes with odd half-wavenumbers in z are Tτ/2K symmetric, while those with
even half-wavenumbers are Tτ/2K antisymmetric.

A.2. The Tτ/4Rπ/2-symmetric modes
The invariance of Mn under Tτ/4Rπ/2 is equivalent to the requirements that{

pn(x)= Rqn(Rx),
qn(x)=−Rpn(Rx),

⇔

{
pn(x)= pn(−x),
qn(x)=−Rpn(Rx),

⇔

{
pn(x)= Rqn(Rx),
qn(x)= qn(−x).

(A 12)

Writing vn in (A 9) as

vn =
∑

k=(k1,k2)

an,k f n,k +
∑

`=(`1,`2)

bn,` gn,`, (A 13)

where

f n,k =

[
cos(k1πx) cos(k2πy) cos(2σnt)
−cos(k2πx) cos(k1πy) sin(2σnt)

]
, gn,` =

[
−sin(`2πx) sin(`1πy) sin(2σnt)
sin(`1πx) sin(`2πy) cos(2σnt)

]
,

(A 14a,b)
with k1 > 1 odd and `2 > 2 even in order to satisfy the no-penetration boundary
conditions, results in Mn being Tτ/4Rπ/2 invariant.

One verifies

Hf n,k = [1+ (k1/n)2] f n,k − [k1k2/n2
] gn,k, R∂f n,k/∂t= 2σn f n,k′,

Hgn,` = [1+ (`2/n)2] gn,` − [`1`2/n2
] f n,`, R∂gn,`/∂t=−2σngn,`′,

}
(A 15)

where k′ = (k2, k1) and l′ = (l2, l1). Restricting k2 to be even and `1 odd guarantees
that Hf n,k and Hgn,` satisfy the no-penetration boundary conditions at x, y = ±0.5.
More importantly, these restrictions prevent redundancies in (A 9) and improve the
numerical conditioning for the determination of the coefficients an,k and bn,` in (A 13).
Substituting (A 13) into (A 7) yields

σn

∑
k

an,k([1+ (k1/n)2] f n,k′ + [k1k2/n2
] gn,k′)

− σn

∑
`

bn,`([`1`2/n2
] f n,`′ + [1+ (`2/n)2] gn,`′)

=

∑
k

an,k f n,k +
∑

`

bn,` gn,`. (A 16)

Multiplying (A 16) by f n,i′ and gn, j′ , integrating with respect to 〈·, ·〉 and averaging
over one period τ =π/σn leads to the discrete generalized eigenvalue problem

σn

[
An Bn
Cn Dn

] [
an
bn

]
=

[
En 0
0 F n

] [
an
bn

]
, (A 17)
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with (an)k = an,k, (bn)` = bn,` and

(An)i′,k′ = [1+ (k1/n)2]〈 f n,k′, f n,i′〉, (Bn)i′,`′ =−[`1`2/n2
]〈 f n,`′, f n,i′〉,

(Cn)j′,k′ =−[k1k2/n2
]〈gn,k′, gn, j′〉, (Dn)j′,`′ = [1+ (`2/n)2]〈gn,`′, gn, j′〉,

(En)i′,k′ = 〈 f n,k, f n,i′〉, (F n)j′,`′ =−〈gn,`, gn, j′〉.

 (A 18)

The coefficients of the (infinite) matrices can be evaluated from

4〈 f n,k, f n,i〉 =

(
sinc

i1 − k1

2
+ sinc

i1 + k1

2

)(
sinc

i2 − k2

2
+ sinc

i2 + k2

2

)
, (A 19a)

4〈gn,`, gn, j〉 =

(
sinc

j1 − `1

2
− sinc

j1 + `1

2

)(
sinc

j2 − `2

2
− sinc

j2 + `2

2

)
, (A 19b)

with sinc(x)= sin(πx)/(πx) for x 6= 0 and sinc(0)= 1. If i and j have similar parities
as k and `, i.e. (odd, even), then 〈 f n,k, f n,i〉 = 0 for i 6= k and 〈gn,`, gn, j〉 = 0 for j 6= `.
The matrix on the left-hand side of (A 17) can then be organized into a block diagonal
matrix with 2× 2 blocks

4
[
(An)k′,k′ (Bn)k′,k′

(Cn)k′,k′ (Dn)k′,k′

]
=

[
1+ k2

1/n
2
−k1k2/n2

−k1k2/n2 1+ k2
2/n

2

]
= I + knkT

n , kn =

[
k1/n
−k2/n

]
,

(A 20a,b)
as was done in Wu et al. (2018) (where the coefficient 4 was absorbed into the inner
product). Explicit expressions for En and F n follow from (A 19):

(En)i′,k′ = (−1)(i1+i2+k1+k2)/2 (2/π)2 (i1k1)/[(i2
1 − k2

2)(i
2
2 − k2

1)], (A 21a)
(F n)j′,`′ = (−1)( j1+j2+`1+`2)/2 (2/π)2 (−j2`2)/[( j2

1 − `
2
2)( j2

2 − `
2
1)]. (A 21b)

In practice, the range of odd indices 16 i1, j1, k1, `1 and even indices 26 i2, j2, k2, `2 is
truncated such that 36 i1+ i2, j1+ j2, k1+ k2, `1+ `2 62N+1, for some positive integer
N independent of n. The modal horizontal velocity vector vn is reconstructed from
the expansion (A 13) using the coefficients an, bn of the generalized eigenvectors. The
mode Mn is finally obtained from (A 1) using wn and pn from (A 2). Spatial filtering
is also applied to limit Gibbs effects occurring near the cube boundaries, as described
in Wu et al. (2018). These Tτ/4Rπ/2 invariant modes are denoted M+n.m. Furthermore,
if n is odd they are also Tτ/2K invariant, while if n is even they are also K invariant.

A.3. The T−τ/4Rπ/2-symmetric modes
Similar to the case with Tτ/4Rπ/2 symmetry, the invariance of Mn under T−τ/4Rπ/2 is
equivalent to the requirements that{

pn(x)=−Rqn(Rx),
qn(x)= Rpn(Rx),

⇔

{
pn(x)= pn(−x),
qn(x)= Rpn(Rx),

⇔

{
pn(x)=−Rqn(Rx),
qn(x)= qn(−x).

(A 22)

These are satisfied by using the basis functions

f n,k =

[
cos(k1πx) cos(k2πy) cos(2σnt)
cos(k2πx) cos(k1πy) sin(2σnt)

]
, gn,` =

[
sin(`2πx) sin(`1πy) sin(2σnt)
sin(`1πx) sin(`2πy) cos(2σnt)

]
.

(A 23a,b)
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The rest follows directly the procedure for the Tτ/4Rπ/2 case. These T−τ/4Rπ/2

invariant modes are denoted M−n.m, and if n is odd they are also Tτ/2K invariant,
while if n is even they are also K invariant.

REFERENCES

ALBRECHT, T., BLACKBURN, H. M., LOPEZ, J. M., MANASSEH, R. & MEUNIER, P. 2015 Triadic
resonances in precessing rapidly rotating cylinder flows. J. Fluid Mech. 778, R1.

ALBRECHT, T., BLACKBURN, H. M., LOPEZ, J. M., MANASSEH, R. & MEUNIER, P. 2018 On
triadic resonance as an instability mechanism in precessing cylinder flow. J. Fluid Mech. 841,
R3.

ALDRIDGE, K. D. & TOOMRE, A. 1969 Axisymmetric inertial oscillations of a fluid in a rotating
spherical container. J. Fluid Mech. 37, 307–323.

BEWLEY, G. P., LATHROP, D. P., MAAS, L. R. M. & SREENIVASAN, K. R. 2007 Inertial waves
in rotating grid turbulence. Phys. Fluids 19, 071701.

BOISSON, J., LAMRIBEN, C., MAAS, L. R. M., CORTET, P. P. & MOISY, F. 2012 Inertial waves
and modes excited by the libration of a rotating cube. Phys. Fluids 24, 076602.

BUSSE, F. H. 1968 Steady fluid flow in a precessing spherical shell. J. Fluid Mech. 33, 739–751.
BUSSE, F. H. 2010 Mean zonal flows generated by librations of a rotating spherical cavity. J. Fluid

Mech. 650, 505–512.
GOEPFERT, O. & TILGNER, A. 2016 Dynamos in precessing cubes. New J. Phys. 18, 103019.
GOEPFERT, O. & TILGNER, A. 2019 Mechanisms for magnetic field generation in precessing cubes.

Geophys. Astrophys. Fluid Dyn. 113, 222–234.
GREENSPAN, H. P. 1964 On the transient motion of a contained rotating fluid. J. Fluid Mech. 20,

673–696.
GREENSPAN, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.
HOLMES, P., LUMLEY, J. L. & BERKOOZ, G. 1996 Turbulence, Coherent Structures, Dynamical

Systems and Symmetry. Cambridge University Press.
LORD KELVIN 1880 Vibrations of a columnar vortex. Phil. Mag. 10, 155–168.
KERSWELL, R. R. 2002 Elliptical instability. Annu. Rev. Fluid Mech. 34, 83–113.
LAGRANGE, R., MEUNIER, P., NADAL, F. & ELOY, C. 2011 Precessional instability of a fluid cylinder.

J. Fluid Mech. 666, 104–145.
LAMRIBEN, C., CORTET, P.-P., MOISY, F. & MAAS, L. R. M. 2011 Excitation of inertial modes in

a closed grid turbulence experiment under rotation. Phys. Fluids 23, 015102.
LE BARS, M., CEBRON, D. & LE GAL, P. 2015 Flows driven by libration, precession, and tides.

Annu. Rev. Fluid Mech. 47, 163–193.
LOPEZ, J. M. & MARQUES, F. 2014 Rapidly rotating cylinder flow with an oscillating sidewall.

Phys. Rev. E 89, 013013.
LOPEZ, J. M. & MARQUES, F. 2016 Nonlinear and detuning effects of the nutation angle in

precessionally-forced rotating cylinder flow. Phys. Rev. Fluids 1, 023602.
LOPEZ, J. M. & MARQUES, F. 2018 Rapidly rotating precessing cylinder flows: forced triadic

resonances. J. Fluid Mech. 839, 239–270.
MAAS, L. R. M. 2003 On the amphidromic structure of inertial waves in a rectangular parallelepiped.

Fluid Dyn. Res. 33, 373–401.
MALKUS, W. V. R. 1968 Precession of the Earth as the cause of geomagnetism. Science 160,

259–264.
MANASSEH, R. 1992 Breakdown regimes of inertia waves in a precessing cylinder. J. Fluid Mech.

243, 261–296.
MARQUES, F. & LOPEZ, J. M. 2015 Precession of a rapidly rotating cylinder flow: traverse through

resonance. J. Fluid Mech. 782, 63–98.
MCEWAN, A. D. 1970 Inertial oscillations in a rotating fluid cylinder. J. Fluid Mech. 40, 603–640.
MEUNIER, P., ELOY, C., LAGRANGE, R. & NADAL, F. 2008 A rotating fluid cylinder subject to

weak precession. J. Fluid Mech. 599, 405–440.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

98
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.984


887 A6-24 K. Wu, B. D. Welfert and J. M. Lopez

RUBIO, A., LOPEZ, J. M. & MARQUES, F. 2009 Interacting oscillatory boundary layers and wall
modes in modulated rotating convection. J. Fluid Mech. 625, 75–96.

TILGNER, A. 2007 Zonal wind driven by inertial modes. Phys. Rev. Lett. 99, 194501.
WU, K., WELFERT, B. D. & LOPEZ, J. M. 2018 Librational forcing of a rapidly rotating fluid-filled

cube. J. Fluid Mech. 842, 469–494.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

98
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.984

	Precessing cube: resonant excitation of modes and triadic resonance
	Introduction
	Governing equations and numerical technique
	Symmetries
	The inviscid inertial modes of the rotating cube
	Response to precessional forcing
	Mean streaming flow
	Triadic resonance
	Discussion and conclusions
	Acknowledgements
	Appendix A. Linear inviscid modes of a rotating cube
	The Tτ/2K-symmetric modes
	The Tτ/4Rπ/2-symmetric modes
	The T-τ/4Rπ/2-symmetric modes

	References


