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Hydraulic jump on the surface of a cone
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This paper addresses several aspects of the axisymmetric flow of a liquid film over the
surface of a downward-sloping cone. The study is rooted on a validated computational
tool the results of which are interpreted with the help of a hyperbolic time-dependent
reduced-order model also derived in the paper. The steady version of the model
demonstrates the weakening and ultimate disappearance of the circular hydraulic jump
as the cone surface transitions from planar to downward sloping. Mathematically, this
evolution is reflected in a change of the model’s critical point from spiral to node.
A significant advantage of the time-dependent model is that, when it is integrated in
time, the flow regions upstream and downstream of the critical point are connected.
Due to this feature, when a hydraulic jump exists, its position can be sharply captured
automatically with a good agreement with Navier–Stokes simulations. Surface-tension
effects are properly accounted for and, in steady conditions, are shown to have a marginal
effect on the flow, including the position of the hydraulic jump. A correlation is obtained
for the jump radius as a function of the flow rate, liquid viscosity, gravitational acceleration
and the angle of inclination of the cone surface. In a suitable limit, the model reduces to
the optimal two-dimensional, first-order model for liquid film flow down an inclined plane
and, in a different limit, it describes an axisymmetric thin liquid film falling down the
surface of a vertical cylinder. Some results are also presented for the waves induced by a
pulsating jet on the surface of the liquid film and for a jet impinging on the surface of a
cone from below.
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1. Introduction

The circular hydraulic jump produced by a liquid jet normally impinging on a flat surface
is a commonly observable phenomenon the detailed nature of which, however, has only
reluctantly yielded its secrets. The first analyses including the liquid viscosity were carried
out by Kurihara (1946) and Tani (1949) who based their studies on the boundary-layer
approximation of the Navier–Stokes (NS) equations with a hydrostatic pressure gradient.
They derived a reduced-order model which had a critical point approaching which the
slope of the free surface diverged. Concerning this prediction, Tani writes ‘Actually,
however, before reaching the infinite slope, the increase in pressure gradient produces
separation of flow from the wall and consequently back flow, thus giving explanation for
the sudden thickening of the stream’. This association of the position of the critical point
with that of the hydraulic jump was supported by the study of Bohr, Dimon & Putkaradze
(1993) and further strengthened by the subsequent work of this group (Bohr, Putkaradze
& Watanabe 1997; Bohr et al. 1998; Watanabe, Putkaradze & Bohr 2003) and others (see
e.g. Fernandez-Feria, Sanmiguel-Rojas & Benilov 2019; Wang & Khayat 2019). There is
no need to recapitulate here the history of research on the circular hydraulic jump, which is
adequately summarized in several recent papers (see e.g. Mohajer & Li 2015; Askarizadeh
et al. 2019; Wang & Khayat 2019, 2021; De Vita et al. 2020). Suffice it to say that the issue,
nature and avoidance of the critical point of the many reduced-order models developed
throughout this history have been constant concerns of researchers on this topic.

In the present study we focus on the formation – and disappearance – of the circular
hydraulic jump when the solid surface on which the jet impinges is the downward-sloping
surface of a cone, of which a horizontal flat plate represents a special case. While our study
is primarily based on validated Navier–Stokes numerical simulations, we also develop
a hyperbolic time-dependent reduced-order model in which the disappearance of the
hydraulic jump is associated with the transition of the nature of a critical point from spiral
to node at a critical angle.

Similarly to many others, our reduced-order model is axisymmetric but, unlike others, it
is obtained by a Galerkin method patterned after the approach pioneered by Ruyer-Quil &
Manneville (2000) for the two-dimensional case. As such, it is the only model that reduces
to the optimal two-dimensional model (Kalliadasis et al. 2012, p. 168) in the appropriate
limit.

We demonstrate a stable and fairly accurate method for the numerical solution of the
time-dependent reduced-order model with and without surface tension. Integration to
steady state produces a solution of the time-independent version of the model which avoids
the difficulties encountered if the solution of this version of the model is tackled directly, a
difficulty common to all other steady models in existence. In this way we are able to show
how surface tension smoothens the effect of the critical point of the first-order model and,
at steady state, produces a smooth free-surface profile in reasonable agreement with the
numerical integration of the full Navier–Stokes equations.

Other than for a paper by Bush & Aristoff (2003) and a brief mention in Mathur et al.
(2007), surface tension has not featured prominently in theoretical studies of the circular
hydraulic jump, but it has become a controversial topic (see e.g. Duchesne, Andersen &
Bohr 2019) after the paper by Bhagat et al. (2018) who make it the crucial parameter for
hydraulic jumps, with gravity playing a minor role. The contention of Bhagat, Wilson &
Linden (2020) is that this applies not only to developing jumps, for which surface tension
and the associated contact angle may be expected to be important near the advancing
contact line (Askarizadeh et al. 2019; Duchesne & Limat 2022), but also to a wide class
of developed jumps. While the arguments put forward by Bhagat et al. (2018), Bhagat &
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Hydraulic jump on a cone

Linden (2020) and Bhagat et al. (2020) have been questioned (Duchesne et al. 2019), the
experimental evidence they presented cannot be ignored and suggests that things go as
if gravity were not important. A possible explanation has been suggested in Duchesne &
Limat (2022) but more work is needed for a complete resolution of this issue.

Our results refer primarily to the developed case and they imply that the position and
structure of the steady jump are little affected by surface tension. When the jet impinges
the cone from below, a few examples of which we also briefly consider, the liquid film
progresses along the solid surface only up to a point where it detaches and starts to fall. In
this case, therefore, the transient dynamics before steady conditions are reached includes
a moving contact line and surface tension affects the position at which the film detaches
as expected.

Film flow on the outer surface of a cone away from the cone axis is a problem of
fluid-mechanical interest in itself on which the literature is surprisingly limited. There
is a two-page paper by Scholle, Marner & Gaskell (2019) in which inertia is neglected and
the focus is more on the method of analysis than on the results, but the most significant
studies on the topic are by Zollars & Krantz (1976, 1980). In the first paper Zollars &
Krantz developed an expression for the steady film thickness by a method so involved that
they could not describe it in detail. In the present paper we show how the same result can
be obtained by a much simpler procedure. In the second paper they studied waves on the
surface of a film flowing down a cone in connection with the stability of the steady solution
of the first paper. We present limited results on the time-dependent problem by considering
the flow induced by a sinusoidally pulsating jet impinging on the cone and show that our
reduced-order time-dependent model reproduces the results of Navier–Stokes simulations
with good accuracy.

In the next section we introduce the geometry to be studied and the governing equations.
Two alternative scalings of the equations, based on the assumption that the film is thin
compared with the relevant scale in the flow direction, are described in § 3 where a
simplified formulation able to deal with both is developed. This simplified formulation
is used in § 4 to derive the reduced-order model. Sections 5 and 7 are devoted to a study
of the model and to a comparison with Navier–Stokes simulations. The numerical set-up
for the integration of the Navier–Stokes equations is described in § 6 and Appendix C.
The time-dependent version of the model is taken up in §§ 8 and 10, where it is compared
with numerical solutions of the Navier–Stokes equations for the case of a pulsating jet. The
role of surface tension is addressed in § 9 and further explored for an upward-directed jet in
§ 11. The model can be readily adapted to the case of a two-dimensional film flowing down
an inclined plate, a problem studied by several authors in connection with the formation of
hydraulic jumps in this type of flows (Higuera 1994; Singha, Bhattacharjee & Ray 2005;
Dasgupta & Govindarajan 2010; Dasgupta, Tomar & Govindarajan 2015; Dhar, Das &
Das 2020). We briefly comment on this work in § 12. Another interesting limit, taken up
in Appendix B, is the flow of a liquid film on the surface of a circular cylinder (see e.g.
Frenkel 1992; Kalliadasis & Chang 1994; Ruyer-Quil et al. 2008; Ding & Wong 2017; Ji
et al. 2019).

A different class of problems related to the flow on the surface of a cone concerns
flows directed toward, rather than away from, the cone axis, as on the inner surface of
a funnel (see e.g. Al-Hawaj 1999; Lin, Dijksman & Kondic 2021; Xue & Stone 2021).
Such problems are inherently transient and require an analysis of the advancing contact
line. They are not addressed in the present work. Another related problem is the flow on
the underside of a conical surface, which exhibits Rayleigh–Taylor instabilities similar to
those investigated in the case of spherical surfaces (see e.g. Balestra, Nguyen & Gallaire
2018). We only make a very brief mention of this problem in § 11.
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Figure 1. Geometry and coordinate system used in this paper; r and θ are the spherical polar coordinates
centred at the vertex of the cone with downward aperture 2(π − β);Ψ = Ψ (r, t) and h = h(r, t) are the angular
and actual heights of the film surface above the cone surface.

2. Coordinate system and governing equations

We adopt a standard spherical polar coordinate system taking the upward-directed axis
of the cone as the polar axis (figure 1). The origin is placed at the cone tip; the distance
from the origin is denoted by r and the polar angle measured from the positive half of
the polar axis by θ . The surface of the cone is identified by θ = β. A cone extending
downward below the origin has β > π/2; for β = π/2, the cone surface degenerates into
a horizontal plane. The polar angle of the film free surface is β + Ψ (r, t) so that, for a film
flowing over the cone surface, Ψ < 0. It is convenient to introduce the reduced angular
coordinate

ψ = θ − β, (2.1)

so that the film occupies the region Ψ (r, t) � ψ � 0 and its surface is located at ψ = Ψ .
The height of the film measured normally to the local cone surface is denoted by h(r, t).

It can be easily shown that the difference between h and the arc length r(−Ψ ) is of order
h2/r2, i.e. of second order of smallness in the parameter ε to be defined shortly. Since the
theory to be presented is accurate to first order in ε, this small difference can be neglected.
Thus, in the following, we set h(r, t) = −rΨ (r, t).

In spherical polar coordinates the equation of continuity is

1
r2 ∂r(r2u)+ 1

r sin θ
∂θ (sin θv) = 0, (2.2)

with u and v the velocity components in the radial and angular directions and v > 0 when
the velocity is directed toward the cone surface. The θ - and r-momentum equations are

∂tv + u∂rv + v

r
∂θv + uv

r
= − 1

ρr
∂θp + g sin θ

+ ν

[
1
r
∂2

r (rv)+ 1
r2 ∂

2
θ v + cot θ

r2 ∂θv + 2
r2 ∂θu − v

r2 sin2 θ

]
,

(2.3)
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and

∂tu + u∂ru + v

r
∂θu − v2

r

= − 1
ρ
∂rp − g cos θ + ν

[
1
r
∂2

r (ru)+ 1
r2 ∂

2
θ u + cot θ

r2 ∂θu − 2
r2 ∂θv − 2

r2 u − 2 cot θ
r2 v

]
,

(2.4)

respectively. Here, p is the pressure, g the acceleration due to gravity (positive downward)
and ρ and ν are the liquid density and kinematic viscosity, respectively.

At the free surface ψ − Ψ (r, t) = 0 the kinematic condition stipulates that

r∂tΨ = [v]s − r[u]s∂rΨ, (2.5)

in which the subscript s denotes evaluation at the free surface. Proceeding in a standard
way, we now multiply (2.2) by r2 sin θ dθ = r2 sin θ dψ and integrate from ψ = 0 to ψ =
Ψ to find

∂r

(
r2
∫ Ψ

0
sin θu dψ

)
− r sin(β + Ψ ) (r[u]s∂rΨ − [v]s) = 0. (2.6)

The first term is proportional to the volumetric flow rate Q in the film,

q(r, t) ≡ Q
2π

= −r2
∫ Ψ

0
sin θu dψ, (2.7)

while the last two terms can be expressed in terms of ∂tΨ from (2.5). The result is, with
h = r(−Ψ ),

∂th + 1
r sin(β − h/r)

∂rq = 0, (2.8)

which is the standard relation expressing the time derivative of the film height as the
divergence of the volumetric flow rate (see e.g. Oron, Davis & Bankoff 1997; Leal 2007).
We have introduced a minus sign in the definition (2.7) of Q to compensate for the fact
that, here, Ψ < 0 as noted before. As defined, therefore, Q > 0 when the flow is directed
away from axis of the cone.

3. Scalings

The existing theories for the circular hydraulic jump make use of the boundary-layer
approximation of the Navier–Stokes equations according to which inertia, pressure
gradient and the part of the Laplacian normal to the boundary are of similar order (see
e.g. Watson 1964; Watanabe et al. 2003). On the other hand, modelling of the flow
down an inclined surface is usually carried out in the framework of what may be called
the Kapitza scaling in which, to leading order, the streamwise component of gravity is
primarily balanced by the normal Laplacian, inertia and pressure being of small order (see
e.g. Kalliadasis et al. 2012). The problem to be addressed here shares features of both
situations, with the boundary-layer scaling relevant in the region of the hydraulic jump
and the Kapitza scaling in the lower-velocity region downstream of the jump. We now
consider these two situations and show that a single approximate form of the equations
can be used for both situations as long as second-order errors are acceptable.
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We start by scaling the coordinates and the dependent variables in a general way
according to

t → Lt
U
, r → Lr, ψ → δ

L
ψ, u → Uu, v → Vv, p → �P p, (3.1a–f )

in which the velocity and pressure scales U, V and �P will be specified as appropriate for
each scaling, δ is of the order of the film thickness and L is a characteristic length for the
radial variable, assumed to be much larger than δ. Upon substituting into the equation of
continuity we find the familiar result

V
U

= δ

L
≡ ε, (3.2)

with ε � 1. Since ∂θ = ∂ψ , ∂θ → (1/ε)∂ψ and the scaled equations become

1
r2 ∂r(r2u)+ 1

r
∂ψv + ε

cot θ
r
v = 0, (3.3)

ε2
(
∂tv + u∂rv + v

r
∂ψv + uv

r

)
= − �P

ρU2r
∂ψp + ε

Lg
U2 sin θ

+ ν

LU

[
ε2 1

r
∂2

r (rv)+ 1
r2 ∂

2
ψv + ε cot θ

r2 ∂ψv + 2
r2 ∂ψu − ε2 v

r2 sin2 θ

]
, (3.4)

and

ε2
(
∂tu + u∂ru + v

r
∂ψu − ε2 v

2

r

)

= −ε2 ΔP
ρU2 ∂rp − ε2 Lg

U2 cos θ

+ ν

LU

[
ε2 1

r
∂2

r (ru)+ 1
r2 ∂

2
ψu + ε

cot θ
r2 ∂ψu − ε2 2

r2 ∂ψv − 2ε2

r2 u − 2ε3 cot θ
r2 v

]
.

(3.5)

As long as ε is small, the terms multiplied by ε2 and ε3 in the viscous contributions on
the right-hand side of these equations will always be small compared with the other ones
and can be dropped. Furthermore, since |ψ | ∼ h/r ∼ ε, terms proportional to ε cot θ can
be replaced by ε cotβ with an O(ε2) error. The same approximation can be applied to the
equation of continuity which then becomes

1
r2 ∂r(r2u)+ 1

r
∂ψv + ε

cotβ
r
v = 0. (3.6)

For the Kapitza scaling we let

U = gδ2

ν
, �P = ρgδ. (3.7a,b)

Up to a numerical factor, the velocity scale is of the order of the mean Nusselt velocity for
the flow of a flat film down a vertical solid plane while the pressure scale expresses the
dominance of hydrostatic effects. In principle these scales should be adjusted according to
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the inclination of the solid surface but, here, the aperture of the cone is an important
parameter which should not be hidden in the normalization. With these choices, the
equation of continuity maintains the form (3.6) and the ψ (or θ ) momentum equation
becomes

ε2
(
∂tv + u∂rv + v

r
∂ψv + uv

r

)
= − ν2

gδ3

(
1
r
∂ψp − sin θ

)

+ ε
ν2

gδ3
1
r2

(
∂2
ψv + 2∂ψu + ε cotβ∂ψv

)
. (3.8)

This equation explicitly shows the dominant balance of gravity and pressure gradient
normal to the solid surface, with viscous effects minor and inertia of secondary
importance. After division by ε, the r momentum equation becomes

ε
(
∂tu + u∂ru + v

r
∂ψu

)
= − ν2

gδ3 (cos θ + ε∂rp)+ ν2

gδ3
1
r2

(
∂2
ψu + ε cotβ∂ψu

)
. (3.9)

The dimensionless group gδ3/ν2 can be written as δU/ν and is seen therefore to play the
role of a Reynolds number based on the film thickness. In order to reflect, to leading order,
the dominant balance between streamwise gravity and viscosity characteristic of film flow
down an inclined plane, it is evident that this Reynolds number must be of order 1 or
smaller.

For the boundary-layer scaling we assume that the velocity scale U is imposed by some
external agent, such as the jet that causes the hydraulic jump, and that the pressure scale is
�P = ρU2 as in normal boundary-layer theory. The ψ momentum equation becomes

ε2
(
∂tv + u∂rv + v

r
∂ψv + uv

r

)
= −1

r
∂ψp + 1

Re
1
r2

(
∂2
ψv + 2∂ψu + ε cotβ∂ψv

)

+ εLg
U2 sin θ, (3.10)

in which Re = UL/ν is the Reynolds number, and the r momentum equation

ε2Re
(
∂tu + u∂ru + v

r
∂ψu

)
= −ε2Re ∂rp + 1

r2

(
∂2
ψu + ε cotβ∂ψu

)
− ε2Re

Lg
U2 cos θ.

(3.11)
The standard form of the boundary-layer equations is recovered upon taking Re = O(ε−2).
Equation (3.10) shows then that inertial and viscous contributions to the normal pressure
gradient are of second order while, in order to have a physically significant balance, it is
necessary to assume Lg/U2 ∼ O(1/ε). From this remark, the r-momentum equation then
shows that this boundary-layer scaling is only appropriate provided cos θ ∼ O(ε). This
conclusion can be restated in a more interesting way: in order for the streamwise pressure
to have the same order of magnitude as inertia and viscosity, which is a necessary condition
for the existence of a hydraulic jump, it is necessary that the inclination of the solid surface
be small. The results to be presented later will confirm this conclusion.

As already stated, we will work correct to O(ε). Upon dropping all O(ε2) terms from
the Kapitza form of the momentum equations we have (3.9) and

− 1
r
∂ψp + sin θ + ε

r2

(
∂2
ψv + 2∂ψu

)
= 0, (3.12)
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while the boundary-layer form becomes, with ε2Re = 1,

− 1
r
∂ψp + εLg

U2 sin θ = 0, (3.13)

and

∂tu + u∂ru + v

r
∂ψu = −∂rp + 1

r2 ∂
2
ψu − εLg

U2
cos θ
ε
. (3.14)

In the last equation we have explicitly used the fact that, for consistency, εLg/U2 must be
of order 1 so that cos θ = cos(β + ψ) = cosβ + O(ε) must be of order ε. This remark
also implies that terms proportional to ε cotβ in the momentum and continuity equations
are of order ε2 and can, therefore be omitted. For the boundary-layer scaling, therefore,
the equation of continuity simplifies to

1
r2 ∂r(r2u)+ 1

r
∂ψv = 0. (3.15)

A consideration of the equations of continuity (3.6) and (3.15) in the two scalings
shows that the two differ by the term ε(cotβ) v/r. Only the inertial term in the Kapitza r
momentum equation (3.9) is affected if this difference is disregarded but, since this term is
of order ε, the error thus introduced is of an inconsequential order ε2. The boundary-layer
form of the continuity and ψ momentum equations can therefore be used when either
scaling is appropriate. On a similar basis, the difference between the pressures in the
two scaling arises from the ε term in the Kapitza ψ momentum equation (3.12) and
enters the r momentum equation (3.9) where the pressure gradient is multiplied by ε, thus
introducing another negligible contribution of order ε2 if the boundary-layer form (3.13) is
used. Furthermore, sin θ = sin(β + ψ) = sinβ cosψ + cosβ sinψ = sinβ + O(ε) with
the Kapitza scaling, while sin θ = sinβ + O(ε2) with the boundary-layer scaling since
cosβ = O(ε). Thus, with either scaling, we can consistently approximate (3.12) and (3.13)
by

− 1
r
∂ψp + εLg

U2 sinβ = 0, (3.16)

or the equivalent form with the Kapitza scaling. The two radial momentum equations differ
by the presence of the term ε(cotβ/r2)∂ψu in the Kapitza form. This term will, however,
be of order ε2 and, therefore, negligible when the boundary-layer scaling is appropriate and
it can therefore be retained without significant error. Thus we conclude that a mathematical
model consistent with both scalings can be built from the continuity and ψ momentum
equations of the boundary-layer scaling, together with the r momentum equation of the
Kapitza scaling.

Returning to the unscaled form, therefore, the equations to be considered are (3.15) and

− 1
r
∂ψp + ρg sinβ = 0, (3.17)

and

∂tu + u∂ru + v

r
∂ψu = − 1

ρ
∂rp + ν

r2

(
∂2
ψu + cotβ∂ψu

)
− g cos θ. (3.18)

In the language of singular perturbations theory we can describe the previous analysis and
conclusion by stating that the Kapitza and boundary-layer scalings are two distinguished
limits of the scaled equations (3.4) and (3.5). The final system with which we will be
concerned, namely (3.15), (3.17) and (3.18), is then the set of composite equations valid
in both distinguished limits according to the extension theorem of singular perturbation
theory (see e.g. Lagerstrom & Casten 1972).
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3.1. Boundary conditions
With the free surface defined by ψ − Ψ (r, t) = 0 as before, the unit normal is given by

n = −r∂rΨ er + eθ√
1 + (r∂rΨ )2

� −r∂rΨ er + eθ , (3.19)

with er and eθ unit vectors in the coordinate directions. Consistent to first order in Ψ , the
square root in this expression can be approximated by 1, which implies that the slope of
the free surface is small so that the last step is accurate to the order of O(ε). As we will
see, it is possible that this approximation contributes some error in the neighbourhood of a
hydraulic jump on a horizontal surface, but the effect remains localized (see e.g. figure 12).
The unit tangent t to the free surface is t = (er, r∂rΨ eθ )+ O(ε2). The curvature C of the
free surface is approximately given by

C = [∇ · n]ψ=Ψ � cot(β + Ψ )

r
− 1

r2 ∂r(r3∂rΨ ). (3.20)

The two terms are of the same order when cotβ = O(ε), but the second one is of order ε
compared with the first one when cotβ = O(1). To O(ε), in terms of h, this equation is

C � cotβ
r

+ h

r2 sin2 β
+ 1

r2 ∂r

(
r3∂r

h
r

)
. (3.21)

When the medium above the film has a constant pressure pa but otherwise negligible
dynamical effects, which we assume, the dynamic condition requires that the stress tangent
to the free surface vanishes. It is readily shown that, correct to O(ε), this condition simply
implies that

1
r
∂ψu = 0, (3.22)

which is a standard condition in thin-film analysis (see e.g. Bohr et al. 1993; Oron et al.
1997; Ruyer-Quil & Manneville 1998, 2000; Watanabe et al. 2003). With C∗ = LC, for the
Kapitza scaling, the dynamic condition on the normal stress can be written as

− p∗ + 2ε
(

1
r∗ ∂ψ∗v∗ + u∗

r∗ − ∂r∗Ψ ∗∂ψ∗u∗
)

= −p∗
a + σ

ρgδL
C∗, (3.23)

where σ is the surface-tension coefficient and we temporarily use asterisks to denote
normalized variables. According to (3.9), the O(ε) terms give an O(ε2) contribution to
the r momentum equation and are therefore negligible. In order to retain the effect of
surface tension it is necessary to assume that σ/(ρgδL) = O(1). With the boundary-layer
scaling, the condition is

− p∗ + 2
Re

(
1
r∗ ∂ψ∗v∗ + u∗

r∗ − ∂r∗Ψ ∗∂ψ∗u∗
)

= −p∗
a + σ

ρU2L
C∗, (3.24)

and, given that Re = O(ε−2), the term in parentheses is negligible. Surface tension
remains a non-negligible force if σ/(ρU2L) = O(1). Thus we see that, for both cases,
the normal stress condition reduces to the dimensional form

p = pa − σC. (3.25)

At the solid surface ψ = 0 the no-slip condition applies.
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4. Approximate equation for the film thickness

Starting with Tani (1949), several authors have pointed out that, approximately, the
location of the hydraulic jump can be determined on the basis of a simplified first-order
equation for the film height derived for steady flow. We take a different approach and
start by deriving an equation for time-dependent flow reducing it to the steady case at the
appropriate moment.

Rather than following the von Kármán–Pohlhausen method used in earlier studies
(Tani 1949; Watson 1964; Watanabe et al. 2003), in our derivation we adapt to the
present situation the Galerkin method developed by Ruyer-Quil & Manneville (1998,
2000) for the two-dimensional case, which has proven very effective in that case. The
approximate results to be derived here will be supported by the numerical solutions of the
full Navier–Stokes equations.

Upon integrating (3.17) we find

p = pa + ρg sinβr(ψ − Ψ )− σC. (4.1)

This relation can now be substituted into the r-momentum equation (3.18) to find

∂tu + u∂ru + v

r
∂ψu = g sinβ(Ψ + r∂rΨ )+ σ

ρ
∂rC

+ ν

r2 (∂
2
ψu + cotβ∂ψu)− g cosβ, (4.2)

in which we have expanded g cos θ = g cos(β + ψ) correctly to first order in the last term.
We now write the radial velocity in the similarity form used by many earlier authors (see

e.g. Watson 1964; Watanabe et al. 2003), which, in our case, is

u = ψ

Ψ

(
2 − ψ

Ψ

)
V(r, t), (4.3)

with the surface radial velocity V(r, t) to be determined by relating u to the volumetric
flow rate of the film as shown below. It may be noted that (4.3) satisfies no slip at the wall
and zero tangential stress on the free surface as per (3.22). In the spirit of the Galerkin
method we multiply (4.2) by u and integrate over the film thickness∫ Ψ

0
u∂tu dψ +

∫ Ψ

0
u
(

u∂ru + v

r
∂ψu

)
dψ

= ν

r2

∫ Ψ

0
u
(
∂2
ψu + cotβ∂ψu

)
dψ +

[
[sinβ∂r(rΨ )− cosβ]g + σ

ρ
∂rC

] ∫ Ψ

0
u dψ.

(4.4)

Use of the equation of continuity in the simplified boundary-layer form (3.15), of the
kinematic boundary condition (2.5), of the shear stress condition (3.22) and integration
by parts permit us to rewrite the previous equation to gain some physical understanding at
the same time simplifying somewhat the calculations

1
2
∂t

∫ Ψ

0
u2 dψ + 1

2r2 ∂r

(
r2
∫ Ψ

0
u3 dψ

)
=
(

g[sinβ∂r(rΨ )− cosβ] + σ

ρ
∂rC

)∫ Ψ

0
u dψ

+ ν

r2

(
−
∫ Ψ

0
(∂ψu)2 dψ + 1

2
cotβ[u2]s

)
.

(4.5)
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Hydraulic jump on a cone

To O(ε), this will be recognized as the integral form of the kinetic energy balance for the
liquid. The first and second terms on the left-hand side are the rate of change of the kinetic
energy and the divergence of the kinetic energy flow rate. On the right-hand side, the first
term is the integral of −∇ · ( pu/ρ)+ u · g = u · (−∇p/ρ + g) and the second one the
integral of the dissipation function. Again using Ψ = −h/r, after substitution of u by V,
integration and multiplication by −r2, the final result may be written as

4
15
∂t

(
rhV2

)
+ 8

35
∂r

(
rhV3

)

= 2
3

rhV
[
−g(sinβ∂rh + cosβ)+ σ

ρ
∂rC

]
− 4

3
ν

r
h

V2
(

1 + 3
8

cotβ
h
r

)
. (4.6)

It is convenient to rewrite this equation in terms of the volumetric flow rate q = Q/2π
because this quantity is a constant in steady conditions. Expanding sin θ to first order in
the definition (2.7) of q we have

q � −r2
∫ Ψ

0
(sinβ + cosβψ)u dψ = 2

3
rhV sinβ

(
1 − 5

8
cotβ

h
r

)
, (4.7)

from which

V = 3q
2rh sinβ

[
1 + 5

8
cotβ

h
r

+ O
(

h2

r2

)]
. (4.8)

An examination of the order of magnitude of the terms in (4.6) shows that it is consistent
to retain the O(h/r) term of this relation only in the viscous term on the right-hand side.
Furthermore, the ∂th terms can be expressed in terms of the volumetric flux q by using the
integrated continuity equation (2.8) which, itself, can be expanded to read

∂th + 1
r sinβ

(
1 + cotβ

h
r

)
∂rq = 0. (4.9)

With this step, correct to O(h/r), the integral form (4.6) of the momentum equation
becomes

∂tq + 17
7

q
hr sinβ

∂rq − 5
6

(
54
35

q2

h2r sinβ
− ghr sin2 β

)
∂rh

= −5
6

hr sinβ
(

g cosβ − σ

ρ
∂rC

)
+ 9

7
q2

hr2 sinβ
− 5

2
νq
h2

(
1 + cotβ

h
r

)
. (4.10)

This equation, together with (4.9), or its original form (2.8), which relates the
film thickness to the volumetric flow rate, constitutes a two-equation model for the
time-dependent evolution of the film.

It is interesting to relate this result to the form derived by Ruyer-Quil & Manneville
(2000) for two-dimensional flow down an inclined plate, as this equation has been shown
to be optimal at first order (Kalliadasis et al. 2012, p. 168). This objective can be achieved
by identifying Q/(2πr sinβ) = q/(r sinβ) with the two-dimensional flow rate q2D and by
taking the limit r → ∞. The first step is necessary because Q is the flow rate through
a circular surface of radius r sinβ so that Q/(2πr sinβ) is the flow rate per unit width.
The second one reflects the fact that, as r → ∞, the effect of the cone curvature becomes
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smaller and smaller approaching a flat surface. With these steps, after writing x in place of
r, (4.9) becomes

∂th + ∂xq2D = 0, (4.11)

while (4.10) becomes

∂tq2D + 17
7

q2D

h
∂xq2D − 5

6

(
54
35

q2
2D
h2 − gh sinβ

)
∂xh

= −5
6

h
(

g cosβ − σ

ρ
∂xC

)
− 5

2
ν

h2 q2D, (4.12)

with C = ∂2
x h. This is precisely the first-order model for two-dimensional flow of a

thin film over an inclined plate derived in Ruyer-Quil & Manneville (2000). In steady
conditions ∂th = 0 so that ∂xq2D = 0 and the second equation becomes(

54
35

q2
2D
h2 − gh sinβ

)
dh
dx

=
(

g cosβ − σ

ρ

dC
dx

)
h + 3

ν

h2 q2D. (4.13)

If the inclination to the horizontal is denoted by η, then β = π
2 + η so that cosβ = − sin η.

This equation then possesses a uniform solution in which the film thickness is related to
the flow rate according to the well-known Nusselt result (see e.g. Chang & Demekhin
2002; Kalliadasis et al. 2012)

q2D = gh3 sin η
3ν

. (4.14)

5. First-order equation for steady flow

In steady conditions ∂th = 0 and ∂tq = 0 so that (4.9) simply states that q is constant.
Using this fact in (4.10) and dropping the surface-tension term ∂rC, we obtain the
first-order equation(

54
35

q2

r2 sin2 β
− gh3 sinβ

)
dh
dr

= h3g cosβ − 54
35

hq2

r3 sin2 β
+ 3νq

r sinβ

(
1 + cotβ

h
r

)
. (5.1)

For β = π/2 a similar equation has been derived by many authors. In all cases the groups
of dimensional terms have the same structure, namely gh3, q2/r2 etc., and they carry
the same signs, but the numerical coefficients are different. Since, as already noted, (5.1)
reduces to the optimal two-dimensional equation in the appropriate limit, we believe that
our coefficients are preferable. There is only one previous study which includes a small
deviation of the plate from planarity (Kasimov 2008). In that study the equation analogous
to (5.1) is written as (

6q2

5r2 − gh3
)

dh
dr

= sbgh3 + 3νq
r

− 6q2h
5r3 , (5.2)

in which sb is the plate slope, assumed to be small; in our notation, sb = tan(π/2 − β).
For angles close to 90◦ this equals sin(π/2 − β) = cosβ and sinβ � 1, so that (5.2) and
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Hydraulic jump on a cone

(5.1) agree in this limit of small inclination except for the coefficient 54
35 � 1.543 replacing

6
5 = 1.2.

For future reference it may be pointed out that, for large r, (5.1) has the approximate
solution

h �
(

3νq
g sinβ(− cosβ)r

)1/3

, (5.3)

in agreement with the result of Zollars & Krantz (1980). We have verified that the
additional terms that we can calculate from (5.1) agree with those given in Zollars &
Krantz (1980). Since the method used by these authors is very different from the present
one, agreement of the present results with the numerical coefficients that they found lends
further support to the correctness of our derivation.

The expression (5.3) may be considered as the three-dimensional analogue of the
Nusselt solution (4.14) and describes a situation in which gravity balances viscosity even
though the film thins by continuity due to the diverging nature of the cone surface area.
It is evident that (5.3) becomes meaningless as cosβ → 0 as, in that case, gravity cannot
assist in generating a flow of the film. The absence of an asymptotic solution of equations
of the form (5.1) for β = 90◦ has been proven and discussed earlier in Bohr et al. (1993).

6. Conditions for the numerical simulations

The direct numerical simulations are carried out with the open-source software
OpenFOAM v2012, as described in Appendix C. These simulations require a boundary
condition at the right end of the domain. In order to minimize the effect of these conditions
on the steady-state solution in which we are mostly interested, following Fernandez-Feria
et al. (2019) and Wang & Khayat (2021), we simulate the free fall of the film down a
vertical solid surface attached to the end of the inclined cone surface, as shown in figure 15.

Figure 2 compares our predictions of the hydraulic jump phenomenon against the
experimental data by Duchesne et al. (2014). Silicon oil (with density 960 kg m−3,
kinematic viscosity 2 × 10−5 m2 s−1 and surface-tension coefficient 0.02 N m−1) is
injected downward from a 1.6 mm-radius round nozzle onto a horizontally placed circular
disk with a radius of 15 cm. The volumetric flow rate is 17 cm3 s−1. The inlet is placed
4.8 mm above the plate. As shown in Brechet & Néda (1999), this nozzle-to-wall distance
has little influence on the position of the hydraulic jump. One observes a close agreement
between experiment and simulations, which supports the accuracy of the latter.

Figure 3 shows a comparison of our numerical results for different jet flow rates Q
(closed circles and squares) with some experiments of Hansen et al. (1997) for water (open
circles) and an oil with a kinematic viscosity 15 times that of water (open squares). The
solid lines are the predictions of the inertial lubrication theory of Rojas et al. (2010) while
the dashed lines are just guides to the eyes. The agreement with the oil data is quite good.
That with the water data less so, although our results are in very close agreement with
those of Rojas et al. (2010). It may also be noted that Hansen et al. (1997) state that the
radius of the jump was oscillating for Q greater than approximately 15 cm3 s−1 so that the
data shown are mean values. Since the unsteadiness mentioned by Hansen et al. was not
observed in our simulation, it is possible that it was caused by the specific experimental
system used. Some additional considerations on this comparison can be found in the
supplementary material associated with this paper available at https://doi.org/10.1017/jfm.
2022.777.

Finally, a comparison with the numerical results of Fernandez-Feria et al. (2019),
included in Appendix C, is in excellent agreement with the reported results.
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Figure 2. Comparison of the free-surface profile normalized by the jet radius, h/a, as given by the present
Navier–Stokes simulations (solid line) with the data of Duchesne, Lebon & Limat (2014) (symbols).
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Figure 3. Comparison of our Navier–Stokes simulations (solid symbols) for the jump radius with those
reported in Hansen et al. (1997) (open symbols). Results for water are denoted by circles, those for oil by
squares. The grey lines are the prediction of the model developed by Rojas et al. (2010). The jump radius is
identified with the position of the point of maximum curvature as shown in the insets (not to scale).

Most of the simulations below refer to the case of a jet Reynolds number Rej =
2aQ/(πa2ν) � 152.8 with a the radius of the impinging jet. For a silicon oil with
ν = 50 × 10−6 m2s−1 and a radius a = 2.5 mm, this value of Rej would correspond to
a flow rate Q = 30 × 10−6 m3 s−1. The jet is introduced with a uniform velocity profile at
a height equal to 3a. The length of the computational domain is 24a, although in many
figures only a portion of length 16a, which is little influenced by the right boundary
condition, is shown. The height of the vertical section at the right end of the domain is
2a and free outflow conditions are imposed at the exit of the domain. Unless otherwise
specified, the Bond number is Bo = ρga2/σ = 2.83 with, e.g. ρ = 970 kg m−3 and
σ = 0.021 N m−1.

Watson (1964) pointed out that the film generated by a circular jet falling vertically on
a horizontal plate reaches a minimum thickness hm upstream of the jump. We compared
Watson’s estimates of this minimum thickness and of its location with the results of our
Navier–Stokes simulations, finding a good agreement and, on this basis, we chose hm
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Hydraulic jump on a cone

and its corresponding radial position rm as initial conditions for the integration of the
first-order equation (5.1). According to Watson, rm occurs at rm � 1.426rbl, where rbl is
the position at which the growing viscous boundary layer just reaches the free surface. For
rbl he provides the estimate rbl/a � 0.3155(Q/νa)1/3, an estimate which is also in close
agreement with that given in Wang & Khayat (2019). The corresponding value of hm is
given by Watson’s equation (24) and is

hm

a
� 2.308

(
νa
Q

)1/3

. (6.1)

Since, near the jet impact point, the flow velocity is large, the effect of the inclination of
the cone surface may be expected to be small, which justifies the use of these relations
also for β /= 90◦.

In § 10 we show results for a pulsating jet for which Q = Q(t). In this case we use (6.1)
with the instantaneous value of Q. However, in order to avoid the re-meshing that would
be made necessary by the use of a time-dependent value of rm, we use the same relation
as for the constant-Q case simply replacing Q by its time average Q0. With the typical
amplitude used for the perturbation of Q, less than 10 % of the mean, the position of rm
if we were to use Q(t) for its estimate would vary by less than 3.5 % compared with the
estimate based on Q0, which is a negligible amount.

Details on the integration of the time-dependent version of the reduced-order model are
provided in Appendix C.

7. Phase plane analysis

Figure 4 shows the result of Navier–Stokes simulations for increasing β starting from 90◦
(colour). In order to compare with the solutions of the first-order model, surface tension
is not included in these simulations. As will be explained presently, the first-order model
exhibits a critical point marked by an X in these figures. The solid lines are obtained
by integrating (5.1) from upstream (purple) and downstream (red) of the jump using
the Bogacki–Shampine method (Bogacki & Shampine 1989), a third-order Runge–Kutta
method with the ability to automatically adapt the step size. The initial conditions for
the former are as in (6.1). For the latter we start the backward integration at r/a = 16,
i.e. upstream of the corner at the end of the inclined surface, in order to mitigate
the influence of the boundary conditions at the right edge of the domain used for the
Navier–Stokes simulations (see figure 15 for the shape of the solid boundary). For β = 90◦
the initial film height at this position is taken from the NS result. For β > 90◦, we use as
starting value the large-r asymptotic solution of (5.1) given in (29) of Zollars & Krantz
(1976) (which we have verified). Both lines closely follow the free surface as computed by
the NS equations away from the jump region. As the jump is approached, they exhibit
points of vertical tangency at which the integration is stopped. The distance between
the two points of vertical tangency decreases with increasing inclination until the two
lines smoothly join. Correspondingly, the film becomes smoother suggesting a gradual
weakening of the jump.

The main point that emerges from the detailed explanation of these results which, by
necessity, is somewhat intricate, is that the jump disappears as the surface of the cone
becomes more inclined. The cone aperture at which this happens depends on the liquid
properties as shown in figure 8.

We study the first-order equation (5.1) as a dynamical system in the phase plane (h, r)
following Tani (1949), Bohr et al. (1993), Fernandez-Feria et al. (2019) and others. To
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Figure 4. The colour shows the film profile as obtained from the Navier–Stokes simulations without surface
tension for several cone inclinations β starting with a horizontal surface for β = 90◦; the horizontal axis is
r/a and the vertical axis h/a. The purple and red lines are obtained by integrating the first-order model (7.3)
starting at the left and right of the critical point, respectively; the X marks the position of the critical point
which, as explained in the text, should not be confused with the position of the jump. The parameter N defined
in (7.4) has the value N = 0.1046 and the jet Reynolds number is Rej � 152.8.

simplify the presentation, it is expedient at this point to make use of dimensionless
variables introducing the length scale

� =
(

54q2

35g

)1/5

� 1.091
(

q2

g

)1/5

. (7.1)

The physical meaning of this quantity can be elucidated by noting that the velocity of a
film falling by gravity over a distance �would be ∼ √

g�. If the film cross-section is �2, the
corresponding q would be q ∼ �2√g� =

√
g�5. Thus, � is of the order of the length scale

necessary to provide a freely falling film with the flow rate q under the stated conditions.
We non-dimensionalize h and r by

ĥ = h
�
, r̂ = r

�
. (7.2a,b)

With this step, the first-order equation (5.1) for h becomes(
1

r̂2 sin2 β
− ĥ3 sinβ

)
dĥ
dr̂

= ĥ3 cosβ − ĥ

r̂3 sin2 β
+ N

r̂ sinβ

(
1 + cotβ

ĥ
r̂

)
, (7.3)

in which, besides β, an additional dimensionless viscosity parameter N appears given
by (see also Kasimov 2008)

N = 3
(

35
54

)4/5
ν

(q3g)1/5
� 2.121

ν

(q3g)1/5
. (7.4)
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With q ∼ �2√g� it is seen that N ∼ ν/
√

g�3, which is of the order of the inverse of the
Galilei number based on the length �. It is easily shown that �/a = 9

70 RejN � 0.1286RejN.
Following a standard procedure, we rewrite (7.3) in parametric form in terms of a

parameter s as

dĥ
ds

= ĥ3 cosβ − ĥ

r̂3 sin2 β
+ N

r̂ sinβ

(
1 + cotβ

ĥ
r̂

)
, (7.5)

dr̂
ds

= 1

r̂2 sin2 β
− ĥ3 sinβ. (7.6)

The solutions of (7.3) have an extremum where dĥ/dr̂ vanishes, i.e. along the nullcline

F(ĥ, r̂) ≡ ĥ3 cosβ − ĥ

r̂3 sin2 β
+ N

r̂ sinβ

(
1 + cotβ

ĥ
r̂

)
= 0. (7.7)

Along the other nullcline

G(ĥ, r̂) ≡ 1

r̂2 sin2 β
− ĥ3 sinβ = 0, (7.8)

dĥ/dr̂ is infinite and the tangent to the solutions vertical.
The two nullclines cross at the critical point (ĥc, r̂c) of the system, i.e. for

ĥc = 1

sinβ r̂2/3
c
, (7.9)

with r̂c given by F(ĥc, r̂c) = 0, i.e.(
1 + cotβ

r̂5/3
c sinβ

)
N + cotβ

r̂c sinβ
− 1

r̂8/3
c sin2 β

= 0. (7.10)

For β = 90◦ this equation gives r̂c = N−3/8 or

rc = �N−3/8 = cB
q5/8

ν3/8g1/8 , (7.11)

with cB = 3−3/8( 54
35)

1/2 � 0.823. This is reminiscent of the scaling relation proposed in
Bohr et al. (1993) which, for β = 90◦, approximately identified the position of the jump
with the critical point of their equation system. They suggest a smaller dimensionless
coefficient, cB � 0.73, which is probably a consequence of the slightly different numerical
coefficients in the equations. For general β, a simple graphical argument shows that (7.10)
always has a positive solution. Figure 5 shows the dependence of the radial position of
the critical point on the viscosity parameter N for several values of the angle β. The solid
portion of the curves corresponds to the critical point being a spiral, while the dashed
portion is for the critical point being a node. For cosβ < 0 and N small, we have r̂c �
(− cotβ/ sinβ)N−1 while, for N large, r̂c � (− cotβ/ sinβ)3/5. For cosβ > 0 and small
N, r̂c � (cosβ)−3/5 while, for large N cosβ, r̂c � (N cosβ)−1.
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Figure 5. Dependence of the radial position of the critical point on the viscosity parameter N for several values
of β. The solid portion of the curves corresponds to the critical point being a spiral, while the dashed portion
is for the critical point being a node. As shown in figure 8 and as noted in the text, the critical point cannot be
a spiral for β greater than approximately 134.3◦.

Equation (7.9) shows that r̂cĥ3/2
c = sin−3/2 β = constant for β = constant. Returning to

dimensional quantities this relation may be written as

q

rch3/2
c g1/2

=
√

35
54

sin3/2 β � 0.805 sin3/2 β. (7.12)

For β = 90◦, Duchesne et al. (2014) form a Froude number similar to the quantity on
the left-hand side of this equation except that hc and rc are evaluated at the maximum of
the surface elevation, and they report the intriguing observation of an independence of
this quantity from the liquid flow rate. Their numerical constant on the right-hand side,
however, is 0.33 rather than 0.805. This difference may be due to the fact that, by their
definition, both rc and hc are larger than the coordinates of the critical point. Even with this
difference, (7.12) lends support to the ‘constant Froude number’ observation of Duchesne
et al. (2014) and suggests an extension to β > 90◦.

Examples of the dependence of r̂c and ĥc on β are shown in figure 6(a). The radial
position of the critical point rapidly increases with β, signalling an increase of the
hydraulic jump radius. The film height at the critical point correspondingly decreases, as
indicated by (7.9). Examples of the nullclines for increasing values of β (in the direction of
the arrows) are shown in figure 6(b). The inclination angle has a small effect on the lines
G = 0, but a very strong one on the lines F = 0.

The characteristic directions at the critical point are the eigenvectors of the matrix∣∣∣∣∣
∂ĥF ∂r̂F

∂ĥG ∂r̂G

∣∣∣∣∣
∣∣∣∣AB
∣∣∣∣ = λ

∣∣∣∣AB
∣∣∣∣ . (7.13)

The eigenvalues are given by

λ1,2 = 1
2

[
∂ĥF + ∂r̂G ±

√
(∂ĥF − ∂r̂G)2 + 4∂r̂F∂ĥG

]
, (7.14)
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Figure 6. (a) Dependence of the coordinates ĥc, r̂c of the critical point on the angle β (defined in figure 1) for
N = 0.1, 1 and 10, increasing in the direction of the arrows. (b) Examples of the nullclines F = 0 and G = 0.
In the direction indicated by the arrows, the examples shown are for β = 90◦, 91◦, 93◦, 100◦ and 120◦; here
N = 0.1046. The nature of the critical point changes from spiral to node at βc = 100.52◦.

where all the partial derivatives are evaluated at the critical point (ĥc, r̂c). The
corresponding un-normalized eigenvectors have components∣∣1, (λ1,2 − ∂ĥF)/∂r̂F

∣∣T , (7.15)

or, equivalently, |k, 1|T with

k = λ1,2 − ∂r̂G
∂ĥG

, (7.16)

the tangent of the angle between the eigenvectors and the r-axis. The radicandΔ = (∂ĥF −
∂r̂G)2 + 4∂r̂F∂ĥG in (7.14) is given by

Δ = − 23

r̂6
c sin4 β

+ cosβ

r̂2
c sin2 β

[
6
(

N cosβ − 1
r̂c

)
ĥ2

c + 9ĥc cotβ

+ N

r̂2
c sin2 β

(
N cosβ + 14

r̂c

)]
. (7.17)

For β = 90◦ only the first term of (7.17), which is negative definite, gives a non-zero
contribution. Thus, in this case, the eigenvalues are complex and the critical point is
a spiral point to which the solution of the system (7.5), (7.6) tends asymptotically as
the parameter s tends to infinity (see e.g. figure 2 in Bohr et al. (1993) and figure 1 in
Fernandez-Feria et al. 2019). For any solution of (7.3) this implies the existence of points
where |dh/dr| → ∞, i.e. where the tangent to the spiralling trajectory becomes vertical
as we have seen in figure 4. Of course, the solution loses physical meaning at the first
such point to be encountered because, past it, trajectories coming from the left of the
critical point (i.e. for increasing r̂) would turn left and approach it in a retrograde manner,
i.e. for decreasing r̂, while trajectories coming from the right of the critical point (i.e. from
decreasing r̂) would approach it from the left, which would also be retrograde with respect
to the original traversal direction of r̂. As a consequence, a gap remains between the first
two points of vertical tangency that cannot be bridged by the solution of the first-order
system as it stands but, as will be seen in the next section, can be bridged by integration
of the time-dependent version of the model with or without the surface-tension term
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Figure 7. (a) Real (solid lines) and imaginary parts of the eigenvalues of the matrix in (7.13) at the critical
point as functions of the angle β starting with a horizontal surface for β = 90◦. The eigenvalues turn from
complex to real at βc � 100.5◦. (b) Angle between the eigenvectors of the matrix (7.13) and the r-axis; k is
defined in (7.16). For this example N = 0.1046.

(σ/ρ)∂rC. Rojas et al. (2010) attempted to bridge the gap including surface tension in
their version of the time-independent model, but they were forced to postulate boundary
conditions corresponding to a flat horizontal profile at the downstream boundary. In a later
paper, Rojas, Argentina & Tirapegui (2013) determined the missing boundary conditions
by minimizing the difference between their numerical results and the data of Bohr et al.
(1996). In any event, it will be clear from the results of § 9 that, in steady-state conditions,
surface tension only has the effect of selecting a smooth connection between the two
branches of the solution of (7.3) thus providing what amounts to the internal structure
of a ‘quasi-shock’ (Bohr et al. 1993) between the two points of vertical tangency. Several
past authors have suggested that the position of the hydraulic jump may be close to the first
point of vertical tangency of the left branch, both in two (see e.g. Singha et al. 2005) and
three dimensions (see e.g. Tani 1949; Bohr et al. 1993; Wang & Khayat 2019), although,
as the example of figure 4(a) shows, this prescription may not be very accurate.

The situation is different for a cone with β > 90◦ as the second term of (7.17) gradually
increases until a critical angle βc is reached at which the radicand of (7.14) vanishes,
becoming positive for β > βc. At β = βc the critical point turns from a spiral into a node
with equal real eigenvalues. As β increases beyond βc, the eigenvalues remain purely real,
the smaller one keeping close to zero (figure 7a). The angle that the two eigenvectors make
with the r-axis is shown in figure 7(b). The angle corresponding to the smaller eigenvalue
is slightly positive very near βc, but turns negative and close to zero just a few degrees
above. The angle of the larger eigenvalue instead rapidly increases. This major change
of the nature of the critical point is mirrored by a major change of the nullclines F = 0
as shown in figure 6(b). While for β = 90◦ the nullcline F = 0 is proportional to r̂2, as
β increases, it develops a maximum and bends downward tending to 0 at infinity. With
increasing β the maximum decreases and the slope of the eigenvectors at the critical point
becomes negative (figure 7b).

A graph of βc vs N is shown in figure 8. The dashed lines approximate the curve for
small and large values of N; they are approximated very well by the numerical fits

βc � π

2
+ 0.75 N0.62 and βc � π

2
+ 5.2 N−0.62, (7.18a,b)

respectively. The critical angle is close to 90◦ for small viscosity, rises to a maximum
of approximately 134.3◦ at N � 5.5 and then re-descends toward 90◦. The rising branch
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Figure 8. Dependence of the critical angle βc on the viscosity parameter N defined in (7.4). The dashed lines
show the approximations (7.18a,b) for small and large N. When β = βc, the critical point of the system (7.5),
(7.6) changes from spiral to node. The dash-dotted line represents the locus r̂c = ĥc given by (7.19) which limits
the quantitative validity of the present model. (Note that, for this line, the ordinate axis is actually β − π/2
rather than βc − π/2).

corresponds to the fact that, with increasing viscosity, the inclination necessary to
replenish the momentum lost to viscous effects increases. Interpretation of the descending
portion of the curve for larger N requires some care because, as is evident from figure 6(a),
for large N, r̂c can be smaller than ĥc thus violating the basic separation-of-scales
assumption on which the mathematical model is built. It is easy to show that r̂c = ĥc
along the line

N = −
cot
(
β + π

4

)
sin2/5 β

, (7.19)

a relation represented by the dash-dotted line in figure 8; to the right of this line r̂c < ĥc.
Although the present model’s predictions cannot be trusted quantitatively in this parameter
range, it is reasonable to expect that, when viscosity is large, the momentum loss is very
rapid and a modest inclination is sufficient to maintain the Nusselt-like flow (5.3).

The change of the nature of the critical point from spiral to node ‘nearly’ eliminates
the discontinuous solutions found for β = 90◦ in the sense that all relevant solutions of
the system (7.5), (7.6) become continuous just a few degrees above βc. The explanation of
this fact requires the consideration of some details and will be found in Appendix A.
Here, we illustrate the point with figure 9 in which the solid lines are the nullclines
and the short dashed lines the eigenvectors at the critical point. The purple lines are the
solutions of the steady model approaching the node along the eigenvector corresponding
to the ‘fast’ (larger) eigenvalue (which has the greater inclination). In the figure, shading
indicates the regions which contain initial conditions for the integration of (7.5), (7.6)
such that the solution is guaranteed to approach the critical point from the left without
a retrograde portion (recall from the theory of dynamical systems (see e.g. Lefschetz
1963; Glendinning 1994; Strogatz 2015) that solutions approach the critical point along
the direction (eigenvector) corresponding to the smaller eigenvalue). On the right these
regions are bounded by the purple lines, i.e. the solutions that reach the critical point
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Figure 9. The figures show the nullclines F = 0 (yellow) and G = 0 (green) in the phase plane of the system
for N = 0.1046 and (a) β = 101◦, (b) β = 103.8◦, (c) β = 105◦ and (d) β = 110◦; the critical angle is
βc = 100.52◦. The short dashed lines crossing at the critical point are the eigenvectors (7.15) of the linearized
system. Solutions starting at points in the shaded regions will approach the critical point from the left without
a retrograde section similarly to the solution indicated by a dash-dotted line (red) in panel (d). The purple lines
are the solutions of the steady model approaching the node along the eigenvector corresponding to the larger
eigenvalue (with the greater slope). These lines are part of the boundaries of the shaded region because any
solution starting to the right (or under) them must necessarily approach the critical point from the right.

along the ‘fast’ eigenvalue, because any solution starting from the right of this line will
necessarily approach the critical point from the right. For β = βc the critical point is a star
and all solutions ultimately tend to it along straight lines. The region without retrograde
approach is small for β close to βc (figure 9a), but it expands very rapidly as β is increased
just a few degrees until, for β = 105◦, it has basically invaded the entire area to the left of
the nullcline G = 0 where physically relevant initial conditions can be situated.

Although the figure also shows regions with an initial value of ĥ greater than ĥc, for the
situations of present concern we would be more interested in initial conditions such that
the film thickness approaches ĥc from below as, for example, the solution indicated by the
dash-dotted line in figure 9(d). A similar shading could be used to the right of the critical
point to identify initial conditions such that the backward-integrated solution (i.e. for
decreasing r̂) would approach the critical point without a retrograde section, but this region
coincides with the area between the two nullclines to the right of the critical point except
for a small portion which completely disappears as soon as the slope of the eigenvector
becomes negative which, in this example, happens at β � 103.8◦ (see Appendix A).

The fact that at β = βc the nature of the critical point changes from spiral to node, and
that just a few degrees above this point effectively the relevant solutions do not have a
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retrograde section, suggests that β = βc can plausibly be adopted as the condition for the
disappearance of the hydraulic jump.

8. The time-dependent reduced-order problem

Including surface tension in the steady reduced-order model leads to a two-point boundary
value problem which has proven numerically delicate in earlier investigations (see e.g.
Watanabe et al. 2003). We have found that a more robust way to solve the steady problem
is to consider the long-time asymptote of the time-dependent problem which, of course, is
also of interest in itself.

The equations to be solved are (4.9) and (4.10) which we rewrite as the following system:

∂tH + A∂rH =
∣∣∣∣∣∣
− cotβh

r2 sinβ
∂rq

S

∣∣∣∣∣∣ , (8.1)

where the matrix A and the vector H are given by

A =

∣∣∣∣∣∣∣∣
0

1
r sinβ

−9
7

q2

rh2 sinβ
+ 5

6
rgh sin2 β

17
7

q
rh sinβ

∣∣∣∣∣∣∣∣
, H =

∣∣∣∣ h
q

∣∣∣∣ , (8.2a,b)

and the source term S by

S = −5
6

hr sinβ
(

g cosβ − σ

ρ
∂rC

)
+ 9

7
q2

hr2 sinβ
− 5

2
νq
h2

(
1 + cotβ

h
r

)
. (8.3)

Note that the surface-tension term has been grouped with the other source terms in spite of
its differential nature as, otherwise, conversion of the model to a first-order system would
cause difficulties. The importance of this term away from the critical point is minor. We
have also placed a small term proportional to ∂rq on the right-hand side of the first equation
to simplify the developments that follow.

The description of a numerical method for the solution of (8.1) can be found in
Appendix C. Here, we focus on the mathematical nature of the problem starting with
an investigation of the eigenvalues of the matrix A which are given by

λ± = 17q
14rh sin β

± 1
2

√
37q2

49r2 h2 sin2 β
+ 10

3
gh sinβ. (8.4)

Since the radicand is positive–definite, the system is unconditionally hyperbolic. One
eigenvalue, λ+, is always positive. The other one, λ−, changes sign from positive to
negative precisely when the term in parentheses multiplying dh/dr in (5.1) turns from
positive to negative with increasing h or r. When both eigenvalues are positive, i.e. when
h is small upstream of the jump, information propagates only in the direction of increasing
r and the flow may then be said to be super-critical as there is no back-propagation effect.
Conversely, when h has become so large that λ− has changed sign, i.e. here, downstream
of the jump, the flow is subcritical.

The Riemann invariants are the elements of the vector R−1H in which the matrix R
is such that R−1AR is diagonal; R is constructed with the eigenvectors of A and it is
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proportional to

R =
∣∣∣∣(r sinβ)−1 (r sinβ)−1

λ+ λ−

∣∣∣∣ . (8.5)

The Riemann invariants are found to be given by

C± = r sinβ
λ+−λ−

(
±λ±h ∓ q

r sinβ

)
. (8.6)

We can use (8.1) integrated to steady state to generate results for the jump radius
omitting surface-tension effects; the numerical method used for this purpose is described
in Appendix C. The critical aspect of the method that explains its ability to avoid dealing
with the singularity of the time-independent model is the coupling that it introduces
between the flow upstream and downstream of the critical point. The same coupling also
implies the continuity of mass and momentum fluxes and, therefore, automatically includes
the conservation relations that, starting with Watson (1964), many previous authors have
used to determine the location of the hydraulic jump.

As already noted more than once, including the horizontal plate case β = 90◦ would
force us to use a boundary condition at the right edge of the computational domain
for which many choices are possible which lead to different results. On the other hand,
with a sloping cone, the large-r asymptotic solution of (5.1) given by Zollars & Krantz
(1980) gives a unique well-defined prescription which permits us to obtain results with
a certain degree of universality; we impose this condition at r̂ = 12. We consider cone
angles between 95◦, which is a sufficient slope for the application of the downstream
boundary condition, and 110◦, with the upper limit dictated by the decreasing N-range for
the existence of the jump as shown in figure 5. At the left boundary of the domain we
choose as initial condition ĥ = 0.1 at r̂ = 0.2. We have found some slight dependence of
the jump radius on this choice, especially when the jump radius is small, but not strong
enough to significantly affect the scaling shown in figure 10, namely

r̂jump � 1.2
[

1 + β − 90◦

60◦

]
N−0.41, (8.7)

with β in degrees. In terms of dimensional quantities, this relation becomes

rjump � 0.962
[

1 + β − 90◦

60◦

]
q0.646

ν0.41g0.118 . (8.8)

The scaling proposed by Bohr et al. (1993) for a horizontal plate is 0.73q0.625ν−0.375g−0.125

and is comparable to (8.8) for β = 90◦.

9. The effect of surface tension

We can now show the effect of surface tension on the flows presented at the beginning
of § 7. As mentioned before, we have found expedient to run the time-dependent model
to steady state to generate these results, some of which are shown in figures 11 and 12.
We begin by comparing in the former figure the results of the reduced-order model with
and without surface tension for β = 90◦, 95◦ and 105◦. The critical angle for this case is
βc = 100.52◦, so that the first two cases have a smaller slope and exhibit a hydraulic jump
while in the last one the solution is very smooth and the jump virtually gone. As shown by
the symbols in figure 11, the numerical method for the time-dependent model described
in the previous section is able to sharply capture the discontinuity of the solution without
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Figure 10. Scaling of the hydraulic jump radius as predicted by the long-time (steady) solutions of the
time-dependent, reduced-order model (8.1) without surface tension.
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Figure 11. Steady solutions of the time-dependent two-equation system (8.1) with (continuous lines) and
without surface tension. Here, N = 0.1046 with a corresponding critical angle βc = 100.52◦.

surface tension. With the inclusion of surface tension, the solution exhibits oscillations
upstream of the jump, which are a known artefact of first-order models (see e.g. figure 5 in
Ruyer-Quil & Manneville 2000), and are also visible e.g. in figure 2 of Rojas et al. (2013).

Figure 12 compares some of the solutions of the steady first-order model already shown
in figure 4 (dashed lines in the left column) with the long-time (steady) solutions of
the time-dependent version of the model (solid lines); the X marks the position of the
critical point which, in both cases, is seen to be to the left of the discontinuity. Away
from the critical point the steady and time-dependent solutions agree very well. The right
column compares the Navier–Stokes simulations with the results of the time-dependent
reduced-order model including surface tension (solid lines). Other than for the small
oscillations upstream of the jump already mentioned, the reduced-order model with
surface tension does a good job at reproducing the NS results. Both in these cases and
in those of the previous figure the Bond number is Bo = ρga2/σ � 2.83.

The results of the Navier–Stokes simulations for the free-surface profiles corresponding
to some of the water data points in figure 3 are shown by the thin grey line in figure 13
where they are compared with the present time-dependent reduced-order model; the
boundary conditions for the latter are obtained from the Navier–Stokes simulations.
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Figure 12. The images in the left column are for cases (a), (b) and (e) of figure 4 and show the solution of the
reduced-order model; the horizontal axis is r/a and the vertical axis h/a. The dashed lines have been obtained
by integrating the time-independent model (5.1) starting from the left and the right of the critical point, the
position of which is marked by the X. The long-time (steady) solutions of the system (8.1) without surface
tension, obtained by the numerical method described in § 8, are shown by the solid lines. The images in the
right column compare the solution of the reduced-order model with surface tension (solid line) with the NS
results including surface tension. The viscosity parameter N defined in (7.4) has the value N = 0.1046, the
critical angle is βc = 100.52◦, the Bond number Bo = 2.832 and the jet Reynolds number is Rej � 152.8.

The yellow solid lines and the purple dashed lines are the model results with and without
surface tension effects, respectively. It is evident that surface tension smoothens the free
surface in the jump region but has virtually no effect on the jump position. Figure 14
compares the same data of Duchesne et al. (2014) already shown in figure 2 (crosses) with
those obtained by the present numerical method with and without surface tension; the
former are shown by the slightly smoother solid curve (orange). Comparison of the two
reduced-order model results confirms that surface tension only has a minor effect.

This conclusion is further supported by the NS results for different values of the Bond
number shown in figure 15. In descending order, the images are for Bo = ∞ (zero surface
tension), 5.66, 2.83 and 1.42. For small or no surface tension the film profile exhibits
a hump right downstream of the jump, which is also present in the results of Wang &
Khayat (2021) (see the second panel of their figure 7). Increasing surface tension prevents
the formation of this feature but has otherwise very minor effects.

10. Pulsating jet

We have shown a few examples of results obtained as the long-time limit of the
time-dependent formulation. We now compare the two-equation time-dependent model
with the Navier–Stokes simulations for a case in which the flow rate of the jet oscillates
sinusoidally with frequency f

Q(t) = Q0 + Q1 sin(2πft). (10.1)

Two examples, taken after steady conditions have been reached, are shown in figures 16
and 17 where the vertical scale is magnified by a factor of 10 with respect to the horizontal
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Figure 13. The thin grey lines are the present NS results for three cases for which the jump radius was
shown in figure 3. The yellow solid lines and the purple dashed lines are the steady-state results given by
the time-dependent model with and without surface tension terms, respectively.
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250
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3

Figure 14. The data of Duchesne et al. (2014) shown in figure 2 (crosses) compared with the time-dependent
reduced-order model predictions with (orange line) and without (purple line) surface tension.

one. In both cases Q1/Q0 = 0.05, β = 120◦, Rej0 = 2Q0/(πaν) = 382 and N = 0.0419.
For figure 16 a2f /ν = 2.5 while, for figure 17, the frequency is twice as large, a2f /ν = 5.0
(these values are realizable with all the same parameter values as before except for the
kinematic viscosity ν = 20 × 10−6 m2 s−1 and frequencies of 8 and 16 Hz). A longer
sequence showing the reduced-order model simulation for the first case over an extended
domain is available as Movie 1 of the supplementary material associated with this paper.
The movie shows how the waves gradually get shorter as they are damped by the combined
effect of geometry and viscosity.

The two panels in each figure are separated by half a period, the first image
corresponding to the phase 2πft = 0.233 × (2π) and the second one to 0.733 × (2π) =
0.233 × (2π)+ π. The colour shows the NS results and the solid line the results of the
time-dependent two-equation model. Since this latter model does not include the jet, it
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a

Figure 15. Effect of surface tension on the film profile as obtained from the Navier–Stokes simulations with
β = 92◦, N = 0.1046. From top to bottom the Bond number has values ∞ (no surface tension), 5.66, 2.83 and
1.42. The jet Reynolds number is Rej = 152.8.
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Figure 16. Two frames from the direct numerical simulation of a sinusoidally pulsating jet (10.1) with an
average Reynolds number Rej0 = 382, a normalized frequency a2f /ν = 2.5 and N = 0.0419. The purple lines
are results of the time-dependent reduced-order model of § 8. The two images are separated by one half-period.

cannot be synchronized a priori with the Navier–Stokes simulation. The result shown in
the figure is obtained by translating in time the results of the reduced-order model in such
a way that the phase of the first several waves matches that of the NS results.

Close to the point of impingement of the jet the film thickness gradually increases but,
since the inclination angle is much greater than the critical angle βc = 96.0◦, conditions
are far from those producing a jump. Immediately downstream the film is relatively
thick but very quickly the free surface settles into a series of steady waves preceded by
capillary oscillations and followed by a long tail reminiscent of the Kapitza waves on a
two-dimensional film. The reduced-order model does a good job for the lower-frequency
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Figure 17. Two frames from the direct numerical simulation of a sinusoidally pulsating jet (10.1) with an
average Reynolds number Rej0 = 382, and a frequency twice as large as in the previous figure, a2f /ν = 5.0;
N = 0.0419. The purple lines are results of the time-dependent reduced-order model of § 8. The two images
are separated by one half-period.

case of figure 16, but is not as accurate for the larger-frequency example of figure 17.
Particularly in the higher-frequency case of figure 17, some of the short waves exhibited
by the reduced-order model have a slightly larger amplitude than the NS ones, which is
another manifestation of a tendency that we have already encountered in figure 12. Overall,
however, the agreement is quite satisfactory.

The supplementary material associated with this paper includes a few other examples of
situations for which, in steady conditions, the jet would produce a jump. These sequences
show that, as the flow rate increases, a jump builds up. This is followed by a wave which
originates on the downstream side of the jump and propagates outward. As the flow rate
decreases the jump smoothes out, then builds up again generating another wave and so on.
In no case we observe waves propagating upstream in the thin part of the film, confirming
the super-critical nature of the flow in this region.

11. Reverse gravity

The reduced-order model (4.9), (4.10) can be adapted to the case of a jet striking the cone
from below by reversing the direction of the polar axis, which has the effect of changing the
sign of g. A cone with a downward aperture then has 0 < β < π/2 while, if the aperture is
upward, π/2 < β < π. The continuity equation (4.9) remains unchanged, while the other
equation becomes

∂tq + 17
7

q
hr sinβ

∂rq − 5
6

(
54
35

q2

h2r sinβ
+ grh sin2 β

)
∂rh

= 5
6

rh sinβ
(

g cosβ + σ

ρ
∂rC

)
+ 9

7
q2

hr2 sinβ
− 5

2
νq
h2

(
1 + cotβ

h
r

)
. (11.1)
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Figure 18. Predictions of the steady first-order model (11.2), without surface tension, for the flow on the
underside of the surface of a cone with three different apertures, upward, β = 100◦, horizontal, β = 90◦, and
downward, β = 80◦.

In particular, in steady conditions and omitting surface tension, we find, in place of (5.1),(
gh3 sinβ + 54

35
q2

r2 sin2 β

)
dh
dr

= −54
35

hq2

r3 sin2 β
− h3 g cosβ + 3νq

r sinβ

(
1 + cotβ

h
r

)
. (11.2)

Provided cosβ < 0, so that the aperture of the cone is upward, for large r this equation
becomes dh/dr � − cotβ so that h increases without bound; an example is the curve
labelled β = 100◦ in figure 18. This result is not surprising as, by using the steady
version of the model, we have prevented the development of instabilities (in particular
the Rayleigh–Taylor instability) and, since liquid has been injected at a constant rate for
all times since t → −∞ and the velocity decreases with r, the predicted thickness of the
film must diverge. If cosβ > 0, on the other hand, gravity assists the drainage of the film
and one finds

h �
(

3νq
gr sinβ cosβ

)1/3

, (11.3)

which coincides with (5.3) upon a change of the sign of g. An example is the curve labelled
β = 80◦ in figure 18; for β = 90◦, h → (4N log r)1/4.

Figures 19(a) and 19(b) show numerical results obtained from the time-dependent
two-equation model including surface tension. In this case the Rayleigh–Taylor instability
is not suppressed and, indeed figures 19(a) and 19(b) show it in action. Here, the time
integration stops when the film has thinned so much as to require an unreasonably small
time step (cf. Yiantsios & Higgins (1989, for a similar situation in two dimensions)).
Figure 19(a) is for Bo � 2.43 with β = 90◦ and 100◦, while figure 19(b) is for
β = 90◦ with Bo = 9.72 and Bo = 0.608. The waves arise spontaneously due to the
Rayleigh–Taylor instability and have a wavelength quite close to that of the fastest growing
linear mode predicted by the theory of this instability for the present axisymmetric
geometry.

For all the examples of figures 18 and 19 the flow rate is as specified in § 6 and
corresponds to a jet Reynolds number Rej � 152.8. For figure 19 zero-gradient boundary
conditions were imposed at the right end of the domain. The conditions at the left boundary
of the domain were set using Watson’s theory as described in § 6; in particular, integration
started at rm/a � 2.804 with hm/a � 0.3714; a constant flow rate was maintained at
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Figure 19. Predictions of the time-dependent two-equation model (8.1), including surface tension. Panel (a) is
for Bo � 2.43 with β = 90◦ and 100 ◦. Panel (b) is for β = 90◦ with Bo = 9.72 and Bo = 0.608. In both cases
the images shown are at the time when the film has become too thin for the integration to proceed.

rm/a � 2.804 and, initially, the cone surface was covered by a uniform liquid layer with
hm/a � 0.3714.

It is known from the two-dimensional analogue of this configuration that a sufficient
downward tilt of the plate can hinder the development of the Rayleigh–Taylor instability:
as they propagate downward, surface waves grow under the combined effect of the Kapitza
and Rayleigh–Taylor instabilities but, in suitable conditions, they can stabilize at a finite
amplitude (see e.g. Indeikina, Veretennikov & Chang 1997; Brun et al. 2015; Kofman et al.
2018; Zhou & Prosperetti 2022). The same phenomenon is observed for three-dimensional
drops sliding down the underside of an inclined surface (Jambon-Puillet et al. 2021).
Without an imposed disturbance, in the present system the instability will grow only due to
numerical errors and, for this reason, grid refinement does not lead to convergence of the
results. We have found a variety of behaviours, with waves initially growing and then being
damped, or approaching what seems to be a steady state, or slowly growing. Extending the
computational domain increases the influence of numerical errors and we are therefore
unable to describe the asymptotic behaviour of the system. One factor to keep in mind is
that the mean velocity of the flow, which is proportional to h2, decreases proportionally to
r−2/3 and, therefore, it may become too small to stabilize the waves.

Figure 20 shows the results of the Navier–Stokes simulations for a jet, again with Rej �
152.8, impinging on a conical surface from below for inclinations β = 80◦, 90◦ and 100◦.
The contact angle with the solid surface is 90◦. The results have been obtained prescribing
the total pressure at the lower boundary where the falling liquid leaves the computational
domain. The difference from the results of the previous figure is due to the fact that, here,
initially, the plate is dry while, in the previous case, at t = 0 it was covered by a uniform
liquid layer. As the inclination angle of the cone surface is increased, the film detaches
from the plate closer and closer to the axis of symmetry. None of these cases exhibits a
structure resembling a hydraulic jump, with the film starting thin and then undergoing a
rapid thickening. The results are qualitatively similar to those reported in the literature for
so-called water bells (see e.g. Clanet 2007; Jameson et al. 2010). For this case, Button
et al. (2010) gave the relation rd = cd[ρQ3/(νσ )]1/4 for the detachment radius rd with
cd = 0.3025. The relation of Bhagat et al. (2018) is the same except that cd � 0.289 (from
experiment) or cd = 0.277 (from theory), later corrected by the authors to cd � 0.2705
(Bhagat et al. 2020). Using this smaller value of cd, for the 90◦ case of figure 20(b),
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90°β = 80° 100° g

(b)(a) (c)

Q
Figure 20. A jet impinging from below on a conical surface angled downward (80◦, panel a), horizontal

(panel b) and angled upward (panel c, β = 100◦). The contact angle with the solid surface is 90◦.

the correlation gives a non-dimensional detachment radius rd/2a � 3.823, which is in
excellent agreement with our computed value 3.825.

12. The two-dimensional case

The two-dimensional version of the present model has been described at the end of § 4.
To compare with existing literature it is convenient to replace our angular coordinate β
by the angle η = β − π/2, already introduced in (4.14), defined as the inclination to the
horizontal. In terms of η our model becomes, upon replacing r by x,

∂th + ∂xq2D = 0, (12.1)

∂tq2D + 17
7

q2D

h
∂xq2D − 5

6

(
54
35

q2
2D
h2 − gh cos η

)
∂xh = 5

6
h
(

g sin η + σ

ρ
∂xC

)
− 5

2
νq2D

h2 .

(12.2)

As already noted, these equations coincide with those developed by Ruyer-Quil &
Manneville (1998). In particular, therefore, they reproduce correctly the Kapitza stability
threshold q2D/ν = 5

6 cot η for a flat Nusselt film (see e.g. Chang & Demekhin 2002;
Kalliadasis et al. 2012). In the steady case, upon omitting the surface-tension contribution,
(12.2) becomes (

54
35

q2
2D − gh3 cos η

)
dh
dx

= −gh3 sin η + 3νq2D. (12.3)

Starting from h sufficiently small, dh/dx > 0 and h grows. If the term in parentheses on
the left-hand side approaches 0 while the right-hand side is positive, a point is reached
where dh/dx → ∞, which signals the presence of a hydraulic jump. The condition for
this to happen is that the right-hand side be positive when h3 = (54/35)q2

2D/(g cos η),
from which we obtain the following condition for the existence of a hydraulic jump on a
two-dimensional film:

cot η >
18
35

Re2D, (12.4)

in which Re2D = q2D/ν is the Reynolds number for two-dimensional film flow. The
disappearance of the jump with increasing plate inclination is analogous to the
disappearance of the jump with increasing β found for the cone.

A first-order model for the steady hydraulic jump in two dimensions was recently
presented in Dhar et al. (2020). In dimensional form that result is

dh
dx

= 1
K

Kνq2D − sin ηgh3

q2
2D − g cos ηh3

, (12.5)

with K a pure number dependent on the shape of the assumed velocity profile; for a
parabolic profile used by Dhar et al. (2020) K = 5

2 . This expression is close to (12.3) but
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it cannot reproduce the condition (12.4) for the appearance of jump. A similar equation
for a horizontal plate but, again, with different numerical coefficients, was given in Singha
et al. (2005). For the related problem of a bore propagating on an inclined film, Benilov
(2014) developed an approach based on the depth averaging of moments of the streamwise
momentum equation. The mathematical structure of his model is different from the steady
version of (12.3) in particular because it contains fourth-order spatial derivatives.

13. Summary and conclusions

The circular hydraulic jump generated by a liquid jet impinging vertically on a flat plate has
been found to be easily destroyed by changing the horizontal plate to a conical surface with
a downward inclination. The gravity component parallel to the surface is able to restore
the liquid momentum lost to viscosity and to transform the flow to the conical analogue
of the well-known two-dimensional Nusselt flow. As we have seen from the comparison
of the two- and three-dimensional reduced-order models, the radial spreading of the cone
surface drastically changes the mathematical nature of the problem. It may be expected
that pursuing in this geometry the study of solitary waves and other wave structures
analogous to those known to exist in two dimensions (see e.g. Chang & Demekhin 2002;
Kalliadasis et al. 2012; Chakraborty et al. 2014) will be a challenging but very interesting
undertaking.

Direct experimental evidence for the phenomena studied in the present work does not
seem to be available. There is a recent paper on the circular hydraulic jump on a downward
curved surface (Saberi, Mahpeykar & Teymourtash 2019) which reports an increase of the
radius of the jump due to curvature. A similar trend is visible in figures 4 and 6 as the
aperture of the cone is decreased and the slope of the surface correspondingly increases,
but nothing more than a qualitative comparison is possible. What one may expect is that,
for a given plate curvature, as the jet flow rate is increased and the jump location moves
outward to a region with a sufficient slope, the jump may disappear and be replaced by the
smooth increase of the thickness of the liquid layer discussed in § 7.

A final comment may be made on the possible practical and scientific implications of
the present work. Liquid jets are often encountered in surface cleaning operations (see
e.g. Yeckel, Middleman & Klumb 1990; Wang et al. 2013; Dhar et al. 2020) and in heat
transfer (see e.g. Askarizadeh et al. 2020), an application in which the enhancement due to
surface waves in two dimensions is amply documented (see e.g. Park et al. 2004; Albert,
Marschall & Bothe 2014; Charogiannis & Markides 2019; Zhou & Prosperetti 2020).
Other applications are encountered in the manufacturing of shells by the coating of solid
bodies (see e.g. Lee et al. 2016) and in other coating flows (see e.g. Weinstein & Ruschak
2004; Takagi & Huppert 2010). The flow of liquid films coating the underside of a surface
is of interest in the context of water bells (see e.g. Clanet 2007; Jameson et al. 2010),
geophysics (see e.g. Takagi & Huppert 2010; Balestra et al. 2018; Lerisson et al. 2020;
Ledda et al. 2021) and others (see e.g. Jambon-Puillet et al. 2021), and a conical surface
is a simple geometry to study the effects of certain types of topography. Finally, some
interest exists in the flow of liquid films on rotating conical surfaces (see e.g. Symons
2011; Adachi, Takahashi & Okajima 2018), a configuration to which it may be possible to
extend the methods used in the present study.

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2022.777.

Funding. This study was supported by the University of Houston. The numerical computations were carried
out on the Sabine cluster of the University of Houston Research Computing Data Core.
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Appendix A. Additional results for the first-order model

In the body of the paper we have omitted some detailed considerations so as not to interrupt
the flow of the argument. We provide them here. Furthermore, there are some further
results for the first-order model that are of some interest but somewhat peripheral to the
main ones included in the body of the paper.

It was stated in § 7 that some discontinuous solutions of the first-order system remain for
a few degrees above βc. Figure 21 illustrates this fact. The parameters are the same as for
figure 9 and, in particular, the critical angle is βc � 100.52◦. Panel (a) is for β = 101◦, just
above βc, and panel (b) for β = 110◦. The insets show details in the neighbourhood of the
critical point. In the shaded areas dĥ/dr̂ < 0 while dĥ/dr̂ > 0 in the white areas. Solution
curves of the system (7.5), (7.6) are shown by the solid lines and exhibit a horizontal or
vertical tangent as they cross the nullclines as explained in § 7. The purple line in panel (a)
slightly overshoots the critical point and approaches it from the right, i.e. in a retrograde
manner. The continuation of this branch starting at the critical point, on the other hand,
has no retrograde section. In this situation, therefore, the steady first-order model does
not produce a continuous solution, but only one of the two branches has a retrograde part
and the gap between the two branches of the solution is typically much smaller than for
β < βc. In panel (b), on the other hand, no retrograde section is shown and the joining of
the two branches of the solution is smooth. Since the film thins with increasing r̂, for r̂ past
the critical point the relevant solution must ultimately remain in the small shaded region
between the nullclines F = 0 and G = 0 to the right of the critical point. When the slope
of the eigenvector corresponding to the smaller eigenvalue is non-positive, this constraint
forces the line to be entirely in the region between the two nullclines and no retrograde
portion is possible. When this slope is positive, the right branch of the solution curve can
approach the critical point from above as shown in panel (a) of figure 21 and, in this case,
a short retrograde portion is possible. However, as illustrated in figure 7(b), the slope turns
negative for β very close to βc so that this retrograde portion can only exist very close to
the critical angle.

Another interesting feature of the reduced-order model (7.3) is that it possesses solutions
such that the film height decreases monotonically, so that no jump can form, when it is
started from initial conditions such that ĥ > ĥc and r̂ < r̂c. Since all solutions must pass
through the critical point, this situation becomes possible when, with increasing β, gravity
is strong enough to balance the viscous loss of momentum. Mathematically, this transition
to no-jump conditions happens for β = βnj, the angle at which the slope of one eigenvector
changes from positive to negative or, from (7.13) or (7.15), when ∂r̂F = 0. This condition,
together with the criticality conditions F = 0, G = 0 leads to

r̂c = 1
N cosβ

(
1 − cot2 β − 1

sinβ

√
1 + sin2 β cot4 β

)
, (A1)

which can be substituted into (7.10) to find a relation between βnj and N. As a final point
it may be noted that, in principle, the eigenvalues (7.14) could be real but of opposite sign,
which would make the critical point a saddle. We have verified numerically that this does
not happen, at least in the range 90◦ � β � 180◦, 10−3 � N � 103.
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Figure 21. Examples of solutions of the first-order model (7.5), (7.6) near (panel (a), for β = 101◦) and
farther from (panel (b), for β = 110◦) the critical angle βc = 100.52◦. The insets show enlargements in the
neighbourhood of the critical point; dĥ/dr̂ < 0 in the shaded areas while dĥ/dr̂ > 0 in the white areas.

Appendix B. Liquid film flow on the surface of a vertical cylinder

The reduced-order model (2.8), (4.10) can be adapted to describe the axisymmetric flow
of a liquid film down the surface of a vertical cylinder with radius R � h by taking the
limit β → π and r → ∞ with r sinβ → R; if the z axis is taken directed downward we
can replace ∂r by ∂z. With these transformations, the mass conservation equation (2.8)
becomes

∂th + 1
R + h

∂zq = 0. (B1)

(The analogue to the form (4.9) can be obtained by replacing the factor (R + h)−1 by its
Taylor series expansion R−1 − hR−2.) Equation (4.10) for q becomes instead

∂tq + 17
7

q
hR
∂zq − 9

7
q2

Rh2 ∂zh = 5
6

Rh
(

g + σ

ρ
∂zC

)
− 5

2
νq
h2

(
1 − h

R

)
, (B2)

which coincides with the result given in Ruyer-Quil et al. (2008) in the limit h/R � 1.
The curvature (3.21) is

C � − 1
R + h

+ ∂2
z h � − 1

R
+ h

R2 + ∂2
z h. (B3)

Appendix C. Numerical aspects

The solver interIsoFoam implemented in the open-source software OpenFOAM v2012 was
used for the Navier–Stokes equations. The incompressible form of the equations is solved
in a finite-volume framework with the PISO method (pressure implicit with splitting of
operators, Issa 1986). The volume-of-fluid method is used to describe the evolution of the
two immiscible fluids (gas and liquid), with the surface-tension effect evaluated by using a
continuum surface force model (Brackbill, Kothe & Zemach 1992). The interface between
the two phases is captured by using the isoAdvector approach (Roenby, Bredmose & Jasak
2016). The flow field is updated in time with a first-order implicit Euler scheme. The
second-order linear-upwind scheme is used for spatial discretization of the Navier–Stokes
equations, whereas a van Leer limiter is applied to the phase-fraction field.
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Figure 22. Comparison of our NS results (purple solid lines) with those of Fernandez-Feria et al. (2019),
with (left) and without (right) surface tension effects.

In most cases shown in this paper, we use a uniform mesh with the cell aspect ratio
close to 1. For very long domains the length of which is, e.g. over 30 times greater than the
height, nonuniform meshes were carefully generated for a better computational efficiency
while ensuring that the wall region and the hydraulic-jump region are accurately resolved.

The computational domain is initially full of a medium (‘gas’) with density and viscosity
three orders of magnitude smaller than those of the liquid. The jet is injected from the inlet
with a uniform velocity profile. For all wall boundaries we use no-slip conditions. At the
outlet of the liquid, the flow is essentially fully developed and therefore we can fix the
static pressure to a reference value; for the velocity we use a standard outlet condition,
i.e. the velocity gradient normal to the boundary is taken to vanish. At the boundary of the
gas domain, the total pressure (static plus dynamic) is fixed and the gas can freely enter or
exit the domain from there. We tried different options finding negligible differences due
to the small density and viscosity of the gas.

In the presence of a contact line, the liquid–solid contact angle is set to be 90◦. It was
found that, in a few cases, small bubbles might be trapped in the film during the initial
transient in which the liquid film rapidly spreads. To avoid the possibility of an effect on
the local shape of the gas–liquid interface, we artificially remove these bubbles and then
continue the simulation until it finally reaches a steady state.

Standard grid-convergence tests have been conducted for typical cases. The
computational mesh was continuously doubled until the shape of the free-surface
distribution was no longer affected by the mesh refinement. The results reported in this
paper are all obtained with the finest meshes.

As a last test case further confirming the accuracy of our numerical method we show in
figure 22 a comparison of our predictions (solid lines) with the numerical results from
figure 6(a) (WG30/70) of Fernandez-Feria et al. (2019) (dashed lines) with (left) and
without (right) surface tension.

For the solution of the time-dependent reduced-order model (8.1) we used the
method of lines. The partial differential equations are converted into a system of
ordinary differential equations in time by approximating all spatial derivatives with
central finite differences on a uniform grid. The resulting system is then solved with
the aforementioned Bogacki–Shampine method. Since the system is hyperbolic, central
difference discretization leads to an unstable scheme. In order to stabilize the computation
and suppress possible unphysical oscillations, we adapt the concept underlying the design
of the Jameson–Schmidt–Turkel scheme (Jameson, Schmidt & Turkel 1981) adding
necessary artificial dissipation in both the equations for h and q. In detail, the original
equation at the spatial node j, synthetically written in the form

∂twj = Rj(h, q), (C1)
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with w representing either h or q, is approximated as

∂twj = R′
j = Rj +Λj�r

[
ε
(2)
j

[
∂2

r w
]

j
− ε

(4)
j �r2

[
∂4

r w
]

j

]
, (C2)

where�r is the grid size andΛj = max(λ+,j−1, λ+,j, λ+,j+1) with λ+ given by (8.4). The
fourth-order derivative serves as a background dissipation term dampening high-frequency
components, whereas the second-order one takes care of strong discontinuities. The
coefficients are calculated according to

ε
(2)
j = κ(2) max

(
fj−1, fj, fj+1

)
, ε

(4)
j = max

[
0, κ(4) − ε

(2)
j

]
. (C3a,b)

The sensor for discontinuity fj is expressed as

fj = |hj+1 − 2hj + hj−1|
max

(|hj+1 − hj| + |hj − hj−1|, δlim
) , (C4)

where δlim is a small parameter that prevents the denominator from vanishing when the film
thickness h is locally constant. Our numerical tests show that the values of the empirical
constants κ(2) = 1

2 , κ(4) = 1
64 maintain a good balance between accuracy and the need

for numerical stability. It should be mentioned that, due to the extra terms added to the h
equation, the flow rate q exhibits a spike in a small region encompassing the jump, after
which it settles to a value slightly different from that ahead of the jump. This effect is most
significant for the 90-degree case we have tested, the relative difference in q across the
hydraulic jump being approximately 3.4 %. This error becomes much smaller, 0.2 %, for
the 95-degree case where the hydraulic jump is milder. In any case, there is no evidence
that this discrepancy causes significant mismatch in terms of the film thickness compared
with the Navier–Stokes simulations as can be seen e.g. in figure 13. That being said, there
is potential for the present numerical method to be improved to avoid these artefacts and
yield more accurate results, especially in consideration of the variety of techniques for
numerical treatment of shock waves in compressible fluid dynamics to which the hydraulic
jump phenomenon exhibits several similarities (see Kasimov 2008).

For the reverse-gravity examples of § 11 there is a region of the (h, r) plane where the
eigenvalues (8.4) are complex. In these regions the smoothing procedure described above
is unnecessary.
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