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We examine the stability of radially spreading, gravity-driven thin films of power-law
fluids, lubricated from below by another power-law viscous fluid. Such flows are
susceptible to a viscous fingering instability, also known as a non-porous viscous fingering
instability, when a less viscous fluid intrudes beneath a more viscous fluid. In contrast
to the Saffman–Taylor instability, such instabilities originate from a jump in hydrostatic
pressure gradient across the intrusion front, associated with gradients in the upper surface.
These are stabilised by buoyancy forces associated with the lower layer near its nose,
and all instabilities are suppressed above a critical density difference. We find that
shear-thinning flows are more prone to instability than Newtonian and shear-thickening
flows. Lower consistency ratios are sufficient for the onset of instability of shear-thinning
flows, and the stabilising influences of buoyancy forces are suppressed. As such, higher
density differences are required to suppress the instability completely.
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1. Introduction

The intrusion front of a viscous fluid propagating towards another viscous fluid confined to
a narrow channel, or a porous medium, is prone to a viscous fingering instability when the
intruding fluid is less viscous. A similar instability occurs when a thin film of a less viscous
fluid intrudes underneath a thin film of a more viscous fluid under the action of gravity.
Kowal (2021) introduced the term non-porous viscous fingering to refer to instabilities
of this type, which, in general, involve free-surface flow with a viscosity contrast. Such
instabilities are relevant to a wide range of natural and industrial phenomena, such as
various coating applications (Taylor 1963; Reinelt 1995), the formation and protection
of microchips (Cazabat et al. 1990), patterning in microfluidic devices (Kataoka &
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Troian 1999), fractures (Hull 1999), fingering of granular materials (Pouliquen, Delour
& Savage 1997), the oil recovery industry (Orr & Taber 1984), and carbon sequestration
(Cinar, Riaz & Tchelepi 2009). These instabilities may be controlled by varying the flow
rate (Li et al. 2009; Dias et al. 2012), altering the geometry (Nase, Derks & Lindner
2011; Al-Housseiny, Tsai & Stone 2012; Juel 2012; Dias & Miranda 2013) through
elastic deformation (Pihler-Puzovic et al. 2012, 2013; Pihler-Puzovic, Juel & Heil 2014)
and anisotropy (Ben-Jacob et al. 1985), including viscous fingering of nematic liquid
crystals (Buka, Kertész & Vicsek 1986). The rheology of the flow alters the onset of
instability, as well as the structure of the fingering patterns that emerge (Kondic, Shelley
& Palffy-Muhoray 1998; Fast et al. 2001; Kagei, Kanie & Kawaguchi 2005).

The gravity-driven analogue is also relevant to the flow of ice sheets, lubricated by a
much thinner layer of subglacial till, consisting of water, clay and subglacial sediment
(see, e.g. Weertman 1957; Nye 1969; Kamb 1970; Engelhardt et al. 1990). These form
fast-flowing ice streams, which are much more lubricated from below than the surrounding
ice, as a result of increased basal sliding, a thermoviscous instability, or other flow
instabilities (Hindmarsh 2004, 2009; Sayag & Tziperman 2008; Kyrke-Smith, Katz &
Fowler 2014, 2015; Hewitt & Schoof 2017; Schoof & Mantelli 2021). Instabilities on the
opposite end of the spectrum, involving thin films of fluid forming a more viscous crust
over the main current, are relevant to cooling lava domes, forming a solidifying crust (Fink
& Griffiths 1990, 1998; Stasiuk, Jaupart & Sparks 1993; Balmforth & Craster 2000). The
latter flows are prone to instability following a temperature-dependent viscosity change
(Whitehead & Helfrich 1991).

Instabilities of lubricated viscous gravity currents have also been observed
experimentally for purely Newtonian flows (Kowal & Worster 2015) and when the
overlying layer is shear-thinning (Kumar et al. 2021). A linear stability analysis of these
flows has been conducted in the Newtonian limit by Kowal & Worster (2019a,b), both
globally and locally near the intrusion front, and by Kowal (2021) when the intruding fluid
fully displaces the pre-existing fluid layer. The mechanism of instability can be seen most
clearly in the limit in which the two layers are of equal density, in which case the flow is
most unstable. These are further stabilised by transverse shear stresses and buoyancy forces
associated with the lower layer. The former emerge when the two layers are of unequal
density. Fingering instabilities have also been observed in experiments of a viscous gravity
current intruding beneath a more viscous ambient and at the interface between two more
viscous fluids (Snyder & Tait 1998). The latter is also subject to a purely gravitational
instability, caused by the intrusion of a dense liquid layer into a buoyantly unstable layer
of ambient liquid.

Importantly, the instability of lubricated viscous gravity currents is distinct from the
instabilities formed at the nose of a thin film of viscous fluid down a slope (Huppert 1982;
Troian et al. 1989), and from the long-wave instabilities formed at the interface between
superposed layers of viscous fluid in the Newtonian and non-Newtonian limits (see, e.g.
Yih 1967; Hooper & Boyd 1983; Loewenherz & Lawrence 1989; Chen 1993; Charru &
Hinch 2000; Balmforth, Craster & Toniolo 2003).

In this paper, we extend the stability analysis of Kowal & Worster (2019b) to investigate
the role of a shear-thinning and shear-thickening rheology on the onset of instability.
We model both layers as immiscible thin films of viscous fluid, and assume that the
flow is resisted dominantly by vertical shear stresses and that inertia and surface tension
at the interface between the layers are negligible. We adopt a geometry in which the
flow is spreading radially outwards over a horizontal substrate. The undisturbed flow is
axisymmetric and self-similar, as examined in a number of flow regimes in a companion
paper (Leung & Kowal 2022), henceforth referred to as Part 1.
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z
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z = H(r, θ, t)
z = H(r, θ, t)

ρ, μ, u(r, θ, z, t), q(r, θ, t)

ρl, μl, ul(r, θ, z, t), ql(r, θ, t)
z = h(r, θ, t)

rL(θ, t) rN(θ, t) r

Lubricated region No-slip region

Figure 1. Schematic of the flow of two superposed thin films of power-law viscous fluids spreading radially
outwards under gravity over a horizontal substrate. Adapted from Part 1.

We begin by deriving governing equations, which include the effects of small
disturbances to the base flow, in § 2. In contrast to purely Newtonian flows, the
stress-dependent viscosity of power-law fluids precludes the existence of explicit
expressions for fully nonlinear depth-integrated fluxes in terms of standard functions,
and we exploit the linearity of the small perturbations to proceed. We further formulate
the governing equations in similarity coordinates, which makes it possible to search for
normal mode solutions for the perturbations. As both external boundaries of the flow
(the origin and the leading edge), as well as the intrusion front, involve singularities, it
is necessary to develop asymptotic solutions near the singular points. We do so in § 3. We
solve the resulting coupled system of differential equations numerically in § 4, and discuss
the results, mapping out stability diagrams across parameter space, in § 5. We finish with
concluding remarks in § 6.

2. Theoretical development

We consider the flow of two superposed thin films of viscous fluid of dynamic viscosities
μ and μl, and densities ρ and ρl, spreading radially outwards over a rigid horizontal
substrate, as depicted in the schematic of figure 1. The upper and lower layers are supplied
at constant flux, Q0 and Ql0, respectively, at the origin. We denote physical quantities,
such as the flux and viscosity, associated with the lower, lubricating later by the subscript
l. We denote the surface heights of the upper and lower layers in the lubricated region by
z = H(r, θ, t) and z = h(r, θ, t), respectively, where r and θ are the radial and azimuthal
coordinates, respectively. We also assume that there is no surface tension between the
layers, and consider the limit in which vertical shear provides the dominant resistance to
the flow of both layers.

We assume a power-law non-Newtonian rheology for both films of fluid, so that the
dynamic viscosities are given by

μ = μ̃

∣∣∣∣∂u
∂z

∣∣∣∣
1/n−1

, μl = μ̃l

∣∣∣∣∂ul

∂z

∣∣∣∣
1/n−1

, (2.1a,b)

within the limits of lubrication theory, where μ̃ and μ̃l are constant consistencies. As
discussed in Part 1, the equal power-law exponents imply the existence of a self-similar
axisymmetric flow. These flows have been examined in Part 1, including their dependence
on the underlying dimensionless parameters

D = ρl − ρ

ρ
, M = μ̃

μ̃l
, Q = Ql0

Q0
, (2.2a–c)

describing the density difference, consistency ratio and source flux ratio, respectively.
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The flow considered in this paper is governed by a generalisation of the governing
equations for axisymmetric flows developed in Part 1, to include non-axisymmetric
disturbances. The governing equations and boundary conditions of § 2 of Part 1, apart
from the expressions for the velocities and fluxes, are appropriate to examine such flows.
To derive expressions for the velocities and fluxes, we begin by considering disturbances
of order ε � 1 so that

φ = φ0 + εφ1, (2.3)

where φ = (h, H, u, ul, q, ql) and φi = (hi, Hi, ui, uli, qi, qli) for i = 1, 2, such that
∂φ0/∂θ = 0. Specifically,

h = h0(r, t) + ε h1(r, θ, t), H = H0(r, t) + ε H1(r, θ, t) (2.4a,b)

and

u = u0(r, z, t) er + ε [ur1(r, θ, z, t) er + uθ1(r, θ, z, t) eθ ] , (2.5)

ul = ul0(r, z, t) er + ε [ulr1(r, θ, z, t) er + ulθ1(r, θ, z, t) eθ ] , (2.6)

q = q0(r, t) er + ε
[
qr1(r, θ, t) er + qθ1(r, θ, t) eθ

]
, (2.7)

ql = ql0(r, t) er + ε
[
qlr1(r, θ, t) er + qlθ1(r, θ, t) eθ

]
, (2.8)

where er and eθ are the radial and azimuthal unit basis vectors, respectively.
In what follows, we use the convention that the 0 and 1 subscripts denote quantities

referring to the basic state and perturbations, respectively, and the r and θ subscripts denote
quantities referring to the r- and θ -components of a vector. That is, any vector quantity p
can be expressed in the form

p = ( pr0er + pθ0eθ ) + ε( pr1er + pθ1eθ ). (2.9)

For expressions for the zeroth-order quantities u0, ul0, q0 and ql0 in terms of the
zeroth-order surface heights h0 and H0 and their gradients, we refer the reader to
Appendix A. These were derived in § 2 of Part 1. For convenience, these zeroth-order
quantities are denoted by the variables h, H, u, ul, q and ql, without the 0 subscript, in
Part 1.

We derive expressions for the perturbations by returning to the horizontal force balance
in the no-slip and lubricated regions.

2.1. No-slip region
Integrating the horizontal force balance

∂

∂z

(
μ

∂u
∂z

)
= ρg ∇H (2.10)

in the no-slip region rL < r < rN results in the velocity field

u = 1
n + 1

(
ρg
μ̃

)n

(Hn+1 − (H − z)n+1)|∇H|n−1(−∇H), (2.11)

and corresponding depth-integrated flux

q = 1
n + 2

(
ρg
μ̃

)n

Hn+2|∇H|n−1(−∇H), (2.12)

which are of the same functional form as for axisymmetric flows, including
the non-axisymmetric contributions. These agree with Kowal & Worster (2015).
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Lubricated gravity currents of power-law fluids: Stability

Linearising gives rise to the components

qr1 = − 1
n + 2

(
ρg
μ̃

)n

Hn+1
0

∣∣∣∣∂H0

∂r

∣∣∣∣
n−1 (

nH0
∂H1

∂r
+ (n + 2)

∂H0

∂r
H1

)
, (2.13)

qθ1 = − 1
n + 2

(
ρg
μ̃

)n

Hn+2
0

∣∣∣∣∂H0

∂r

∣∣∣∣
n−1 1

r
∂H1

∂θ
, (2.14)

of the perturbations to the flux.
Mass conservation, at first order, is described by

∂H1

∂t
= −1

r
∂(rqr1)

∂r
− 1

r
∂qθ1

∂θ
, (2.15)

within the no-slip region rL < r < rN . We note that additional terms are required when
transforming to similarity variables (2.42) to capture terms involving the base state flow
owing to perturbations in the frontal position.

2.2. Lubricated region
Unlike single-layer flows for any value of n, and lubricated flows for n = 1, there are
no closed-form expressions for the velocity and flux, which include non-axisymmetric
contributions, unless linearised.

We proceed by starting from the horizontal force balance

∂

∂z

(
μ

∂u
∂z

)
= ρg∇H, h < z < H, (2.16)

∂

∂z

(
μl

∂ul

∂z

)
= ρg(D∇h + ∇H), 0 < z < h, (2.17)

in the upper and lower layers, supplemented by the stress-free boundary condition at z =
H, continuity of velocity and shear stress at z = h, and the no-slip boundary condition at
z = 0.

For the upper layer, this can be integrated directly so that

u = −
(

ρg
μ̃

)n 1
n + 1

[(H − z)n+1 − (H − h)n+1]|∇H|n−1(−∇H) + uI, (2.18)

where uI is the interfacial velocity, to be determined by matching with the velocity of the
lower layer. Linearising gives rise to the perturbed velocity

u1 = −
(

ρg
μ̃

)n 1
n + 1

[[(H0 − z)n+1 − (H0 − h0)
n+1]|∇H0|n−1(−∇H1)

+ (n − 1)[(H0 − z)n+1 − (H0 − h0)
n+1]|∇H0|n−3(∇H1 · ∇H0)(−∇H0)

+ (n + 1)[H1(H0 − z)n − (H1 − h1)(H0 − h0)
n|∇H0|n−1(−∇H0)]] + uI1, (2.19)

where uI1 is the perturbed part of the interfacial velocity uI .
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For the lower layer, we obtain

∂ul

∂z
= |a − zc|n−1(a − zc), (2.20)

where

a = −ρg
μ̃

M (H∇H + Dh∇h) , (2.21)

c = −ρg
μ̃

M (∇H + D∇h) . (2.22)

Linearising in ε and integrating the linearised expressions yields

ulr1 = 1
(n + 1)c2

r0
[(cr1 (ar0 + nzcr0) − (n + 1)ar1cr0) |ar0 − zcr0| n−1 (ar0 − zcr0)

+ ((n + 1)ar1cr0 − ar0cr1) |ar0| n−1ar0], (2.23)

ulθ1 = 1
n(n + 1)c2

r0
[(cθ1 (ar0 + nzcr0) − (n + 1)aθ1cr0) |ar0 − zcr0| n−1 (ar0 − zcr0)

+ ((n + 1)aθ1cr0 − ar0cθ1) |ar0| n−1ar0], (2.24)

from which the interfacial velocity uI can be deduced. Explicitly,

uI = uI0er + ε(uIr1er + uIθ1eθ ), (2.25)

where

uI0 = 1
n + 1

(
ρg
μ̃l

)n 1
D ∂h0/∂r + ∂H0/∂r

[∣∣∣∣(H0 − h0)
∂H0

∂r

∣∣∣∣
n+1

−
∣∣∣∣h0

(
D ∂h0

∂r
+ ∂H0

∂r

)
+ (H0 − h0)

∂H0

∂r

∣∣∣∣
n+1

]
, (2.26)

uIr1 =
[

h1
∂ulr0

∂z
+ ulr1

]
z=h0

, (2.27)

uIθ1 =
[

h1
∂ulθ0

∂z
+ ulθ1

]
z=h0

. (2.28)

Note that since the basic state is axisymmetric, it follows that aθ0 = cθ0 = 0.
Expressions for ar0, ar1, aθ1, cr0, cr1 and cθ1 are specified explicitly in Appendix B.

Further integration yields the following expressions for the r-components,

qlr1 = A1h1 + A2ar1 + A3cr1, (2.29)

qr1 = A4
∂H1

∂r
+ A5H1 + A6h1 + A7ar1 + A8cr1, (2.30)

and the θ -components,

qlθ1 = A9aθ1 + A10cθ1, (2.31)

qθ1 = A11
1
r

∂H1

∂θ
+ A12aθ1 + A13cθ1, (2.32)
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Lubricated gravity currents of power-law fluids: Stability

of the perturbations to the fluxes of the two layers in the lubricated region, where the Ai are
specified in Appendix B. These expressions reduce to those of Kowal & Worster (2019b)
for n = 1.

Mass conservation, at first order in ε, is described by

∂h1

∂t
= −1

r
∂(rqlr1)

∂r
− 1

r
∂qlθ1

∂θ
(2.33)

for the lower layer, and

∂(H1 − h1)

∂t
= −1

r
∂(rqr1)

∂r
− 1

r
∂qθ1

∂θ
(2.34)

for the upper layer within the lubricated region 0 < r < rL. Similarly to the no-slip region,
additional terms are required when transforming to similarity variables (2.41) to capture
terms involving the base state flow owing to perturbations in the frontal position.

2.3. Boundary conditions
We apply the source flux conditions

lim
r→0

2πrqlr = Ql0, lim
r→0

2πrqr = Q0, (2.35a,b)

the thickness and height continuity conditions

[H]+− = 0 and [(q + ql) · nL]+ = [q · nL]− (r = rL), (2.36a,b)

where nL = er − eθ (1/rL) ∂rL/∂θ + O(ε2) is an outward normal vector at the lubrication
front, and the kinematic conditions

ṙL = lim
r→rL

[
qlr − qlθ

1
rL

∂rL

∂θ

]/
h, (2.37)

for the lubrication front and

ṙN = lim
r→rN

[
qr − qθ

1
rN

∂rN

∂θ

]/
H, (2.38)

for the leading edge. We also apply the zero-flux condition

ql · nL = 0 (r = rL) (2.39)

at the lubrication front for D /= 0, and

q · nN = 0 (r = rN) (2.40)

at the leading edge, where nN = er − eθ (1/rN) ∂rN/∂θ + O(ε2) is an outward normal
vector at the leading edge.

2.4. Similarity coordinates
To conduct a linear stability analysis about the self-similar axisymmetric flow of Part 1,
we revert to the similarity coordinates (ξ, φ, τ ) defined by

r =
(

ρg
μ̃

)α

tβQγ

0 ξξL, for0 < r < rL, (2.41)
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r =
(

ρg
μ̃

)α

tβQγ

0 [ξL + (ξ − 1)(ξN − ξL)], for rL < r < rN, (2.42)

τ = log t, φ = θ. (2.43a,b)

where 0 < ξ < 1 corresponds to the lubricated region 0 < r < rL, and 1 < ξ < 2
corresponds to the no-slip region rL < r < rN . The constants α, β and γ are given by

α = n
5n + 3

, β = 2n + 2
5n + 3

, γ = 2n + 1
5n + 3

, (2.44a–c)

as specified in Part 1.
The lubricated region is therefore mapped to the interval (0, 1), and the no-slip region

is mapped to the interval (1, 2). Perturbations to the two fronts can be read from

ξL(φ, τ ) = ξL0 + εξL1 exp(στ + ikφ), ξN(φ, τ ) = ξN0 + εξN1 exp(στ + ikφ),

(2.45a,b)

in similarity coordinates. Here, ξL0 and ξN0 correspond to the unperturbed positions of
the intrusion front and leading edge, respectively. Both ξL0 and ξN0 are constants. We
are searching for normal mode solutions of growth rate σ and azimuthal wavenumber
k, which exist under the change of variables (2.41)–(2.43a,b). Under this transformation,
contributions owing to the perturbations to the two frontal positions are reflected through
appropriate terms in the governing equations, rather than through the boundary conditions.
Such an approach eliminates difficulties associated with the stress singularities at the two
fronts.

The zeroth- and first-order surface heights are transformed as⎛
⎜⎝

h0(r, t)
H0(r, t)

h1(r, θ, t)
H1(r, θ, t)

⎞
⎟⎠ =

(
ρg
μ̃

)a

tbQc
0 ·

⎛
⎜⎝

f0(ξ)

F0(ξ)

f1(ξ) exp(στ + ikφ)

F1(ξ) exp(στ + ikφ)

⎞
⎟⎠ , (2.46)

and the components of the flux of the two layers are transformed as(
qlr0(r, t)
qr0(r, t)

)
=
(

ρg
μ̃

)−α

t−βQ1−γ

0

(
q̃lr0(ξ)

q̃r0(ξ)

)
(2.47)

at zeroth order, and⎛
⎜⎝

qlr1(r, θ, t)
qlθ1(r, θ, t)
qr1(r, θ, t)
qθ1(r, θ, t)

⎞
⎟⎠ =

(
ρg
μ̃

)−α

t−βQ1−γ

0 exp(στ + ikφ)

⎛
⎜⎝

q̃lr1(ξ)

q̃lθ1(ξ)

q̃r1(ξ)

q̃θ1(ξ)

⎞
⎟⎠ (2.48)

at first order, where the constants a, b and c are given by

a = − 2n
5n + 3

, b = n − 1
5n + 3

, c = n + 1
5n + 3

, (2.49a–c)

as functions of n.
Correspondingly, after dropping tildes for convenience, the components of the flux

perturbations are given by the expressions

qlr1 = B1f ′
1 + B2F′

1 + B3f1 + B4F1 + B5ξL1, (2.50)
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Lubricated gravity currents of power-law fluids: Stability

qlθ1 = ik(B6f1 + B7F1), (2.51)

for the lower layer, and

qr1 = B8f ′
1 + B9F′

1 + B10f1 + B11F1 + B12ξL1, (2.52)

qθ1 = ik(B13f1 + B14F1) − ikξ
ξL1

ξL0
(B13f ′

0 + B14F′
0), (2.53)

for the upper layer. In the no-slip region, the components become

qr1 = B15F′
1 + B16F1 + B17 (ξN1 − ξL1) , (2.54)

qθ1 = ikB18
(
(ξL0 − ξN0)F1 + ξN1(ξ − 1)F′

0 − ξL1(ξ − 2)F′
0
)
, (2.55)

where the Bi are specified in Appendix B. These expressions reduce to those of Kowal &
Worster (2019b) for n = 1.

The mass conservation equations become(
σ + n − 1

5n + 3

)
f1 − 2(n + 1)

5n + 3
ξ f ′

1 − σξL1

ξL0
ξ f ′

0 = −(ξqlr1)
′ + ikqlθ1

ξξL0
+ ξL1 (ξqlr0)

′

ξξ2
L0

(2.56)
for the lower layer of the lubricated region, and(

σ + n − 1
5n + 3

)
(F1 − f1) − 2(n + 1)

5n + 3
ξ(F′

1 − f ′
1) − σξL1

ξL0
ξ(F′

0 − f ′
0)

= −(ξqr1)
′ + ikqθ1

ξξL0
+ ξL1 (ξqr0)

′

ξξ2
L0

(2.57)

for the upper layer of the lubricated region. These include contributions owing to the
perturbations to the frontal positions. The mass conservation equation in the no-slip region
becomes (

σ + n − 1
5n + 3

)
C1F1 − 2(n + 1)

5n + 3
C2F′

1 − 2(n + 1)

5n + 3
C3F′

0 + σC4F′
0

= C5(qr1 − ikqθ1) + q′
r1 + C6q′

r0 + C7qr0, (2.58)

where the Ci are specified in Appendix B.
The source flux boundary conditions reduce to

lim
ξ→0

2πξ(ξL0qlr1 + ξL1qlr0) = 0, lim
ξ→0

2πξ(ξL0qr1 + ξL1qr0) = 0, (2.59a,b)

and the matching conditions at the lubrication front reduce to

[F1]+− = 0 (ξ = 1), (2.60)[
qr1
]+
− = 0 (ξ = 1). (2.61)

Note that contributions owing to the perturbations to the frontal positions do not appear
in these matching conditions as they are built into the governing equations instead. The
remaining boundary conditions are the zero flux conditions

qlr1 = 0 (ξ = 1) (2.62)

at the lubrication front, and
qr1 = 0 (ξ = 2) (2.63)

at the leading edge.
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Note that the fronts are given by ξ = 1 and ξ = 2 by the definition (2.41)–(2.42) of the
scaled similarity coordinate, as ξL and ξN are scaled out. The perturbations to the front
(from linearising ξL = ξL0 + εξL1 and ξN = ξN0 + εξN1) are factored into the governing
equations, rather than the radial coordinate by scaling ξL and ξN out as in (2.41)–(2.42).

The kinematic conditions become

2n + 2
5n + 3

(1 + σ)ξL1 = lim
ξ→1

[
qlr1

f0
− qlr0f1

f 2
0

]
(2.64)

at the lubrication front, and

2n + 2
5n + 3

(1 + σ)ξN1 = lim
ξ→2

[
qr1

F0
− qr0F1

F2
0

]
(2.65)

at the leading edge, which lead to the asymptotic solutions described in the following
subsection.

3. Asymptotic solutions

3.1. Asymptotic solutions near the two fronts
An asymptotic analysis near the two fronts, in which the governing equations (2.56) and
(2.58) are solved in an inner region by rescaling f1 = δpf̂1, F1 = δpF̂1, ξ = 1 − δX (near
the intrusion front) and ξ = 2 − δX (near the leading edge), and balancing dominant terms
in the limit δ � 1, gives rise to p = n/(2n + 1) and the asymptotic solutions

f1 ∼ (5n+3)σ + 2(n+1)2

(n + 1)(2n + 1)

[
(n + 1)(n + 2)

5n + 3

(
2n + 1

4nMDξL0

)n]1/(2n+1)

ξL1(1−ξ)n/(2n+1),

(3.1)
as ξ → 1−, near the lubrication front, and

F1 ∼ A(2 − ξ)n/(2n+1), (3.2)

as ξ → 2−, near the leading edge, where

A =
(

2(n+1)(n+2)ξN0(ξN0−ξL0)
n

(5n+3)(2n+1)n+1nn

)1/(2n+1) [n(ξN1−ξL1)

ξN0−ξL0
+ ξN1

ξN0

(
(5n + 3)σ

2(n + 1)
+ 1

)]
.

(3.3)

These asymptotic solutions are of the same spatial structure as those of the basic state,
with prefactors proportional to a linear combination of the perturbations to the frontal
positions. These reduce to the asymptotic solutions of Kowal & Worster (2019b) in the
limit n = 1. The asymptotic solutions are used to alleviate difficulties associated with the
stress singularities that occur at the two fronts, when solving for the solutions numerically.

3.2. Transformation near the origin
An artefact of radially spreading lubricated viscous gravity currents, supplied at constant
flux at the origin, is that the thickness of both layers of fluid approaches a point singularity
at the origin, as a finite amount of fluid is being supplied from a single point. The form of
the solutions, towards which the surface heights approach at zeroth order in ε, are specified
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Lubricated gravity currents of power-law fluids: Stability

in Part 1. The asymptotic behaviour is of different character depending on the value of n,
specifically, depending on whether n < 1, n = 1 or n > 1. A similar phenomenon occurs
at first order, which we examine by rescaling ξ = δX, f1 = δpf̂1, F1 = δpF̂1 and balancing
dominant terms of (2.56)–(2.57) in the limit δ � 1.

For n < 1, the general solution for the perturbations to the surface heights f1 and F1
approaches the functional form ξλ, where

λ = λ± = 1 − n ± (n + 1)
√

4k2n + (n − 1)2

2n(n + 1)
. (3.4)

For n > 1, the exponent is, instead, given by

λ = λ± = n − 1 ±
√

4k2n + (n − 1)2

2n
. (3.5)

The dominant term as ξ → 0 corresponds to λ = λ−. In the limit n → 1, approaching
from either the left or the right, the power-law dependence of f1(ξ) and F1(ξ) is of the
form ξ−k.

These exponents become large in magnitude for large k, for any n. Therefore, to resolve
this singularity at the origin for all wavenumbers and to ensure numerical stability, we
reformulate the problem in terms of g1(ξ) = ξ−λ− f1(ξ) and G1(ξ) = ξ−λ− F1(ξ), instead
of f1(ξ) and F1(ξ), and revert back to f1(ξ) and F1(ξ) through a change of variables
after the governing equations have been solved numerically. Although it does not provide
a formal asymptotic solution, this is useful in regularising numerical computations by
providing a convenient choice for a scaling factor.

As described in Kowal & Worster (2019b), for n = 1 we instead solve for

(g1, G1) = ξ k(− log ξ)3/4( f1(ξ), F1(ξ)). (3.6)

The prefactor, similarly, involves an exponent that grows with k.

4. Numerical method

We use a shooting method to solve the perturbation equations, by shooting backwards
for ξL1 and ξN1 from the nose ξ = 2, and matching across the intrusion front ξ = 1. The
process is similar to that of Kowal & Worster (2019b), except that distinction is made
between n < 1, n = 1 and n > 1. As the governing equations are singular at both tips,
ξ = 1 and ξ = 2, we apply the asymptotic solution (3.2) to initiate the computations at ξ =
2 − δ, where δ � 1 is a small distance away from the singular tip. We integrate backwards
towards the singularity at the intrusion front, ξ = 1+, and apply matching conditions and
the asymptotic solution (3.1) at ξ = 1 − δ, a small distance δ away from the singularity
at the intrusion front. These are used to initiate computations in the lubricated region,
which we solve numerically by integrating backwards towards ξ = Δ, where Δ � 1. As
such, the problem is solved numerically on the subdomain [Δ, 1 − δ] ∪ [1, 2 − δ], to avoid
numerical issues with singularities at both exterior boundaries ξ = 0 and ξ = 2, and the
interior boundary ξ = 1.

The governing equations pose an eigenvalue problem consisting of differential equations
for f1 and F1, or equivalently, g1 and G1. As explained in § 3.2, we solve for g1 and
G1, instead of f1 and F1, for numerical stability at large wavenumbers. As the system
is an eigenvalue problem, non-zero solutions exist only for specific growth rates, or
eigenvalues, σ . We exploit the linearity of the system of governing equations to solve
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for the eigensolutions Ψ (ξ) = (g1(ξ), G1(ξ), ξL1, ξN1) and associated growth rate σ

iteratively. Owing to the order of the eigenvalue problem, this involves searching across
two-dimensional parameter space for the appropriate values of ξL1 and ξN1. As such, for
any wavenumber and physical parameter values, the iterative process begins with an initial
estimate for σ , from which two linearly independent solutions for the perturbations are
obtained numerically by shooting backwards. These two numerical solutions correspond
to two perturbation problems, Problems a and b are defined by the values of ξL1 and
ξN1. Specifically, Problem a is defined by setting ξL1 = 1 and ξN1 = 0, giving rise to a
numerical solution Ψ a, whereas Problem b is defined by setting ξL1 = 0 and ξN1 = 1,
giving rise to a numerical solution Ψ b. The set {Ψ a, Ψ b} forms two non-zero linearly
independent solutions satisfying the perturbation equations and all the boundary and
matching conditions apart from the source flux conditions, which we apply at ξ = Δ,
that is,

2πξ(ξL0qlr1 + ξL1qlr0) = 0, 2πξ(ξL0qr1 + ξL1qr0) = 0 (ξ = Δ). (4.1a,b)

By linearity of the governing equations, any linear combination of the solutions Ψ a and
Ψ b is also a solution of the perturbation equations and all the boundary and matching
conditions, apart, in general, from the source flux conditions. It is our aim to select a
linear combination for which the source flux conditions are also satisfied. Such a linear
combination is the desired numerical solution to the perturbation equations. To select it,
we define the residual matrix

R = 2πΔ

(
ξL0qa

l1r + ξL1qa
l0r ξL0qb

l1r + ξL1qb
l0r

ξL0qa
1r + ξL1qa

0r ξL0qb + ξL1qb

)∣∣∣∣∣
ξ=Δ

, (4.2)

the columns of which measure the residual in the source flux vectors, corresponding to
Problems a and b, respectively. The desired solution is one for which the determinant of
the residual matrix vanishes, indicating that there exists a linear combination of the two
test solutions for which the two source flux boundary conditions are satisfied. We use a
root finder to find a growth rate σ for which the determinant of the residual matrix is close
to zero, within a specified tolerance. This is a one-dimensional root-finding problem, for
which the determinant of the residual matrix is used to update σ at each iteration, as
described in Kowal & Worster (2019b).

As this process yields more than one eigenvalue σ , we are interested in the eigensolution
for which σ is largest, which corresponds physically to the maximal growth rate for a given
wavenumber. Once the largest growth rate is found for a given set of physical parameter
values, we employ parameter continuation to determine growth rates across parameter
space.

We note that the problem is 2π-periodic in θ , and as such, only integer multiples of k
are admissible. In all plots that follow, the results are interpolated for non-integer values
of k.

5. Discussion of results

As in the Newtonian limit, a necessary condition for the onset of instability can be
understood by considering a balance of fluxes either side of the intrusion front. In the
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Figure 2. Neutral curves for M as a function of k for D = 2, Q = 0.1 and various values of n. The inset
shows the critical consistency ratio Mc as a function of n.

D = 0 limit, a combination of the flux and height continuity conditions gives

(Mn − 1)

[
1 −

(
1 − f0

F0

)n+2
][∣∣∣∣dF0

dR

∣∣∣∣
n−1 dF0

dR

]−
=
[∣∣∣∣dF0

dR

∣∣∣∣
n−1 dF0

dR

]+

−
, (5.1)

where R = ξLξ for ξ < 1, and R = ξL + (ξN − ξL)(ξ − 1) for 1 < ξ < 2. Noting that
qlr0 + qr0 > 0, F0 > f0 and

qlr0 + qr0 = − 1
n + 2

[
(F0 − f0)n+2 + Mn

(
Fn+2

0 − (F0 − f0)n+2
)] ∣∣∣∣dF0

dR

∣∣∣∣
n−1 dF0

dR
,

(5.2)
it follows that dF0/dR < 0. Therefore,[∣∣∣∣dF0

dR

∣∣∣∣
n−1 dF0

dR

]+

−
>0 (5.3)

if M > 1. That is, there is a positive jump in a transformed pressure gradient across the
lubrication front if the intruding fluid is less viscous. As seen in figure 2, M > 1, and
hence (5.3), a necessary condition for instability to occur for the range of n considered.

More precise specifications for when the flow is unstable can be obtained by solving the
full eigenvalue problem numerically. Representative growth rates for typical parameter
values versus the wavenumber are shown in figure 3 for a range of power-law exponents
n, where it can be seen that increasing power-law exponents promote instability. Surface
plots of the growth rates across parameter space for a representative shear-thinning
and shear-thickening case are shown in figures 4 and 5. Growth rates increase with k
for low wavenumbers, and decrease with k for high wavenumbers, with an interval of
unstable wavenumbers that is bounded from below and from above. Neutral curves for
the consistency ratio M, density difference D and flux ratio Q, depicting the range of
unstable wavenumbers, are shown in figures 2, 6 and 7, respectively. Instability occurs
for large enough consistency ratios and low enough density differences. Physically, the
larger the consistency ratio, the greater the jump in hydrostatic pressure gradient across the
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Figure 3. Growth rates σ versus the wavenumber k for M = 5, D = 2, Q = 0.1 and various values of n.
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Figure 4. Growth rates as a function of k and M for D = 2, Q = 0.1 and (a) n = 0.8, (b) n = 1.2. The
σ = 0 contour is drawn as a thick dashed red curve.
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Figure 5. Growth rates as a function of k and D for M = 10, Q = 0.1 and (a) n = 0.8, (b) n = 1.2. The
σ = 0 contours are drawn as thick dashed red curves.

lubrication front, which promotes instability. However, the larger the density difference,
the greater the influence of the buoyancy forces associated with the spreading of the lower
layer near its nose, which is stabilising.

The regions of instability expand for increasing exponents n. For each value of n, the
system is unstable below a critical density difference Dc (defined as the maximum of
the neutral curve for D, plotted in the inset of figure 6) within a bounded window of
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Figure 6. Neutral curves for D as a function of k for M = 10, Q = 0.1 and various values of n.
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Figure 7. Neutral curves for Q as a function of k for M = 10, D = 2 and various values of n.

wavenumbers. Small changes in the density difference, below its critical value, lead to
small (large) changes to the interval of unstable wavenumbers when n > 1 (n < 1). On the
other hand, small changes in the consistency ratio, above its critical value Mc (defined
as the minimum of the neutral curve for M, plotted in the inset of figure 2), lead to large
(small) changes to the interval of unstable wavenumbers when n > 1 (n < 1). Instabilities
occur only for large enough wavenumbers above a given threshold at a given flux ratio,
and this threshold decreases with n as seen in figure 7. This can also be seen in figure 8,
which shows the neutral curve for n versus k. Increasing values of n permit a larger range
of unstable wavenumbers k. Changes in n are less significant for n > 1 than for n < 1. The
slope of the neutral curve for n is much lower for n < 1 than for n > 1.

The critical wavenumber kc corresponding to the maximal growth rate σc is shown in
figure 9 as it varies with n. The maximal growth rate is positive only for large enough
n, and both the critical wavenumber and the associated growth rate increase with n.
Shear-thinning, in general, promotes instability, and the selected number of fingers
increases the more shear-thinning the rheology.
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Figure 8. Neutral curve for n as a function of k for M = 5, Q = 0.1, D = 1.
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Figure 9. (a) Critical wavenumber kc, and (b) associated growth rate σc, versus n, for M = 5, D = 2,
Q = 0.1. The values of kc and σc for σc < 0 are dashed.

6. Conclusions

We have investigated the role of shear-thinning and shear-thickening on viscous fingering
instabilities that occur within lubricated viscous gravity currents. The results are an
extension of, and agree with, the stability analysis of Kowal & Worster (2019b) in the
Newtonian limit.

These instabilities are driven by a jump in hydrostatic pressure gradient across the
intrusion front, which is found to be more pronounced the higher the consistency
ratio between the two viscous fluids. As such, instabilities occur only for high enough
consistency ratios. These instabilities, in turn, are stabilised by buoyancy forces associated
with the lower layer near its nose, which become dominant for high density differences
between the two layers. As such, the instabilities occur only for low enough density
differences. The instability is suppressed completely above a critical density difference
and below a critical consistency ratio.

These behaviours are maintained for all power-law exponents. However, the instability
thresholds, as well as the preferred number of fingers, are altered. Specifically,
shear-thinning promotes instability, and the system selects a greater number of fingers the
more shear-thinning the rheology. The critical consistency ratio, above which instabilities
occur, decreases the more shear-thinning the rheology. Although the interval of unstable
wavenumbers is large (small) close to the critical value of the consistency ratio the
more shear-thinning (shear-thickening) the rheology, the system tends to select large
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wavenumbers as the preferred mode of instability the more shear-thinning the rheology. As
such, a large variation in the number of fingers may be expected close to the critical value
of the consistency ratio in experiments. In contrast, the interval of unstable wavenumbers
is small (large) the more shear-thinning (shear-thickening) the rheology when the density
difference is close to its critical value. This leads to a smaller variation in the number of
fingers that can be expected to be seen in experiments close to the critical value of the
density difference.
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Appendix A. Basic state velocities and fluxes

As obtained in Part 1, the basic state velocity is given by

u0 = 1
n + 1

(
ρg
μ̃l

)n 1
D ∂h0/∂r + ∂H0/∂r

[∣∣∣∣(H0 − h0)
∂H0

∂r

∣∣∣∣
n+1

−
∣∣∣∣h0

(
D ∂h0

∂r
+ ∂H0

∂r

)
+ (H0 − h0)

∂H0

∂r

∣∣∣∣
n+1

]

+ 1
n + 1

(
ρg
μ̃

)n [
(H0 − z)n+1 − (H0 − h0)

n+1
] ∣∣∣∣∂H0

∂r

∣∣∣∣
n−1

∂H0

∂r
(A1)

for the upper layer, and

ul = 1
n + 1

(
ρg
μ̃l

)n 1
D ∂h0/∂r + ∂H0/∂r

[∣∣∣∣(h0 − z)
(
D ∂h0

∂r
+ ∂H0

∂r

)
+ (H0 − h0)

∂H0

∂r

∣∣∣∣
n+1

−
∣∣∣∣h0

(
D ∂h0

∂r
+ ∂H0

∂r

)
+ (H0 − h0)

∂H0

∂r

∣∣∣∣
n+1
]

(A2)

for the lower layer.
The corresponding depth-integrated line fluxes are given by

q = 1
n + 1

(
ρgM

μ̃

)n H0 − h0

D ∂h0/∂r + ∂H0/∂r

[∣∣∣∣(H0 − h0)
∂H0

∂r

∣∣∣∣
n+1

−
∣∣∣∣h
(
D ∂h0

∂r
+ ∂H0

∂r

)
+ (H0 − h0)

∂H0

∂r

∣∣∣∣
n+1

]

− 1
n + 2

(
ρg
μ̃

)n

(H0 − h0)
n+2

∣∣∣∣∂H0

∂r

∣∣∣∣
n−1

∂H0

∂r
(A3)
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for the upper layer, and

ql = 1
n + 1

(
ρgM

μ̃

)n 1
D ∂h0/∂r + ∂H0/∂r

[
− 1

n + 2
1

D ∂h0/∂r + ∂H0/∂r

×
[∣∣∣∣(H0 − h0)

∂H0

∂r

∣∣∣∣
n+1

(H0 − h0)
∂H0

∂r
−
∣∣∣∣h0

(
D ∂h0

∂r
+ ∂H0

∂r

)

+(H0 − h0)
∂H0

∂r

∣∣∣∣
n+1 (

h0

(
D ∂h0

∂r
+ ∂H0

∂r

)
+ (H0 − h0)

∂H0

∂r

)]

−h0

∣∣∣∣h0

(
D ∂h0

∂r
+ ∂H0

∂r

)
+ (H0 − h0)

∂H0

∂r

∣∣∣∣
n+1

]
(A4)

for the lower layer.

Appendix B. Quantities appearing throughout the analysis

B.1. Quantities describing the perturbed dimensional flux
The following quantities are used to formulate expressions for the dimensional velocity
and flux of either layer of the lubricated region:

cr0(r, t) = −ρgM
μ̃

(
D ∂h0

∂r
+ ∂H0

∂r

)
, (B1)

cr1(r, θ, t) = −ρgM
μ̃

(
D ∂h1

∂r
+ ∂H1

∂r

)
, (B2)

cθ1(r, θ, t) = −ρgM
μ̃

(
D 1

r
∂h1

∂θ
+ 1

r
∂H1

∂θ

)
, (B3)

ar0(r, t) = −ρgM
μ̃

(
Dh0

∂h0

∂r
+ H0

∂H0

∂r

)
, (B4)

ar1(r, θ, t) = −ρgM
μ̃

(
Dh0

∂h1

∂r
+ H0

∂H1

∂r
+ Dh1

∂h0

∂r
+ H1

∂H0

∂r

)
, (B5)

aθ1(r, θ, t) = −ρgM
μ̃

(
Dh0

1
r

∂h1

∂θ
+ H0

1
r

∂H1

∂θ

)
. (B6)

The following quantities are the prefactors used in describing the perturbed flux:

A1 = |ar0|n+1 − |ar0 − cr0h0|n+1

cr0(n + 1)
, (B7)

A2 = h0ar0cr0 (n + 1) |ar0|n−1 + |ar0 − cr0h0|n+1 − |ar0|n+1

c2
r0 (n + 1)

, (B8)
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Lubricated gravity currents of power-law fluids: Stability

A3 = 1
c3

r0 (n + 1)

[
h0

(
−a2

r0

)
cr0 |ar0|n−1 − ar0 |ar0 − cr0h0|n+1

]

+ 1
c3

r0 (n + 1) (n + 2)

[
n (ar0 − h0cr0)

3 |ar0 − cr0h0|n−1 + 2ar0 |ar0|n+1
]
, (B9)

A4 = −
(

ρg
μ̃

)n n (H0 − h0)
n+2

∣∣H′
0

∣∣n−1

n + 2
, (B10)

A5 = − |ar0 − cr0h0|n+1 + |ar0|n+1

cr0 (n + 1)
−
(

ρg
μ̃

)n

H′
0 (H0 − h0)

n+1 ∣∣H′
0
∣∣n−1

, (B11)

A6 = − (h0 − H0) (ar0 − h0cr0) |ar0 − cr0h0|n−1 + |ar0 − cr0h0|n+1 − |ar0|n+1

cr0 (n + 1)

+
(

ρg
μ̃

)n

H′
0 (H0 − h0)

n+1 ∣∣H′
0
∣∣n−1

, (B12)

A7 = (h0 − H0)
(
(ar0 − h0cr0) |ar0 − cr0h0| n−1 − ar0 |ar0| n−1)

cr0
, (B13)

A8 = (h0 − H0)
(
(h0cr0 − ar0) (ar0 + h0cr0n) |ar0 − cr0h0| n−1 + a2

r0 |ar0| n−1)
c2

r0 (n + 1)
, (B14)

A9 = A2/n, (B15)

A10 = h0
(−a2

r0
)

cr0 (n + 2) |ar0|n−1 + 2ar0 |ar0|n+1

c3
r0n (n + 1) (n + 2)

+ |ar0 − cr0h0|n−1 (n (ar0 − h0cr0)
3 − ar0 (n + 2) |ar0 − cr0h0|2

)
c3

r0n (n + 1) (n + 2)
, (B16)

A11 = −
(

ρg
μ̃

)n (H0 − h0)
n+2

∣∣H′
0

∣∣n−1

(n + 2)
, (B17)

A12 = (h0 − H0)
[
(ar0 − h0cr0) |ar0 − cr0h0|n−1 − ar0 |ar0|n−1]

cr0n
, (B18)

A13 = (h0 − H0)
[
(h0cr0 − ar0) (ar0 + h0cr0n) |ar0 − cr0h0|n−1 + a2

r0 |ar0|n−1]
c2

r0n (n + 1)
. (B19)
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B.2. Quantities describing the perturbed fluxes in similarity coordinates
The following quantities are used to describe the perturbed fluxes in similarity coordinates:

B1 = −Df0M
(Df0f ′

0 + F0F′
0
) (Df0nf ′

0 + F′
0 ( f0(n + 1) − F0)

)
(n + 1)ξL0

(Df ′
0 + F′

0
)2

∣∣∣∣∣M
(Df0f ′

0 + F0F′
0
)

ξL0

∣∣∣∣∣
n−1

+ DξL0
(Df0nf ′

0 + F′
0 ( f0(n + 2) − 2F0)

)
M(n + 1)(n + 2)

(Df ′
0 + F′

0
)3

∣∣∣∣∣M
(Df0f ′

0 + F0F′
0
)

ξL0

∣∣∣∣∣
n+1

+ 2D (F0 − f0) F′
0ξL0

M(n + 1)(n + 2)
(Df ′

0 + F′
0
)3
∣∣∣∣M ( f0 − F0) F′

0
ξL0

∣∣∣∣
n+1

, (B20)

B2 = − f0M
(Df0f ′

0 + F0F′
0
) (Df ′

0 (F0(n + 1) − f0) + F0nF′
0
)

(n + 1)ξL0
(Df ′

0 + F′
0
)2

∣∣∣∣∣M
(Df0f ′

0 + F0F′
0
)

ξL0

∣∣∣∣∣
n−1

+ ξL0
(Df ′

0 (F0(n + 2) − 2f0) + F0nF′
0
)

M(n + 1)(n + 2)
(Df ′

0 + F′
0
)3

∣∣∣∣∣M
(Df0f ′

0 + F0F′
0
)

ξL0

∣∣∣∣∣
n+1

+ ( f0 − F0) ξL0
(D(n + 2)f ′

0 + nF′
0
)

M(n + 1)(n + 2)
(Df ′

0 + F′
0
)3

∣∣∣∣M ( f0 − F0) F′
0

ξL0

∣∣∣∣
n+1

, (B21)

B3 = −Df0Mf ′
0
(Df0f ′

0 + F0F′
0
)

ξL0
(Df ′

0 + F′
0
)

∣∣∣∣∣M
(Df0f ′

0 + F0F′
0
)

ξL0

∣∣∣∣∣
n−1

− F′
0ξL0

M(n + 1)
(Df ′

0 + F′
0
)2
∣∣∣∣∣M

(Df0f ′
0 + F0F′

0
)

ξL0

∣∣∣∣∣
n+1

+ F′
0ξL0

M(n + 1)
(Df ′

0 + F′
0
)2
∣∣∣∣M ( f0 − F0) F′

0
ξL0

∣∣∣∣
n+1

, (B22)

B4 = − f0MF′
0
(Df0f ′

0 + F0F′
0
)

ξL0
(Df ′

0 + F′
0
)

∣∣∣∣∣M
(Df0f ′

0 + F0F′
0
)

ξL0

∣∣∣∣∣
n−1

+ F′
0ξL0

M(n + 1)
(Df ′

0 + F′
0
)2
∣∣∣∣∣M

(Df0f ′
0 + F0F′

0
)

ξL0

∣∣∣∣∣
n+1

− F′
0ξL0

M(n + 1)
(Df ′

0 + F′
0
)2
∣∣∣∣M ( f0 − F0) F′

0
ξL0

∣∣∣∣
n+1

, (B23)

B5 = n (F0 − f0) F′
0

M(n + 1)(n + 2)
(Df ′

0 + F′
0
)2
∣∣∣∣M ( f0 − F0) F′

0
ξL0

∣∣∣∣
n+1
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+ n
(Df0(n + 1)f ′

0 + F′
0 ( f0(n + 2) − F0)

)
M(n + 1)(n + 2)

(Df ′
0 + F′

0
)2

∣∣∣∣∣M
(Df0f ′

0 + F0F′
0
)

ξL0

∣∣∣∣∣
n+1

, (B24)

B6 = −Df0M
(Df0f ′

0 + F0F′
0
) (Df0nf ′

0 + F′
0 ( f0(n + 1) − F0)

)
n(n + 1)ξξL0

(Df ′
0 + F′

0
)2

∣∣∣∣∣M
(Df0f ′

0 + F0F′
0
)

ξL0

∣∣∣∣∣
n−1

+ DξL0
(Df0nf ′

0 + F′
0 ( f0(n + 2) − 2F0)

)
Mn(n + 1)(n + 2)ξ

(Df ′
0 + F′

0
)3

∣∣∣∣∣M
(Df0f ′

0 + F0F′
0
)

ξL0

∣∣∣∣∣
n+1

− 2D ( f0 − F0) F′
0ξL0

Mn(n + 1)(n + 2)ξ
(Df ′

0 + F′
0
)3
∣∣∣∣M ( f0 − F0) F′

0
ξL0

∣∣∣∣
n+1

, (B25)

B7 = − f0M
(Df0f ′

0 + F0F′
0
) (Df ′

0 (F0(n + 1) − f0) + F0nF′
0
)

n(n + 1)ξξL0
(Df ′

0 + F′
0
)2

∣∣∣∣∣M
(Df0f ′

0 + F0F′
0
)

ξL0

∣∣∣∣∣
n−1

+ ξL0
(Df ′

0 (F0(n + 2) − 2f0) + F0nF′
0
)

Mn(n + 1)(n + 2)ξ
(Df ′

0 + F′
0
)3

∣∣∣∣∣M
(Df0f ′

0 + F0F′
0
)

ξL0

∣∣∣∣∣
n+1

+ ( f0 − F0) ξL0
(D(n + 2)f ′

0 + nF′
0
)

Mn(n + 1)(n + 2)ξ
(Df ′

0 + F′
0
)3
∣∣∣∣M ( f0 − F0) F′

0
ξL0

∣∣∣∣
n+1

, (B26)

B8 = DM ( f0 − F0)
(Df0f ′

0 + F0F′
0

)
(n + 1)ξL0

(Df ′
0 + F′

0

)2

(Df0nf ′
0 + F′

0 ( f0(n + 1) − F0)
) ∣∣∣∣∣M

(Df0f ′
0 + F0F′

0

)
ξL0

∣∣∣∣∣
n−1

+ DM ( f0 − F0)
3 (F′

0

)2

(n + 1)ξL0
(Df ′

0 + F′
0

)2

∣∣∣∣M ( f0 − F0) F′
0

ξL0

∣∣∣∣
n−1

, (B27)

B9 = M ( f0 − F0)
(Df0f ′

0 + F0F′
0

) (Df ′
0 (F0(n + 1) − f0) + F0nF′

0

)
(n + 1)ξL0

(Df ′
0 + F′

0

)2

∣∣∣∣∣M
(Df0f ′

0 + F0F′
0

)
ξL0

∣∣∣∣∣
n−1

− M ( f0 − F0)
3F′

0

(D(n + 1)f ′
0 + nF′

0

)
(n + 1)ξL0

(Df ′
0 + F′

0

)2

∣∣∣∣M ( f0 − F0) F′
0

ξL0

∣∣∣∣
n−1

− n (F0 − f0)n+2

(n + 2)ξL0

∣∣∣∣ F′
0

ξL0

∣∣∣∣
n−1

, (B28)

B10 = −M ( f0 − F0)
2 (F′

0
) 2

ξL0
(Df ′

0 + F′
0
) ∣∣∣∣M ( f0 − F0) F′

0
ξL0

∣∣∣∣
n−1

+ ξL0 (F0 − f0)n+1

F′
0

∣∣∣∣ F′
0

ξL0

∣∣∣∣
n+1

+ DM ( f0 − F0) f ′
0
(Df0f ′

0 + F0F′
0
)

ξL0
(Df ′

0 + F′
0
)

∣∣∣∣∣M
(Df0f ′

0 + F0F′
0
)

ξL0

∣∣∣∣∣
n−1
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+ ξL0

M(n + 1)
(Df ′

0 + F′
0
)
⎡
⎣
∣∣∣∣∣M

(Df0f ′
0 + F0F′

0
)

ξL0

∣∣∣∣∣
n+1

−
∣∣∣∣M ( f0 − F0) F′

0
ξL0

∣∣∣∣
n+1

⎤
⎦ ,

(B29)

B11 = M ( f0 − F0) F′
0
(Df0f ′

0 + F0F′
0
)

ξL0
(Df ′

0 + F′
0
)

∣∣∣∣∣M
(Df0f ′

0 + F0F′
0
)

ξL0

∣∣∣∣∣
n−1

− ξL0

M(n + 1)
(Df ′

0 + F′
0
)
∣∣∣∣∣M

(Df0f ′
0 + F0F′

0
)

ξL0

∣∣∣∣∣
n+1

+ ξL0

M(n + 1)
(Df ′

0 + F′
0
) ∣∣∣∣M ( f0 − F0) F′

0
ξL0

∣∣∣∣ n+1

+ M ( f0 − F0)
2 (F′

0
)2

ξL0
(Df ′

0 + F′
0
) ∣∣∣∣M ( f0 − F0) F′

0
ξL0

∣∣∣∣
n−1

− F′
0 (F0 − f0)n+1

ξL0

∣∣∣∣ F′
0

ξL0

∣∣∣∣
n−1

,

(B30)

B12 = n ( f0 − F0)

M(n + 1)
(Df ′

0 + F′
0
)
⎡
⎣∣∣∣∣M ( f0 − F0) F′

0
ξL0

∣∣∣∣
n+1

−
∣∣∣∣∣M

(Df0f ′
0 + F0F′

0
)

ξL0

∣∣∣∣∣
n+1

⎤
⎦

+ n (F0 − f0)n+2

(n + 2)F′
0

∣∣∣∣ F′
0

ξL0

∣∣∣∣
n+1

, (B31)

B13 = DM ( f0 − F0)
(Df0f ′

0 + F0F′
0

) (Df0nf ′
0 + F′

0 ( f0(n + 1) − F0)
)

n(n + 1)ξξL0
(Df ′

0 + F′
0

)2

∣∣∣∣∣M
(Df0f ′

0 + F0F′
0

)
ξL0

∣∣∣∣∣
n−1

+ D ( f0 − F0) ξL0

Mn(n + 1)ξ
(Df ′

0 + F′
0

)2

∣∣∣∣M ( f0 − F0) F′
0

ξL0

∣∣∣∣
n+1

, (B32)

B14 = M ( f0 − F0)
(Df0f ′

0 + F0F′
0

) (Df ′
0 (F0(n + 1) − f0) + F0nF′

0

)
n(n + 1)ξξL0

(Df ′
0 + F′

0

)2

∣∣∣∣∣M
(Df0f ′

0 + F0F′
0

)
ξL0

∣∣∣∣∣
n−1

− ( f0 − F0) ξL0
(D(n + 1)f ′

0 + nF′
0

)
Mn(n + 1)ξF′

0

(Df ′
0 + F′

0

)2

∣∣∣∣M ( f0 − F0) F′
0

ξL0

∣∣∣∣
n+1

− (F0 − f0)n+2

(n + 2)ξξL0

∣∣∣∣ F′
0

ξL0

∣∣∣∣
n−1

, (B33)

B15 = nFn+2
0

(n + 2) (ξL0 − ξN0)

∣∣∣∣ F′
0

ξL0 − ξN0

∣∣∣∣
n−1

, (B34)

B16 = Fn+1
0 F′

0
ξL0 − ξN0

∣∣∣∣ F′
0

ξL0 − ξN0

∣∣∣∣
n−1

, (B35)

940 A27-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

26
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.263


Lubricated gravity currents of power-law fluids: Stability

B17 = nFn+2
0 F′

0

(n + 2) (ξL0 − ξN0)
2

∣∣∣∣ F′
0

ξL0 − ξN0

∣∣∣∣
n−1

, (B36)

B18 = Fn+2
0

(n + 2) (ξL0 − ξN0) ((ξ − 2)ξL0 − ξξN0 + ξN0)

∣∣∣∣ F′
0

ξL0 − ξN0

∣∣∣∣
n−1

. (B37)

B.3. Quantities describing mass conservation
The following quantities are used to describe the mass conservation equations in the
no-slip region in similarity coordinates:

C1 = ξL0 − ξN0, (B38)

C2 = (ξ − 2)ξL0 − (ξ − 1)ξN0, (B39)

C3 = ξL1ξN0 − ξL0ξN1

ξL0 − ξN0
, (B40)

C4 = (ξ − 2)ξL1 − (ξ − 1)ξN1, (B41)

C5 = ξL0 − ξN0

(ξ − 2)ξL0 − (ξ − 1)ξN0
, (B42)

C6 = ξN1 − ξL1

ξL0 − ξN0
, (B43)

C7 = −(ξL0 − ξN0) ((ξ − 2)ξL1 − (ξ − 1)ξN1)

((ξ − 2)ξL0 − (ξ − 1)ξN0)2 . (B44)
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