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Abstract

Infant colic is a condition of unknown cause which can result in carer distress and attachment
difficulties. Recent studies have implicated the gut microbiota in infant colic, and certain
probiotics have demonstrated possible efficacy. We aim to investigate whether the intestinal
microbiota composition in infants with colic is associated with cry/fuss time at baseline,
persistence of cry/fuss at 4-week follow-up, or child behavior at 2 years of age. Fecal samples
from infants with colic (n= 118, 53% male) were analyzed using 16S rRNA sequencing. After
examining the alpha and beta diversity of the clinical samples, we performed a differential
abundance analysis of the 16S data to look for taxa that associate with baseline and future
behavior, while adjusting for potential confounding variables. In addition, we used random
forest classifiers to evaluate how well baseline gut microbiota can predict future crying time.
Alpha diversity of the fecal microbiota was strongly influenced by birth mode, feed type,
and child gender, but did not significantly associate with crying or behavioral outcomes.
Several taxa within the microbiota (including Bifidobacterium, Clostridium, Lactobacillus,
and Klebsiella) associate with colic severity, and the baseline microbiota composition can
predict further crying at 4 weeks with up to 65% accuracy. The combination of machine
learning findings with associative relationships demonstrates the potential prognostic utility
of the infant fecal microbiota in predicting subsequent infant crying problems.

Introduction

A growing body of evidence has implicated the early infant gut microbiota in neurodevelop-
ment.1 Recently, cross-sectional and longitudinal studies have found associations between
the human gut microbiota in the first year of life and the neurodevelopmental indicators of
temperament2,3 and cognitive development4,5 to age 3. Although there is no clear consensus
over which microbiota characteristics are most relevant, the genus Dialister and the family
Ruminococcaceae have emerged as potential mediators of early childhood behavioral
problems,3 with both taxa being associated with depression in adults.6 The critical period in
which the microbiota may influence the gut–brain axis is not well-defined, though microbiota
perturbations can alter neuroimmune development throughout prenatal, perinatal, and early
life periods.1

Infant colic provides a goodmodel for investigating the role of the early infant gutmicrobiota
in neurodevelopment. Colic is defined as crying or fussing for ≥3 h/day in infants aged less
than 3 months and affects up to 20% of infants.7 Approximately 10% of infants with colic will
continue to have persistent crying beyond 3months of age. Although multifactorial in etiology,
colic is most notably associated with a gastrointestinal pathophysiology including inflammation,
visceral hypersensitivity, and gut microbiota alterations. Meta-analysis has shown that the
probiotic Lactobacillus reuteriDSM 17938 is an effective treatment for infant colic in exclusively
breast-fed but not formula-fed infants.8 This supports a role for the gut microbiota in infant
crying, since the microbiota is known to vary on the basis of infant feeding mode.9 Indeed,
reductions in bacterial diversity and stability, as well as increased abundance of microorganisms
such as Klebsiella and Escherichia (of Enterobacteriaceae family), have all been found in fecal
microbiota of infants with colic.10

Although colic is a self-limiting condition, it remains controversial as to whether colic
increases the risk of poor behavioral outcomes in later childhood.11 Some studies have reported
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increased problems in behavior, family functioning, and negative
temperamental emotions for several years following the resolution
of colic.12-14 However, these studies had important limitations such
as the inclusion of children with persistent crying and uncontrolled
confounders.11 The hypothesized reasons for longer-term conse-
quences of colic include biological interactions of the gut–brain
axis, such as the role of gut microbes in neurodevelopment, and
psychosocial effects on parental mood and parent–child bonding
during a critical period of development. Irrespective of these
potential longer-term consequences of colic, which remain contro-
versial, colic is a gut–brain condition by definition of its demon-
strated gastrointestinal etiology and behavioral symptomatology
(i.e., crying and fussing). This broader context of the gut–brain axis
in neurodevelopment is highly relevant to understanding the
developmental origins of health and disease.

The present study therefore investigates the association
between the gut microbiota and behavioral outcomes using data
collected from a cohort of 118 infants enrolled in the Baby
Biotics randomized controlled trial of a probiotic intervention
for infant colic, the primary outcomes of which were reported
previously.15 The aim of this study is first to describe the gut
microbiota composition of infants with colic and second to identify
gut microbiota signatures that associate with (a) severity of colic,
(b) problem crying 4 weeks later, and (c) carer report of behavioral
problems at 2 years of age. In addition to modeling bacterial
diversity and abundance, we use a random forest classifier to
predict future crying time from baseline fecal samples, a method
which has not hitherto been used in this context.

Methods

Overview

The analyses are divided into 3 parts. For Aim 1, we perform an
exploratory analysis of the community structure of the baseline
gut microbiota. For Aim 2, we present an analysis of how bacterial
diversity and abundances associate with behavior outcomes at
3 timepoints: baseline, 4-week behavior, and 2-year behavior.
For Aim 3, we use the baseline gut microbiota to predict future
behavior.

Participants

The sample comprised 120 infants aged less than 3 months (mean
(M): 7.4 weeks, standard deviation (SD): 2.7 weeks) enrolled
in the 4-week randomized controlled trial of Lactobacillus
reuteri DSM 17938 probiotic supplementation in Melbourne,
Australia,15,16 who a) had 2-year follow-up behavioral data
available and b) had fecal samples collected at baseline, prior
to randomization to the probiotic or control group, available
for gut microbiota analyses. Two samples had insufficient mass
of DNA for sequencing, resulting in a final sample size of 118.
The mean read count per sample was 30709.6 (SD: 15665.4; range
3467–84382). We found no association between read depth and
any of the three outcomes.

Microbiota sample preparation, processing, and sequencing

Fecal samples were collected from infant nappies and placed
immediately into the caregiver’s home freezer for storage until
transferred on ice following a median of 3 days to a −80°C freezer
(for further details, see17).

DNA was extracted from 40 to 200 mg of fecal sample. An
initial step of bead beating using 0.1–0.15 mm zirconia/silica beads
(BioSpec Products, USA) on the Powerlyzer 24 homogenizer was
performed as per the manufacturer’s instructions. About 1.2 ml
Lysis buffer was added to the tubes and vortexed. Thirtymicroliters
of Proteinase K was added and samples vortexed and incubated at
70°C for 10 min. Samples were then incubated at 95°C for 5 min,
processed on the MoBio Powerlyzer for 5 min at 2000 rpm, and
centrifuged for 1 min at 10,000 × g. About 800 μl of supernatant
was transferred to a deep 96-well plate. DNA extraction was
performed using the Chemagic™ 360 instrument according to
the manufacturer’s protocol for Purification for Human Feces
using 75 μl washed magnetic beads and eluted into 50 μl of buffer.
DNA concentration was measured using a Qubit high-sensitivity
assay and was adjusted to a concentration of 5 ng/μl.

Microbiota composition was assessed by sequencing of ampli-
cons across the V3–V4 regions of 16S rRNA genes. Amplicons
were generated using the previously described dual-indexing, var-
iable spacer method18 with the 16S rRNA gene priming sequences:
forward ACTCCTACGGGAGGCAGCAG, reverse GGACT
ACHVGGGTWTCTAAT, and Q5 DNA polymerase (New
England Biolabs). Amplification of products was performed in
an Eppendorf Mastercycler using the following conditions:
98°C for 60 s then 25 cycles of 98°C for 5 s, 40°C for 30 s, 72°C
for 30 s; elongation at 72°C for 10 min then held at 5°C.
Sequencing of the pooled amplicons was conducted on the
Illumina MiSeq platform, using 2x300 bp paired-end sequencing,
according to the manufacturer’s protocol (Illumina Inc.,
San Diego, CA, USA).

Assessments and Measures

Crying and fussing measurement at baseline and 4 weeks
Presence of colic at study enrolment was determined using
modified Wessel’s criteria: crying or fussing of 3 h or more per
day for three or more days per week.19 Participants were enrolled
on the basis of parent report of colic using this criterion. Crying
and fussing at baseline and 4-week follow-up were determined
using the validated parent-reported diary measured for 24 and
48 h, respectively.20 Problem crying was defined as crying or
fussing 3 h or more per day at 4-week follow-up (categorial with
2 levels: crying/fussing above this criterion or not).

Behavioral measurement at 2 years
The Child Behavior Checklist (CBCL) is a validated 99-item screen-
ing questionnaire consisting of parent-reported problem items on
Internalizing, Externalizing, and Total Problems subscales.21 The
Total Problems subscale comprises scores across all problem items,
including those not classified as either Internalizing or Externalizing.
An elevation of behavior problems was defined as a score of T≥ 60
(1 standard deviation above the population normed mean) on
one or more of these three subscales, based on prior validation in
a longitudinal study of conversion to psychiatric disorders diag-
nosed later in childhood, which showed high specificity (88–96%)
and low to moderate sensitivity (25–34%) with this cutoff.22

Covariate measurement and ascertainment
We considered the covariates: mode of birth, sex, birth weight,
gestational age, infant feeding type (exclusive breastfeeding,
exclusive formula, or mixed), infant age at baseline, antibiotic or
probiotic use in 24 h prior to sample collection, baseline crying/
fussing time (for analyses of subsequent behavioral outcomes),
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maternal postpartum depression at baseline and 1month (as defined
by a score of greater than 9 on the Edinburgh Postnatal Depression
Scale), maternal mental illness at child aged 2 years (as defined by
score above the 95th percentile on the Kessler Psychological
Distress Scale-623), and maternal education level.

For the association analyses (Aim 2), covariates were included
in multivariable models if they met criterion for associations with
the outcome variables of interest (p< 0.1). Sex (for all time points)
and randomization group allocation (for 4-week and 2-year
follow-up) were included as standard a priori covariates, since both
are considered to have strong potential effects on the subsequent
gut microbiota and outcomes of interest. Of note, despite known
relevance to the gut microbiome, neither infant feeding type nor
birth mode met the preregistered inclusion criterion for covariates
since they did not associate with the behavioral outcomes of
interest.

For predictive analyses (Aim 3), we measured how well the
a priori and additional criterion-based covariates could predict
future outcomes alone. This is because we expect that the covari-
ates alone can predict future behavior in an independent test set
with better than chance accuracy. When evaluating the perfor-
mance of a microbiota classifier, we wanted to determine whether
the model accuracy is superior to the clinical covariate classifier.
As such, we used the clinical covariate classifier as a reference
for evaluating the goodness of the microbiota classifier. We chose
not to evaluate a classifier that was trained on both the microbiota
and the covariates because the extra features might make the
classifier over-fit given the small sample size.

Analysis

The analysis plan for these data was preregistered on the Open
Science Framework (osf.io/rnvej). The presented analysis reflects
the aims and analytic strategies outlined in the preregistration
with two exceptions. First, the UniFrac beta diversity metrics
were calculated in favor of Bray Curtis beta diversity in order to
take into account phylogenetic distance, rather than dissimilarity
on the basis of counts only. Second, the linear discriminant analysis
effect size analyses (LEfSe) were replaced with DESeq2, an alterna-
tive method for determining differential microbiota composition
between groups. We performed a differential abundance analysis
using the DESeq2 package (version 1.20.0),24 chosen because it
was shown previously to control the false discovery rate for micro-
biota data.24,25 Prior to analysis, a number of checks of the sequenc-
ing data were undertaken to avoid bias from rare taxa. These
included checks for low abundance taxa based on a cutoff of
less than 10 (none removed) and lowly prevalent taxa with counts
in fewer than 1% of samples (one taxon removed from the
genus Parabacteroides). Comparison of demographic and birth

characteristics of infants with and without behavior problems at
2 years was conducted using chi-squared tests and t-tests as
appropriate.

Aim 1: Exploratory analysis of the microbiota in colic

Five measures of alpha diversity were calculated, measuring
richness (count of observed taxa; Chao1 Index) and evenness
(Shannon–Weaver Index, Simpson’s Index, Inverted Simpson’s
Index).18 After verifying that these measures all have a consistent
association with key descriptive variables (mode of birth and milk
feed type), further analyses proceeded with the Chao1 and
Shannon–Weaver indices only to avoid multiple testing issues.
These two were chosen since they are less likely to be biased by
small subgroup sizes and sequencing depth differences.26

Weighted and unweighted UniFrac distances with PERMANOVA
were used to compare the beta diversity of the microbiota on the
basis of outcomes of interest.

Aim 2: Association between microbiota and behavior

Analysis of bacterial diversity
Multivariable multiple linear regression and logistic regression
models were used to model associations between alpha diversity
measures and infant characteristics (i.e., early life factors and cry-
ing/behavioral outcomes).

Differential abundance analysis
We performed a differential abundance analysis using the DESeq2
package (version 1.20.0),24 chosen because it was shown previously
to control the false discovery rate for microbiota data.24,25 For each
behavioral outcome, a model was fitted that adjusted for the
covariates in Table 1. Subjects were removed before modeling if
there were missing data (removing 13 subjects [baseline], 20 sub-
jects [4 week], and 0 subjects [2 year]; in all cases the missing data
were the outcome itself). We report the FDR-adjusted p-values for
the “Wald” test. We refer the reader to the Supplementary materi-
als for a table of the results (S-Materials 1) and for all scripts needed
to reproduce the analysis (S-Materials 2).

Aim 3: Prediction of future behavior

To assess whether the infant gut microbiota can predict future
behavior at 4 weeks and 2 years, we used the exprso package
(version 0.6.4) for the R programming language27 to train and
evaluate binary classification pipelines using either the OTU
counts or the aggregated genus-level counts. OTU counts were
aggregated to genus-level counts under the intuition that they
provide a coarser description of the data and therefore may be less
prone to over-fit on a small training set. Before classification, we
used the zCompositions package to impute zeros,28 and then
log-transformed the data using a centered log-ratio transforma-
tion. This transformation recognizes the microbiota data as
compositional and is applied to each subject independently, thus
maintaining test set independence.29,30

The classification pipeline consists of the following steps:
(1) data splitting, (2) feature reduction, (3) model training, and
(4) model deployment. First, we define a training set by taking a
random sample of 80% of the data. Second, we perform feature
reduction using either the Student’s t-test, the Wilcoxon Rank-
Sum test, or a principal components analysis (PCA). Third, we
train a random forest model on the top [3, 5, 10] features using
the randomForest R package (version 4.6.14).31 In the case of

Table 1. Covariates for statistical association analyses

Outcome A priori covariates
Additional criterion-
based covariates

Baseline cry/fuss time
(colic severity)

Sex Child age at baseline

4-week problem
crying/fussing

Sex, randomization
group

None

2- year behavior
problems

Sex, randomization
group

Child age at baseline,
maternal mental illness
(at child age 2)
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the t-test and Rank-Sum test, these top features are the 3, 5, or
10 variables with the biggest between-group differences; in the
case of PCA, these top features are the first 3, 5, or 10 principal
components. Fourth, we choose whether to use 3, 5, or 10 features
(based on afivefold cross-validation of the training set), train a
model with these features, and then deploy this model on the
withheld test set. Wemeasure performance as accuracy, sensitivity,
specificity, precision, and area under the receiver operating curve
(AUC) (computed with the ROCR package32). To get a robust
estimate of performance, we repeat steps 1–4 for 100 random cuts
of the data and report the average. Note that for each random cut of
the data, the test set remains completely independent from the
training set and never informs model selection. As a reference,
we also train a random forest model using the a priori and
additional criterion-based covariates (see Table 1). The difference
between the microbiota classifier and the covariate classifier can be
interpreted as the comparative prognostic value of the microbiota
measurements.

Results

The cohort comprised 118 infants (53% male) for whom complete
sequencing and outcome data were available. Using dichotomized
behavioral outcomes, we found no significant differences in the
demographic and clinical characteristics of infants with poorer
behavior at baseline, 4 weeks, or 2 years (see Table 2). A higher
rate of concurrent maternal mental illness was observed in infants
who had behavioral problems at age 2 (χ2=5.06, p= 0.024). No
infants had been administered antibiotics, and 3 infants had been
administered a probiotic in the 24 h prior to the fecal sample
collection (in all cases, the product consumed was the commer-
cially available BioGaia with Lactobacillus reuteri DSM 17938).
Sensitivity analyses excluding these three infants (conducted using
diversity metrics only, due to sample size restrictions in other
analyses) demonstrated the robustness of findings across all out-
comes. The alluvial plot shows the trajectory of infants with respect
to problem cry/fuss and behavior between baseline, 4 weeks, and

Table 2. Participant clinical and demographic characteristics (overleaf)

Characteristic

Behavior problems (age 2 years)

P-valuea

Yes No

n= 20 n= 98

Baseline

Sex (n, %)

Female 11 (55.0) 44 (44.9) 0.41

Male 9 (45.0) 54 (55.1)

Birthweight in grams
(median, IQR)

3300 (2999) 3270 (3010)

Mode of birth

Vaginal 10 (50) 62 (63.3)

Caesarean 10 (50) 36 (36.7) 0.27

Milk feed type

Breast milk only 7 (35) 42 (42.8)

Breast milk and formula 6 (30) 24 (24.5) 0.49

Formula only 7 (35) 7 (7.1)

Mother’s age (mean, SD)

32.9 (5.2) 33 (4.8) 0.99

Mother’s highest education
(n, %)

High school or below 5 (25) 11 (11.2)

Diploma or tertiary degree 14 (70) 84 (85.7) 0.101

Data not available 1 (5) 3 (3.1)

PEDSQL family functioning
score

72.32 (19.5) 78.9 (21.8) 0.20

Maternal depression* (n, %)

Yes 12 (60) 47 (47.9) 0.33

No 8 (40) 51 (52)

Baseline daily crying/fussing
time by parent diary report
(n, %)

0 min – <3 h 3 (15) 14 (14.3)

3 h or more 17 (85) 71 (72.4) 1.0c

Data not available 0 (0) 13 (13.3)d

4-week follow-up

Daily crying/fussing time (n, %)

0 mins – <3 h 8 (40) 41 (41.8)

3 h or more 10 (50) 39 (39.8) 0.79

Data not available 2 (10) 18 (18.4)

2-year follow-up

CBCL Internalizing t score
(n, %)

Normal 5 (25) 98 (100)

Sub borderline-clinical 4 (20) 0 (0) <0.01

Borderline-clinical 6 (30) 0 (0)

Clinical 5 (25) 0 (0)

(Continued)

Table 2. (Continued )

Characteristic

Behavior problems (age 2 years)

P-valuea

Yes No

n= 20 n= 98

CBCL Externalising t score
(n, %)

Normal 5 (25) 98 (100)

Sub borderline-clinical 6 (30) 0 (0)

Borderline-clinical 5 (25) 0 (0) <0.01

Clinical 4 (20) 0 (0)

Maternal mental illnessb (n, %)

Yes 10 (50) 22 (22.4) 0.024

No 10 (50) 76 (77.6)

IQR, interquartile range; SD, standard deviation.
*EPDS score >9.
aChi-squared test, or t-test as appropriate.
bKessler 6 score >95th percentile.
cSimulated p value based on 2000 replicates.
dDiary data of cry/fuss time were not available for these infants; however, all infants were
reported to have >3-h cry/fuss per day at enrolment.
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2 years (see S-Material 3), which demonstrates that a large
proportion of infants with problem cry/fuss at 4 weeks also had
longer cry/fuss durations at baseline.

Exploratory analysis of the microbiota in colic

Alpha and beta diversity varies on the basis of infant sex, birth
mode, and feeding
Variability was observed in the distribution of phyla across samples
(S-Material 4). Greater alpha diversity was observed in infants
who were formula-fed exclusively (Shannon: M: 2.12 [SD: 0.51],
p= 0< 0.001; Chao1: M:111.33 [SD: 26.89], p=< 0.001) or in
addition to breast milk (Chao1: M: 91.35 [SD: 22.88], p= 0.037),
compared to those who were fed breast milk only (Shannon:
M: 1.65 [SD: 0.48]; Chao1: M: 79.73 [SD: 21.96]); see Fig. 1. There
was weak evidence of greater alpha diversity in infants born by
caesarean section (Shannon: M:1.93 [SD:0.56] vs 1.77 [SD: 0.51],
p= 0.096). In combination, three factors (birth mode, milk
feed type, and sex) accounted for 11.9% of the variance in
evenness and 21.65% of the variance in richness (R2= 0.119,
F(4, 106)=4.72, p<.01; R2= 0.217, F(4, 106)=8.6, p< 0.001,
respectively).

Significant separation of microbial community structure
was observed by mode of birth (weighted UniFrac: R2= 0.023,
p= 0.026; unweighted UniFrac: R2 = 0.07, p= 0.001) and type of

milk feed at baseline (weighted UniFrac: R2= 0.036, p= 0.042;
unweighted UniFrac: R2= 0.072, p= 0.001; see S-Material 5 in
Supplementary materials).

Association between microbiota and behavior

Alpha diversity associates with 2-year behavioral outcome
Alpha diversity, defined here as either evenness (Shannon index)
or richness (Chao1), was not significantly associated with cry/fuss
time at baseline nor with problem crying/fussing at 4-week follow-
up (all p> 0.1). Higher microbial evenness in the baseline infant
gut microbiota was associated with an increased odds of behavioral
problems at 2 years of age (Shannon–Weaver index; OR: 2.78,
95%CI: 1.06–8.10, p= 0.046), and this association persisted follow-
ing adjustment with potential confounders (OR: 3.47, 95%CI:
1.24–10.88, p= 0.023). There was no significant separation in
microbial compositions on the basis of either of the crying/fussing
timepoints or behavioral outcome (weighted and unweighted
UniFrac distances between subgroups, all p> 0.1; S-Materials 6
in Supplement).

Baseline and 4-week crying share common microbiota
signatures
In total, 57 OTUs were associated with baseline crying/fussing,
75 OTUs were associated with crying/fussing at 4 weeks, and

Fig. 1. Alpha diversity by birth mode and milk feed type.
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54 OTUs were associated with the 2-year behavioral outcome
(p< 0.05 after FDR-adjustment; see S-Materials 1 in Supplementary
materials). Fig. 2 shows aVenndiagramof theOTUs associatedwith
each outcome. Two OTUs – classified as Parabacteroides distasonis
and Bifidobacterium animalis – associated with all 3 outcomes,
though not in the same direction. However, baseline crying and

4-week crying share 20 OTUs in common. Of these, 9 OTUs were
significantly enriched in both conditions, while 7OTUswere signifi-
cantly depleted in both conditions (Table 3).

Fig. 2 shows a Venn diagram of the number of OTUs associated
with each outcome (p< 0.05 after FDR-adjustment) that also have
the same direction of change.

Fig. 2. Venn diagram of the overlapping OTU biomarkers for each studied outcome.

Table 3. OTUs that were associated (enriched or depleted) with both baseline crying or 4-week crying, along with their genus
assignment

OTU Assigned genus
Association with
baseline crying/fussing

Association with
4-week crying/fussing

Percent
zero

Median nonzero
count abundance

denovo97820 Bacteroides Depleted Enriched 77 7

denovo184085 Bifidobacterium Depleted Depleted 38 20

denovo191814 Bifidobacterium Enriched Depleted 50 7

denovo223501 Bifidobacterium Depleted Depleted 47 115

denovo32036 Bifidobacterium Enriched Enriched 47 9

denovo185926 Clostridium Enriched Enriched 53 4

denovo22204 Clostridium Enriched Depleted 43 14

denovo228898 Clostridium Enriched Enriched 91 7

denovo246347 Clostridium Enriched Enriched 93 14

denovo254551 Clostridium Enriched Enriched 65 52

denovo85032 Clostridium Enriched Enriched 58 9

denovo167880 Collinsella Depleted Enriched 84 52

denovo194841 Eubacterium Enriched Enriched 89 7

denovo134420 Klebsiella Enriched Enriched 64 9

denovo136732 Lactobacillus Depleted Depleted 86 8

denovo1696 Lactobacillus Depleted Depleted 77 3

denovo208856 Lactobacillus Depleted Depleted 73 4

denovo52130 Megasphaera Depleted Depleted 84 30

denovo10738 Parabacteroides Depleted Depleted 45 5

denovo265702 Ruminococcus Enriched Enriched 46 3

This table also shows the percentage of zeros found for each OTU along with its median nonzero abundance.
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Genus-level summary reveals associations with all behavioral
outcomes
Fig. 3 shows a genus-level summary of the significant OTUs for
each condition. Although we did not find a common unidirectional
OTU signature for all 3 outcomes, several common unidirectional
genus-level signatures were observed. For example, several
Clostridium species are enriched in association with all outcomes.
Meanwhile, many Bifidobacterium species are variably enriched
and depleted. These findings suggest some convergence of micro-
biota associations at the genus level, even if few OTUs individually
associate with all outcomes.

Fig. 3 shows a barplot of the number of OTUs that are signifi-
cantly enriched or depleted in association with each behavioral
outcome, summarized at the genus level.

Baseline microbiota predicts crying at 4 weeks
Random forest models were trained on the baseline microbiota to
predict crying at 4 weeks (49 cases and 49 controls). Since this
data set has more variables than samples, the features were reduced
prior to model training. We trialed three feature reduction
methods: genus-level summary, univariate feature selection, and
a PCA of the training data. Table 4 shows the average cross-
validation accuracy performance for each strategy (selected by
inner-fold cross-validation). Training a model on the PCA
loadings of the genus-level summary had the best performance
during test set validation (64.95% accuracy). As a reference, a
random forest model was also trained using the covariates listed
in Table 1. All microbiota models had better accuracy than the
reference covariate model.

Discussion

In this study, we use a combined approach of statistical and
machine learning methods to evaluate the relationship between
the infant gut microbiota and behavioral outcomes in a cohort
of infants with colic. We found several lines of evidence that
support the role of gut microbiota in colic severity. Statistical
analyses demonstrated that one measure of alpha diversity
(Chaos 1 index, a measure of microbial evenness) was associated
with an increased odds of subsequent behavior problems at
age 2, and that the abundance of several OTU-level taxa were
associated with both baseline and 4-week cry/fuss time. When
summarizing the data at a broader taxonomic resolution, a number
of genera associated with concurrent (baseline), 4-week, and 2-year
behavioral outcomes with directional concordance. Random
forests demonstrated that the infant gut microbiota can predict
problem crying at 4-week follow-up with up to 65% accuracy.

Crying-associated microbiota signatures and the previous
literature

Although no OTUs were consistently associated with all three
outcomes in the same direction, 20 OTUs significantly associated
with both baseline and 4-week cry/fuss time, 16 of which are in the
same direction (Table 3). Overall, 57 OTUs were associated
with baseline crying/fussing. These OTUs were assigned to the
14 genera presented in Table 5. We find that several genera of
microbiota – including Bifidobacterium, Clostridium, Lactobacillus,
and Klebsiella – associate with colic severity in agreement with the
prior literature.

Fig. 3. Genus-level summary of the significant OTUs for each condition.
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For example, Clostridium and Lactobacillus taxa were found
to associate with crying in previous studies.33,34 In an early study
of gut microbiota, Lehtonen and colleagues produced fatty acid
profiles of stool samples in colic culturing techniques. They
reported more frequent colonization of Clostridium difficile in
infants with colic than non-colicky controls, which passed by

age 3 months. A more recent study by Pärtty and colleagues
showed associations between Clostridium leptum and Clostridium
coccoides and proinflammatory cytokines. Meanwhile, others have
speculated that the gas-producing qualities of bacteria like
Klebsiella, in conjunction with the proinflammatory properties
of Gram-negative bacteria like Eubacterium, may explain their

Table 4. The accuracy, specificity, sensitivity, precision, F1-score, and AUC for predicting 4- week crying using the baseline microbiota

Accuracy Sensitivity Specificity Precision F1-score AUC

Reference (covariates only) 0.5600 0.5951 0.5170 0.5407 0.5524 0.4955

OTUs (selected by t-test) 0.6090 0.5992 0.6145 0.6061 0.5809 0.5165

Genera (selected by t-test) 0.6175 0.6269 0.6123 0.6229 0.6068 0.5381

OTUs (selected by Wilcox) 0.6285 0.6224 0.6037 0.6354 0.6136 0.5490

Genera (selected by Wilcox) 0.6085 0.6265 0.5857 0.6074 0.6029 0.5196

OTUs (as PC loadings) 0.5835 0.5902 0.5761 0.5753 0.5699 0.4863

Genera (as PC loadings) 0.6495 0.6510 0.6477 0.6665 0.6450 0.5976

All performance measures are averaged across 100 training-test set splits. The best performances are boldfaced.

Table 5. Genera associated with baseline cry/fuss time in infants with colic

Genus (number of OTUs and direction
of significant associations in cases) Previously demonstrated association

Agreement with
previous literature

Association also present
with 4-week crying/fussing
time

Actinomyces
(0 enriched, 1 depleted)

Actinobacteria (phylum of Actinomyces) inversely
associated with colic symptoms41

Agreement –

Bacteroides
(1 enriched, 2 depleted)

Enriched in treatment nonresponders42 Mixed –

Bifidobacterium
(5 enriched, 7 depleted)

Lower in cases43-45 Mixed 1 enriched, 2 depleted

Clostridium
(8 enriched, 1 depleted)

More frequently colonized in cases during peak crying
time33; associated with systemic inflammation34

Agreement 5 enriched

Enterococcus
(2 enriched, 0 depleted)

Higher in cases46 Agreement –

Eubacterium
(1 enriched, 0 depleted)

Eubacterium hallii lower in cases45; higher in cases38 Mixed 1 enriched

Klebsiella
(4 enriched, 0 depleted)

More frequently colonized in cases45-48 Agreement 1 enriched

Lactobacillus
(1 enriched, 3 depleted)

Lower in cases43,45,49,50 Agreement 3 depleted

Megasphaera
(0 enriched, 1 depleted)

– – 1 depleted

Parabacteroides
(0 enriched, 1 depleted)

– – 1 depleted

Rothia
(1 enriched, 0 depleted)

– – 1 enriched

Ruminoccocus
(7 enriched, 2 depleted)

– – 1 enriched

Staphylococcus
(0 enriched, 2 depleted)

– – –

Also presented in this table is the agreementwith the previous literature and the overlapping associationwith 4-week cry/fuss time (if any). Results are derived from anOTU-level analysis but are
summarized here at the genus level for ease of interpretation. The number of OTUs enriched or depleted refers to the FDR-adjusted p-values in association with baseline or 4-week crying time.
All FDR and log-fold changes can be found in S-Materials 1. The “Association also present with 4-week crying time” refers to the subset of individual OTUs also found to associate with 4-week
outcome (16 total; see Table 3). The “Agreement with previous literature” column has 4 categories: Novel finding (no relevant past literature found); Mixed agreement (findings lack a consistent
direction); Agreement (findings tend toward the same direction); Disagreement (findings tend toward opposing directions).
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relevance to the intestinal pain and crying that characterizes
colic.35 Lactobacillus and Bifidobacterium are typically viewed as
beneficial bacteria and have been associated with reduced crying
outcomes in previous studies, having a demonstrated benefit for
gut epithelium integrity and function as well as gastrointestinal
motility.36 Future studies involving whole-genome shotgun
sequencing could attain a higher resolution of taxonomic identifi-
cation, resolve apparent contradictory findings regarding bacteria
such as Lactobacillus, and may elucidate the functional role that
these bacteria may have in colic. For example, deeper sequencing
and metabolic analyses may enable the investigation of potential
mechanistic explanations of microbial associations to colic such
as hydrogen and lactate metabolism37,38 which we were unable
to test in this study.

Association with 2-year behavioral outcome

Although several OTUs were significantly associated with 2-year
behavioral outcomes, none of these also associated with baseline
colic severity and 4-week crying in the same direction. How-
ever, when examining patterns of association at the genus level
(irrespective of the OTU in the genus), we see directional concord-
ance across all 3 outcomes. Of note, several Clostridium OTUs are
enriched in 2-year behavioral cases, and many OTUs from the
Bifidobacterium genera are alternately enriched and depleted.
Although these may not represent the same OTUs as those
associated with the baseline and 4-week timepoints, the pattern
is similar. Interestingly, both Clostridium and Bifidobacterium in
the infant gut have been previously associated with neurodevelop-
mental outcomes.2

Overall microbiota signature, not specific taxa, best predicts
4-week crying

Differential abundance analysis is useful for determining which
bacteria taxa, if any, associate with an outcome. However, it
does not tell us how well these taxa could diagnose or prognose
an outcome given new data. For this, we trained random forest
classifiers on the baseline infant microbiota to predict cry/fuss time
at the 4-week follow-up. We trialed 3 feature reduction methods to
see how they performed for this small patient cohort. Reducing
dimensionality of the training set with a genus-level summary
and subsequent PCA achieved the best performance at 64.95%
accuracy, suggesting that the combination of many small signals
within the gut microbiota helps predict future cry/fuss time better
than using a few specific OTUs. The moderate accuracy reported
here should be interpreted in light of two key considerations. First,
the trained model is predicting future crying/fussing for colicky
infants 4 weeks from fecal collection (making it a prognostic,
not a diagnostic test). Second, problem crying is a behavioral syn-
drome, not a canonical gut disease. By comparison, classifiers
trained to differentiate inflammatory bowel disease pathology
from healthy guts in the presence of a standing clinical diagnosis
has an AUC of ~75% across 4 gut microbiota data sets (in the
presence of imbalanced class labels).39

For completeness sake, we also trained the same random
forest classifiers to predict 2-year behavior from the baseline gut
microbiota (collected at 2 months of age). The classifiers had no
prognostic utility (F1-score < 0.50), which may be due to the small
sample size, 2-year time lag, and the multifactorial etiology of
behavior.40 Importantly, while some studies report associations
between biomarkers and future outcomes, the goodness of these
associations is evaluated based on how well the data fit a model,

and not based on how well the model generalizes to new data.
Even when the data fit the model (i.e., the model is “predictive”
with a good R-squared value), the model may not be useful for
translation. Indeed, this study found many significant associations
between OTU biomarkers and the 2-year behavioral outcome. Yet,
these biomarkers do not work as a prognostic test when subjected
to cross-validation. Predictivemodels should be carefully evaluated
on new data to determine if they have prognostic utility.

Strengths and Limitations

We have employed a set of rigorous statistical analyses to under-
stand the relationship between the gut microbiota and behavioral
phenotypes in human infancy, while adjusting for confounding
variables and multiple testing. Although the sample size is
relatively large for an association study of its kind, it is relatively
small for a machine learning analysis. The classification accuracies
reported here are encouraging as they suggest that the curation of
large datasets could enable the discovery of risk indices that predict
future clinical events based on the early infant gut microbiota.
Further, when considering applicability of these findings in
independent datasets, it is important to note that our sample
comprised mixed infant feeding modalities, and we did not adjust
for this in the analysis. Given the differential effects of probiotic
supplementation in colic on the basis of feeding modality8, this
may be relevant to the interpretation of these results.

Future directions

Our analyses agree with the previous literature which suggests that
the gut–brain axis in infancy is positively impacted by the genus
Lactobacillus, is negatively impacted by genera Clostridium and
Klebsiella, and has mixed associations with members of the
Bifidobacterium genus (possibly due to strain-specific effects).
Our machine learning results suggest that models trained on
dimension-reduced data can better predict future clinical events,
even if they preclude a clear understanding of mechanistic contri-
butions. Future research should further examine the relevance
of the Bifidobacterium, Clostridium, Lactobacillus, and Klebsiella
genera in the infant microbiota, possibly through functional
pathway analysis and whole-genome shotgun sequencing. A large
data set of this kind could offer new insights into how the gut
microbiota contributes to infant colic and may result in a better
predictive model that translates into clinical practice.

Supplementary Material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S2040174420000227
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