
Bull. Aust. Math. Soc. (First published online 2025), page 1 of 16∗

doi:10.1017/S0004972724001199
∗Provisional—final page numbers to be inserted when paper edition is published

UPPER BOUNDS ON POLYNOMIAL ROOT SEPARATION

GREG KNAPP � and CHI HOI YIP

(Received 3 October 2024; accepted 4 November 2024)

Abstract

We consider the relationship between the Mahler measure M( f ) of a polynomial f and its separation
sep( f ). Mahler [‘An inequality for the discriminant of a polynomial’, Michigan Math. J. 11 (1964),
257–262] proved that if f (x) ∈ Z[x] is separable of degree n, then sep( f ) �n M( f )−(n−1). This spurred
further investigations into the implicit constant involved in that relationship and led to questions about
the optimal exponent on M( f ). However, there has been relatively little study concerning upper bounds
on sep( f ) in terms of M( f ). We prove that if f (x) ∈ C[x] has degree n, then sep( f ) � n−1/2M( f )1/(n−1).
Moreover, this bound is sharp up to the implied constant factor. We further investigate the constant factor
under various additional assumptions on f (x); for example, if it has only real roots.
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1. Introduction

A well-studied subject in number theory is the distribution of roots of polynomials.
This tradition includes, for example, Descartes’ rule of signs, the Gauss–Lucas
theorem and the Schinzel–Zassenhaus conjecture. Here, we study the relationship
between the separation of a polynomial (the minimal distance between its roots) and
its Mahler measure. To be precise, we now define these terms.

DEFINITION 1.1. Given a polynomial f (x) ∈ C[x] with roots α1, . . . ,αn ∈ C, the
separation of f (x) is the quantity

sep( f ) := min
αi�αj
|αi − αj|.

Since, for any nonzero b ∈ C, sep( f ) = sep(b f ), we assume in the remainder of the
paper that all polynomials are monic. Our results can be easily adapted otherwise.
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2 G. Knapp and C. H. Yip [2]

DEFINITION 1.2. Given a monic polynomial f (x) ∈ C[x] with roots α1, . . . ,αn ∈ C,
the Mahler measure of f (x) is the quantity

M( f ) :=
n∏

i=1

max{1, |αi|}.

These two quantities are useful for rather different reasons. Knowledge about root
separation is helpful for writing algorithms that compute the number of real roots of a
polynomial (see Koiran [13]), for bounding the number of solutions to Thue equations
(see Grundman and Wisniewski [10]) and for deriving lower bounds on the absolute
values of certain products of algebraic integers (see Albayrak et al. [1]).

The Mahler measure is a versatile tool for measuring the complexity of a poly-
nomial. On the one hand, the Mahler measure contains information about the roots
of a polynomial via its definition. On the other hand, the Mahler measure contains
information about the coefficients of the polynomial: for any polynomial f (x) ∈ C[x] of
degree n, M( f ) �n H( f ), where H( f ) is the maximum absolute value of its coefficients
[3, Lemma 1.6.7]. Additionally, the Mahler measure preserves algebraic information
about polynomials since it is multiplicative. These facts together make the Mahler
measure valuable for translating information about the roots of a polynomial into
information about its coefficients, and vice versa. The Mahler measure is the main
object in Lehmer’s conjecture (see [14]). Smyth’s excellent survey [18] contains more
information on the use and study of the Mahler measure.

In general, it is valuable to find effective lower bounds on polynomial root
separation. After all, separation gives the minimum distance between distinct roots
of a polynomial, so a lower bound on separation gives a lower bound on the distance
between any two roots of that polynomial. Indeed, this is how separation is used in
[1, 10, 13]. A foundational lower bound on separation is the following result of Mahler.
It relies on the discriminant, defined for monic f (x) ∈ C[x] with roots α1, . . . ,αn to be

D( f ) :=
∏

1�i<j�n

(αi − αj)2.

THEOREM 1.3 (Mahler, [15]). Let f (x) ∈ C[x] be separable of degree n � 2 with
discriminant D( f ). Then

sep( f ) >

√
3|D( f )|

n(n+2)/2M( f )n−1 ;

in particular, if f (x) ∈ Z[x], then

sep( f ) >

√
3

n(n+2)/2M( f )n−1 .

This particular result has spurred much investigation, as it leaves many questions
open. Is the exponent of n − 1 on M( f ) optimal? This remains unknown, although
Bugeaud and Dujella [5] show that the optimal exponent is at least (2n − 1)/3 for
f ∈ Z[x], while Evertse [9] considers other ways to improve the exponent. Is the
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separability hypothesis necessary? Rump removes the separability hypothesis in [17],
and Dujella and Pejković improve his result in [8]. Can better results be obtained with
additional hypotheses (for example, if f (x) is assumed to be irreducible and/or monic)?
Many papers have looked at these kinds of questions, including [4, 8, 13]. What if
we look at distances between the absolute values of the roots, rather than distances
between the roots themselves? Bugeaud, Dujella, Fang, Pejković and Salvy look at
these questions in [6, 7].

Although lower bounds on separation have been well studied, the authors are not
aware of any attempt to provide upper bounds on separation. On the face of it, an upper
bound on separation provides less intuitive information about a polynomial’s roots than
does a lower bound. However, upper bounds on separation can provide us with useful
information for Lehmer’s conjecture, which we will describe after our main theorem.

One can easily obtain a trivial upper bound on separation using the trian-
gle inequality: sep( f ) = minαi�αj |αi − αj| � 2M( f ). Combining Mahler’s inequality
|D( f )| � nnM( f )2n−2 [15, Theorem 1] with the fact that sep( f )n(n−1) � |D( f )|when f (x)
is separable gives the improved upper bound

sep( f ) � n1/(n−1)M( f )2/n

for separable polynomials f (x) ∈ C[x]. However, numerical experiments conducted by
the first author at the outset of this project in [12] suggested that this upper bound is
still suboptimal, and, indeed, we can prove the following result.

THEOREM 1.4. Let f (x) ∈ C[x] be monic and separable of degree n � 2. Then

sep( f ) � min
{
2,

34
√

n

}
M( f )1/(n−1).

If, in addition, f (x) ∈ R[x] and one of the roots of f (x) with minimum absolute value
is not real (for example, if f (x) ∈ R[x] has no real roots), then

sep( f ) � min
{
2,

34
√

n

}
M( f )1/n.

In both cases, the dependence of the bound on n is optimal, although the constant
34 could possibly be improved.

Our next result finds the optimal constant for certain values of the signature of f (x).
A polynomial f (x) ∈ R[x] has signature (t, s) if it has t real roots and s pairs of complex
conjugate roots.

THEOREM 1.5. Suppose that f (x) ∈ R[x] is monic and separable of degree n � 2 and
signature (t, s), where s = 0, (t, s) = (1, 1) or (t, s) = (0, 2). Then

sep( f ) � Ct,sM( f )1/(n−δ),

where δ is 1 if t � 0 and 0 otherwise, and Ct,s is defined in the following table.

(t, s) (1, 1) (0, 2) (t, 0)
Ct,s

√
3

√
2 (2e + o(1))/t
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It is worth noting that each of our main theorems produces the same bounds on
absolute separation, defined in [6] to be

abs sep( f ) = min
|αi |�|αj |

||αi| − |αj||,

since we have abs sep( f ) � sep( f ) for all f.
With our main theorems described, we can detail the connection to Lehmer’s

conjecture.

CONJECTURE 1.6 (Lehmer’s conjecture). There exists an absolute constant μ > 1 so
that, for every irreducible, noncyclotomic f (x) ∈ Z[x] of degree at least two, M( f ) � μ.

Observe that Theorem 1.3 provides a lower bound on M( f ) that is useful when
sep( f ) is small: that is,

M( f ) �
( √

3
n(n+2)/2 sep( f )

)1/(n−1)
.

On the other hand, Theorem 1.4 provides a lower bound on M( f ) that is useful when
sep( f ) is large: that is,

M( f ) �
( sep( f )
min{2, 34/

√
n}

)n−1
.

Hence, proving Lehmer’s conjecture reduces to the case where f (x) satisfies
√

3
n(n+2)/2μn−1 < sep( f ) < min

{
2,

34
√

n

}
μ1/(n−1).

2. The optimal upper bound up to constant factor

The main goal of this section is to prove Theorem 1.4.

PROOF OF THEOREM 1.4. Write f (x) =
∏n

i=1(x − αi), where |α1| � |α2| � · · · � |αn|.
We first prove that sep( f ) � 2M( f )1/(n−1). Note that, for any j � 2, we have

0 < |αj − α1| � 2|αj|. As a consequence,

sep( f )n−1 � |α2 − α1||α3 − α1| · · · |αn − α1| �
n∏

j=2

2|αj| � 2n−1M( f ),

and the claim follows.
Next, we show that if f (x) ∈ R[x] and if there exists αj � R with |αj| = |α1|, then,

actually, sep( f ) � 2M( f )1/n. The argument is very similar, except we may now assume
that α1 and α2 are complex conjugates. In this case,

sep( f )n � |α2 − α1|2|α3 − α1| · · · |αn − α1| �
n∏

j=1

2|αj| � 2nM( f ),

and the claim again follows.
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Now we return to the situation where we only assume that f (x) ∈ C[x] is separable
of degree n, and we aim to show that

sep( f ) �
34
√

n
·M( f )1/(n−1).

Since 34/
√

n � 2 for n � 289, we assume that n � 290 in the following discussion.
Let r = sep( f )/2 and, for any R � 0, let

N(R) := #{i : |αi| < R, 1 � i � n}.

Additionally, for any z ∈ C, let BR(z) denote the open ball of radius R centred at z. We
may safely assume that r � 1/

√
n, as the theorem easily follows otherwise.

Next, observe that, for any i � j, Br(αi) and Br(αj) are disjoint. Additionally, for any
R > 0,

BR+r(0) �
⋃
|αi |�R

Br(αi).

As a consequence,

π(R + r)2 = vol(BR+r(0)) >
∑
|αi |�R

vol(Br(αi)) = N(R) · πr2,

which implies that

N(R) <
(R

r
+ 1

)2
. (2.1)

Now, for each positive integer j � �log2(n)	 − 1 =: L (here, we use the assumption that
n � 3 to obtain L � 1), define Rj = r(

√
n/2j − 1). Note that Rj > 0 for j � L. For each j,

we aim to bound from below the number of roots αi that satisfy Rj < |αi|.
Observe that N(Rj) < n/2j by (2.1), and hence, for each j with 1 � j � L, there must

be at least n(2j − 1)/2j roots αi that satisfy |αi| � Rj. Therefore,

M( f ) �
∏
|αi |�RL

|αi| = (r
√

n)n−N(RL)
∏
|αi |�RL

|αi|
r
√

n

� (r
√

n)n−N(RL)
( R1

r
√

n

)n/2( R2

r
√

n

)n/4
· · ·

( RL

r
√

n

)n/2L

. (2.2)

The remainder of this proof will be dedicated to showing that
( R1

r
√

n

)n/2( R2

r
√

n

)n/4
· · ·

( RL

r
√

n

)n/2L

�
1

4n2 · 16n .

First, note that, for any j � L,

Rj

r
√

n
= 2−j/2 − n−1/2 =

2−j − n−1

2−j/2 + n−1/2 =
n − 2j

n · 2j(2−j/2 + n−1/2)
.
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Since j � L, we have n−1/2 � 2−j/2, which implies that 2−j/2 + n−1/2 � 2−j/2+1. Hence,

Rj

r
√

n
�

n − 2j

n · 2j/2+1 .

We now make slightly different estimates for j = L and for j < L. If j = L,

RL

r
√

n
�

1
n · 2L/2+1 .

If j < L, we use the fact that 2L < n � 2L+1 to find that

Rj

r
√

n
�

n − 2j

n · 2j/2+1 �
2L − 2j

2L+j/2+2 =
1 − 2j−L

2j/2+2 �
1

2j/2+3 .

Consequently,

L∏
j=1

( Rj

r
√

n

)n/2j

�
[( 1

n · 2L/2+1

)2−L

·
L−1∏
j=1

2(−j/2−3)/2j
]n

=

[ 1
(2n)2−L · 2

−∑L
j=1 j/2j+1 · 8−

∑L−1
j=1 2−j

]n

�
[ 1
(2n)2−L · 2−

∑
j�1 j/2j+1 · 8−

∑
j�1 2−j

]n
.

The series in the above exponents converge, with
∑

j�1 2−j = 1 and
∑

j�1 j · 2−(j+1) = 1.
Hence, since n � 2L+1,

L∏
j=1

( Rj

r
√

n

)n/2j

�
1

(2n)n/2L · (2−1 · 8−1)n �
1

4n2 · 16n .

Finally, we can return to inequality (2.2) and we acquire

M( f ) �
1

4n2 · 16n · (r
√

n)n−N(RL). (2.3)

Since N(RL) < n/2L � 2 and since N(RL) is an integer, we actually have N(RL) � 1.
Since we have assumed that r � 1/

√
n, inequality (2.3) implies that

M( f ) �
1

4n2 · 16n · (r
√

n)n−1

and we get

sep( f ) = 2r �
2 · (4n2)1/(n−1) · 161+1/(n−1)

√
n

·M( f )1/(n−1) �
34
√

n
·M( f )1/(n−1),

where we use the fact that n � 290 in the final inequality.
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Note that the additional, stronger statement for f (x) ∈ R[x] also follows. If f (x)
has a nonreal root among its roots of minimum absolute value, then we cannot have
N(RL) = 1, so we must have N(RL) = 0. Hence, inequality (2.3) implies that

M( f ) �
1

4n2

(r
√

n
16

)n
,

and the theorem statement again follows. �

We now demonstrate that both bounds are optimal except possibly for the
constant 34. We do this by constructing a family of polynomials whose separation
nearly attains the upper bound which we have now proved.

Before we do this, we note the following fact about the Gaussian integers. For
r � 0, let G(r) denote the number of Gaussian integers a + bi for a, b ∈ Z that satisfy
|a + bi| � r. A well-known result of Gauss (see, for example, [2, page 101]) states that

π(r −
√

2)2 � G(r) � π(r +
√

2)2 for r �
√

2.

Fix an integer n � 2 and a real number t � 1. Set R =
√

n/π +
√

2, which implies
that there are at least n Gaussian integers a + bi with |a + bi| � R. Select n distinct
Gaussian integers α1, . . . ,αn so that:

(1) α1 = 0; and
(2) |αj| � R for 1 � j � n.

Now define

ft(x) =
n∏

j=1

(x − tαj).

For j � 2, we have |αj| � 1, which implies that

M( ft) =
n∏

j=2

t|αj| � (tR)n−1 � (1.6 sep( ft)
√

n)n−1,

and that sep( ft) � M( ft)1/(n−1)/1.6
√

n. Hence, the first upper bound on separation in
Theorem 1.4 has the best possible dependence on n.

For the remaining examples, we take R =
√

(n + 1)/π +
√

2 and we choose n distinct
Gaussian integers β1, . . . , βn so that:

(1) 0 < |βj| � R for 1 � j � n;
(2) the set {β1, . . . , βn} is closed under complex conjugation; and
(3) there exists βj � R so that |βj| = mink |βk |.

Observe that condition (1) together with the fact that the βk are Gaussian integers
implies that mink |βk | � 1. For real t � 1, we define

gt(x) =
n∏

j=1

(x − tβj) ∈ R[x]
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and now we have

M(gt) =
n∏

j=1

t|βj| � (tR)n � (1.7
√

n sep(gt))n,

which implies that sep(gt) � M(gt)1/n/1.7
√

n. Hence, the second upper bound on
separation in Theorem 1.4 has the best possible dependence on n.

We remark that the constant factors of 1.6 and 1.7 can be improved by replacing
the square lattice of Gaussian integers with the hexagonal lattice, and with some extra
work using partial summation to find a more efficient upper bound on M( ft) and M(gt).

3. Improving the constant factor

Our main goal of this section is to prove Theorem 1.5, which we will do in stages.

PROPOSITION 3.1. Let f (x) ∈ R[x] be monic and separable with degree n � 4.
Suppose, further, that all n of the roots of f are real. Then

sep( f ) �
6.33

n
·M( f )1/(n−1).

Moreover, as n→ ∞,

sep( f ) �
2e + o(1)

n
·M( f )1/(n−1), (3.1)

and the constant 2e is asymptotically sharp.

PROPOSITION 3.2. Let f (x) ∈ R[x] be monic and separable with degree three. If f (x)
has exactly one real root, then

sep( f ) �
√

3M( f ).

Moreover, the constant
√

3 is optimal.

PROPOSITION 3.3. Let f (x) ∈ R[x] be monic and separable with degree four. If f (x)
has no real roots, then

sep( f ) �
√

2 ·M( f )1/4.

Moreover, the constant
√

2 is optimal.

These propositions cover each of the cases stated in Theorem 1.5 except the case
where the signature is (2, 0) or (3, 0), when the result follows from Theorem 1.4.

We first prove a lemma on bounding binomial coefficients.

LEMMA 3.4. For any positive integer n � 3,(
n
�n/2


)
�

2n+1

√
π(2n + 1)

.
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PROOF. It is known that, for any positive integer �,
(
2�
�

)
�

22�

√
π(� + 1/4)

(see, for example, [11]). If n is even,
(

n
�n/2


)
�

2n

√
π(n/2 + 1/4)

=
2n+1

√
π(2n + 1)

.

If n is odd, say n = 2k + 1, then
(

n
�n/2


)
=

(
2k + 1

k

)
=

2k + 1
k + 1

(
2k
k

)
�

2k + 1
k + 1

· 22k

√
π(k + 1/4)

=
n

n + 1
· 2n+1

√
π(2n − 1)

and one can now check that n/((n + 1)
√

2n − 1) � 1/
√

2n + 1 to complete the proof. �

PROOF OF PROPOSITION 3.1. Denote the closest root of f (x) to 0 by α and let
r = sep( f ). Suppose that there are s roots of f (x) which are less than α and t roots
of f (x) which are greater than α. Define

g(x) =
t∏

i=1

(x − α − ri) · (x − α) ·
s∏

j=1

(x − α + rj)

and observe that M( f ) � M(g) because the roots of g are no further from the origin
than the corresponding roots of f. Furthermore, sep( f ) = r = sep(g), so it suffices to
prove the proposition for g(x).

We first consider the case where all roots of g have the same sign. In this case, we
can assume that α � 0 without loss of generality. Then the roots of g are simply given
by α,α + r, . . . ,α + (n − 1)r. Thus,

M(g) �
n−1∏
j=1

(α + jr) �
n−1∏
j=1

(jr) = (n − 1)! rn−1.

It follows that

sep(g) = r �
( M(g)
(n − 1)!

)1/(n−1)
<

e
n
·M(g)1/(n−1).

Next, we consider the case where not all roots of g have the same sign. Let β be the
closest root of g(x) to the origin and write

g(x) =
T∏

i=1

(x − β − ri) · (x − β) ·
S∏

j=1

(x − β + rj).
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Since β is the closest root of g(x) to 0 and since g(x) has a root with the opposite sign
to β, we find that |β| � r/2. We may also assume, without loss of generality, that β � 0
(otherwise, we may apply the same proof to g(−x)). We now have

M(g) �
T∏

i=1

|β + ri| ·
S∏

j=1

|β − rj| �
T∏

i=1

(
ri − r

2

)
·

S∏
j=1

(
rj +

r
2

)

= rn−1 ·
T∏

i=1

(
i − 1

2

)
·

S∏
j=1

(
j +

1
2

)
. (3.2)

Getting an understanding of the lower bound given in inequality (3.2) will require
use of the gamma function. We use the fact that Γ( 1

2 ) =
√
π together with the usual fact

that Γ(z) = (z − 1)Γ(z − 1) to note that

T∏
i=1

(
i − 1

2

)
=
Γ(T + 1

2 )
√
π

and
S∏

j=1

(
j +

1
2

)
=

2Γ(S + 3
2 )

√
π

.

By Wendel’s inequality [19], if m is a nonnegative integer, then

Γ

(
m +

1
2

)
>

mΓ(m)√
m + 1

2

=
m!√

m + 1
2

.

Thus,

T∏
i=1

(
i − 1

2

)
=
Γ(T + 1

2 )
√
π

>
T!√
π(T + 1

2 )
,

S∏
j=1

(
j +

1
2

)
=

2Γ(S + 3
2 )

√
π

>
2(S + 1)!√
π(S + 3

2 )
.

Now we have

M(g) � rn−1 · T!√
π(T + 1

2 )
· 2(S + 1)!√
π(S + 3

2 )
(3.3)

from inequality (3.2) and we aim to estimate the right-hand side of this inequality from
below in terms of n. We have the restrictions 0 � S, T � n and S + T + 1 = n, so we can
replace S + 1 in equation (3.3) by n − T to find

T!√
π(T + 1

2 )
· 2(S + 1)!√
π(S + 3

2 )
=

T!√
π(T + 1

2 )
· 2(n − T)!√
π(n − T + 1

2 )

=
2n!

π
(

n
T

)√
(T + 1

2 )(n − T + 1
2 )
�

4n!

π
(

n
�n/2


)
(n + 1)

. (3.4)
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Using Lemma 3.4 and Robbins’ bound n!>
√

2πn(n/e)ne1/(12n+1) [16] gives

T!√
π(T + 1

2 )
· 2(S + 1)!√
π(S + 3

2 )
�

4n!

π
(

n
�n/2


)
(n + 1)

�
n! ·
√

2n + 1
√
π2n−1(n + 1)

>

√
2n(n/e)ne1/(12n+1)

√
2n + 1

2n−1(n + 1)
=

( n
2e

)n
· 2
√

2n(2n + 1)e1/(12n+1)

n + 1
> 3.46

( n
2e

)n

by the fact that n � 4.
Finally, we return to inequality (3.3) to find that that

M(g) � 3.46 sep(g)n−1
( n
2e

)n
,

and we can conclude that

sep(g) �
(M(g)

3.46

)1/(n−1)(2e
n

)n/(n−1)
�

2e(2e/3.46)1/3

nn/(n−1) M(g)1/(n−1) �
6.33

n
M(g)1/(n−1).

Asymptotically, using Stirling’s approximation n!∼
√

2πn(n/e)n, we can combine
inequality (3.3) and inequality (3.4) to deduce that

M(g) � sep(g)n−1 4n!

π
(

n
�n/2


)
(n + 1)

� (4 − o(1)) sep(g)n−1
( n
2e

)n
,

as n→ ∞. It follows that sep(g) � ((2e + o(1))/n)M(g)1/(n−1) as n→ ∞.
Finally, we show that the constant 2e is asymptotically sharp in inequality (3.1). Let

r > 1 be fixed. For each integer n � 4, set fn(x) =
∏m

j=−m(x − jr) if n = 2m + 1 is odd,
and fn(x) =

∏m+1
j=−m(x − jr) if n = 2m + 2 is even. Stirling’s approximation then yields

sep( fn) = ((2e + o(1))/n)M( fn)1/(n−1) as n→ ∞. �

Next, we consider cubic polynomials that have only one real root.

PROOF OF PROPOSITION 3.2. Suppose that the real root of f (X) is α; without loss
of generality, we may assume that α � 0. Let β denote the complex root of f (X) with
positive imaginary part. Write β = x + iy for x, y ∈ R.

We claim that we may assume that x � 0. If not, then set β′ = −x + iy and
g(X) = (X − α)(X − β′)(X − β′). Since sep(g) � sep( f ) and M(g) = M( f ), proving the
proposition for g(X) will prove it for f (X). Hence, we only need to prove the
proposition under the assumption that x � 0.

Let R = |β|. Note that, if y �
√

3R/2, then

sep( f ) � |β − β| = 2y �
√

3R �
√

3M( f )1/2

and the proof is complete. Hence, for the rest of the proof, assume that y >
√

3R/2. In
particular, this implies that y > −x

√
3.

Our next goal is to reduce to the case where α is ‘small’. Let t be the unique
value in R for which the points t, β, β form an equilateral triangle. One can check
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that t =
√

3y + x. Note that t > −x
√

3 + x = −x(
√

3 − 1) � 0. Now, if α � t, set h(X) =
(X − t)(X − β)(X − β); we have sep( f ) = 2y = sep(h) and M( f ) � M(h), so it suffices
to prove the proposition for h. Hence, we may assume that 0 � α < t.

Note that M( f ) = max{1,α} ·max{1, x2 + y2} and sep( f ) = |α − β| =
√

(α − x)2 + y2.
Our goal is to show that M( f )/ sep( f )2 � 1

3 . We divide our proof into two cases.

Case 1: x2 + y2 � 1. Within this case, we have two subcases. First, assume that α < 1.
Then

M( f )
sep( f )2 =

x2 + y2

(α − x)2 + y2 �
x2 + y2

(1 − x)2 + y2 .

We aim to show that

x2 + y2

(1 − x)2 + y2 �
1
3

or, equivalently, that 2(x2 + y2) � 1 − 2x. If −1/2 � x � 0, then this follows immedi-
ately from the fact that x2 + y2 � 1. If x < −1/2, then we can use the fact that y > −x

√
3

to deduce that 2(x2 + y2) � 8x2 > 1 − 2x.
Next, assume that 1 � α � t. Then

M( f )
sep( f )2 =

α(x2 + y2)
(α − x)2 + y2 =

x2 + y2

α − 2x + x2+y2

α

.

Observe that the denominator, as a function of α, will be maximized at either α = 1 or
α = t. In the case of α = 1, we have already shown that

x2 + y2

(1 − x)2 + y2 �
1
3

.

So it remains to check that

t(x2 + y2)
(t − x)2 + y2 �

1
3

.

First, observe that, since t = x + y
√

3,

t(x2 + y2)
(t − x)2 + y2 =

t((t − y
√

3)2 + y2)
4y2 =

t3 − 2
√

3t2y + 4ty2

4y2 .

Next, observe that (t3 − 2
√

3t2y + 4ty2)/(4y2) is a nondecreasing function of t since
its partial derivative with respect to t is 3(t − 2y/

√
3)2/(4y2). Note, additionally, that,

since y � −x
√

3,

t =
√

3y + x �
(√

3 − 1
√

3

)
y =

2
√

3
y.
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Since (t3 − 2
√

3t2y + 4ty2)/(4y2) is nondecreasing in t and t � (2/
√

3)y, we must have

t3 − 2
√

3t2y + 4ty2

4y2 �
2

3
√

3
y.

But the fact that x2 + y2 � 1 together with the assumption that y � −x
√

3 imply that
y �
√

3/2, and hence we can finally conclude that

M( f )
sep( f )2 =

t(x2 + y2)
(t − x)2 + y2 =

t3 − 2
√

3t2y + 4ty2

4y2 �
2

3
√

3
y �

1
3

.

Case 2: x2 + y2 < 1. Now note that, since x2 + y2 < 1 and y � −x
√

3, we must have
x � −1/2. Again, we have two subcases. First, if α < 1, then

M( f )
sep( f )2 =

1
(α − x)2 + y2 �

1
(1 − x)2 + y2 =

1
1 − 2x + x2 + y2 �

1
2 − 2x

�
1
3

and the proof is complete.
Now assume that 1 � α � t. The fact that t � 1 implies that y = (t − x)/

√
3 � 1/

√
3.

In this case,

M( f )
sep( f )2 =

α

(α − x)2 + y2 =
1

α − 2x + x2+y2

α

,

which is again minimised when α = 1 or α = t. We have already shown that

1
(1 − x)2 + y2 �

1
3

,

so it remains to show that

t
4y2 =

t
(t − x)2 + y2 �

1
3

.

If y �
√

3/2, then t/4y2 � t/3 � 1/3. If y �
√

3/2, then we use the fact that x �
−
√

1 − y2 to get

t
4y2 =

x + y
√

3
4y2 �

y
√

3 −
√

1 − y2

4y2 �
1
3

.

We can see that the constant
√

3 is optimal for the polynomial f (x) = x3 − 1. �

Finally, we turn our attention to the case where f (x) is a quartic with no real roots.

PROOF OF PROPOSITION 3.3. Suppose that the roots of f (x) are α, ᾱ, β, β̄ where
Im[α], Im[β] > 0 and |α| = r � |β| = R. Note that sep( f ) = min{2Im[α], 2Im[β],
|α − β|}. We have the following two cases.
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Case 1: 2r � R. In this case, we note that

sep( f ) � 2Im[α] � 2r � 2r1/2
(R

2

)1/2
=
√

2r1/2R1/2 �
√

2M( f )1/4.

Case 2: r � R < 2r. In this case, we first observe that if Im[α] < 1
2

√
2r1/2R1/2 or if

Im[β] < 1
2

√
2r1/2R1/2, then the proof is complete because

sep( f ) � min{2Im[α], 2Im[β]} �
√

2r1/2R1/2 �
√

2M( f )1/4.

Hence,

α ∈
{
z ∈ C : |z| = r and Im[z] �

√
2

2
r1/2R1/2

}
=: S

and

β ∈
{
z ∈ C : |z| = R and Im[z] �

√
2

2
r1/2R1/2

}
=: T .

As a result,

sep( f ) � |α − β| � sup
z1∈S
z2∈T

|z1 − z2|

=

∣∣∣∣∣
(√

r2 − rR
2
+ i ·
√

2
2

r1/2R1/2
)
−

(
−

√
R2 − rR

2
+ i ·
√

2
2

r1/2R1/2
)∣∣∣∣∣

=

√
r2 − rR

2
+

√
R2 − rR

2
.

We claim that √
r2 − rR

2
+

√
R2 − rR

2
�
√

2r1/2R1/2.

To see this, divide both sides of the inequality by r1/2R1/2 to obtain the equivalent
inequality

√
r
R
− 1

2
+

√
R
r
− 1

2
�
√

2.

Observe that this new inequality depends only on the ratio x = R/r, which we have
bounded by 1 � x < 2. It is now a simple calculus problem to show that

√
1
x
− 1

2
+

√
x − 1

2
�
√

2

for 1 � x < 2, and the proof that sep( f ) �
√

2M( f )1/4 is complete.
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To see that the bound is sharp, consider the family of polynomials
ft(x) = (x − t(1 + i))(x − t(1 − i))(x − t(−1 + i))(x − t(−1 − i))

for t ∈ R with t � 1/
√

2. Every polynomial in this family has sep( ft) =
√

2M( ft)1/4. �
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