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Evolution of water wave groups with wind action
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A modified fully nonlinear model of an air–water system in deep water is presented
in which the effect of wind in the air is simply represented by a direct link between
the air–water interface pressure and the interface slope. The water system is a fully
nonlinear Euler model of incompressible and irrotational fluid flow. Our main aim is to
establish and compare with a reduced model represented by a forced nonlinear Schrödinger
(FNLS) equation that describes wave groups in a weakly nonlinear asymptotic limit. Wave
groups are described by the soliton and breather solutions generated by four cases of
initial conditions in the relevant parameter regime. Numerical simulations of wave group
formation in both models are compared, both with and without wind forcing. The FNLS
model gives a good prediction to the modified fully nonlinear model when the wavenumber
and wave frequency of the initial carrier waves are close to unity in dimensionless
units based on typical carrier wavenumber and wave frequency. Wind forcing induces
an exponential growth rate in the maximum amplitude wave. When the wave steepness
becomes high in the fully nonlinear model some wave breaking is observed, but the FNLS
model continues to predict large waves without breaking and there is then agreement only
in the initial stage for the relevant initial conditions and parameter value ranges.

Key words: wind-wave interactions

1. Introduction

The evolution of water waves under wind action is a fundamental problem of both scientific
and operational concern. Oceanic wind waves affect the weather and climate through
transfer processes across the ocean–atmosphere interface, generate large forces on marine
structures, ships and submersibles, and lead to extreme events such as rogue waves. But
despite much theoretical research, observations and numerical simulations, the theoretical
mechanism for wind wave formation and evolution remains controversial. This was very
evident at the IUTAM symposium on wind waves held in London in September 2017,
see Grimshaw, Hunt & Johnson (2018), where a wide range of contrasting opinions were

† Email address for correspondence: montri.m@ku.th

© The Author(s), 2022. Published by Cambridge University Press 947 A35-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

67
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:montri.m@ku.th
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2022.675&domain=pdf
https://doi.org/10.1017/jfm.2022.675


M. Maleewong and R. Grimshaw

presented with a very lively discussion. In particular, there are only tentative theories
about how wind affects the dynamics of wave groups. The issue is how, in the presence
of wind, do water waves form into characteristic wave groups, and what are their essential
properties, depending on the local atmospheric and oceanic conditions.

Several mechanisms have been invoked to describe the generation and evolution of water
waves by wind. One very well known is a classical shear flow instability mechanism
developed by John Miles in 1957 (Miles 1957) and subsequently adapted for routine
use in wave forecasting models; see Janssen (2004), Cavaleri et al. (2007) for instance.
The theory is based on linear sinusoidal waves with a real-valued wavenumber and a
complex-valued frequency so that waves may have a temporal growth rate. There is
significant transfer of energy from the wind to the waves at the critical level where the wave
phase speed matches the wind speed. Independently, also in 1957 Owen Phillips (Phillips
1957) developed a theory for water wave generation due to the flow of a turbulent wind over
the sea surface. This mechanism is based on a resonance between a fluctuating pressure
field in the air boundary layer and water waves due to match between the water wave
wavelength and the length scale of the pressure fluctuations. This led to a linear growth in
the water wave amplitude. It is widely believed that the Phillips mechanism applies in the
initial stages of wave growth, and that the Miles mechanism describes the later stage of
wave evolution; see Phillips (1957, 1981), Miles (1957). Another quite different mechanism
is a steady-state theory, developed by Harold Jeffreys in 1925 (Jeffreys 1925) for separated
flow over large-amplitude waves, and later adapted in the 1990s for non-separated flow
over low-amplitude waves by Julian Hunt, Stephen Belcher and colleagues; see Belcher
& Hunt (1998) for instance. Asymmetry in the free surface profile is induced by an eddy
viscosity closure scheme. In the air flow it allows for an energy flux to the waves.

No theory has been found completely satisfactory, and most fail to take account of wave
transience and the tendency of waves to develop into wave groups (see, among many
similar criticisms, Zakharov et al. 2015; Zakharov, Resio & Pushkarev 2017; Zakharov
2018), which is the issue we have addressed (Grimshaw 2018, 2019a,b; Maleewong
& Grimshaw 2022). Our analysis is based on linear shear flow instability theory, but
incorporates from the outset that the waves will have a wave group structure with both
temporal and spatial dependence. The key feature is that the wave group moves with
a real-valued group velocity even for unstable waves when the wave frequency and the
wavenumber are complex valued. In the absence of wind forcing it is well known that
the nonlinear Schrödinger (NLS) equation describes wave groups in the weakly nonlinear
asymptotic limit where wave groups are initiated by modulation instability and then
represented by the soliton and breather solutions of the NLS model; see Grimshaw
(2007), Osborne (2010) for instance. We propose from our analysis that the effect of
wind forcing can be captured by the addition of a linear growth term leading to a forced
nonlinear Schrödinger (FNLS) equation. Our re-examination of modulation instability and
the generation under wind forcing of localised structures, specifically wave packets and
breathers, commonly invoked as models of rogue waves, indicate that the effect of wind
forcing is to favour the formation of wave packets aligned with the wind direction over the
formation of breathers (Maleewong & Grimshaw 2022).

Most of the literature on wind-generated water waves has focused on the development
and analysis of the statistical spectrum using the well-known Hasselmann equation which
describes the evolution of the water wave action under the influence of nonlinearity due
to resonant quartet interactions, a wind forcing source term and dissipation, mainly due to
wave breaking; see Janssen (2004), Grimshaw et al. (2018) for instance. While there are
many associated analytical and numerical studies of the fully nonlinear Euler equations for
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water waves, there are comparatively few studies of a fully nonlinear two-fluid air–water
system. Furthermore, much of these have focused on modelling turbulence in the air flow
rather than our concern here with the essentially inviscid development of wave groups;
see, for instance, the articles by Sajjadi, Drullion & Hunt (2018), Sullivan et al. (2018),
Wang, Yan & Ma (2018), Hao et al. (2018) in the proceedings of the IUTAM 2017
symposium on wind waves (Grimshaw et al. 2018). One reason for this is because an
inviscid fully nonlinear two-fluid system such as air over water is subject to a short-scale
Kelvin–Helmholtz instability. While this is a real physical effect, it is not the explanation
for the growth of wind waves, which is due to wind shear in the air flow; see Miles (1957).
Hence, in this paper we avoid this difficulty by replacing the two-fluid system with a
fully nonlinear inviscid Euler system for the water, driven by a pressure term at the free
surface which directly links the free surface pressure with the free surface slope. This
modified Euler system is based on the pioneering work of Miles (1957) and later developed
by Kharif et al. (2010) amongst others. Because our interest is in the growth of wave
groups, which in the presence of wind forcing can be described by a FNLS equation (see,
for instance, Leblanc 2007; Touboul et al. 2008; Kharif et al. 2010; Onorato & Proment
2012; Montalvo et al. 2013; Brunetti et al. (2014); Slunyaev, Sergeeva & Pelinovsky 2015;
Grimshaw 2018, 2019a,b; Maleewong & Grimshaw 2022), we show that the FNLS is a
weakly nonlinear asymptotic reduction of our modified Euler system.

In summary, in this paper we present a modified version of the fully nonlinear Euler
equations for an air–water system in which the effect of wind in the air is simply
represented by a direct link between the air–water interface pressure and the free surface
slope; the water system is fully nonlinear. Our main aim is to establish that the FNLS
model is a weakly nonlinear asymptotic reduction of this modified Euler system and in the
relevant parameter regime to compare through numerical simulations of the wave group
formation in both models. In § 2.1 we present the fully nonlinear Euler equations for water
waves, in § 2.2 we present the modified Euler system for the effect of wind forcing and
in § 2.3 we describe the FNLS reduction. The initial conditions we use to describe the
evolution of wave groups are presented in § 3. The results from our numerical simulations
from both the modified Euler system and the comparison are described in § 4. We conclude
in § 5.

2. Formulation

2.1. Fully nonlinear equations for water waves
The water waves are modelled using inviscid, incompressible two-dimensional flow in
the domain −h < y < η, where y = −h is a rigid fixed bottom and y = η(x, t) is the free
surface. For irrotational flow, the governing equations are expressed in terms of a velocity
potential φ(x, y, t) as

∇2φ = 0 in − h < y < η, (2.1)

∂φ

∂y
= 0 on y = −h. (2.2)

The fluid velocity u = ∇φ. The free surface conditions are expressed in a semi-Lagrangian
form. Thus, we let X = (x(α, t), y(α, t)) represent a point on the free surface where
α is a label for fluid particles. This is a parametric representation of the free surface,
and elimination of α yields the free surface as y = η(x, t). The kinematic and dynamic

947 A35-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

67
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.675


M. Maleewong and R. Grimshaw

boundary conditions on the free surface in the absence of surface tension are, in
Lagrangian form following Cooker et al. (1990),

(
Dx
Dt

,
Dy
Dt

)
= DX

Dt
= ∇φ, y = η, (2.3)

Dφ

Dt
= 1

2
(φ2

x + φ2
y ) − gy − P

ρw
, y = η. (2.4)

Here D/Dt = ∂/∂t + ∇φ · ∇ is the material time derivative, P(x, t) is the air pressure at
the free surface and is unknown at this stage and ρw is the constant water density.

The equation set (2.1)–(2.4) can be expressed in non-dimensional form using time
and length scales ST , SL to remove the physical parameters g, h and for numerical
convenience. We choose ST = Ω−1, SL = K−1, where Ω, K are a characteristic frequency
and wavenumber of the carrier wave of a wave group and are subject to the linear
dispersion relation

Ω2 = gK tanh H, H = Kh. (2.5)

Thus, if the subscript d denotes the dimensional variable and n the non-dimensional
variable, then xn = Kxd, yn = Kyd, tn = Ωtd. The equation set (2.1)–(2.4) is expressed
in variables xd, yd, td (the subscript ‘d’ not explicitly shown here) and is then replaced
by (2.6)–(2.10) as, using the new variables xn, yn, tn (the subscript ‘n’ also not explicitly
shown here),

∇2φ = 0 in − H < y < η, (2.6)

∂φ

∂y
= 0 on y = −H, (2.7)

(
Dx
Dt

,
Dy
Dt

)
= DX

Dt
= ∇φ, y = η, (2.8)

F2 Dφ

Dt
= F2

2
(φ2

x + φ2
y ) − y − F2 P

ρw
, y = η, (2.9)

F2 = Ω2

gK
= tanh H. (2.10)

Here F can be regarded as a Froude number as it is the ratio of two speeds, the carrier phase
speed and the deep water phase speed. In deep water (2.10) becomes F2 = 1 and F2 < 1
for all depths. The physical parameters g, h have been replaced with the non-dimensional
parameters F, H. A linear wave with dimensional frequency ωd and wavenumber kd then
has a non-dimensional frequency ωn = ωd/Ω and wavenumber kn = kd/K. The subscript
‘n’ is subsequently omitted. Our motivation for the choice ST = Ω−1, SL = K−1 is to
ensure that in our theory and simulation ω, k are order unity numbers. There is no
obligation or requirement to choose ω = 1, k = 1 although that is ‘natural’ and mostly
what we do. In particular our derivation of the FNLS equation in § 2.3 does not require that
ω = 1, k = 1. The main requirement is that the amplitude A(X, T) of the envelope wave is
slowly varying relative to the carrier wave scales k−1, ω−1. The linear dispersion relation
for a carrier wave of frequency ω and wavenumber k in these scaled non-dimensional
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variables is
F2ω2 = k tanh q, q = kH, (2.11)

and the group velocity cg = ωk is

cg = c
2

{
1 + q(1 − σ 2)

σ

}
, c = ω

k
, σ = tanh q. (2.12)

2.2. Approximation for wind forcing
In general, an analogous set of equations is required for the air flow, with coupling to the
water flow at the common free surface and with forcing due to the air pressure P(x, t) at
the free surface. Here, rather than dealing with a complicated two-fluid system, we seek
an approximation to the air flow by expressing the air pressure P(x, t) directly in terms of
η(x, t) as this would then close the water wave equations (2.6)–(2.9). For small-amplitude
waves, it is sufficient to use the linearised equations for the air flow with a basic horizontal
wind profile U( y) which vanishes at the air–water interface, U(0) = 0. In the pioneering
work of Miles (1957) it is shown that if η = A exp (ikx − ikct) then P = (α + iβ)ρaU2

1kη,
where k is the wavenumber, c is the complex-valued phase speed, α, β are dimensionless
parameters determined from the approximate air-flow solution (see Appendix A), ρa is the
air density and U1 is a characteristic measure of the wind speed. Following Kharif et al.
(2010) we keep only the growth term β where the pressure is in phase with the free surface
slope. Hence, we close the scaled system (2.6)–(2.9) with the pressure condition expressed
here in non-dimensional form

P = βρa
K2U2

1
Ω2 ηx. (2.13)

Note that the dimensional pressure which leads to (2.13) is Pd = Ω2K−2P and that U1
is a dimensional reference velocity. Here β is a dimensionless parameter but U1 is a
dimensional velocity. Following Miles (1957) and many subsequent works, one choice
is U1 = u∗κ−1, where u∗ is the friction velocity for wind over water and κ is the von
Kármán constant. Expressions for the growth parameter β were given by Miles (1957) and
in many subsequent papers, and depend on the wind shear profile. We give an outline in
Appendix A based on recent work by Grimshaw (2018, 2019a). The numerical scheme for
the solution of (2.6)–(2.9) with the closure condition (2.13) is described in Appendix B.

2.3. Forced NLS equation
In the absence of wind forcing, the full Euler equations can be reduced to a NLS equation
for the description of a weakly nonlinear wave packet; see Benney & Newell (1967),
Zakharov (1968), Hasimoto & Ono (1972) and the review by Grimshaw (2007). In the
presence of wind forcing the outcome is a FNLS equation; see, for instance, Leblanc
(2007), Touboul et al. (2008), Kharif et al. (2010), Montalvo et al. (2013), Onorato &
Proment (2012), Brunetti et al. (2014), Slunyaev et al. (2015), Grimshaw (2018, 2019a,b),
Maleewong & Grimshaw (2022). Briefly, we impose a weakly nonlinear asymptotic
expansion, expressed here in the scaled non-dimensional variables,

η = A(x, t) exp (ikx − iωt) + · · · + c.c., (2.14)

with a corresponding expression for φ(x, y, t). Here c.c. is the complex conjugate and the
· · · represent higher-order terms in the asymptotic expansion; A(x, t) is a slowly varying
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amplitude and the expansion is jointly with respect to the amplitude and this slow variation.
Note that the water wave amplitude is twice the crest(trough) height above the undisturbed
level. Strictly, a small scaling parameter, δ say, should be used to keep the correct balance
between nonlinearity (∼ δ), time evolution (∼ δ−2) and spatial dispersion (∼ δ−1), but to
avoid having too many parameters we have not done that here. At leading order one gets
the linear dispersion relation. At the next order one finds that the amplitude A propagates
with the group velocity cg = ωk = c + k dc/dk, where ω = kc and c is the phase speed.
Second-order terms yield the second harmonic and a mean flow term. At the third order a
compatibility condition yields the FNLS equation

i(At + cgAx) + λAxx + μ|A|2A = iΔA. (2.15)

The coefficients μ and λ are given by

μ = −ωk2

4σ 4 (9σ 4 − 10σ 2 + 9) + ω3

2σ 3(HF−2 − c2
g)

(2σ(3 − σ 2) + 3q(1 − σ 2)2), (2.16)

λ = ωkk

2
, (2.17)

λ < 0 for all q while μ < 0 when q > qc and μ > 0 when q < qc, where qc = 1.363. In
deep water (q → ∞), μ → −2ωk2 and λ→ −ω/8k2. In the absence of wind forcing,
modulation instability occurs when μλ > 0, that is, when μ < 0, q > qc. The growth rate
Δ is given by (see, for instance, Leblanc (2007) and Kharif et al. (2010)), expressed here
in the non-dimensional coordinates,

Δ = ρaβF2ωk
2ρw

{
K2U2

1
Ω2

}
. (2.18)

From (2.13) the pressure term in the dynamic boundary condition (2.9) of the modified
Euler model can be expressed in terms of Δ,

P
ρw

= 2Δ

F2ωk
ηx. (2.19)

Our strategy is to explore and compare the solutions of the modified Euler system
(2.6)–(2.9) and the FNLS model (2.15) using two parameters, the carrier wave amplitude
M and the growth rate Δ. The latter is equivalent to using P as in (2.19) instead of
determining P through β as in (2.13). The apparent ‘growth’ factor 1/ωk in (2.19) is
misleading as Δ also depends on ω, k. Here Δ is a connecting parameter between the
system (2.6)–(2.9) and the FNLS model (2.15). The time and length scale for the pressure
P are linked to those of ηx; see (2.13). This sets the spatial scale of the wind forcing. From
(2.15) the time scale is set by Δ−1; in our non-dimensional coordinates that is many wave
periods for our choice of Δ � 1, since Δ = ΩΔd.

The FNLS equation (2.15) can be expressed in canonical form for the modulation
unstable case when λ < 0, μ < 0 as in deep water,

iεQT + ε2QXX + 2|Q|2Q = iΔQ, (2.20)

achieved by the change of variables

Q =
{ |μ|

2

}1/2

Ā, X = ε

|λ|1/2 (x − cgt), T = εt, (2.21a–c)

where Ā is the complex conjugate of A. Here we have introduced the parameter ε as it
is useful to represent the scaling properties of the NLS equation. In the small ε limit
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an asymptotic procedure can be used to describe the generation of a family of Peregrine
breathers from a modulated plane periodic wave; see Grimshaw & Tovbis (2013) for an
application to water waves. However, for the results shown in this paper, we have mainly
set ε = 1 as our concern is to describe the generation of a single wave group. Also, we
remind that x, t are non-dimensional coordinates, xn, tn are as above and where needed
should be replaced by xd, yd, td, where xn = Kxd, tn = Ωtd. Similarly, ω, k, μ, λ, Δ are
expressed in non-dimensional variables and may need to be adjusted.

In order to compare the solutions of the FNLS (2.20) with those from the full modified
Euler equations we must retrace the steps leading to (2.20). That is, using the leading-order
term of (2.14),

η = A(x, t) exp (ikx − iωt) + c.c., (2.22)

A(x, t) =
{

2
|μ|

}1/2

Q̄(X, T), x = cgt + |λ|1/2

ε
X, t = 1

ε
T. (2.23a–c)

3. Initial conditions

The initial condition at t = t0 for the modified Euler system is a sinusoidal wave, either
modulated with an envelope which in the absence of wind forcing would produce wave
packets, that is, solitons and breathers, or perturbed to produce modulation instability.
Hence, in the asymptotic small-amplitude limit, we set

η(x, t0) = A(x, t0) exp (ikx − iωt0) + c.c. (3.1)

There is a corresponding expression for φ at t = t0. Here we use linearised theory for the
boundary value of φ, that is,

F2φx(x, y = η, t = t0) = η(x, t0). (3.2)

The numerical solver can then solve the Laplace equation to obtain the initial velocity
potential field. Then these values of potential field are solved iteratively by the fixed point
method that is usually converged within fifteen iterations for absolute error 10−8. The full
velocity potential filed at time t is obtained and used to find the values at the next time step
in the dynamic boundary condition. Another technique for the initial stage of adjustment
in the high-order spectral method may be applied to avoid spurious waves after sufficient
time simulations; see Dommermuth (2000).

When A is a constant, in the absence of wind forcing this will generate a plane Stokes
wave, together with small transients because it is a linear approximation to a nonlinear
Stokes wave; see Dommermuth (2000) and Slunyaev et al. (2013). In the linear limit it
will travel with a non-dimensional phase speed c = ω/k = 1 when we make the usual
choice that in non-dimensional variables ω = 1 and k = 1. This is then modulated to
produce a wave group, as in Maleewong & Grimshaw (2022). We consider four cases
(1–4) representing, in the absence of wind forcing, (1) the generation of a Peregrine
breather, (2) the generation of a soliton, (3) a slowly varying long-wave perturbation and
(4) a long-wave periodic perturbation. In each case there are two key parameters M and
Δ: M measures the carrier wave amplitude, since M = Mn = KMd it is a wave steepness
parameter; Δ measures wind forcing, in the FNLS equation (2.15) Δ−1 is the time scale
for wave growth, in dimensional variables this is (ΔΩ)−1 so that a small value of Δ

corresponds to many wave periods. We have varied both parameters in the valid regime of
small M, Δ and show a sample of representative results.
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3.1. Case 1
When Δ = 0, the Peregrine breather solution of (2.20) is given by (see Peregrine 1983;
Chabchoub & Grimshaw 2016)

Q(X, T) = M
[

1 − 4(1 + 4iτ)

1 + 4χ2 + 16τ 2

]
exp (2iτ), τ = M2T

ε
, χ = M X

ε
. (3.3)

We use this initial condition to generate a Peregrine breather (3.3) at T = T0, T0 < 0. Here
M is the far-field amplitude as |X| → ∞ and ε is a small parameter useful to bring out the
asymptotic features of the breather family; see Grimshaw & Tovbis (2013). We usually set
ε = 1 without loss of generality.

3.2. Case 2
When Δ = 0 there is an exact soliton solution of (2.20) (see, among many references,
Grimshaw 2007; Chabchoub & Grimshaw 2016),

Q = Msech(Θ) exp (iΦ), Θ = Γ (X − VT), Φ = K̂X − Ω̂T,

where Γ = M
ε

, V = 2εK̂, εΩ̂ = ε2K̂2 − ε2Γ 2.

⎫⎬
⎭ (3.4)

Initially we specify M, K̂ noting that this non-dimensional K̂ becomes K̂K when made
dimensional. We choose K̂ so that the soliton speed V is much smaller than the
non-dimensional group velocity, which is 1/2 in the deep water limit.

We will use (3.4) as the initial condition at T = 0 to investigate the envelope wave
where Q represents a moving soliton with speed V . Formally V should be small in the
NLS asymptotic limit.

3.3. Case 3
The initial condition is a slowly varying long-wave perturbation,

Q(X, 0) = Msech(γ X). (3.5)

Here M is the amplitude of the carrier wave and γ −1 is the length scale of the envelope.
The FNLS equation (2.15) has an additional parameter ε which inversely measures
dispersion vis-a-vis nonlinearity. For very small ε, in the absence of wind forcing, the
initial state will evolve via a gradient catastrophe into a family of Peregrine breathers;
see figure 1 in Grimshaw & Tovbis (2013) when ε = 1/33 for an application to water
waves. For larger ε, say ε = 1 as here, only a single soliton is generated (see Maleewong
& Grimshaw 2022), which is based on numerical evidence and is our main case in this
present study. Let I = ∫ ∞

−∞ |Q| dX, then I should be large enough for even one soliton to
be generated; see Kharif, Pelinovsky & Slunyaev (2009). In case 2 our initial condition is
designed to produce just one soliton for all ε, where I = IS = πM/Γ = πε. But in case
3, I = πM/γ and, hence, we expect more solitons to be generated as ε is decreased since
then I > IS. Indeed, for small ε � 1, case 3 generates many solitons; see Grimshaw &
Tovbis (2013). But here our main concern is when ε is of order unity and we then find just
one or two solitons, as described in § 4.
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3.4. Case 4
The initial condition is a long-wave periodic perturbation with wavenumber K̂,

Q(X, 0) = M(1 + α cos K̂X), (3.6)

where 0 < α � 1. When Δ = 0, there is a modulation instability for εK̂ <
√

2|M|, and
maximum growth when εK̂ = √

1/2|M|; see more details in Maleewong & Grimshaw
(2022).

4. Numerical simulations

4.1. Case 1
In this subsection we solve the modified Euler model (2.6)–(2.9) and compare the results
obtained from the FNLS (2.20). The initial condition is (3.1) where Q(X, T0) is obtained
from (3.3) with M = 0.01 and ε = 1. Then we vary Δ as Δ = 0, 0.05, 0.1.

The simulation starts at t0 = −10 with time step dt = 0.01. The spatial domain is
−100 < x < 100 with the number of mesh points 601. Since the initial free surface profile
is a periodic wave train extending to both ends in the far field, we insert a sponge layer to
force the initial value of η to decay to zero at both boundaries. The initial potential function
is approximated using (3.2). From these initial data, we can start the fully nonlinear
simulation to investigate the evolution of a Peregrine breather. The objective is to observe
how large the maximum amplitude is when time evolves under wind forcing. In all cases
a wave packet emerges, either a breather as here in case 1 or usually a soliton in the other
cases, but because the initial condition is a small-amplitude asymptotic approximation
to wave packet some transient waves are also produced which remain in the domain
because of the periodic boundary conditions. This is quite clear and not obscured by these
transients, and so we have not made nonlinear adjustments to our initial conditions, as
in Dommermuth (2000) and Slunyaev et al. (2013) who encountered similar transients in
numerical studies of unforced wave packets.

Plots of |Q(X, T)| are shown in figure 1. At first we fix k = 1 and ω = 1. The simulation
is for the deep water limit so F = 1, cg = 0.5, μ = −2ωk2 and λ = −ω/8k2. When Δ =
0, the evolution of the free surface elevation obtained from the modified Euler and the NLS
models are shown in figures 2(a) and 2(c), respectively. Envelope waves over small carrier
waves travel on downstream with the predicted group velocity cg = 0.5. Comparison of
the free surface profiles at t = 9 is shown in figure 2(d) and they agree well. As time
increases, the amplitude does not grow, it shows only a small modulation (figure 2b).

The case of wind forcing with Δ = 0.05 is shown in figure 3. The free surface elevations
in figures 3(a) and 3(c) from the modified Euler and FNLS models agree well in terms of
group and phase velocities. Comparison of the free surface profiles at t = 9 is shown in
figure 3(d), the maximum amplitude grows as time increases. A plot of the maximum
wave height defined by the difference between the maximum and minimum of the surface
waves is shown in figure 3(b). The maximum wave height grows exponentially with
approximately the growth rate 2Δ, as predicted in Maleewong & Grimshaw (2022). The
main difference between the two models under wind forcing is that the fully nonlinear
model predicts growing waves with wave breaking at a particular time, while the FNLS
model predicts modulation of growing waves without wave breaking. It is possible that the
FNLS model can predict the maximum wave height more than five times from the initial
wave amplitude. But we cannot find a very-large-amplitude wave in the fully nonlinear
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Figure 1. Case 1 plot of a Peregrine breather, |Q| from the NLS model (3.3), M = 0.01 and Δ = 0.
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Figure 2. Case 1: M = 0.01, Δ = 0, (a) free surface plot from the modified Euler model, (b) max(η) −
min(η), (c) free surface plot from the NLS model, (d) free surface elevation at t = 9 from both
models.

model due to unstable and steep waves in the modified Euler code, that is, the program
diverges. Here we use the term wave breaking to mean that in our simulations of the
modified Euler system small-amplitude waves grow and become steep and then eventually
become unstable, which we call wave breaking. We have not followed this beyond that
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Figure 3. Case 1: M = 0.01, Δ = 0.05, (a) free surface plot from the modified Euler model, (b) max(η) −
min(η), (c) free surface plot from the FNLS model, (d) free surface elevation at t = 9 from both
models.

point but this Euler code is capable of describing overturning waves, as in Cooker et al.
(1990) and used by us in figure 11 of Grimshaw & Maleewong (2013).

A case of higher wind forcing with Δ = 0.1 is shown in figure 4. Overall, the results are
similar to the case of Δ = 0.05, except very steep waves appear earlier. The fully nonlinear
simulation breaks after t > 2. Wind forcing in terms of the free surface gradient induces a
large change at the crest of the free surface elevations. At that time, the FNLS model can
still predict wave growth.

A case of higher amplitude of the envelope wave with M = 0.02 is shown in figure 5.
Here we show only the case without wind forcing. The case with wind forcing is similar
to the case of M = 0.01. The evolution of the free surface obtained from the modified
Euler and NLS models are shown in figures 5(a) and 5(c), respectively. The envelope
waves travel with the predicted group velocity cg = 0.5. The profiles obtained from the
two models are similar except that the maximum height in the fully nonlinear model grows
at the early time step and then decreases in an oscillatory manner as time increases. In
figure 5(d) the free surface profiles agree well in both phase and group velocities, the
maximum wave height is of the same order as in the NLS model. The wave crest is higher
while the wave trough is smaller and this may result in wave breaking later. We cannot
simulate any fully nonlinear results for M > 0.03 but we can simulate both the NLS and
FNLS models for the cases of larger values of M. These weakly nonlinear models can
predict large waves, but these are not physical as in the fully nonlinear simulation.
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Figure 4. Case 1: M = 0.01, Δ = 0.1, (a) free surface plot from the modified Euler model, (b) max(η) −
min(η), (c) free surface plot from the FNLS model, (d) free surface elevation at t = 2 from both
models.

Next we consider a case when ω /= 1 and k /= 1. We again consider the deep water
limit when F = 1 and σ = 1. From the linear dispersion relation (2.11), ω2 = k. We set
ω = 0.95 and k = 0.9. From (2.13), the pressure term in the dynamic boundary condition
(2.9) of the modified Euler model can be written by (2.19). Thus, the growth rate Δ is a
connecting parameter between the modified Euler and FNLS models. We consider Δ = 0
and 0.05. The simulation starts at t0 = −10 and results are shown in figures 6 and 7. The
initial amplitude η(t0) is small. The results from the two models are in good agreement for
both Δ = 0 and Δ = 0.05. The results of the two models agree well when the value of ω is
not far from 1 and the initial wave amplitude is small. Note that the connecting parameter
Δ has the same value in both models. But if ω, k are smaller, then the magnitude of the
pressure term in the modified Euler model grows due to the factor 1/ωk in (2.19). With
the same initial value for η, the modified Euler model will then predict larger growth rates
than the FNLS model.

4.2. Case 2
We will present just one representative case. We put M = 0.02 and K̂ = 0.05, so that the
soliton speed V = 0.1 in the absence of wind forcing. Plots of the free surface profiles
obtained from the modified Euler model and the NLS model are shown in figures 8(a)
and 8(c), respectively. The maximum wave height is shown in figure 8(b) and both models
show small oscillations, although the NLS model is nearly stationary. Comparison of the
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Figure 5. Case 1: M = 0.02, Δ = 0, (a) free surface plot from the modified Euler model, (b) max(η) −
min(η), (c) free surface plot from the NLS model, (d) free surface elevation at t = 49 from both
models.

free surface profiles at t = 60 is shown in figure 8(d) and are in good agreement. The
NLS model has a slightly smaller wave amplitude than the modified Euler model. The
magnitude of the crest and trough is nearly half of the maximum wave height, showing
quite a linear wave.

For the same value of M, the simulations with wind forcing Δ = 0.05 are shown in
figure 9. The behaviour of the moving free surface elevation is similar to the case of
Δ = 0, except that the maximum wave height in figure 9(b) increases as time increases.
Clearly the FNLS model predicts exponential growth which is the same result as discussed
in Maleewong & Grimshaw (2022). The modified Euler model shows increasing growth
with oscillations as well but the maximum height is smaller, with developing asymmetry
between crest and trough, more nonlinear behaviour than in the FNLS model. The
modified Euler simulations can show some highly nonlinear effects in the form of a very
steep wave with sharp gradients at the crests or troughs for other initial conditions; see
figures 4, 7, 9(d) and figures 11, 13(d) below. These occur before the divergence of the fully
nonlinear simulations (nearly breaking wave in our context). In contrast, the FNLSmodel
can show some weakly nonlinear effects in terms of wave amplitude increase without the
collapse of the free surface profile.

4.3. Case 3
This case has a more general initial condition than case 2 as the input wavenumber γ

can be varied. If ε is small, more solitons will be generated, as presented in Maleewong
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Figure 6. Case 1: M = 0.01, Δ = 0, ω = 0.95, k = 0.9, (a) surface plot from the modified Euler model,
(b) max(η) − min(η), (c) surface plot from the NLS model, (d) free surface elevation at t = 40 from both
models.

& Grimshaw (2022) and discussed above. When ε � 1, there is a large disparity in time
scales between the models which makes comparison of the numerical results difficult; the
modified Euler model has then to run for a very long time, with the risk of wave breaking
instability and a very high initial wave frequency, see the transform scales (2.21a–c).
Hence, here we show only the case when ε = 1.

For the values of γ = 0.2, M = 0.02 and in the case of Δ = 0 a single soliton with
constant amplitude emerges this is equivalent to an envelope wave in η moving with a
speed close to the group velocity cg in the modified Euler model. The evolution of η

from the two models over 0 < t < 100 is shown in figures 10(a) and 10(c). They are in
good agreement over the entire time simulation as seen from the comparison at t = 100
in figure 10(d). The maximum wave heights from the two models are nearly equal and
stationary over the whole time as expected.

When there is wind forcing, the case of Δ = 0.05 is shown in figure 11. The simulation
in the modified Euler model can be done only for 0 < t < 40. As time increases, the wave
amplitude increases. As shown in figure 11(d), the maximum wave height in the modified
Euler model reaches about four times the height of the initial wave at t = 0, resulting in
very sharp and steep waves at t = 40. After this time, the result from the Euler model
diverges while those from the FNLS model remain convergent. The FNLS model predicts
a growing wave amplitude. At t = 40, phase and group velocities from the two models are
still in good agreement. The growth rates are shown in figure 11(b), clearly showing the
expected exponential growth.
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Figure 7. Case 1: M = 0.01, Δ = 0.05, ω = 0.95, k = 0.9, (a) surface plot from the modified Euler model,
(b) max(η) − min(η), (c) surface plot from the FNLS model, (d) free surface elevation at t = 8 from both
models.

4.4. Case 4
The initial condition is a long-wave periodic perturbation with wavenumber K̂ and an
amplitude α. In the absence of wind forcing, this will lead to the modulation instability of
a plane Stokes wave of amplitude M and the formation of envelope solitons and breathers.
We choose a large computational domain whose width is a multiple of 2π/K̂ to maintain
a periodic boundary condition without effects coming from the boundaries. Nevertheless,
in the modified Euler model we insert a sponge layer for the initial value of η to force
its value to decay to zero at both ends. In the initial condition (3.6), we set M = 0.04,
K̂ = 0.04 and α = 0.5. We are mainly concerned with the case of deep water and ensure
that εK̂ <

√
2|M| is satisfied so that the modulation instability will occur. The evolution

of free surface profiles from the two models is shown in figure 12 when there is no wind
forcing Δ = 0. A train of envelope waves travels downstream (x > 0) with a constant speed
cg = 0.5, as shown in figures 12(a) and 12(c). Comparison of the free surface profiles at
t = 100 is shown in figure 12(d), while the NLS model shows only a small increasing
change in the maximum wave height.

The case of wind forcing with Δ = 0.05 is shown in figure 13. The train of envelope
waves is directly perturbed by the wind forcing. As expected, the maximum wave height
increases as time increases (figure 13b). We cannot obtain any fully nonlinear simulations
when t > 12, when the waves are very steep and sharp at the crests of the waves
(figure 13d). The maximum wave height is greater than two times the initial wave height.
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Figure 8. Case 2: M = 0.02, Δ = 0, (a) surface plot from the modified Euler model, (b) max(η) − min(η),
(c) surface plot from the NLS model, (d) free surface elevation at t = 60 from both models.

After t > 12, the FNLS model continues to predict a growing wave amplitude that is not
too steep.

5. Summary and conclusions

In this paper our concern is with developing models for the analytical and numerical
description of the evolution of water wave groups under the action of wind. Because of the
numerical difficulties associated with the Kelvin–Helmholtz instability in an inviscid fully
nonlinear two-fluid system such as air over water, we have presented instead a modified
Euler model which is fully nonlinear for the water flow but in which the wind forcing
from the air flow is severely approximated. Following the pioneering approach by Miles
(1957), subsequently adopted by others such as the recent work by Kharif et al. (2010),
we prescribe a direct linear link (2.13) between the pressure at the air–water interface and
the interface slope, thus avoiding the complications of a two-fluid simulation. In fact, of
course, the sea state is far more complex than the configuration studied in our simulations;
for instance, see the wind-generated sea states in the laboratory experiments of Toffoli
et al. (2017).

In the absence of wind forcing, the NLS equation is well established as a canonical
model for weakly nonlinear wave groups. In the presence of wind forcing this is extended
to a FNLS equation; see Leblanc (2007), Touboul et al. (2008), Kharif et al. (2010),
Montalvo et al. (2013), Onorato & Proment (2012), Brunetti et al. (2014), Slunyaev et al.
(2015), Grimshaw (2018, 2019a,b), Maleewong & Grimshaw (2022). Here, we impose a
weakly nonlinear asymptotic expansion on the modified Euler system to derive the FNLS
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Figure 9. Case 2: M = 0.02, Δ = 0.05, (a) surface plot from the modified Euler model, (b) max(η) −
min(η), (c) surface plot from the FNLS model, (d) free surface elevation at t = 40 from both
models.

equation (2.15). The growth parameter Δ in the FNLS equation (2.15) is related to the
pressure forcing term in the modified Euler system by the linear expression (2.19). With
this connection, we simulate both models for the evolution of wave groups. In the relevant
parameter regime, the outcomes agree very well. We note that the wind forcing term in
the modified Euler system acts on the free surface slope, whereas in the FNLS equation it
is expressed through the wave amplitude growth rate Δ. In the connecting formula (2.19)
there is a factor 1/ωk (in our dimensionless units). For the same free surface profile η

obtained from both models, there will be a large discrepancy in the forcing magnitude
unless 1/ωk ≈ 1. Hence, we have focused on cases close to the deep water limit when
ω ≈ 1, k ≈ 1 and so F ≈ 1. In the full deep water limit, ω2 = k, F = 1.

To examine the evolution of wave groups, we have considered four initial conditions,
each of which in the absence of wind forcing would lead to contrasting representations of
a wave group. In the terminology of the NLS equation these are (1) a Peregrine breather,
(2) a soliton, (3) a slowly varying long-wave perturbation and (4) a long-wave periodic
perturbation. In each case, envelope waves travel with a speed close to the linear group
velocity cg = 1/2 (non-dimensional units) in the deep water limit. In the modified Euler
simulations the initial condition for η is given by (3.1) with the initial potential function
approximated by linearised theory.

The initial free surface profile depends on ω, k and M, all in non-dimensional units.
The solutions are explored using two parameters, M and Δ. Here M is a non-dimensional
measure of the initial carrier wave amplitude. In dimensional variables it is a measure
of wave steepness. For a deep water 15 s wave, K = 0.019 m−1 and so a wave steepness

947 A35-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

67
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.675


M. Maleewong and R. Grimshaw

0 10 20 30 40 50 60 70 80 90 100
0.050
0.055
0.060
0.065
0.070
0.075
0.080
0.085
0.090
0.095
0.100

Euler
NLS

Euler
NLS

–100 –50 0 50 100 150 200
–0.05
–0.04
–0.03
–0.02
–0.01

0
0.01
0.02
0.03
0.04
0.05

xx

t

t
m
ax

(η
) 

–
 m
in

(η
)

–0.05

0.05

–150 –100 –50 0 50 100 150

100

90

80

70

60

50

40

30

20

10

0
0η

t

–0.05

0.05

–150 –100 –50 0 50 100 150

100

90

80

70

60

50

40

30

20

10

0
0η

η

(b)(a)

(c) (d )

Figure 10. Case 3: M = 0.02, Δ = 0, (a) surface plot from the modified Euler model, (b) max(η) − min(η),
(c) surface plot from the NLS model, (d) free surface elevation at t = 100 from both models.

M = 0.02 corresponds to a dimensional wave amplitude of about Md = 1 m, where 2Md
is the crest(trough) height above the undisturbed level. This initial amplitude could not be
too large in the modified Euler simulations, as otherwise steep waves are generated with
wave breaking.

The wind forcing is measured by (Δ)−1 which is a non-dimensional time for wave
growth under wind action. In dimensional variables this is a time scale of (Δ/Ω)−1 and
is several carrier wave periods. For a 15 s wave, Ω = 0.42 and so a typical Δ = 0.05
corresponds to about three wave periods. A more conventional measure of wind forcing is
the wind speed at some height above the sea surface, in the Miles theory the critical level.
This requires inter alia the determination of the parameter β and the reference velocity
U1 in (2.18). This is beyond the scope of this paper as it requires specification of the wind
profile in the air, but see Appendix A for a summary of how that might proceed. We note
that Miles (1957) used a logarithmic wind shear profile and several turbulence parameters
to estimate that β ≈ 10. With this value and setting KU1/Ω = 1 for deep water waves with
k = 1, ω = 1, the expression (2.18) yields Δ of order 0.01. Miles (1957) used a smaller
value of KU1/Ω in the range 0.25–0.5 on the assumption that U1 is near-surface wind
velocity. We prefer our larger value for the evolution of a wave group under wind. Also,
for a wave group, the requirement that the group velocity be real valued leads to enhanced
growth rates; see Grimshaw (2018). However, we note that in the expression (2.18) Δ is
quite sensitive to the values of β and U1. Hence, we have not followed this procedure and
have avoided the selection of a wind shear profile.
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Figure 11. Case 3: M = 0.02, Δ = 0.05, (a) surface plot from the modified Euler model, (b) max(η) −
min(η), (c) surface plot from the FNLS model, (d) free surface elevation at t = 40 from both
models.

In case (1) a Peregrine breather in the NLS model describes a free surface profile of
a travelling envelope wave enclosing a carrier wave with amplitude M. In the absence of
wind forcing, both model simulations agree well. When wind forcing Δ = 0.05 is applied,
in both models the amplitude of the envelope wave grows. The maximum wave height
defined by the difference between the maximum and minimum of the wave amplitude
grows exponentially as time increases. The maximum wave height from the modified
Euler model can grow to more than three times the initial state. Eventually, the crest
wave in the modified Euler model becomes very steep and leads to wave breaking, while
the wave amplitude in the FNLS model keeps growing with no wave breaking. We also
simulated the case when the initial wave frequency ω = 0.95, and both models provided
similar results when Δ = 0. When Δ = 0.05, the modified Euler model predicted a higher
maximum wave height than the FNLS model.

In case (2) a soliton represents a travelling envelope wave. In the absence of wind
forcing, the modified Euler model showed travelling waves similar to the NLS model but
with some small transients generated downstream. With wind forcing Δ = 0.05 the results
were similar but with the expected exponential growth in wave amplitude.

In case (3) for an initial condition of a slowly varying long-wave perturbation, both
models agree well for Δ = 0 and Δ = 0.05. The growth rate in terms of the maximum
wave height is well matched. The modified Euler model eventually produces very steep
waves, while the FNLS model continues to produce smoother wave crests. Since there is
an envelope in the initial condition and we have applied wind forcing, we do not expect the
theory for a plane periodic wave to apply quantitatively. The maximum amplitude in the
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Figure 12. Case 4: M = 0.04, Δ = 0, (a) surface plot from the modified Euler model, (b) max(η) − min(η),
(c) surface plot from the NLS model, (d) free surface elevation at t = 100 from both models.

modified Euler system can increase more than six times from the initial state. The wave
amplitude in figure 11(d) does increase very rapidly over a short time after t > 40, but we
stopped the simulation at t = 40 since the obtained results may not be realistic. To estimate
this precisely, we need a very fine mesh and small time step to capture the near breaking
wave, which is beyond the scope of this paper.

In case (4) the initial condition is a periodic long wave with modulation wavenumber K̂.
In the absence of wind forcing a modulation instability occurs when εK̂ <

√
2|M|. Here

we set ε = 1, K̂ = 0.04 and M = 0.04 and so we expected to see a modulation instability
in this case. The modified Euler model clearly showed this in the maximum wave height
while the NLS model showed a small modulation with increasing wave amplitude. During
the modulation, the modified Euler model showed some asymmetry of wave group profiles.
When wind forcing with Δ = 0.05 is invoked, the expected exponential growth rate of the
maximum wave height of both models agree. Here the simulation was stopped at t = 12
when the maximum wave height for the modified Euler model was at most about two times
the initial state, whereas in case 3 the simulation was run to t = 40.

Wave growth in our simulations comes from two mechanisms. One direct factor is
our wind forcing term Δ which is a simplification of more complex mechanisms such
as that due to Miles (1957). The predicted growth rate can be obtained from energy
considerations, as in the FNLS model where it is expressed as 2Δε−1. The second
mechanism to induce wave growth is a modulation instability as shown in case (4) in
which the wave amplitude can grow in time even for the case without wind forcing Δ = 0
when εK̂ <

√
2|M|.
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Figure 13. Case 4: M = 0.04, Δ = 0.05, (a) surface plot from the modified Euler model, (b) max(η) −
min(η), (c) surface plot from the FNLS model, (d) free surface elevation at t = 12 from both
models.

There are two main issues outstanding in relating our results to observed ocean wind
waves. The first is that we have taken absolutely minimal account of turbulence in the
air flow. In the models we have presented, as in Miles (1957), air flow turbulence is
expressed entirely through the parameter β in (2.13) and, as described in Appendix A,
this is determined entirely by the choice of the wind shear profile. As in Miles (1957),
a logarithmic profile is often chosen based on observations of air flow turbulence, but
other representations are possible; see, for instance, Grimshaw (2018). The remedy is
either direct numerical simulation of an air–water system, well beyond our capability and
intention, or more simply to invoke an eddy viscosity parametrisation, as used by Sajjadi,
Hunt & Drullion (2014), Sajjadi et al. (2018) for instance. The parameter β would then
depend on the eddy viscosity parametrisation, but we will not explore this further here.

Second, the present study like many others has only one horizontal space dimension
whereas observed wind-generated waves are two dimensional. Nevertheless, our present
results are a guide to how wave groups initially form and, for long times, at best are limited
to narrow wave tanks. The FNLS model can be readily extended to two dimensions, see, for
instance, Toffoli et al. (2010) who compared experiments and numerical simulations of the
water wave Euler equations with a modified extended NLS equation, and our recent study
of a forced Benney–Roskes system, see Grimshaw (2019b). This is the direction we intend
to pursue. Extension of the modified Euler model to two horizontal space dimensions is
also feasible in principle, but would need much more computational capacity than we have
employed here.
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Appendix A. Linearised air flow equations

The linearised equations for the air flow are (see, for instance, Grimshaw 2018, 2019a)

ρa(DUu + wUy) + px = 0, (A1)

ρaDUw + py + gρa = 0, (A2)

ux + wy = 0, (A3)

where DU = ∂

∂t
+ U

∂

∂x
. (A4)

It is useful to introduce the vertical particle displacement ζ defined in this linearised
formulation by

DUζ = w. (A5)

The substitution of w by ζ and eliminating u, p yields a single equation for ζ ,

{D2
Uζy}y + {D2

Uζ }xx = 0. (A6)

This equation is supplemented with the boundary conditions that as y → ∞, ζ → 0 and
as y → 0, ζ → η and p → pa.

Equation (A6) can be solved with Fourier transforms in space and time yielding a means
of expressing pa in terms of η. Here we seek a simpler approach noting that our concern is
with wave groups. Hence, we seek an asymptotic solution of (A6) in the form

ζ = A(x, t)φ( y) exp (ikx − ikct) + c.c. (A7)

Here A(x, t) is a slowly varying wave packet amplitude of a carrier wave with wavenumber
k. Substitution of (A7) into (A6) yields at the leading order the modal equation

{(c − U)2φy}y − k2(c − U)2φ = 0. (A8)

The modal function φ is normalised so that φ( y = 0) = 1 and then the required relation
between pa and ηx is given by

pa = ρac2A(x, t)φy(0) exp (ikx − ikct) + c.c., (A9)

ηx = ikA(x, t) exp (ikx − ikct) + c.c. (A10)

Within this linear approximation elimination of A(x, t) exp (ikx − ikct) yields the desired
relation (2.13) in terms of φy(0). In particular, the parameter β can now be obtained in
terms of the available physical parameters; see Miles (1957) and many subsequent works.
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Appendix B. Numerical method

Boundary integral methods are now commonly used to study two-dimensional unsteady
free surface flows, especially the formation of steep waves. Here we use the numerical
method presented by Grimshaw, Maleewong & Asavanant (2009), based on that developed
by Cooker et al. (1990), to solve numerically the system of nonlinear equations (2.6)–(2.9).
Full details of the numerical method can be found in Grimshaw et al. (2009), so here we
summarise just the main steps.

Let P̃(s, t) = x(s, t) + iy(s, t) be the position of a point on the free surface, where t is
time and s is a parameter indicating the location of a grid point. The complex velocity,
defined by w = φx − iφy, is expressed in terms of the tangential (s) and normal (n)
components to the free surface as

w = (φs − iφn)
P̃∗

s

|P̃s|2
, (B1)

where ∗ represents the complex conjugate. Then, after using the Cauchy integral formula
to express w(z) in terms of points on the boundary, the continuity equation (2.6) and
the bottom boundary condition (2.7) can be transformed into a matrix system at the
discretization points as

πφn(s) = −φss(s) +
N∑

s′=1

A(s, s
′
)φs(s

′
) +

N∑
s′=1

B(s, s
′
)φn(s

′
), s = 1, 2, . . . , N, (B2)

where

A(s, s
′
) = Re

{
−P̃s

P̃′ − P̃
+ P̃s

P̃∗′ − 2ih − P̃

}
if s

′
/= s, (B3)

A(s, s
′
) = Re

{
P̃ss

2P̃s
+ P̃s

P̃∗′ − 2ih − P̃

}
if s

′ = s, (B4)

B(s, s
′
) = Im

{
−P̃s

P̃′ − P̃
− P̃s

P̃∗′ − 2ih − P̃

}
if s

′
/= s, (B5)

B(s, s
′
) = Im

{
P̃ss

2P̃s
− P̃s

P̃∗′ − 2ih − P̃

}
if s

′ = s. (B6)

For an initial given shape of the free surface, we know φ, P̃ and P̃∗ at the points
si, i = 1, . . . , N, while φs and φss are approximated by the interpolation formula. Then
the matrices A(s, s

′
) and B(s, s

′
) represent a known geometry of the problem. The linear

system (B2) involves only the unknown φn at each point along the free surface and is
solved iteratively. That is, we rewrite (B2) as

c = d + Ec, (B7)

where c = {φn(s
′
)}, s

′ = 1, 2, . . . , N, (B8)
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d = 1
π

⎧⎨
⎩−φss(s) +

N∑
s′=1

A(s, s
′
)φn(s

′
)

⎫⎬
⎭ , s = 1, 2, . . . , N, (B9)

E = 1
π

N∑
s′=1

B(s, s
′
), s = 1, 2, . . . , N. (B10)

Then we solve (B7) iteratively for the unknown vector c,

cm+1 = d + Ecm, m = 1, 2, . . . , (B11)

where m denotes the mth iteration. For the first guess, we let c1 = d. The iterative process
is terminated by measuring the error |cm+1 − cm| < Tol ≈ 10−8. We have found φn at each
mesh point along the free surface.

Next, we march the numerical solutions in time by solving (2.8) and (2.9). These
equations are regarded as the first-order differential equations in t which can be solved
numerically by a standard predictor–corrector method.
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