
        

Dynamics and control of a set of dual fingers with soft tips
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SUMMARY
This paper attempts firstly to derive a mathematical model
of the dynamics of a set of dual fingers with soft and
deformable tips which grasps and manipulates a rigid object
with some dexterity. To gain a physical insight into the
problem, consideration is restricted to the case that the
motion of the whole system is confined to a horizontal
plane. Secondly on the basis of the derived model it is
shown that the rotation of the object can be indirectly
controlled by the change of positions of the center points of
both contact areas on the object. Then, each of the center
points of contact areas can be positioned by inclining the
last link of each corresponding finger against the object. It
is further shown that, when both forces of pressing the
object becomes almost equal, the equation of motion of the
object in terms of rotational angles assumes the form of a
harmonic oscillator with a forcing term, which can be
regulated coordinately by the relative angle between the two
last links contacting with the object. It is also shown that
dynamics of this system satisfy passivity. Finally, design
problems of control for dynamic stable grasping and
enhancing dexterity in manipulating things are discussed on
the basis of passivity analysis.

KEYWORDS: Dual fingers; Multi-fingered hand; Soft fingers;
Manipulation; Stable grasping.

1. INTRODUCTION
It was about two decades ago that robot engineers were
optimistic about predicting that robots would quickly evolve
into a higher form and be able to do any kind of tasks that
a human being can do. However, even in the beginning of
the new millennium 2000, it is said that robots are too
clumsy to be used in ordinary tasks that humans must do in
their everyday life. In fact, a variety of multi-fingered robot
hands carefully designed and manufactured with very high
precision has been brought into practice in manufacturing
but mainly used in simpler repetitive tasks. Regardless of
such fine hand mechanisms, it is quite a difficult problem to
endow them with dexterity and versatility in execution of a
variety of ordinary tasks. This paper is motivated by the
observation that the prime cause of this difficulty may
originate from the lack of our knowledge of physical
characterizations of dynamics of such fine and sophisticated
mechanisms physically interacting (grasping, handling, or
manipulating) with things and environment. In particular,

the paper attempts to explore dynamics of a set of dual
fingers with soft and deformable finger-tips that are
grasping and manipulating a rigid object, because most of
the past literature treated only the case of multi-fingered
hands contacting rigidly and point-wise with an object or
environment 1-3 and proposed to use rolling of finger-tips on
the surface of the object in order to enhance dexterity.
Differently from the case of rigid finger-tips, it is possible to
observe from dynamics of dual soft fingers that each center
of contact areas can be changed by coordinately inclining
the last links against the object. This means that the posture
of the object can be controlled without making rigid and
point-wise rolling of the finger-tips on the object surface,
which may cause dry fiction and slipping. In this paper it is
shown that the derived equation of motion of the system
naturally satisfies passivity. Further, it is shown that the
special equation of motion of the object in terms of rotation
in a horizontal plane is of the form of motion equation of a
pendulum with a forcing term composed of two moments,
each of which is equal to the reproducing force of a
deformed contact area times the length from each corre-
sponding contact center to the horizontal center line of the
object through the mass center. When two reproducing
forces arose from deformed contact areas become almost
equal, the rotational angle of the object can be controlled by
changes of angles of two last links relative to the object, by
which lengths of contact centers to the horizontal center line
can be also regulated. Then a feedback control scheme for
attaining stable grasping in a dynamic sense is proposed and
it is shown that the closed-loop system approaches asymp-
totically an equilibrium manifold of still states of grasping.
Another feedback scheme is also proposed, that can control
the rotation angle of the object in addition to attaining a
stable grasping.

In final two sections a variety of future research
directions necessary to unveil secrets of dexterity and
versatility of multi-fingered hands with soft finger-tips will
be discussed. It is then claimed that, with the evolution of
technology of tactile sensing as well as real-time robot
vision, soft hands with multiple fingers will be used in more
versatile everyday tasks that need automation.

2. DYNAMICS OF DUAL SOFT FINGERS
MANIPULATING AN OBJECT
For the sake of simplifying the mathematical argument and
gaining a physical insight into the problem why soft fingers
can manipulate an object with some dexterity and versatil-
ity, we assume that motion of the set of dual fingers is
confined to a horizontal plane (see Figure 1) and not
affected by the gravity force. Further, we treat the case that
the object is rigid with a rectangular shape and shape of
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each of soft and deformable finger-tips is spherical.
Generalization of the argument will be discussed in later
sections. 

As it is shown in Figure 1 it is reasonably assumed that
the deformed area of each finger-tip is crescent-shaped as
black-painted in the figure and at the center point Oi

(=(xi, yi)) there arises the concentrated pressure force fi in
the direction perpendicular to the surface of the object as
shown by an arrow. It is also assumed in a reasonable way
(as discussed in Appendix A) that the magnitude of the force
fi pressing the object is expressed as a function of Dxi, the
maximum displacement of deformation (see Figure 1), and
must be a monotonically increasing function of Dxi for
Dxi ≥0 with  fi(Dxi) = 0 for Dxi ≤0 (see Figure 2). Therefore,
the endpoint of each bone of the second links expressed as
O0i(=(x0i, y0i)) receives the reproducing force in the opposite
direction of fi (the pressing force to the object) with the
magnitude fi(Dxi). We ignore the effect of mass transfer of
the soft material used in covering the finger-tips in the
opposite direction of fi. Further, the adhesive force that may
arise between the soft material and the surface of the object

is so small that it does not affect motion of the set of fingers
and the object. Then, it is possible to ignore the equation of
motion of mass transfer in the direction of rotation wi.
Finally, it is necessary to consider any possibility of forces
that may arise from geometric constraints. However, the
geometrical constraints

x=x1 + l
2 cos u2Y1 sin u=x2 2

l
2 cos u2Y2 sin u (1)

y=y1 + l
2 sin u2Y1 cos u=y2 2

l
2 sin u2Y2 cos u (2)

where

Y1 =c1 2r1(p+u2q11 2q12)=c1 2r1w1 (3)

Y2 =c2 2r2(p+u2q21 2q22)=c2 2r2w2 (4)

neither generate any force in the direction of Y1 nor in that
of Y2 (see Figure 2) as discussed in Appendix B. Instead, the
two geometric constraints may virtually produce two forces
in directions of f1 and f2 respectively, but these forces should
be merged into the reproducing forces with magnitudes of
f1(Dx1) and f2(Dx2), respectively. On the other hand we must
not ignore the effect of geometric constraints of the
tightness of area-contacts as shown in equations (3) and (4)
but we omit this purposely (a rough discussion is presented
also in the last half of Appendix B).

Thus, it is possible to derive the following equation of
motion for the setup of dual fingers manipulating an object
(see Figure 1):

HHi(qi)
d

dt
+

1

2 
Ḣi(qi)Jq̇i +Si(qi,q̇i)q̇+ fi(Dxi)J

T
oiS­Dxi/­xo1

­Dxi/­yo1
D

=ui, i=1, 2 (5)

and

Hz̈+O
i=1,2

fi (Dxi )J
T
i (z)=0 (6)

Fig. 1. A mechanical hand with dual fingers whose ends are covered with soft material.

Fig. 2. The center of contact area moves on the object surface by
inclining the last link against the object.
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where qi =(qi1, qi2)
T, z=(x, y, u)T, Hi (qi) denotes the inertia

matrix of finger i, S(qi , q̇i) is a skew-symmetric matrix
including coriolis and centrifugal forces, H=diag(M, M, I)
denotes the diagonal matrix whose diagonal matrices stand
for the mass of the object and the inertia moment at the mass
center Oc.m.(=(x, y) in the Cartesian coordinates fixed in the
inertial frame). Further, Joi denotes the Jacobian matix of the
xoi, yoi) with respect to (qi1, qi2)and Ji(z) that of Dxi at (xi, yi)
with respect to z=(x, y, u)T, and fi(Dxi) the reproducing force
of the deformed finger tip for finger i. Practical calculation
of the two Jacobian matrices in (6) on the basis of
geometrical relations is not a trivial task, but having a
physical insight into the dynamics of the object exerted by
the reproducing forces f1 and f2 leads us to the result that

M
0
0

0
M
0

0
0
I

ẍ
ÿ
ü

2 f1(Dx1)
cos u

2 sin u

Y1

+f2(Dx2)
cos u

2 sin u

Y2

=0 (7)

where Y1 and Y2 denote the Y-component of the center O1 and
O2 of deformed areas expressed in terms of the coordinates
(X, Y) fixed at the object (see Figure 1). Differently from the
case of rigid fingers, the center point O01 where a force
sensor may be implemented must move relative to the object
when the last link of the left hand side finger inclines
relative to the object (see Figure 2). This change of the
position (x01 y01) can be brought about by an inclination of
the last link to the object without rigid rolling and is
extremely important in acquiring dexterity of manipulation
of the object, while in the case of rigid and point-wise
contacts the change of the contact position must accompany
rigid and point-wise rolling of the finger-tips on the surface
of the object. More detailedly, the two Jacobian matrices in
(7) can be formulated in the following way:

JT
1(z)=S­Dx1

­x
,
­Dx1

­y
,
­Dx1

­u DT

=

­x1

­x
­y1

­x

­x1

­y
­y1

­y

­x1

­u

­y1

­u

T ­Dx1

­x1

­Dx1

­y1

=F1 0 (l/2) sin u+Y1 cos u2r1 sin u

0 1 (l/2) cos u2Y1 sin u2r1 cosuGT

S2 cos u

sin u D=[2cos u, sin u, 2Y1]
T, (8)

J T
2(z)=S­Dx2

­x
,

­Dx2

­y
,
­Dx2

­u DT

=[cos u, 2 sin u, Y2]
T. (9)

It is also possible to calculate the Jacobian matrix in eq.(5),
which results in (see Figure 3)

JT
01

­Dx1

­x01

­Dx1

­y01

=
l12 sin (q11 +q12) l12 cos (q11 +q12)

+ l11 sin (q11) + l11 cos (q11)
l12 sin (q11 +q12) l12 cos (q11 +q12)

S cos u

2 sin uD
=Sl12 sin (q11 +q12 2u)+ l11 sin (q11 2u)

l12 sin (q11 +q12 2u) D (10)

JT
02

­Dx2

­x02

­Dx2

­y02

=
l22 sin (q21 +q22) l22 cos (q21 +q22)

2 l21 sin (q21) + l21 cos (q21)
2 l22 sin (q21 +q12) l22 cos (q21 +q22)

S2 cos u

sin u D

=Sl22 sin (q21 +q22 +u)+ l21 sin (q21 +u)
l22 sin (q21 +q22 +u) D (11)

Fig. 3. Physical meanings of each component of equation (8).
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3. PASSIVITY ANALYSIS
It is now possible to show that the input-output pair (u1,
u2),(q̇1, q̇2) for the system of equations (5) and (6) satisfies
passivity. In fact, in the light of physical meanings of
Jacobian matrices in (5) and (6) as described in (8) to (11),
and inner product between (u1, u2) and (q̇1, q̇2) is described
as

q̇T
1u1 + q̇T

2u2 =
d

dtHO
i=1,2

1
2

q̇T
i H(qi)q̇iJ+{(ẋ01, ẏ01)f1(Dx1)

2 (ẋ02, ẏ02)(f2Dx2)}S cos u

2 sin uD
+

d

dtH1
2

(Mẋ2 +Mẏ2 +Iu̇ 2)J
2{(ẋ1, ẏ1) f1(Dx1)2 (ẋ2, ẏ2)f2(Dx2)}S cos u

2 sin uD .

(12)

Since from a geometric relation as shown in Figure 1, it
follows that

H x1 2x01 =(r1 2Dx1) cos u,
y1 2y01 =2 (r1 2Dx1) sin u

(13)

from which we have

(x1 2x01) cos u2 (y1 2y01) sin u=r1 2Dx1 (14)

and

Dẋ1 =(ẋ01 2 ẋ1) cos u2 (ẏ01 2 ẏ1) sin u (15)

(Note that {(x1 2x01) sin u+(y1 2y01) cos u}u̇=0). Thus, by
substituting (15) into (12) we obtain

q̇T
1u1 + q̇T

2u2 =
d

dt
K(q̇1, q̇2, ż, q1, q2)+Dẋ1 f1(Dx1)+Dẋ2 f2(Dx2)

(16)

where

K=
1
2O

i=1,2

q̇T
i Hi(qi)q̇i +

1
2

(Mẋ2 +Mẏ2 +Iu̇ 2). (17)

Note that fi(Dxi)≥0, and fi is strictly increasing with
increasing Dxi, and

Dẋifi(Dxi)=
d

dtEDxi

0

fi(j) dj. (18)

Since the integral of the right hand side is positive for
Dxi >0, we have

Et

0

(q̇T
1u1 + q̇T

2u2) dt=E(t)2E(0)≥2E(0) (19)

which shows the passivity, where

E=K+O
i=1,2

EDxi

0

fi(j) dj. (20)

Contrary to the above argument the passivity follows
from the variational form defined by

Et2

t1

d(K2P) dt=0 (21)

for any t2, t1 (t2 > t1), where

P=O
i=1,2
EDxi

0

fi(j) dj (22)

and K is defined in (17).
Besides passivity, it is interesting to note that the last

equation of (7) is governed by a kind of motion equation of
a harmonic oscillator with a forcing term, that is,

Iü+2r fdu=fd[(c1-c2)+r{(q11 +q12)2 (q21 +q22)}], (*)

provided that f1 = f2 and r1 =r2 =r. In other words, the porture
(rotational angle u) of the object can be controlled indirectly
by changing relative inclination angles of the two second
finger links to the horizontal line, once the pressing forces
are attained at the target value f1 = f2 = fd and this internal
force can be maintained during inclining the second links to
the horizontal line or the surface of the object.

STABLE GRASPING
One merit of using soft fingers is possible design of a
mechanical hand that realizes a smooth transition from the
state of “non-contact” to “tight contact” via “instant of
contact”, which does not incur discontinuous changes of the
velocity vector of a finger-tip. Another merit is that it has
capability of realizing stable grasping by a simple feedback
control scheme with the aid of measurement of positions of
center points of contact areas relative to the surface of the
object together with measurement data on angles and
angular velocities of finger links. More precisely, we
assume measurements on vectors q1, q2, q̇1, q̇2, scalar values
Y1 and Y2, and knowledge of kinematic parameters
l11, l12, l21, l22, r1, and r2. Then, for a given desired internal
force fd we introduce control inputs defined by

u1 =JT
01S cos u

2 sin uD fd 2kv1q̇1 2
r1 fd

r1 +r2

(Y1 2Y2)S1

1D, (23)

u2 =JT
02S2cos u

sin u D fd 2kv2q̇2 +
r2 fd

r1 +r2

(Y1 2Y2)S1

1D. (24)

It is then easy to see that substitution of (23) and (24) into
(5) yields
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HHi(qi)
d

dt
+

1
2

Ḣi (qi)+Si(qi,q̇i)Jq̇i +kviq̇i

= (21)i HJT
0iS cos u

2sin uDD fi +
ri fd

r1 +r2

(Y1 2Y2)S1

1DJ,

i=1,2 (25)

where D fi = fi (Dxi)2 fd. On the other hand, equation (6) of
motion of the object (or (7)) can be rewritten in the form

Mẍ2 (D f1 2D f2) cos u = 0,
Mÿ2 (D f1 2D f2) sin u = 0,
Iü2D f1Y1 +D f2Y2 = fd (Y1 2Y2).

(26)

By referring to the passivity analysis that could derive
equation (19), taking an inner product between q̇i and (25)
for i=1, 2 and an inner product between (26) and ż we
obtain

d

dtH(K+DP)+
fd

2(r1 +r2)
(Y1 2Y2)

2J=2kv1 i q̇1 i2 2kv2 i q̇2 i2

(27)

where dxi = Dxi 2Dxdi, Dxdi = f i
21 ( fd), and 

DP=O
i=1,2

Edxi

0

{ fi (j+Dxdi)2 fd} dj. (28)

Since fd >0 and fi (j ) is a strictly increasing with increasing
j, each integral of the right hand side of (28) is positive
definite in dxi (see Figure 4). Hence, the content of bracket
{} of the left hand side of (27) plays a role of Lyapunov’s
function. Further, it is possible to prove from (27) that
qi (t) → 0 as t → ` for i = 1 and 2 (for example, see
Appendix C in the book4). In fact, since all velocity
vectors q̇1, q̇2 and ż must be norm-bounded in the sense of
L2(0, ` )-norm, all position vectors q1, q2, and z must be
bounded. Then, from (25) it follows that q̈i becomes
uniformly bounded, which means that q̇i is uniformly
continuous. Thus, by virtue of the fact that q̇i belongs to

L2(0,` ) and is uniformly continuous, it is concluded that
q̇i(t) → 0 as t → ` for either i=1 or i=2. This means that
the right hand side of (25) must converge to zero as t → ` .
However, as is discussed later, the vector JT

0i(cos u,
2 sin u)T (as is shown in Figure 3 and equations (10) and
(11)) is independent to the vector (1,1)T. Thus, both scalar
values D fi and (Y1 2Y2) in the right hand side of (25) must
tend to zero as t → ` . That is, fi (Dxi(t)) → fd as t → ` for
i=1, 2, and u (t) tends to a constant as t → ` because qi(t)
for i=1, 2 in (Y1 2Y2) in (3) and (4) must tend to some
constant vectors respectively as t → ` .

Moreover, it is easy to see from (26) and (27) that ẋ and
ẏ tend to some constants, respectively as t → ` . Now, let us
denote the sum of K, DP, and (Y1 2Y2)

2 f d /2(r1 +r2) by V(t)
which is equivalent to the content of bracket {} in (27).
Since V is a non-increasing function of t, the integral of the
sum of kvi i q̇1 i 2 and kv2 i q̇2 i 2 over (0, ` ) can not become
beyond the initial value of V at t=0. Thus, it is possible to
consider a bounded open set D in R14 consisting of
coordinates (q1, q2, z, q̇1, q̇2, ż) such that it contains at least
one equilibrium state with fi = fd for i = 1, 2, Y1 =Y2,
q̇1 = q̇2 =0 and ż=0 and includes a smaller D0(,D) so that
any solution to the set of equations (25) and (26) starting
from any initial state in D0 remains in D. We call such a
domain D0 a set of states of stable grasping. It is now
possible to state the following theorem:

Theorem 1. Given a desired internal force fd >0, there
exists a domain D0 of stable graspings in R14 such that any
solution starting from an initial state in D0 approaches
asymptotically to a stable grasping state that satisfies fi = fd,
Y1 =Y2 q̇1 = q̇2 =0 and ż=0. More precisely, any solution to
the equations of (25) and (26) with an initial state in D0

approaches asymptotically a subset SG of D(,R14) such
that

SG={(q1, q2, z, q̇1, q̇2, ż) : Y1 =Y2, f1 = f2 = fd, q̇1 = q̇2 =0, ż=0}.

The above arguments in derivation of Theorem 1 are
rather mathematical, but it is possible to give physical
interpretations as in the following remarks:

Remark 1. The feedback control schemes defined by
equations (23) and (24) need not use measurement data on
reproducing forces of deformed finger-tips. However,
instead of force sensors, measurements of both Y1 and Y2 are
required, which can be realized from the data provided by
vision or tactile sensing.

Remark 2. As far as stable grasping is concerned with,
it is unnecessary to control both the position (x, y) and the
posture u of the object. Then, each mechanism of dual
fingers need not have two controllable joints. If each one of
dual fingers is designed as a single d.o.f. link mechanism
whose end is covered by soft material, the position and
posture of the object should be controlled externally by the
movement of a wrist mechanism on which this dual-
fingered hand is mounted.

Remark 3. Since the state vector (q1, q2, z,q̇1, q̇2, ż) of
the system of differential equations (5) and (6) is of
14-dimension, a domain D0 of stable grasping must be a
14-dimensional subset of R14. From the practical point of
view it is important to evaluate how large such a domain of
stable graspings is.

Fig. 4. DF(dx)=Edx

0

{f(j+Dxd)2 fd} dj is a positive definite func-

tion of dx.
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Remark 4. Recall again a subset D0 of stable graspings
and D(D0 ,D). We define a manifold M as a set of states in
D such that Y1 =Y2, f1 = f2 = fd, q̇1 = q̇2 =0 and ż=0 and
constraints (3) and (4). This subset M is a 2-dimensional
manifold in D. We call it an equilibrium manifold of still
states of grasping. By using these terminologies, Theorem 1
says that an equilibrium manifold M0(=M>D0) is asymp-
totically stable in the sense of Lyapunov.

Remark 5. The maximum set among all possible
equilibrium manifolds of still states of grasping may contain
all possible states of stable graspings introduced by
Nguyen5 from the static viewpoint. The maximum set
among possibly many D0's in R14 is defined from the
dynamics viewpoint, which includes any transient states that
may tend to an equilibrium still state of stable grasping
inside M0. (Figure 5)

5. FEEDBACK CONTROL OF ROTATION
In order to control the rotation angle u of the object, it is
necessary to introduce another feedback term in addition to
each of control inputs (23) and (24). For a given target angle
u=ud, let us consider the control inputs

ū1 =u1 2HJT
01Ssin u

cos uD2r1S1

1DJ(aDu̇ +bDu), (29)

ū2 =u2 +HJT
02Ssin u

cos uD2r2S1

1DJ(aDu̇ +bDu), (30)

where Du=u2ud, Du̇= u̇, and u1 and u2 are the same as
those defined in (23) and (24) respectively. Then, the closed-
loop system becomes of the form (by setting u1 and u2 in (5)
as ū1 and ū2 defined in (29) and (30)):

HHi(qi)
d

dt
+

1
2
Ḣi(qi)+Si(qi,q̇i)Jq̇i +kviq̇i

= (21)iFJT
0iHS cos u

2sin uDD fi +Ssin u

cos uD(aDu̇ +bDu)J

+S1

1D{
ri fd

r1 +r2

(Y1 2Y2)2ri(aDu̇ +bDu)JG . (31)

together with the motion equation of the object that is the
same as in (26), where Du=u2ud and Du̇= u̇.

Now, by taking inner products of (31) with q̇i for i=1, 2
and (26) with ż (=(ẋ, ẏ, u̇)), we obtain

d

dt
V(t)+kv1 i q̇1 i 2 +kv2 i q̇2 i 2

+H(ẋ01 2 ẋ02) sin u +(ẏ01 2 ẏ02) cos u 2r1(q11 +q12)

+r2(q21 +q22)J(aDu̇+bDu)=0 (32)

where

V=K+DP+
fd

2(r1 +r2)
(Y1 2Y2)

2

and K and DP are defined in (17) and (28), repectively.
According to Figure 1 or Figure 2, it is easy to see that x01

and y01 are related to x1 and y1 in the following formula:

Hx1 =x01 +(r1 2Dx1) cos u,
y1 =y01 2 (r1 2Dx1) sin u .

(33)

Similarly, it follows that

Hx2 =x02 2 (r2 2Dx2) cos u,
y2 =y02 +(r2 2Dx2) sin u .

(34)

From these equations it is easy to see that

(ẋ02 2 ẋ01) sin u +(ẏ01 2 ẏ02) cos u = (ẋ1 2 ẋ2) sin u

+(ẏ1 2 ẏ2) cos u+ u̇{(r1 2Dx1)+(r2 2Dx2)} (35)

On the other hand, it follows from the geometric constraints
(see (B-1) and (B-2) in Appendix B and take differentiation
on (B-3) in time t) that

(ẋ1 2 ẋ2) sin u+(ẏ1 2 ẏ2) cos u
=Ẏ1 2 Ẏ2 2{(x1 2x2) cos u2 (y1 2y2) sin u}u̇. (36)

Since the coefficient of u̇ in the last term of the right hand
side, that is, the content of bracket {}, is equivalent to 2 l,
we have

(ẋ1 2 ẋ2) sin u+(ẏ1 2 ẏ2) cos u = Ẏ1 2 Ẏ2 + lu̇. (37)

Substituting this into (35) and referring to equations (3) and
(4), we finally obtain

(ẋ01 2 ẋ02) sin u+(ẏ01 2 ẏ02) cos u2r1(q̇11 + q̇12)

+r2(q̇21 + q̇22) = (l2Dx1 2Dx2)u̇. (38)

Thus, the equations of motion (31) and (26), we obtain

Fig. 5. A conceptual expression of an equilibrium manifold of
stable grasping.
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d

dt
V=2kv1 i q̇1 i2 2kv2 i q̇1 i2 2 (l2Dx1 2Dx2)(au̇ 2 +bu̇Du )

(39)

which is equivalent to

d

dt
{V+

b

2
(l2Dx1 2Dx2)Du 2}

=2kv1 i q̇1 i2 2kv2 i q̇1 i2 2 (l2Dx1 2Dx2)au̇ 2

2
b

2
(Dẋ1 +Dẋ2)Du2. (40)

If (Dẋ1 +Dẋ2) were always positive then the right hand side
of (40) would become always negative. Or, once the
magnitudes of pressing forces f1 and f2 become almost
convergent to fd, then it may be possible to expect that the
magnitude b | Dẋ1 +Dẋ2 | i D u̇ i 2 becomes small relative to
other dissipative terms kv1 i q̇1 i 2 and kv2 i q̇2 i 2. However,
there arises a certain possibility that the right hand side of
(40) becomes positive. In order to avoid this possibility, it is
necessary to introduce another smaller terms in addition to
ū1 and ū2 defined by (29) and (30) in the following way:

Du1 =2JT
01Fb(12cosh(Du ))S cos u

2sin uDG
+b(2Du+sinh(Du))Ssin u

cos uDG (41)

Du2 =JT
02Fb(12cosh(Du ))S cos u

2sin uDG
+b(2Du+sinh(Du))Ssin u

cos uDG. (42)

Note that the first terms in Du1 and Du2 are of order i Du i2

and the second terms are of order i Du i3. Then, we consider
the control input

¯̄u1 = ū1 +Du1, ¯̄u2 = ū2 +Du2. (43)

Then, it is possible in a similar way to the derivation of
equations (32) to (39) that

q̇T
1Du1 + q̇T

2Du2 =

2
d

dtFb(Y1 2Y2)(sinh(Du)2Du)

+b(l+r1 +r2 2Dx1 2Dx2)(cosh(Du)

Du 2

22
21)G+b(Dẋ1 +Dẋ2)

Du 2

2
(44)

(in detail, see Appendix C). Thus, as for the closed-loop
equation when ¯̄u1 and ¯̄u2 are substituted into equation (5) by
setting u1 = ¯̄u1 and u2 = ¯̄u12, it follows that

d

dtHV+
b

2
(l2Dx1 2Dx2)Du 2

+b(l+r1 +r2 2Dx1 2Dx2)(cosh(Du)2
Du 2

2
21)

+b(Y1 2Y2)(Du2sinh(Du))J
=2kv1 i q̇1 i2 2kv2 i q̇2 i2 2 (l2Dx1 2Dx2)au̇ 2. (45)

It should be noted that the last term in bracket {} of the left
hand side is not positive definite but it is bounded from
below in the following way:

b(Y1-Y2)(Du2sin h(Du ))≥

2
fd

4(r1 +r2)
(Y1 2Y2)

2 2
r1 +r2

fd

b2(Du2 sin h(Du ))2. (46)

Since V includes the quadratic term of Y1 2Y2 whose
magnitude is the double of the maginitude of the first term
of the right hand side of (46), it follows that the content of
bracket {} of (45) becomes positive definite in Du and
Y1 2Y2 by choosing b>0 appropriately. Thus, it is possible
to conclude the following theorem:

Theorem 2. Given a desired pressing force fd >0 and a
rotation angle ud for the object, there exists a domain D0

of stable grasping in R14 such that any solution to the
closed-loop system equation with inputs (41) to (43)
starting from an initial state in D0 approaches asymptot-
ically a state of stable grasping with the conditions u=ud,
f1 = f2 = fd, Y1 =Y2, q̇1 = q̇2 =0, and ż=0.

Lyapunov's function shown in (45) implies that control of
the posture of the object may tend to meet difficulty as the
object becomes more slender in width relatively to the
longitudinal length, that is, l becomes smaller, because
(l2Dx1 2Dx2) may happen to be negative and thereby the
condition of positive definiteness of the Lyapunov’s func-
tion and non-negative definiteness of its time derivative is
violated.

6. FUTURE RESEARCH SUBJECTS
Extensions of the arguments presented in the previous
sections to more general problems in cases of three-
dimensional motions of a mechanical hand with three or
four soft fingers grasping and manipulating objects with
arbitrary shape would be possible and must be the most
interesting from a theoretical viewpoint. However, besides
such a straightforward extension there still remains a variety
of research problems to be attacked. In the following, we list
up some of future research subjects to be explored.

(i) Even in the case of planer motion of a dual-fingered
hand with soft tips, a lot of problems remains
unsolved. For example, we are not satisfied with the
proposed feedback control schemes, because it is still
sophisticated and rather computational. To find a
simpler but more efficient feedback scheme for stable
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grasping with a desired target rotation of the object is
quite important and interesting. 

(ii) In relation to this, is it possible to control the target
position (x, y) of the object in addition to the given
pressure force fd and rotation angle ud? In usual cases
of regular robot tasks using a mechanical hand the
position of an object handled by the hand is controlled
by means of position control of a wrist on which a
frame of the hand is mounted.

(iii) The proposed feedback control schemes use the exact
knowledge of Jacobian matrices. Since it is already
shown that approximate Jacobian matrices work well
in various cases6,7 of feedback control of robot tasks,
it may be possible to relax this condition. If some
approximate Jacobian matrices can be used, then
there arises a problem whether one or two of the four
joints of dual fingers can be passive for only realizing
stable grasping with a given rotation angle.

(iv) Sensing issues are extremely important. In this paper
the knowledge of not only q1 and q2 (measured by
internal sensors implemented in finger joints) but also
Y1, Y2 and u is implicitly assumed. The last three
physical variables can be measured or evaluated with
the aid of vision sensing. If original shapes of the
finger-tips are known and initial positions of the
centers of contacts at the instant when these finger-
tips touch with the surface of the object are also
known, it is possible to calculate Y1 and Y2 on the
basis of measurements of q1, q2, and u by using a
geometrical relation like equations (3) and (4). Note
that measurement of the rotation angle of the object is
easier and more reliable than evaluations of Y1 and Y2

by means of image analysis.
(v) If tactile sensing is available for directly measuring Y1

and Y2 and contact-areas, then it must provide much
information about the reproducing forces f1 and f2,
and evaluations of maximum displacements Dx1 and
Dx2. If both f1 and f2 can be evaluated in a real-time
manner, it is possible to use integrals of D fi(= fi 2 fd)
with respect to time in the design of feedback signals.
In fact, such an angular momentum feedback is
considerably effective in smoothing the signals of
reproducing forces9,10.

(vi) The next interesting problem is to take into considera-
tion a variety of more general geometric shapes of the
object.

(vii) In parallel, an extension of the argument to the
general case of non-spherical finger-tips is quite
interesting. This problem will be attacked in our next
paper.

(viii) It is also important from the practical viewpoint to
extend the argument by taking into consideration the
effect of gravity force. In that case, we need to
develop some relations of stable graspings from the
dynamic viewpoint with stability test problems of
stable grasping from the static viewpoint5. Then,
static frictions that may arise between the finger-tips
and the surface of the object must play a crucial role.

(ix) As a matter of course, the most difficult and
interesting problem is to develop a more systematic

theory of mechanics that can attack the most general
three-dimensional problem of grasping and manipula-
tion of a three-dimensional rigid or deformable object
with arbitrary shape by means of a multi-fingered
hand with soft finger-tips.

(x) In the sequel it will be inevitable to consider a
trajectory tracking problem while maintaining given
internal forces when both the position and posture of
the object are given as functions in time.

7. CONCLUSIONS
Although the importance of use of soft material in covering
finger-tips was already pointed out in the literature11 and
actually some of manufactured hands are equipped with soft
fingers, there is a dearth of papers that analyzed dynamics of
multi-fingered hands with soft finger-tips. In this paper it is
shown on the basis of passivity analysis that a mechanical
hand with dual soft fingers with area-contacts with an object
can grasp stably an object and manipulate it with some
dexterity. Based on these theoretical findings, a variety of
future research directions are discussed, which will even-
tually unveil the secret of human capability of execution of
everyday tasks with certain dexterity and versatility.
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APPENDIX A
It is asummed that a narrow circular strip with width du and
radius r sin u in the contact-area (see Figure 6) produces a

Set of dual fingers with soft tips78

https://doi.org/10.1017/S0263574799002441 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002441


reproducing force in the direction to the origin O0i with the
magnitude 

k(2pr sin u)du 3r ( cos u 2 cos u0) cos u (A-1)

where k denotes the stiffness parameter of the elastic
material per unit area, (2pr sin u) du the area of the narrow
circular strip as shown in Figure 6, and

r ( cos u2 cos u0)
cos u

= (r2
r2Dx
cos u

) = r2
r cos u0

cos u
(A-2)

denotes the length of deformation at angle u. Since the total
reproducing force with magnitude (A-1) generated from the
narrow circular strip contributes to the direction of Dx (the
arrow denoted by f in Figure 6) by cos u, the total
reproducing force can be expressed as

f=Eu 0

0

2pkr2 sin u( cos u2 cos u0) du

=pkr2(12 cos u0)
2 =pkDx2 (A-3)

This means that the reproducing force produced by the
deformed area can be approximately expressed by an
increasing function of Dx (the maximum length of dis-
placement).

APPENDIX B (DERIVATION OF (44))
When the object is in contact with both finger-tips, the
loop starting from the pivot O of the first finger through
O01, Oc.m., O2, O9 (denotes the pivot of the second finger),
and returning to the origin O is closed. This yields the
geometrical relations

x=x1 +
l
2

cos u2Y1 sin u=x2 2
l
2

cos u2Y2 sin u, (B-1)

y=y1 2
l
2

sin u2Y1 cos u=y2 +
l
2

sin u2Y2 cos u. (B-2)

These two relations induce the two geometric constraints

(x1 2x2)+ l cos u2 (Y1 2Y2) sin u=0, (B-3)

(y1 2y2)2 l sin u2 (Y1 2Y2) cos u=0. (B-4)

By introducing the Lagrange multiplies lx and ly for (B-3)
and (B-4) respectively, we define

Q=lx{(x1 2x2)+ l cos u2 (Y1 2Y2) sin u}
+ly{(y1 2y2)2 l sin u2 (Y1 2Y2) cos u} (B-5)

and consider the variational form

Et2

t1

{d(K2P+Q)} dt=0 (B-6)

where K stands for the total kinetic energy defined by (17)
and P for the potential energy defined by (22). Before taking
the variation du, it is necessary to note that

H­Y1/­x1 = sin u, ­Y1/­y1 = cos u,
­Y2/­x2 = sin u, ­Y2/­y2 = cos u

(B-7)

which follows directly from constrains (B-3) and (B-4).
Then, it is easy to see that 

F­Q/­x1

­Q/­y1
G=(lx cos2ly sinu)F cos u

2sin uG, (B-8)

F­Q/­x2

­Q/­y2
G=(lx cos2ly sinu)F2cos u

sin u G, (B-9)

The vector defined by (B-8) has the same direction as that of
the reproducing force in the task coordinates f1 as shown in
(10) (note that ­Dx1/­x01 =cos u, ­Dx1/­ y01 =2sin u). This
means that the force induced by this constraint should be
already merged into the reproducing force f1. As to the
vector (B-9), it is possible to draw a similar conclusion.
Thus, it is concluded that there does not arise any other
alternative force that virtually originates from the geome-
tircal constraints.

As to the constraint of equations (3) and (4), it is
necessary to consider the dynamics of soft finger-tips in
terms of wi(i=1, 2). In this paper only a rough and intuitive
treat of the problem is given in the following way. Since wi

changes according to the change of centers of contact areas
along the surfaces of finger-tips together with mass transfer,
the quantity

S=O
i=1,2
H1

2
ei(Dxi)ẇ

2
i +hi(Yi 2ci +riwi)J (B-10)

should be introduced and added to the Lagrangian given in
(B-6), that is,

L=K2P+Q+S (B-11)

where hi denotes a Lagrange multiplier and ei(Dxi) an
approximate increment of the mass concentration caused by

Fig. 6. Geometrical relations related to force generation from the
area-contact.
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each corresponding deformation of soft finger-tips. Then,
the motion equation of mass-transfer can be described in
such a way that

d

dt
{ei(Dxi)ẇi}+ci(ẇi)+rihi =0, i=1, 2 (B-12)

and other terms

­S
­qij

=
1
2
­ei(Dxi)

­qij

ẇ2
i +hiS ­Yi

­qij

+ Yi

­wi

­qij
D, i=1, 2

­S
­z

=O
i=1,2

hiS ­Yi

­z
+ Yi

­wi

­z D (B-13)

are considered to be extra terms that must be added to
equations (5) and (6) respectively. In (B-12), the last term of
the left hand side comes from ­ S/­wi and the second term
must be a contribution due to the damping owing to some
adhesive force between two surfaces of the object and
finger-tips tightly contacted. Since ei(Dxi) is small relative to
the masses of finger links and the object, hi(i=1,2) must be
very small. Therefore in the paper we omit the effect of the
constraint described by (3) and (4). This approximation is
almost equivalent to the assumption that the finger-tips are
made of distributed massless springs. However, in case of
computer simulation the terms (B-13) should be added to
(5) and (6). Note again that additions of (B-12) and (B-13)
to (5) and (6) do not violate all passivity relations discussed
in sections 3 to 5.

APPENDIX C
In an analogous manner to the derivation of (37), it follows
from the geometric constraints (B-1) and (B-2) that

(ẋ01 2 ẋ02) cos u2 (ẏ01 2 ẏ02) sin u

=(Dẋ1 +Dẋ2)+(Y1 2Y2)u̇. (C-1)

By referring to this equation together with (35) and (36), it
is possible to calculate the inner product between (q̇1, q̇2)
and (Du1, Du2) in the following way:

2 (q̇T
1Du1 + q̇T

2Du2)

=b(cosh (Du)21){(ẋ01 2 ẋ02)cos u2 (ẏ01 2 ẏ02)sin u}

+b(2Du +sinh (Du)){(ẋ01 2 ẋ02)sin u +(ẏ01 2 ẏ02)cos u}

= bF(cosh (Du)21){(Dẋ1 +Dẋ2)+(Y1 2Y2)u̇}

+(sinh (D u)2D u){(
˙
Y1 2

˙
Y2)+(l+r1 +r2 2Dx1 2Dx2)u̇}G

=b
d

dt F(l+r1 +r2 2Dx1 2Dx2)(cosh (Du)

2
Du 2

2
21)+(Y1 2Y2)(sinh (Du)2Du)G

2b(Dẋ1 +Dẋ2)
Du 2

2
. (C-2)
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