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In this paper, we extend the work by Sato devoted to the development of economic growth mod-
els within the framework of the Lie group theory. We propose a new growth model based on the
assumption of logistic growth in factors and derive the corresponding production functions, as well
as a compatible notion of wage share. In the process, it is shown that the new functions compare rea-
sonably well against relevant economic data. The corresponding problem of maximisation of profit
under conditions of perfect competition is solved with the aid of one of these functions. In addition,
it is explained in reasonably rigorous mathematical terms why Bowley’s law no longer holds true in
the post-1960 data.
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1 Introduction

As is well known, a production function is an essential feature of an economics growth model.
Such a function can either be fixed, so that it is used to estimate the dynamics of other quantities,
or it is the essential output of the model obtained by studying the dynamics of the input factors.

An example of the former application of a production function is the celebrated Solow–Swan
economic growth model [34, 71, 74] introduced in the 1950s to explain the long-run economic
growth. Notably, the theory also generalised and extended the Harrod–Domar model [23, 39]
that was used before it to model economic growth. The model in turn was later used as a starting
point for the development of other economic growth models that emerged as its generalisations
(see, for example, Ferrara and Guerrini [32] and the relevant references therein).

At the core of the Solow–Swan model and its generalisations, there is a production func-
tion Y (t) = f (K(t), L(t)), normally of the Cobb–Douglas type [20], where the factors K(t) and
L(t) represent capital and labour, respectively. The function Y (t) is required to satisfy the so-
called Inada conditions [42]. From a mathematical standpoint, the Solow–Swan economic growth
model and its generalisations, for example, the Ramsey–Cass–Koopmans model [17,50,60], are
governed by a single nonlinear differential equation or a system of such equations that describe
the evolution of per capita capital stock, consumption, etc.

The theory of technical change and economic invariance developed by Sato [66] is an example
the latter approach, in which a production function is an output obtained within the framework
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of a model. In particular, the author and his collaborators have derived the Cobb–Douglas
production function as a consequence of the exponential growth in factors (capital and labour).

In this article, we continue the development of Sato’s theory by changing the assumptions
about the Lie group theoretical properties of the technical progress representing the growth in
factors.

Recall that in 1928 Charles Cobb and Paul Douglas published a paper [20] devoted to the
study of the growth of the American economy during the period of 1899–1922. To model the
production output, they used the following function, introduced earlier by Knut Wicksell:

Y = AKαLβ , (1.1)

where K(t) and L(t) are as before (i.e., in economic terms they are the factors of production),
while Y denotes the total production, A is total factor productivity and α, β � 0 are the output
elasticities of capital and labour, respectively. Sometimes the Cobb–Douglas function displays
constant return to scale, which holds if

α + β = 1, α, β � 0. (1.2)

The Cobb–Douglas function (1.1) can be easily derived under the assumptions that there is no
production if either capital or labour vanishes, the marginal productivity of capital is proportional
to the amount of production per unit of capital (i.e., ∂Y

∂K = α Y
K ) and the marginal productivity of

labour is proportional to the amount of production per unit of labour (i.e., ∂Y
∂L = β Y

L ).
More recently, Sato [65, 66] (see also Sato and Ramachandran [62]), while resolving the

so-called Solow–Stigler controversy [72, 73], developed a Lie group theoretical framework to
study technical progress and production functions. It can be viewed as an analogue of the Felix
Klein approach to geometry formulated in his celebrated Erlangen Program [48] in which Lie
transformation groups play a central role. For instance, within this framework, the Cobb–Douglas
production function (1.1) can be recovered as an invariant of the one-parameter Lie group action
[22] that affords exponential growth in both K and L in the first quadrant of the two-dimensional
Euclidean space R

2+ = {(K, L)|K, L ∈R+}. The key idea employed by Sato [65, 66] as well as
Sato and Ramachandran [62] was to identify the corresponding exogenous technical progress
with the action of a one-parameter Lie group that acts in C2(R2+). More specifically, a Klein
geometry can be described as a pair (G, H) where G is a Lie group and H is a closed Lie sub-
group of G such that the (left) coset space G/H is connected. The group G is called the principal
group of the geometry and G/H is called the space of the geometry, which is a homogeneous
space for G. For instance, in this view, the pair (SE(3), SO(3)) describes the Euclidean geometry
of R3 and its objects, say, surfaces can be classified modulo the action of the continuous isometry
group SE(3) (see, for example, Horwood et al. [41] as well as Cochran et al. [21] for more
details). By analogy, a neoclassical growth model in the sense of Sato can be viewed as a pair
(G, R2+), where the one-parameter Lie group of transformations G acting in C2(R2+) represents
the technical progress in question. So far, in the literature G has been considered to be either
of a uniform (neutral) factor-augmenting type, that is, G : K = eαtK, L = eαtL, for some α ≥ 0,
or representing a non-uniform, biased type, that is, G : K = eαtK, L = eβtL for some α, β ≥ 0,
α �= β. Therefore, it is assumed in both cases that the economy grows exponentially (as per the
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corresponding growths in capital and labour), which was a reasonable assumption in the past
based on the existing data at the time. It might no longer be the case, however, which may
be attested to the fact, for example, that the Cobb–Douglas function can no longer be used to
describe adequately the growth of the American economy over a long run, including the recent
decades — in the same way as it was done by Cobb and Douglas for the period of 1899–1922
[20] (see Section 7 for more details).

The main goal of this paper is to use the existing model to develop a new mathematical
paradigm that can be used to study the current state of economy. Accordingly, in what follows,
we will modify the economic growth models described by Sato within the framework of the Lie
group theory according to the present economic realities [7]. More specifically, we will replace in
a neoclassical growth model in the sense of Sato (G, R2+) a group G representing an exponential
growth with another one-parameter Lie group that describes a logistic growth:

G : exponential growth → logistic growth.

This idea is currently being exploited and developed from different angles and in different
directions quite extensively in the literature by economists and mathematicians alike (see, for
example, [1, 2, 12–14, 27–31, 35–37]), which is quite natural, given that the resources on our
planet are limited.

Therefore, our first task is to modify a basic growth model (G, R2+) as described above and
then, following Sato’s approach, and derive a new production function that may replace the
Cobb–Douglas function (1.1) in any models considered within the new paradigm of logistic
growth, which is a reasonable further development, given that, for example, “... the US economy
is not well described by a Cobb–Douglas aggregate production function ...” (see Antràs [7] for
more details).

Next, we will test the new production function derived purely by mathematical methods
against a more up-to-date data to verify its suitability for being part of any new mathemati-
cal models. Finally, we will reconsider several classical examples utilising the properties of the
Cobb–Douglas production function by replacing it with our new production function derived via
the Lie group theoretical approach developed by Sato and discuss the new results obtained under
the assumption of logistic growth.

This paper is organised as follows. In Section 2, we lay the groundwork for the introduction
of a new growth model and derivation of new production functions. Specifically, we review the
Lie group approach introduced in [66] and employ it to rederive the Cobb–Douglas function
(1.1). In Section 3, we depart from the growth model described by Sato based on exponential
growth and introduce instead a new one — based on the assumption that factors grow logisti-
cally. In Section 4, we derive a new production function (4.5) within the framework of the growth
model (3.1) introduced in Section 3. Section 5 is devoted to solving the problem of maximisa-
tion of profit under condition of perfect competition, using the new production function (4.5). In
Section 6, we explain, using mathematical reasonings and the results obtained in preceding sec-
tions, why Bowley’s law [9,10] no longer holds true in the post-1960 data. In the process we also
derive another production function (6.22) and a new modified wage share (6.21). In Section 7, we
use statistical analysis to investigate how estimations of the new production function (4.5) com-
pare to economic data. In Section 8, we make concluding remarks and summarise our findings.
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2 A Lie group approach to the study of holothetic production functions

In this section, we will briefly review the Lie group theoretical approach developed by Sato
to study holothetic production functions and employ it to derive the Cobb–Douglas produc-
tion function (1.1). Consider a growth model (G, R2+), where G is a continuous one-parameter
group of transformations (see [62, 65, 66] for more details). In order to show that the increases
in efficiency of inputs due to technical progress can be explained by economies of scale, Sato
interpreted technical progress as the action of a one-parameter Lie group of transformations, for
which the production function Y = f (K, L) was an invariant. Under this arrangement, the result-
ing transformation representing technical progress and generated by G, indeed, preserves the
isoquant map, i.e., maps one isoquant (or, in mathematical terms, a level curve of Y ) to another,
that is, technical progress has the same effect as economies of scale.

More specifically, let capital and labour affected by technical progress and measured in the
efficiency units, K̄ and L̄, be given by

K̄ = λ1K, L̄ = λ2L, (2.1)

where λ1 and λ2 represent the effect of the exogenous technical progress. Following Sato and
Ramachandran [62], let us remark that if λ1 = λ2, the change generated by technical progress is
Hicks-neutral. If technical progress is factor augmenting and biased, then λ1 �= λ2. The functions
λi, i = 1, 2 may depend on t only, or they may be functions of K/L, which would imply that the
rate of technical progress on different rays are different, but the rate is constant on each of them.
The functions λi, i = 1, 2 can also be functions of K, L and t, which would entail that the rate
of technical progress will also vary along a ray. In what follows, we will also require that the
technical progress functions λi, i = 1, 2 represent the action of a one-parameter Lie group.

Consider now the case when both λi = λi(t), i = 1, 2; moreover, λ1(t) = eαt, λ2(t) = eβt, and
α, β � 0. Note, if α = β, the change generated by such technical progress is Hick-neutral.
Clearly, the corresponding transformations

K̄ = eαtK, L̄ = eβtL (2.2)

form a continuous one-parameter Lie group, which follows from the fact, for example, that the
transformation (2.2) determines the flow

σ (t, (K, L)) =
[

eαt 0
0 eβt

] [
K
L

]
(2.3)

generated by the following vector field

U = αK
∂

∂K
+ βL

∂

∂L
, (2.4)

which generates the Lie algebra of the one-parameter Lie group G = {g | g = σt, t ∈R}, where
σt : R2 →R

2 is determined by (2.3) for each fixed t ∈R
2.

More generally, suppose a technical progress T is defined by the functions φ and ψ such that

Tt : K̄ = φ(K, L, t), L̄ =ψ(K, L, t), (2.5)

where t is the technical progress parameter and the functions φ and ψ are analytic and function-
ally independent. Moreover, let us also suppose that the family of transformations Tt (2.5) forms
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a one-parameter Lie group G. Recall that Sato observed in [66] that, in this case, a production
function f is holothetic under a continuous one-parameter Lie group transformation (2.5) iff

Uf = ξ (K, L)
∂f

∂K
+ η(K, L)

∂f

∂L
= H( f ), (2.6)

where ξ (K, L) = (
∂φ

∂K

)
t0=0

and η(K, L) = (
∂ψ

∂L

)
t0=0

. The condition of holotheticity is crucial from
the economic standpoint, because it assures that the isoquant map (i.e., the family of level
curves of f ) is invariant under the transformation (2.5) representing the technical change, which
means that under T isoquants are mapped onto isoquants and the technical change in this case is
transformed into a scale effect.

For example, if ξ = αK and η= βL in (2.6), α �= β, α, β > 0, which means λ1 = eαt and
λ2 = eβt in (2.1), H( f ) �= 0, it is a straightforward calculation, using the method of characteristic,
that the general solution to the partial differential equation (2.6) is given by [66] (see also [64])

Y = f

[
K1/αQ

(
Lα

Kβ

)]
, (2.7)

where Q(·) is an arbitrary function.
The converse problem was also considered by Sato. Specifically, he established necessary and

sufficient conditions for the existence of a technical progress that affords holotheticity of a given
production function (see Lemma 4 in [66] on p. 34).

Now let us derive the Cobb–Douglas function (1.1) within the framework of the model
(G, R2+), where the one-parameter Lie group of transformations G determines the exponen-
tial growth (2.2). Consider the partial differential equation (2.6) with the coefficients ξ and η
determined by (2.2) for K̄ = eatK, L̄ = ebtL, and a, b � 0. Clearly, we can determine a particular
production function (2.7) by specifying the function H( f ) �= 0 in (2.2). Since G, in this case,
defines an exponential growth, it is natural to impose the corresponding condition on H( f ) — so
that it is also subject to an exponential growth. Indeed, let H( f ) = cf , c � 0. Therefore, we have

Uf = aK
∂f

∂K
+ bL

∂f

∂L
= cf , (2.8)

or, alternatively, we can solve instead the following partial differential equation

Xϕ = aK
∂ϕ

∂K
+ bL

∂ϕ

∂L
+ cf

∂ϕ

∂f
= 0, (2.9)

where ϕ(K, L, f ) = 0, ∂ϕ/∂f �≡ 0 is a solution to (2.9), while f is a solution to (2.8) and an
invariant. Solving the corresponding system of ordinary differential equations

dK

aK
= dL

bL
= df

cf
, (2.10)

using the method of characteristics, yields the function (1.1), where α = α(a, b, c), β = β(a, b, c).
Unfortunately, the elasticity elements in this case do not attain economically meaningful values
like (1.2). To overcome this problem, Sato in [66] adjusted the model accordingly. Specifically,
he introduces the notion of the simultaneous holotheticity, which implies that a production func-
tion is holothetic under more than one type of technical change simultaneously. Mathematically,
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it means that a production function is an invariant of an integrable distribution of vector fields
� [3] on R

2+, each representing a technical change as per the formula (2.8) (or (2.9)). More
specifically, let us consider the following two vector fields, for which a function ϕ(K, L, f ) is an
invariant:

X1ϕ = K
∂ϕ

∂K
+ L

∂ϕ

∂L
+ f

∂ϕ

∂f
= 0,

X2ϕ = aK
∂ϕ

∂K
+ bL

∂ϕ

∂L
+ f

∂ϕ

∂f
= 0. (2.11)

Clearly, the vector fields X1 and X2 form a two-dimensional integrable distribution on R
2+:

[X1, X2] = ρ1X1 + ρ2X2, where ρ1 = ρ2 = 0. The corresponding total differential equation is
given by (see chapter VII, Sato [66] for more details)

( fL − bfL)dK + (afK − fK)dL + (bKL − aKL)df = 0,

or,

(1 − b)
dK

K
+ (a − 1)

dL

L
+ (b − a)

df

f
= 0. (2.12)

Integrating (2.12), we arrive at a Cobb–Douglas function of the form (1.1), where the elasticity
coefficients

α = 1 − b

a − b
, β = a − 1

a − b

satisfy the condition of constant return to scale (1.2).

Remark 2.1 Note that, in principle, we could have used only one vector field generating a par-
tial differential equation of the type (2.8). However, the resulting Cobb–Douglas function would
have had the parameters satisfying the condition αβ < 0 (see (1.1)). The latter constraint on the
parameters α and β in (1.1) is incompatible with the economic growth theory main postulates.
We suppose that exactly for this reason Sato [66] introduced the concept of simultaneous holo-
theticity. This arrangement, in particular, allows us to generate the two-input Cobb–Douglas
functions of the type (1.1) depending on a wide range of parameters α and β, which we can,
for instance, make to satisfy the condition α + β = 1, so that the function (1.1) displays constant
returns to scale as in the example above.

These considerations lead to a very important conclusion, namely the Cobb–Douglas function,
derived within the framework of the growth model (G, R2+), where the Lie group G is determined
by the exponential growth (2.2), is precisely a manifestation of this exponential growth, or, more
succinctly, we have

exponential growth ⇒ the Cobb–Douglas function,

which means that the Cobb–Douglas function (1.1) is a consequence of exponential growth
representing technical change.
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(a) (b)

FIGURE 1. Logistic growth in basic factors of production (gold and oil).

3 From exponential to logistic growth models

In this section, we depart from the assumption that the input factors (i.e., capital and labour)
grow exponentially in order to extend Sato’s growth model (G, R2+). In what follows, we assume
that labour and capital grow logistically. There is already substantial literature, starting with the
pioneering paper by Verhurst [77], in which the authors have already based their considerations
on this rather natural assumption, while studying various growth models with the aid of methods
and techniques developed in economics, mathematics, and statistics (see, for example, Brass [11],
Ferrara and Guerrini [27]– [32], Leach [53], Oliver [55] and Tinter [76]). The same assumption
can be made about the growth in capital, if, for example, we look at such natural resources as oil
and gold as proxies for energy and money, respectively, it is quite evident that globally, given
the fact that all resources are limited, both the accumulation of gold reserves and oil production
are subject to logistic rather than exponential growth, as can be illustrated by Figure 1.

We note that from the mathematical viewpoint, it is also evident that there cannot be
unbounded, continuous exponential growth, whether in terms of production, capital or popu-
lation, on a planet with limited resources as per the following well-known theorem [61]:

Theorem 3.1 (Extreme value theorem) If K is a compact set and f : K →R is a continuous
function, then f is bounded and there exist p, q ∈ K such that f ( p) = supx∈K f (x) and f (q) =
infx∈K f (x).

In view of the above, we propose the following growth model based on the assumption that
both capital K and labour L are affected by logistic growth, namely

(
G1, R2

+
)
, G1 : K̄ = NKK

K + (NK − K) e−αt
, L̄ = NLL

L + (NL − L) e−βt
, (3.1)

where α, β > 0, and NK and NL are the respective carrying capacities. Clearly, G1 is a one-
parameter Lie group, acting in R

2+, whose flow is generated by the vector field:

U1 = αK

(
1 − K

NK

)
∂

∂K
+ βL

(
1 − L

NL

)
∂

∂L
. (3.2)
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Remark 3.2 It is also natural to consider the growth models (G2, R2+) and (G3, R2+) determined
by the assumption that only one of the two variables grows logistically, while the other is affected
by exponential growth, that is

(
G2, R2

+
)
, G2 : K̄ = NKK

K + (NK − K) e−αt
, L̄ = eβtL, (3.3)

or,

(
G3, R2

+
)
, G3 : K̄ = eαtK, L̄ = NLL

L + (NL − L) e−βt
. (3.4)

Following the approach developed by Sato in [66], we can now determine the corresponding
family of production functions by solving the partial differential equation determined by the
vector field U1 (3.2):

U1 f = αK

(
1 − K

NK

)
∂f

∂K
+ βL

(
1 − L

NL

)
∂f

∂L
= H( f ), (3.5)

where H( f ) is an arbitrary function of f . Employing the method of characteristics, we arrive at
the following family of functions:

Y = f1

{(
K

|NK − K|
)1/α

Q

[(
L

|NL − L|
)α (|NK − K|

K

)β]}
, (3.6)

where Q(·) is an arbitrary function. We note that for NK = NL = 1 and K, L 	 1, the family of
functions given by (3.6) f1 ∼ f , where f is given by (2.7). Therefore, we arrive at the following

Proposition 3.3 The most general family of production functions holothetic within the growth
model (3.1) is given by (3.6).

Remark 3.4 The same argument applied to the “partially" logistic neoclassical growth models
(3.3) and (3.4) yields the families of functions

Y = f2

{(
K

|NK − K|
)1/α

Q

[
Lα

(|NK − K|
K

)β]}
(3.7)

and

Y = f3

{
K1/αQ

[(
L

|NL − L|
)α

K−β
]}

, (3.8)

respectively.

Our next goal is to derive a new production function under the assumption of logistic growth in
both capital K and labour L. Since the Cobb–Douglas function (1.1) has been shown above to be
a member of the family of production functions (2.7) determined within the neoclassical growth
model (G, R2+), where the Lie group G is given by (2.2), it is natural to seek a new production
function compatible with the logistic growth determined by the action of the Lie group G1 (3.1)
within the growth model (G1, R2+). This is the subject of the considerations that follow.

https://doi.org/10.1017/S0956792519000081 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000081


New economic model by logistic growth 347

4 From logistic growth to a new production function

In Section 2, we saw how the Cobb–Douglas production function could be derived as an element
of the family of production functions (2.7) within the framework of the growth model (G, R2+),
where the Lie group G was defined by (2.2). Now let us consider the new growth model (G1, R+),
where the Lie group G1 was given by (3.1). Before we formally derive the corresponding produc-
tion function as an element of the family of production functions (3.6), following the procedure
outlined above, let us first give a reasonable justification for the calculations that we shall present
below.

Recall that a neoclassical growth model of the Solow type may be defined as follows (see,
for example, Jones and Scrimgeour [43], a model with decay in produced capital was studied in
Cheviakov and Hartwick [18]):

Y = f (K, L; t),

Y = C + I ,

I = sY , s> 0 (4.1)

K̇ = I − δK, K0, δ � 0,

L = L0eαt, L> 0, α � 0,

where C and I represent consumption and investment (savings) respectively, while δ denotes
depreciation of capital. It is also assumed that the production function f satisfies the Inada
conditions [42]:

(1) fK , fL > 0, this condition accounts for growth in both K and L,
(2) fKK , fLL < 0, that implies diminishing marginal returns also in both K and L,
(3) f has constant returns to scale, that is f (λK, λL) = λf (K, L) for all λ> 0,
(4) f satisfies the following properties:

lim
K→0

fK = ∞, lim
K→∞ fK = 0,

lim
L→0

fL = ∞, lim
L→∞ fL = 0.

For example, the Cobb–Douglas function (1.1) satisfies the above assumptions, provided the
condition (1.2) holds. Such a model and its generalisations ensure steady long-run growth,
ignoring short-run fluctuations. Since the pioneering paper by Solow [71] was published in
1956, the model (4.2) and its many generalisations have played the most prominent role in the
development of the endogenous growth theory. Clearly, the production function Y is the corner-
stone of the model, and if it satisfies the Inada conditions the growth is driven by decreasing
marginal returns from the very beginning for all K, L> 0. Many important examples of endoge-
nous growth support this assumption (see, for example, Cobb and Douglas [20]). Nevertheless,
there are situations when growth cannot be described by a strictly concave production function.
For instance, at a microeconomic level a company may develop a product based on an original
idea; such a product initially can be sold unrestricted in the absence of competition, generat-
ing increasing marginal returns. After a while, a competition may become a factor (e.g., other
companies may introduce similar products) affecting the sales of the original product, whose
market share may shrink. In turn, this situation in the long run will manifest itself in decreas-
ing marginal returns. Mathematically, the corresponding production function will no longer be
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strictly concave. Capasso et al. [16] gave a different motivation for the introduction of a (glob-
ally) nonconcave production function based on the idea of ‘poverty traps’. The authors also
pointed out two examples of models based on nonconcave production functions: Skiba [70] (eco-
nomics) and Clark [19] (mathematical biology). A macroeconomic example of such a scenario
of growth can be found in Tainter [75] (see Figure 16, p. 109).

To address the issue, Capasso et al. [16] (see also Engbers et al. [26], La Torre et al. [52] and
Anita et al. [4–6]) employed a purely heuristic approach to introduce a new general family of
production functions of the form:

Y = f4(K, L) = α1KpL1−p

1 + α2KpL1−p
(4.2)

reducible to the Cobb–Douglas function (1.1) and enjoying an ‘S-shaped’ (concave–convex)
behaviour for p ≥ 2. Clearly, the functions of the class (4.2) have a horizontal asymptote as
(K, L) → (∞, ∞) when α2 �= 0 and are compatible with logistic growth. These functions were
used by the authors as a cornerstone for building a new, highly non-trivial generalisation of the
Solow model with spatial component in which they did not make assumptions about logistic
growth for L. It is worth mentioning at this point that Ferrara and Guerrini [27]–[32], while
generalising the Ramsey and Solow models of economic growth, assumed logistic growth in L,
but kept the Cobb–Douglas function (1.1) intact.

The introduction of the family of production functions (4.2) is certainly a big step in the right
direction; nevertheless, these functions cannot account for all possible examples of growth (and
decay). For example, a production function can exhibit growth, followed by a period of stabili-
sation and then decay (see, for example, [15]). Another option is growth, followed by a period of
stabilisation, which is followed by growth again. In this view, our next goal is to derive a more
general production function that can be used to describe a wider range of economic growth mod-
els, including the situations outlined above. We shall employ the Lie group theoretical method
developed by Sato [66] and briefly described in Section 2.

Indeed, consider the growth model (G1, R2+) given by (3.1). Next, we are going to identify a
member of the family (3.6) compatible with logistic growth (3.1) by imposing the corresponding
constraints on the RHS of equation (3.5). By analogy with the case of the Cobb–Douglas function
derived by Sato [66] within the framework of the growth model (G, R2+), where the action of the
Lie group G is determined by (2.2), let us consider the following partial differential equation
determined by the vector field U1 given by (3.2):

U1 f = aK

(
1 − K

NK

)
∂f

∂K
+ bL

(
1 − L

NL

)
∂f

∂L
= cf

(
1 − f

Nf

)
, (4.3)

or, in other words, let us specify the function H( f ) in (3.5) to be cf
(
1 − f

Nf

)
that implies logistic

growth in the production function as well. Compare (4.3) with the equation (2.8).

Remark 4.1 We note that the choice for the RHS of (4.3) is not arbitrary. It turns out that in
order to obtain a meaningful solution, one needs to assure that the properties of the function
H( f ) in (3.2) are compatible with the logistic growth determined by (3.1). For example, if we set
H( f ) = f in (3.2), which would imply that the growth in both K and L is logistic, while f grows
exponentially, the resulting production function would have singularities (see equation (8.1)).
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Therefore, the above equation reflects the fact that the growth determined by (4.3) is consistent
for all quantities involved, that is, for K, L and f .

Next, we employ the same reasoning that Sato used in [66] to derive the Cobb–Douglas func-
tion (1.1) (see also Section 2). Let us assume that the production functions in two sectors of an
economy (or, two countries) are identical, so that the aggregate production function sought is of
the same form. However, it does not necessarily mean that the technical changes in both sectors
are also the same. That is, in what follows we shall give conditions under which the aggregate
production function in question is holothetic under two types of technical changes simultane-
ously and solve (again) the corresponding simultaneous holotheticity problem. In mathematical
terms, let us consider the following two vector fields acting on a function ϕ(K, L, f ):

X3ϕ = K

(
1 − K

NK

)
∂ϕ

∂K
+ L

(
1 − L

NL

)
∂ϕ

∂L
+ f

(
1 − f

Nf

)
∂ϕ

∂f
= 0,

X4ϕ = aK

(
1 − K

NK

)
∂ϕ

∂K
+ bL

(
1 − L

NL

)
∂ϕ

∂L
+ cf

(
1 − f

Nf

)
∂ϕ

∂f
= 0.

Clearly, the vector fields X3 and X4 form an integrable distribution � on R
2+, because [X3, X4] =

ρ3X3 + ρ4X4, where ρ3 = ρ4 = 0. Then the corresponding total differential equation which has
ϕ(K, L, f ) = const for a solution assumes the following form:[

(c − b) f

(
1 − f

Nf

)
L

(
1 − L

NL

)]
dK +

[
(a − c) f

(
1 − f

Nf

)
K

(
1 − K

NK

)]
dL +

[
(b − a) f

(
1 − K

NK

)
L

(
1 − L

NL

)]
df = 0,

or,

(c − b)
dK

K
(
1 − K

NK

) + (a − c)
dL

L
(
1 − L

NL

) + (b − a)
df

f
(
1 − f

Nf

) = 0. (4.4)

Integrating the differential equation (4.4) (compare it with (2.12)), we arrive at a solution of
the form ϕ(K, L, f ) = 0 defined in the open domain

D =]0, NK[×]0, NL[×]0, Nf [⊂R
3

and satisfying the condition ∂ϕ

∂f �≡ 0. Solving for f by the implicit function theorem, we arrive at

the following hypersurface in R
3:

Y = f5(K, L) = Nf5 KαLβ

C |NK − K|α |NL − L|β + KαLβ
, (K, L) ∈R

2
+, (4.5)

where C ∈R is the constant of integration, α= c−b
a−b and β = a−c

a−b . Note α + β = 1. Note that
in view of the symmetry of the differential equation (4.4), we could have solved the equation
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ϕ(K, L, f ) = 0 for K and L as well. The function Y = f5(K, L) given by (4.5) whose range is
] 0, Nf [ coincides with the function ϕ(K, L, f ) = 0 on D.

Furthermore, we note that in the subset D′ =]0, NK[×]0, NL[⊂R
2+ of the domain of the func-

tion Y = f5(K, L), its growth is governed by the logistic growth in the factors K and L. Note
that in this region the growth of the production function f5 is ‘S-shaped’, which agrees with the
assumptions that led to the introduction of the production function (4.2). However, the produc-
tion function (4.5) is also defined outside of the region D′, which implies in turn that its shape
in the subset R2+ \ D′ = [NK , ∞[×[NL, ∞[ is determined by the growth in K and L that goes
beyond the respective carrying capacities NK and NL. We will elaborate on this matter without
loss of generality while dealing with the corresponding one-input analogue of the new two-input
production function (4.5) below.

We conclude, therefore, that by analogy with the algorithm based on the Lie group theory
methods devised by Sato and applied in [66] to generate the Cobb–Douglas function (1.1),
we have used it, after some modifications, to generate a new production function (4.5). More
succinctly, we have

logistic growth ⇒ the new production function (4.5).

Remark 4.2 Taking the limit as K, L → ∞ (even though K and L cannot grow beyond a certain
‘horizon’ – see below), we obtain

lim
K→∞
L→∞

f5(K, L) = lim
K→∞
L→∞

Nf5 KαLβ

C |NK − K|α |NL − L|β + KαLβ
(4.6)

= lim
K→∞
L→∞

Nf5

C
∣∣NK

K − 1
∣∣α ∣∣NL

L − 1
∣∣β + 1

(4.7)

= Nf5

C + 1
. (4.8)

The quantity

Sf5 = Nf5

C + 1
(4.9)

is the steady state of the new production function f5 given by (4.5). Note that by changing the
constant C in (4.9), we can regulate the steady state Sf5 .

Remark 4.3 See Remark 2.1.

Remark 4.4 We observe that the new production function f5 (4.5) is reducible to the produc-
tion function (4.2) proposed by Capasso et al. [16] when K and L 	 NK and NL, respectively,
NL, NK ≈ 1, C = 1 in (4.5) and α1 = Nf5 , α2 = 1 in (4.2) .

Remark 4.5 Figure 2 presents the surface of a two-input production function of the type (4.5) for
Nf = 120, α = β = 3, NK = 113, NL = 115 and C = 1.18 without singularities (see Remark 4.6).

Remark 4.6 Employing the same procedure, we can determine now in a fairly straightforward
manner the corresponding one-input analogue of the new two-input production function (4.5).
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FIGURE 2. A two-input production function of the type (4.5) with isoquants.

Thus, let us derive a new production function Y = f (x) whose growth is governed by the logistic
growth in x. Hence, we can formulate the following problem within the framework of the growth
model (G2, R+):

(G2, R+), G2 : x̄ = Nxx

x + (Nx − x) e−at
, a> 0, x ∈R+, (4.10)

U2 f = ax

(
1 − x

Nx

)
df

dx
= bf

(
1 − f

Nf

)
, (4.11)

where the vector field U2 = ax
(
1 − x

Nx

)
∂
∂x represents the infinitesimal action defined by the Lie

group G2 (4.10). Separating the variables and integrating the differential equation (4.11) yield
the following solution ( production function):

Y = f6(x) = Nf6 xα

C|Nx − x|α + xα
, (4.12)

where C ∈R is the constant of integration and α = b/a with the corresponding steady state
given by

Sf6 = Nf6

C + 1
. (4.13)

Note that in this case as well, the new production function (4.12) exhibits first an ‘S-shaped’
growth in the region ]0, Nx[, followed by a decline for x>Nx. Let us investigate this case from
the economics point of view in more detail.
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Let us recover the corresponding group action that affects the input x(t), so that this action
could be viewed as growth which entails the condition ẋ(t)> 0. Indeed, consider the infinitesimal
action Ũ given by Ũ = Ũ1

∂
∂x + Ũ2

∂
∂y so that Ũf6 = 0. Solving the last equation, we obtain the

following solutions:

U1 = a
x(Nx − x)

Nx
,

U2 = b
y(Ny − y)

Ny

(4.14)

and

U1 = a
x(x − Nx)

Nx
,

U2 = b
y( y − Ny)

Ny
.

(4.15)

In view of the fact that x(t), y(t) > 0, it follows from (4.14) and (4.15) that

ẋ = a
x(Nx − x)

Nx
, 0< x<Nx,

ẏ = b
y(Ny − y)

Ny
, 0< y<Ny

(4.16)

and

ẋ = a
x(x − Nx)

Nx
, x>Nx,

ẏ = b
y( y − Ny)

Ny
, y>Ny,

(4.17)

so that both x(t) and y(t) represent growth. Solving the above equations, we obtain

x(t) =

⎧⎪⎪⎨
⎪⎪⎩

Nx

1 + C1e−at
, 0< x(t)<Nx,

Nx

1 − C2eat
, x(t)>Nx,

(4.18)

where C1 > 0 and C2 > 0 are constants of integration. Next, we determine the time interval
corresponding to growth in x(t). It follows (4.18) that t> 0 for 0< Nx

1+C1e−at <Nx and 0< t

< 1
a ln 1

C2
for Nx

1+C2eat >Nx. Substituting the equation (4.18) into (4.12), we arrive at the following
function:

y(t) =

⎧⎪⎪⎨
⎪⎪⎩

Nf6

C(C1e−at)α + 1
, 0< t< t1,

Nf6

C(C2eat)α + 1
, t1 < t< 1

a ln 1
C2

,
(4.19)

where t1 is the time at which the function shifts from the logistic to a different growth type. Next,
rewrite the production function given by (4.19) as follows:

y = (H0(t) − Ht1 (t))y1(t) + Ht1 y2(t), (4.20)
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FIGURE 3. A one-input production function of the type (4.12).

where Hc(t) is the Heaviside (unit) step function:

y1(t) = Nf6

C(C1e−at)α + 1
, y2(t) = Nf6

C(C2eat)α + 1
.

In this view, the function (4.20) may be interpreted as an impulse response function. Indeed, a
sudden change in the input at t = t1 causes a jump in the output from y1(t) to y2(t). From the
economics viewpoint, we can identify this phenomenon as a ‘shock’ [69], which means that a
sudden change in exogenous factors yields the corresponding sudden change in production (see
[40,49,58] for more details and references). The gap between y1(t) and y2(t) caused by a sudden
change in x(t) at t = t1 is given by

d( y1,y2)(t1) = CNf6 (Ca
2ebt1 − Ca

1e−bt1 )

(C(C1e−at1 )a + 1)(C(C2eat1 )a + 1)
, (4.21)

where d( y1,y2)(t1) denotes the distance between the two curves at t = t1. Next, we note that

y(t) → Nf6

C + 1
, as t → 1

a
ln

1

C2
. (4.22)

Figure 3 presents the graph of a one-input production function of the type (4.12) generated for
Nf6 = 100, α = 2, and C = 2. Note that the function given by (4.12) defines an invariant I(K, L)
of the infinitesimal action determined by vector field U1 (3.2) for f6 = K (or L) and x = L (or K),
namely U1I = 0, where

I(K, L) = Lα

|NL − L|α · NK − K

K
.

Remark 4.7 Repeating the above calculation within the frameworks of the growth models (3.3)
and (3.4), we arrive at the production functions

Y = f7(K, L) = Nf7 KαLβ

C |NK − K|α + KαLβ
(4.23)
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and

Y = f8(K, L) = Nf8 KαLβ

C |NL − L|β + KαLβ
, (4.24)

respectively, where the parameters α and β are the same as in (4.5).
We also note that the functions (4.23) and (4.24) are elements of the families (3.7) and (3.8),

respectively, as expected.

5 The problem of maximisation of profit under conditions of perfect competition

In 1947, Paul Duglas gave his presidential address to the American Economics Association in
which he referred to a coherent assembly of the statistical evidence accumulated in the course
of the previous 20 years while he and other people were studying various economic data that
confirmed the validity of the Cobb–Douglas production function. It is safe to assume that this
event marked the beginning of its universal acceptance by the mainstream economic science. He
wrote in [24]: ‘... the Cobb–Douglas function was being widely used, and that a host of younger
scholars led by my former student, Paul Samuelson, his colleague Solow and Marc Nerlove, the
son of my friend and former colleague, Samuel Nerlove, were all pushing forward into new and
more sophisticated fields’. In fact, Marc Nerlove gave a series of lectures at the Econometric
Workshop held at the University of Minnesota in 1957, which were subsequently published a
few years later in a book [54]. One of the problems considered by the author was the problem
of maximisation of profit of a firm under conditions of perfect competition in both factors and
product markets under the assumption that the revenue of the firm from sales was determined by
the Cobb–Douglas production function. In what follows, we shall solve the problem using the
same arguments mutatis mutandis as in [54] by assuming that the revenue of the firm from sales
is now determined by the new production function (4.5).

Consider an individual firm functioning under conditions of perfect competition in both factors
and product markets. It attempts to maximise its profits by employing optimal quantities of inputs
and producing an optimal quantity of output. At the same time, its purchases of factors and supply
of output do not affect the prices of the factors involved and the final product. Therefore, the said
prices are assumed to be given, while the profits are to be maximised. Let�, p0, p1 and p2 be the
profit, the price of the final product, the cost of using one unit of capital, and the wage of labour,
respectively. Hence, we have

�= p0Y − p1K − p2L. (5.1)

Traditionally, in problems like this the output Y is assumed to be related to the inputs K (capital)
and L (labour) by the Cobb–Douglas production function (1.1). Instead, suppose now Y is related
to K and L via the new production function f5 (4.5). Next, let us solve the problem of maximisa-
tion of the profit � given by (5.1) subject to the constraint implied by (4.5). The corresponding
Lagrangian function L is readily found to be

L (Y , K, L, λ) =�− λ

(
Y − Nf5 KαLβ

C |NK − K|α |NL − L|β + KαLβ

)
, (5.2)
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where λ is a Lagrange multiplier. For profit to be a maximum, the total differential

dL (Y , K, L, λ) = d(�− λg) = 0, (5.3)

where

g = Y − Nf5 KαLβ

C |NK − K|α |NL − L|β + KαLβ
. (5.4)

The condition (5.3) yields

∂L

∂λ
= −Y + Nf5 KαLβ

C |NK − K|α |NL − L|β + KαLβ
= 0,

∂L

∂K
= −p1 + p0

βNf5 C(NK − K)αKα(Lβ−1(NL − L)β + (NL − L)β−1Lβ)

(C(NK − K)α(NL − L)β + KαLβ)2
= 0,

∂L

∂L
= −p2 + p0

αNf5 C(NL − L)βLβ(Kα−1(NK − K)α + (NK − K)α−1Kα)

(C(NK − K)α(NL − L)β + KαLβ )2
= 0,

∂L

∂Y
= p0 − λ= 0.

(5.5)

The equations (5.5) give us necessary conditions for maximum profit. Solving (5.5) with the aid
of the computer algebra system Maple, we get

Y = Nf5 KαLβ

C |NK − K|α |NL − L|β + KαLβ
,

α = p2Nf5 K(NK − K)

p0NKY (Nf5 − Y )
,

β =
p0NKY (Nf5 − Y ) ln

|Nf5 − Y |
CY

− p2Nf5 K(NK − K) ln
|NK − K|

K

p0NKY (Nf − Y ) ln
|NL − L|

L

.

(5.6)

The resulting equations (5.6) are sufficient to determine the variables Y , K and L. The cor-
responding sufficient conditions for maximum profit are provided by the necessary conditions
established above supplemented by the following second-order condition:

d2L < 0,

or, given the fact that � in (5.2) is linear in Y , K and L (see (5.1)) and λ= p0 by (5.5), we have

d2g̃> 0, (5.7)

where

g̃(K, L) = p0Nf5 KαLβ

C |NK − K|α |NL − L|β + KαLβ
.
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Solving (5.7), using Maple, we arrive at the following set of inequalities:

α(α − 1)< 0,

β(β − 1)< 0,

(2K − NK)(2L − NL) + NL(2K − NK)β + NK(2L − NL)α > 0,

(2K − NK)(2L − NL) − NL(2K − NK)β − NK(2L − NL)α > 0.

(5.8)

The first two inequalities entail that 0<α, β < 1. The second two inequalities imply that K >
NK/2 and L>NL/2. Hence, we arrive at the following conditions that assure maximum profit:

0<α, β < 1, K >NK/2, L>NL/2,

(2K − NK)(2L − NL) + NL(2K − NK)β + NK(2L − NL)α > 0,

(2K − NK)(2L − NL) − NL(2K − NK)β − NK(2L − NL)α > 0.

(5.9)

Next, we observe that since limt→∞ K(t) = NK and limt→∞ L(t) = NL, the last inequality in (5.9)
implies that

0<α+ β < 1, (5.10)

which in turn implies that the assumption of perfect competition and maximisation of profit are
inconsistent in the case when

α + β � 1.

Finally, we conclude that the equations and inequalities (5.6), (5.9) and (5.10) constitute suf-
ficient conditions for maximum profit of a firm in the environment of perfect competition. The
equations in (5.6) determine the output a firm will deliver and the input of factors it will employ
once the prices of the product and factors are established. Therefore, the conclusions are pretty
much the same as in the case when the revenue is determined by the Cobb–Douglas production
function (1.1) considered in Nerlove [54]. The case of imperfect competition in both factor and
production markets will be considered in a forthcoming paper.

Note that all of the calculations above have been carried out under the assumption that C> 0.
If C< 0, the condition (5.10) changes to α + β > 1.

6 The wage share and logistic growth

The labour share is the fraction of national income, or the income of a particular economic
sector, defined as the share which is played out to employees. Therefore, it is often also called
the wage share. As is well-known, the wage share in the economic growth models governed by
the Cobb–Douglas production function (1.1) is a constant. More specifically, its constant value
can be derived directly from the Cobb–Douglas function and expressed in terms of the output
elasticity of capital in a simple and elegant way when the Cobb–Douglas function, say, enjoys
constant return to scale (see, for example, Rabbani [59]). The invariance of the wage share is
subject to Bowley’s law [9,10] or the law of the constant wage share, which states that the share
of national income that is paid out to the employees as compensation for their work (normally, in
the form of wages) remains unchanged (invariant) over time [46,51,68]. Economic data collected
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in different countries till about 1980 gave rise to and most strongly supported this law, which was
widely accepted by the economics community at the time. However, this is no longer the case on
both counts (see, for example, Schneider [68] for more details and references).

In view of the mathematics presented above, it should not be viewed as a surprise. Indeed, the
invariance of wage share is linked to the Cobb–Douglas production function, which in turn is a
consequence of exponential growth, as shown by Sato [66]. Next, since one of the main points
of this research project is the idea that we must depart from the exponential growth model and
accept the logistic one, let us investigate how this transition affects the wage share.

In what follows, we shall propose a new formula for the wage share compatible with logistic
growth and support our claim by a rigorous mathematical analysis.

First, let us recover the formula for the wage share as an invariant of a prolonged infinitesimal
group action given in terms of the corresponding projective coordinates defined as the output-
capital ration Y/K = y and the labour-capital output L/K = x. The terminology and notations that
we will use are compatible with those adopted by Olver [56, 57] and Saunders [67]. Consider a
general production function

Y = f (K, L; t) (6.1)

under the assumption that the dependent and independent variables K, L and Y grow
exponentially:

K̄ = Keαt, L̄ = Leβt, Ȳ = Yeεt, α, β, ε � 0. (6.2)

In view of the results presented in Section 2, we know that the production function (6.1) is
bound to be of the Cobb–Douglas type (1.1), in terms of the projective coordinates it assumes
the following form:

y = f (x; t). (6.3)

Clearly, the one-parameter Lie group of transformations (6.2) induces the corresponding action
on the projective coordinates, which is also exponential:

ȳ = yeγ t, x̄ = xeλt, γ , λ� 0 (6.4)

with the corresponding infinitesimal action given by the vector field u (compare it with (2.4))
given by

u = λx
∂

∂x
+ γ y

∂

∂y
. (6.5)

Following Saunders [67], let us suppose that (R2, π , R) is a trivial bundle so that π = pr1

and (x, y) are adapted coordinates. Then the corresponding jet bundles are (J1π , π1, R) and
(J1π , π1,0, R2), as per the commutative diagram (6.7), where the first-jet manifold of π is given
by

J1π =
{

j1
pφ : p ∈R, φ ∈ �p(π )

}
(6.6)
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with adapted coordinates (x, y, yx).

J1π R
2

R R

π1,0

π1 π

id

(6.7)

Here π1 = π ◦ π1,0.
Next, the first prolongation of u on R

2 is the following vector field pr(1)u = u(1), which has to
be a symmetry of the Cartan distribution on J1π (see Saunders [67] for more details), that is, the
vector field

pr(1)u = u(1) = λx
∂

∂x
+ γ y

∂

∂y
+ ξ (x, y, yx)

∂

∂yx
(6.8)

is required to be a symmetry of the Cartan distribution on J1π . Indeed, consider a basic contact
form ω= dy − yxdx. Next, in view of the above, we require that the one-form Lu(1) (ω) is a contact
form, where L denotes the Lie derivative. Thus, we compute

Lu(1) (ω) =Lu(1) (dy − yxdx)
=Lu(1) (dy) − (Lu(1) yx) dx − yx(Lu(1) (dx))

= d
(
u(1)

)
( y)) − (

u(1)( yx)
)
dx − yxd

(
u(1)(x)

)
= γ dy − ξ (x, y, yx) dx − λyxdx
= γ (ω+ yxdx) − ξ (x, y, yx) − λyxdx
= γω+ (γ yx − ξ (x, y, yx) − λyx) dx.

(6.9)

The last line of (6.9) implies that the expression in the parentheses above vanishes, which entails
that ξ (x, y, yx) = (γ − λ)yx. Therefore, the first prolongation u(1) of u is found to be

u(1) = λx
∂

∂x
+ γ y

∂

∂y
+ (γ − λ)yx

∂

∂yx
. (6.10)

The vector field (6.10) represents an infinitesimal action of a one-parameter Lie group of trans-
formations in a three-dimensional ( prolonged) space. Hence, we expect to obtain 3 − 1 = 2
fundamental differential invariants. Indeed, solving the corresponding partial differential equa-
tion by the method of characteristics, we arrive at the following set of two fundamental
differential invariants:

I1 = yx− γ
λ , I2 = yxx

λ−γ
λ , (6.11)

as expected, which means that any other differential invariant of the prolonged infinitesimal
group action defined by (6.10) is a function of I1 and I2. Now, combining the fundamental dif-
ferential invariants (6.11) in such a way that the parameters λ and γ disappear, we arrive at the
following differential invariant:

I(I1, I2) = xyx

y
, (6.12)

which we immediately recognise to be precisely the wage share sL (see, for example, Rabbani
[59] and Schneider [68] for more details).
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Therefore, we conclude that not only the Cobb–Douglas production function (1.1) but also the
wage share sL = I given by (6.12) is a consequence of the exponential growth in K and L as
a differential invariant obtained within the framework of the growth model (G, R2+), where the
action of the Lie group G is given by (2.2), that is

exponential growth ⇒ the wage share function (6.12).

Now let us redo the above calculations for the growth model (G1, R2+), where the action
of G1 is given by (3.1) and thus give a solution to the seemingly unresolved problem of the
determination of why Bowley’s law [9, 10] does not hold true anymore in the post-1960s data
[8, 25, 38, 45].

First, we observe in the example considered above that the exponential growth in K and L
induced the corresponding exponential growth in the projective coordinates x = L/K and y =
Y/K. However, the logistic growth in K and L given by (3.1) does not translate into the same
type of transformations for the projective coordinates x and y. Therefore, let us assume that the
growth in K is suppressed by, say, excessive debt and so it does not affect logistic growth in L
and Y . Hence, both projective coordinates x and y grow logistically, that is, we have

x̄ = 1

1 + (
1
x − 1

)
e−λt

, ȳ = 1

1 + (
1
y − 1

)
e−γ t

, λ, γ � 0, (6.13)

where we assumed without loss of generality that both carrying capacities were equal to one. The
corresponding infinitesimal action of the Lie group G1 is given by the vector field

u1 = λx(1 − x)
∂

∂x
+ γ y(1 − y)

∂

∂y
. (6.14)

To determine its first prolongation u(1)
1 = pr(1)u1, we proceed as above within the same frame-

work as in the previous case (see the commutative diagram (6.7)). We note first that the vector
field u(1)

1 on J1π is projectable, since the bundle (TR2, τ , R2) is endowed with a vector structure
(see Saunders [67], Chapter 2 for more details). Next, define

u(1)
1 = λx(1 − x)

∂

∂x
+ γ y(1 − y)

∂

∂y
+ ξ (x, y, yx)

∂

∂yx
(6.15)

and require that the vector field (6.15) is a symmetry of the Cartan distribution, which will assure
that (6.15) is the first prolongation of (6.14). Indeed, consider again a basic contact form ω=
dy − yxdx. Then again, L

u(1)
1

(ω) is a contact form iff u(1)
1 is a symmetry of the Cartan distribution

on J1π , which in turn assures that (6.15) is indeed the first prolongation of (6.14), where L as
before denotes the Lie derivative. Thus, we compute

L
u(1)

1
(ω) =L

u(1)
1

(dy − yxdx)

=L
u(1)

1
(dy) − (L

u(1)
1

( yx)dx − yx(L
u(1)

1
(dx))

= d
(
u(1)

1 ( y)
) − (

u(1)
1 ( yx)

)
dx − yxd

(
u(1)

1 (x)
)
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= γ (1 − 2y)dy − ξ (x, y, yx)dx − λ( yxdx − 2xyxdx) (6.16)

= γ (1 − 2y)(ω+ yxdx) − (ξ (x, y, yx) + λyx − 2λxyx)dx

= γ (1 − 2y)ω+ (γ yx − 2γ yyx − ξ (x, y, yx) − λyx + 2λxyx)dx.

In view of the above, L
u(1)

1
(ω) is again a contact form, provided the expression in the parenthesis

that appears in the last line of (6.16) vanishes. Hence, we have

γ yx − 2γ yyx − ξ (x, y, yx) − λyx + 2λxyx = 0,

or,
ξ (x, y, yx) = (γ − λ+ 2λx − 2γ y)yx. (6.17)

We conclude, therefore, that the first prolongation of the vector field u1 given by (6.14) is the
following vector field:

u(1)
1 = λx(1 − x)

∂

∂x
+ γ y(1 − y)

∂

∂y
+ (γ − λ+ 2λx − 2γ y)yx

∂

∂yx
, (6.18)

whose infinitesimal action brings about the following two fundamental differential invariants:

I1 = −
(

y − 1

y

) (
x

x − 1

) γ
λ

, I2 = (2γ x)2

(
yx

( y − 1)2

) (
1 − x

x

) γ+λ
λ

. (6.19)

In order to eliminate the parameters λ and γ , let us consider the following combination:

I(I1, I2) = I1 · I2

(2γ )2
= x

∣∣x − 1
∣∣ (

yx

y|y − 1|
)

. (6.20)

Definition 6.1 The differential invariant I given by (6.20) is called a modified wage share
s′

L = I , so that

s′
L = |x − 1|

|y − 1| sL = const, (6.21)

where sL is the classical wage share given by (6.12).

Remark 6.2 The modified wage share s′
L given by (6.21) is a differential invariant of the growth

model (G1, R2+), where the action of the Lie group G1 is given by (3.1), while the classical
wage share sL given by (6.12) is not. That is a reason why sL has been in decline: it may be
attributed to the fact that the post-1960 economic data have been generated within the framework
of the growth model (G1, R2+), rather than (G, R2+). More specifically, it follows that the decline
in sL is due to the relation γ > λ (see (6.21)). Indeed, if the output-to-capital ratio y grows
logistically faster than the labour-to-capital ratio x under the condition of suppressed capital
(e.g., by excessive debt), that is, if γ > λ, the ratio |x−1|

|y−1| in (6.21) clearly contributes to the
decline in sL, since s′

L is a constant. Simply put, more wealth (real or perceived) distributed
among fewer people implies a marked decrease in the classical wage share sL, and so Bowley’s
law [9, 10] no longer holds in the economic environment of the logistic growth model (G1, R2+).

Remark 6.3 The corresponding production function compatible with the infinitesimal action
generated by the vector field u1 (6.14) is readily found to be
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Y = f9(K, L; t) = KLC3

LC3 + C4|L − K|C3
, C3 ∈ (0, 1), C4 ∈R, (6.22)

which we derived by integrating the equation I = const, where I is given by (6.20) and rewriting
the solution in terms of K and L.

Now, let us analyse the second new production function (6.22). The partial derivatives of the
production function f9 (6.22), called in economic literature marginal productivities, are found
to be

MPK = 1

1 + C4

∣∣1 − K
L

∣∣C3
+ C3C4

K

L − K

∣∣1 − K
L

∣∣C3(
1 + C4

∣∣1 − K
L

∣∣C3
)2

, (6.23)

MPL = C3C4
K2

L(L − K)

∣∣1 − K
L

∣∣C3(
1 + C4

∣∣1 − K
L

∣∣C3
)2

. (6.24)

Next, the slope of an isoquant is the marginal rate of technical substitution (MRTS), or technical
rate of substitution (TRS). Thus, MRTS = MPK

MPL
so that in our case

MRTS(K, L) = 1

C3C4

L(L − K)

K2

1 + C4|1 − K
L |C3(

1 − K
L

)C3
+ L

K
, (6.25)

which decreases when L grows and K declines. We conclude, therefore, that the function given
by (6.25) admits concave up isoquants when L increases and K decreases, that is, if the labour-
capital ratio is less than approximately 1+C3

2 , in which case MRTS increases, while otherwise
the isoquants are concave down, since MRTS decreases.

Recall that the new production function (4.5) does not enjoy constant return to scale. Now let
us examine the function (6.22) from this viewpoint. Indeed, for a factor r> 1, the substitution
(K, L) → (rK, rL) in (6.22) yields

f9(rK, rL) = rK(rL)C3

(rL)C3 + C4|(rL) − (rK)|C3

= rKLC3

LC3 + C4|L − K|C3
.

(6.26)

which means that the new production function (6.22) has constant returns to scale, since it is a
homogeneous function of degree one. Therefore, we conclude that it satisfies the law of dimin-
ishing marginal returns and has constant return to scale, which means that it has a great potential
for playing a pivotal role in various economic growth models.

Finally, let us investigate the behaviour of the new production function (6.22) as t → 0 and
t → ∞ under the assumption that both K(t) and L(t) grow logistically according to the one-
parameter Lie group transformations defined by (3.1). To understand its behavior when K and
L are small, we employ economic reasoning. Thus, at the beginning of a production cycle a
company, say, invests much of its resources into fixed assets (e.g., infrastructure, materials,
land, etc.), and so when t is small it is safe to assume that K � L, which implies that

f9(t) ∼ 1

C4
(K(t))1−C3 (L(t))C3 , (6.27)
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FIGURE 4. Observed output vs estimated output using the new production function (4.5).

that is, the production function Y enjoys a similar behavior to that of the Cobb–Douglas produc-
tion function (1.1) that has constant returns to scale. When t → ∞ both K and L grow logistically
and so we have by (6.22)

lim
t→∞ f9(K, L; t) = const.

7 The new production function f5 vis-à-vis economic data

In this section, we present a similar analysis to the one conducted by Cobb and Douglas [20],
namely we compare the new production function with some available US economic data from
1947 to 2016. We make use of the data from the period of 1947 to 2016 that is provided by the
Federal Reserve Bank of St. Louis (https://fred.stlouisfed.org), employing the FRED tool. The
variables are as follows: K — capital services of nonfarm business sector [80], L — compen-
sations of employees of nonfarm business sector [81] and Y — real output of nonfarm business
sector [82]. The values of all variables are dimensionless, they are index values with the values at
2009 taken as 100. To estimate the new production function (4.5), we have used R Programming
[44], employing the method of least squares, and assuming the corresponding carrying capacities
to be of the following values: Nf5 = 120 and NL = 150. We have also assumed that α + β = 1.

The resulting production function of the type (4.5) is found to be

Y = 120K(0.4063544)L(0.5936456)

(0.3118901)|150 − K|(0.4063544)|150 − L|(0.5936456) + K(0.4063544)L(0.5936456)
, (7.1)

where C = 0.3118901, α = 0.4063544 and β = 0.5936456 (see Figure 4).
The elasticity of substitution σ1 (see Sato [63]) of the new production function (4.5) in this

case assumes the following form:

σ1 =
L̇

L
− K̇

K
L̇

L
− K̇

K
− K̇

K − 1
− L̇

L − 1

, (7.2)
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FIGURE 5. The elasticity of substitution of the new production function from 1947 to 2016.

FIGURE 6. The linear regression of the observed and estimated outputs of the period from 1947 to 2016.

where K = NK C1
C1+(NK−C1)e−at and L = NLC2

C2+(NL−C2)e−bt , while C1 and C2 are constants. The variable

σ1, giving the best estimate when C1 = 0.203, a = 0.129, C2 = 0.432 and b = 0.118, ranges
approximately from −0.0151724079 to 0.4982041724.

Whether the function f5, derived using the Lie group theoretical methods, can accurately pre-
dict the future still remains to be seen, but it appears that the function given by (4.5) can ‘predict’
the past in this particular case. More specifically, while running our simulations, we have noticed
that the negative value of σ1 = −0.0151724079 occurs in the year 1958 — exactly the year of a
sharp economic downturn [33], see Figure 5.

We conclude from the above that the time series from the period of 1947–2016 that compares
the observed and estimated outputs (see Figure 6) reveals that our model fits quite well with
the data with the adjusted R-squared value of 97.65%. On the other hand, the Cobb–Douglas
function (1.1) with a constant elasticity of substitutions, i.e., σ = 1, does not provide satisfactory
results in terms of the values of parameters α and β. The best estimation of the Cobb–Douglas
function that we managed to have obtained, using the same method, is as follows:

Y = (0.2464455)K(1.6612365)L(−0.6612365), (7.3)

where C = 0.2464455, α= 1.6612365 and β = −0.6612365. We see that this (negative!) value
of the parameter β is not compatible with the definition of the Cobb–Douglas production function
given by the formula (1.1).
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8 Summary and discussion

In this paper, we have introduced a new (logistic) growth model (G1, R2+) given by (3.1) as an
extension and natural continuation of the preceding studies in the area of economic growth done
by Sato [63]–[66], as well as a new framework for the development of more general production
functions that we believe fit better current economic data. The resulting new production functions
(4.5) and (6.22) are consequences of the logistic growth in factors (capital and labour). The
function (4.5) has shown to provide an adequate estimate for economic data, and as for the
function given by (6.22), there are indications that it will perform even better, and the work in
this direction is underway. Furthermore, we have presented a purely mathematical justification
of why Bowley’s law [9,10] no longer holds true in the post-1960 economic data by introducing
a new notion of modified wage share (6.21).

Our research has also demonstrated that there cannot be exponential growth of production
while factors grow logistically. We are inclined to believe that this is the most important con-
sequence of our studies. Indeed, if one ‘forces’ the production function to grow exponentially
(i.e., by setting H( f ) = cf in (4.3)), while the factors K and L grow logistically as in (3.1), the
resulting production function will be of the form

Y = f10(K, L; t) = C1

(
K

|1 − K|
)C2

(
L

|1 − L|
)C3

, (8.1)

where we assumed without loss of generality that NK = NL = 1. The production function f10 (8.1)
blows up very quickly near the singularities at K = 1 and L = 1. Similarly, unsatisfactory result
can be obtained by enforcing logistic growth in the production function, while the factors K
and L grow exponentially, that is, by setting H( f ) = cf (1 − f ) in (2.8): the resulting production
function will not even grow.

When we were starting this project, our original goal was to only extend the theoretical frame-
work based on the Lie group theory developed by Sato, and we did not expect that the resulting
production functions would perform so well. Therefore, the results obtained in this paper have
exceeded our expectations.

We see many applications in both economic theory of growth and applied mathematics where
the new production functions (4.5) and (6.22), as well as the new modified wage share (6.21)
can be used essentially mutatis mutandis by simply replacing the Cobb–Douglas function or its
generalisations (like the CES function, for example) and wage share with them as appropriate.

As we have already mentioned in the introduction, the idea that exponential growth ought to
be replaced with the logistic one is slowly but surely becoming more and more accepted by the
scientists developing various growth models (see Capasso et al. [16], Engbers et al. [26], Brass
[11], Ferrara and Guerrini [27–32], Leach [53], Oliver [55] and Tinter [76]) for more details and
references).

In light of the results that we have obtained so far, some of the projects that we have learned
from and appreciated so much, we believe could be modified accordingly, which in turn may lead
to more accurate mathematical models. For example, in Ferrara and Guerrini [31] the authors
generalised the Ramsey model by introducing the logistic growth in L, which was a very ade-
quate assumption. However, they still used the Cobb–Douglas function which, we believe, is
not entirely accurate, because the logistic growth in L suggests that the growth model (G3, R2+)
given by (3.4) is underpinning the dynamics of the variables involved, and so one has to use the
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corresponding production function compatible with (3.4) that is the function (3.8) instead of the
Cobb–Douglas production function (1.1). Similarly, Capasso et al. [16] did introduce a modified
production function (4.2) instead of the usual Cobb–Douglas production function (1.1); however,
it was done heuristically and a more natural choice for a production function in the model devel-
oped by the authors is either the production function (4.5) or (6.22), both of which were derived
here in a systematic way. More specifically, the partial differential equation:

∂K

∂t
(x, t) =�K(x, t) + F(K(x, t), L(x, t)) − δK(x, t), x ∈�⊂R

n, t � 0

governing the dynamics of K should use either (4.5) or (6.22) in place of F, which we believe
will lead to more accurate results.
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