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We make three contributions to using the variance ratio statistic at large horizons+
Allowing for general heteroskedasticity in the data, we obtain the asymptotic dis-
tribution of the statistic when the horizon k is increasing with the sample size n
but at a slower rate so that k0n r 0+ The test is shown to be consistent against a
variety of relevant mean reverting alternatives when k0n r 0+ This is in contrast
to the case when k0n r d � 0, where the statistic has been recently shown to be
inconsistent against such alternatives+ Second, we provide and justify a simple
power transformation of the statistic that yields almost perfectly normally distrib-
uted statistics in finite samples, solving the well-known right skewness problem+
Third, we provide a more powerful way of pooling information from different
horizons to test for mean reverting alternatives+ Monte Carlo simulations illus-
trate the theoretical improvements provided+

1. INTRODUCTION

The variance ratio ~VR! statistic is one of the popular tests that has been
employed in the literature to test the random walk hypothesis for financial and
economic data+ The statistic is obtained as the sample variance of k-period dif-
ferences, xt � xt�k, of the time series xt , divided by k times the sample vari-
ance of the first difference, xt � xt�1, for some integer k+ The VR statistic has
been found by several authors ~see, e+g+, Faust, 1992! to be particularly power-
ful when testing against mean reverting alternatives to the random walk model,
particularly when k is large+ However, the practical use of the statistic has been
impeded by the fact that the asymptotic theory provides a poor approximation
to the small-sample distribution of the VR statistic+ More specifically, rather
than being normally distributed as the theory states, the statistics are severely
biased and right skewed for large k ~see Lo and MacKinlay, 1989!, which makes
application of the statistic problematic+ To circumvent this problem, Richard-
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son and Stock ~1989! derived the asymptotic distribution of the VR statistic
under the random walk null, assuming that both k and n increase to infinity but
in such a way that k0n converges to a positive constant d that is strictly less
than 1+ They showed that the VR statistic, without any normalization, con-
verges to a functional of Brownian motion+ Through Monte Carlo simulations,
they demonstrated that this new distribution provides a far more robust approx-
imation to the small-sample distribution of the VR statistic+ However, Deo and
Richardson ~2003! have recently shown that the VR statistic is inconsistent
against an important class of mean reverting alternatives under this framework+
Thus, though the VR statistic would have vastly improved size properties under
the null hypothesis of a random walk if k were chosen to be a fraction of the
sample size n, it would fail to detect such alternatives with probability approach-
ing 1 as the sample size increased+ Currently there is no proposal in the litera-
ture that provides a way of using the VR statistic without compromising either
its finite-sample size properties or its large-sample power properties+

With this backdrop, we provide several contributions to the literature+ First,
it is intuitively appealing to maintain the assumption that the multiperiod hori-
zon k is large, not least because longer horizons have a better chance of captur-
ing mean reversion in the series+ Thus, under general conditions that allow for
conditional heteroskedasticity in the innovations, we study the limiting behav-
ior of the VR statistic for large k but now under the restriction that k0n r 0+
Specifically, we show that when k r `, n r `, but k0n r 0, then under the
null of a random walk, the VR statistic is asymptotically normal with a mean
of 1+ The requirement that k is large is important because as stated before, pre-
vious authors have shown that large values of k are to be preferred when test-
ing for mean reversion+ Furthermore, we prove that under this alternative
distribution theory, the test is consistent, in that the probability of it detecting a
wide variety of mean reversion alternatives approaches 1 as the sample size n
increases+

Unfortunately, this new distribution does not solve the well-documented skew-
ness problem of the VR statistic’s sampling distribution+ The second contribu-
tion of this paper is to propose a method that is shown to improve the asymptotic
normal approximation to the distribution of the statistic by an order of magni-
tude in finite samples, via a simple power transformation of the VR statistic+
Monte Carlo simulations confirm the theoretical assertion of the vast improve-
ment of the normal approximation afforded by the power transformation+ Our
Monte Carlo simulations also show that this improvement in the normal approx-
imation leads to significant gains in power against mean reverting alternatives+
Our simulations also show that the performance of the test based on using the
Richardson and Stock asymptotics is sensitive to both sample size and condi-
tional heteroskedasticity+ Furthermore, using the Richardson and Stock asymp-
totics also results in uniformly lower power when compared to the new
asymptotic approach that we present+ Thus, our new approach uniformly dom-
inates the Richardson and Stock asymptotic approach+
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The third contribution of this paper is to implement a new joint test that uses
VR statistics computed at different differencing periods to test the random walk
null hypothesis+ The joint test statistic that has been studied so far in the liter-
ature is the Wald type chi-square test statistic that jointly tests whether a sequence
of population variance ratios at several differencing periods all equal 1+ How-
ever, this test is blind to the inherent one-sided nature of a mean reverting alter-
native hypothesis, because under such an alternative all the population variance
ratios should be less than 1+ See Lo and MacKinlay ~1989!+ In this paper, we
adapt a test procedure proposed by Follmann ~1996! for testing against one-
sided alternatives for the mean vector of a multivariate normal distribution+ Our
Monte Carlo simulations show that this adapted test in combination with the
power transformation results in significant power gains over the usual chi-
square test when testing for mean reverting alternatives, while retaining the
appropriate size+

The paper is organized as follows+ In Section 2, we define the VR statistic
and provide its asymptotic distribution under conditional heteroskedasticity for
large k such that k�1 � k0n r 0+ We also demonstrate in that section that in
this framework the VR statistic is consistent against a wide range of alterna-
tives+ In Section 3, we provide an alternative equivalent representation of the
VR statistic that motivates the power transformation that provides a better approx-
imation to the normal distribution+ A new joint test that combines information
from several differencing periods and is useful against one-sided alternatives is
also introduced+ Section 4 presents Monte Carlo results for the various statis-
tics that we have proposed under two different null hypotheses and three alter-
native hypotheses+ All technical proofs are relegated to the Appendix+

2. ASYMPTOTIC THEORY FOR THE VARIANCE RATIO STATISTIC

Given n � 1 observations x0, x1, + + + , xn of a time series, the VR statistic with a
positive integer k~� n! as differencing period is defined as

VR~k! � [sb
2~k!0 [sa

2 , (1)

where

[sb
2~k! �

n

k~n � k � 1!~n � k! (t�k

n

~xt � xt�k � k [m!2,

[sa
2 �

1

n � 1 (t�1

n

~xt � xt�1 � [m!2,

and

[m � n�1(
t�1

n

~xt � xt�1!+
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In the usual fixed k asymptotic treatment, under the null hypothesis that the
$xt % follow a random walk with possible drift, given by

xt � m� xt�1 � «t , (2)

where m is a real number and $«t % is a sequence of zero mean independent
random variables, it is possible to show ~see, e+g+, Lo and MacKinlay, 1988!
that

Mn ~VR~k!� 1! D
&& N~0,sk

2!,

where sk
2 is some simple function of k+ This result extends to the case where

the $«t % are a martingale difference series with conditional heteroskedasticity
~see, e+g+, Campbell, Lo, and MacKinlay, 1997!, though the variance sk

2 has to
be adjusted to account for the conditional heteroskedasticity+ However, the
asymptotic behavior of the VR statistic for large values of k, such that k�1 �
k0nr 0, is not known when the innovations «t are conditionally heteroskedas-
tic+ In this section, we provide precisely this asymptotic distribution, in obtain-
ing which the following assumptions on the series of innovations $«t % are made+

~A1! $«t % is ergodic and E~«t 6�t�1! � 0 for all t, where �t is a sigma field,
«t is �t measurable, and �t�1 � �t for all t+

~A2! E~«t
2! � s 2 � `+

~A3! For any integer q, 2 � q � 8, and for q nonnegative integers si ,
E~Pi�1

q «ti
si ! � 0 when at least one si is exactly one and (i�1

q si � 8+

~A4! For any integer r, 2 � r � 4, and for r nonnegative integers si ,
E~Pi�1

r «ti
si 6�t ! � 0 when at least one si is exactly one and (i�1

r si � 4, for all
t � ti , i � 1,2,3,4+

~A5! lim
nr `

Var @E~«t�n
2 «t�n�j

2 6�t !# � 0 uniformly in j for every j � 0+

~A6! lim
nr `

E~«t
2«t�n

2 ! � s 4+

Conditions ~A1!–~A6! allow the innovations «t to be a martingale difference
sequence with conditional heteroskedasticity+ As a matter of fact, Lemmas 1
and 2, which follow, show that the stochastic volatility model ~see Shephard,
1996! and the GARCH model ~Bollerslev, 1986!, which are two of the most
popular models in the literature for conditional heteroskedastic martingale dif-
ferences, satisfy conditions ~A1!–~A6!+ Conditions ~A3!–~A4! state that the series
$«t % shows product moment behavior similar to that of an independent white
noise process+ Conditions ~A5!–~A6! state that «t and «t�n are roughly indepen-
dent for large lags n+

The following two lemmas assert that two major models of conditionally
heteroskedastic martingale differences, namely, the stochastic volatility model

VARIANCE RATIO STATISTICS AT LARGE HORIZONS 209

https://doi.org/10.1017/S0266466606060099 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060099


and the generalized autoregressive conditionally heteroskedastic ~GARCH!
model, satisfy the assumptions ~A1!–~A6!+ The proofs of the lemmas are in the
Appendix+

LEMMA 1+ Let the series $«t % be generated by the stochastic volatility model

«t � vt exp~ht !, (3)

where $vt % is an independent ~0,sv2! stationary series, $ht % is a stationary
zero mean Gaussian series, and $vt % and $ht % are independent. Assume that
E~vt8! � `. Then $«t % satisfies the assumptions (A1)–(A6).

See Shephard ~1996! for a discussion of model ~3! and its applications+
Our next lemma asserts that under some conditions the GARCH~1,1! family

of models also satisfies conditions ~A1!–~A6!+ We have restricted attention to
the GARCH~1,1! case for simplicity of exposition+ We conjecture that condi-
tions ~A1!–~A6! will continue to hold for a general GARCH~ p,q! model, the
proof following along similar lines by referring to the work of Bougerol and
Picard ~1992!+

LEMMA 2+ Let the series $«t % be a GARCH(1,1) process given by

«t � st vt , (4)

where st
2 � v� bst�1

2 � a«t�1
2 and $vt % is a sequence of independent standard

normal variables. Let v � 0, b � 0, and a � 0. Furthermore, let a and b be
such that E $loge~b � avt2!% � 0 and E $~b � avt2!4 % � 1. Then $«t % satisfies
the assumptions (A1)–(A6).

The condition E $loge~b � avt2!% � 0 in Lemma 2 is satisfied by any pair
~a,b! in the set S � $~a,b! : a � b � 1% ~see Nelson, 1990!, whereas the
condition E $~b� avt2!4 % � 1 will be satisfied by a nonempty subset of S ~see
Bollerslev, 1986!+

We now state our result on the limiting distribution of the VR statistic in the
following theorem+

THEOREM 3+ Let the series $xt % satisfy equation (2) and assume that con-
ditions (A1)–(A6) hold. For a fixed positive integer s, let k1 � k2 � {{{ �
ks � n be positive integers such that k1 r `, ksn�1 r 0, and ki kj

�1 r aij for
1 � i � j � s. Let Dn be an s � s diagonal matrix with diagonal elements
dii � Mn0ki for i � 1,2, + + + , s. Then

Vn �
D

N~1,Dn
�1SDn

�1!,

where Vn � ~VR~k1!,VR~k2!, + + + ,VR~ks!!
', 1 is an s � 1 vector of ones and S�

~sij ! is an s � s matrix such that sij � 4aij
102~3 � aij !06.
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Note that the limiting distribution of the VR statistic is free of nuisance param-
eters and is identical to that obtained when the «t are assumed to be indepen-
dent+ See Theorem 9+4+1 of Anderson ~1994!+ Furthermore, the VR statistics
computed at different differencing periods ki are asymptotically indepen-
dent when ki kj

�1 r 0 for i � j+ Both of these results are in contrast to those
obtained when the differencing periods are fixed and not allowed to increase to
infinity with the sample size+ See Lo and MacKinlay ~1989!+ It is interesting to
note that the limiting distribution of the VR statistic is free of nuisance param-
eters depending on higher moments that might arise as a result of conditional
heteroskedasticity+ This is quite different from the behavior of other tests of the
random walk hypothesis in the presence of conditional heteroskedasticity+ See
Deo ~2000!+

We have established the asymptotic distribution of the VR statistic under the
null hypothesis of a random walk with conditional heteroskedasticity when
k r `, n r `, and k0n r 0+ The next theorem states that under this frame-
work, the VR statistic also provides a consistent test against a large class of
mean reverting alternatives+

THEOREM 4+ Let $et % and $ut % be two series of zero mean independent pro-
cesses with finite fourth moments and which are independent of each other.
Define the processes $ yt % and $zt % by yt � (j�0

` aj ut�j and zt � (j�0
` bj et�j ,

where 6aj 6 � Cl j and 6bj 6 � Cl j for some constant C and 0 � l � 1. Let
rt � m � rt�1 � zt and xt � rt � yt . If k r `, n r `, and k0n r 0, then

VR~k! P
&&

sz
2 � 2(

j�1

`

gz~ j !

sz
2 � 2sy

2 � 2gy~1!
,

where sz
2 and sy

2 are the variances of zt and yt , respectively, whereas gz~ j !
and gy~ j ! are the respective autocovariances at lag j.

Theorem 4 shows that the power properties of the VR statistic under the
k0n r 0 framework are markedly different from those when k0n r d � 0, in
which case Deo and Richardson ~2003! have shown the VR statistic to be incon-
sistent against the alternatives considered in Theorem 4+

Though the VR statistic has an asymptotic normal distribution when k0nr 0,
it is obvious that in finite samples the normal distribution may not provide a
good approximation because the statistic is a quadratic form and hence must be
right skewed+ A common method that has a long history in statistics to reduce
skewness and induce normality in such random variables is to consider power
transformations+ The obvious question, naturally, is which power one should
use, and we address this question for the VR statistic in the next section+
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3. POWER TRANSFORMATIONS OF THE VARIANCE
RATIO STATISTIC

In attempting to address the skewness of the finite-sample distribution of the
VR statistic, it helps to express the VR statistic in an alternative form, which
lends more insight into how the normal distribution approximation can be
improved+ Inspection of the proof of Theorem 3 in the Appendix shows that

VR~k! � [s�2 (
6 j 6�k

~1 � 6 j 60k! [gj � op~Mk0n !, (5)

where [gj � [g�j � n�1 (t�j�1
n «t «t�j for j � 0 and

[s 2 � ~n � 1!�1(
t�1

n

~«t � S«!2 � ~n � 1!�1(
t�1

n

~xt � xt�1 � [m!2+

Now, using the fact that

[gj ��
0

2p

I ~l!exp~�ijl! dl,

where I ~l! � ~2pn!�1 6(t�1
n «t exp~�itl!62 is the periodogram, we get

from ~5!

VR~k! � [s�2�
0

2p

Wk~l!I ~l! dl� op~Mk0n !, (6)

where

Wk~l! � (
6 j 6�k

~1 � 6 j 60k!exp~�ijl!� k�1 � sin~kl02!

sin~l02! �
2

+

As shown in part ~i! of Lemma 7 in the Appendix, the integral in ~6! can be
approximated by a discrete sum over the Fourier frequencies lj � 2pj0n with
error op~Mk0n !, and hence we get

VR~k! �
4p

n [s 2 (
j�1

@~n�1!02#

Wk~lj !I ~lj !� op~Mk0n !+ (7)

The behavior of VR~k! is thus dictated by the behavior of the periodogram val-
ues I ~lj ! at the Fourier frequencies+ If the «t series is Gaussian, then it is well
known ~Brockwell and Davis, 1996! that the variables 2pI ~lj !0s 2 are exactly
independent and identically distributed ~i+i+d+! standard exponential random vari-
ables for all sample sizes+ This behavior of the variables 2pI ~lj !0s 2 can be
shown to continue to hold asymptotically if the «t are a martingale difference
sequence with finite fourth moment, by applying the central limit theorem for
martingale differences to n�102 (t�1

n «t exp~�ilj t !+ These observations in con-
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junction with ~7! and the fact that [s 20s 2 � 1 � Op~n�102! imply that, in gen-
eral, we may think of the VR statistic as being of the form

VR~k! �
2

n (j�1

@~n�1!02#

Wk~lj !Vj � op~Mk0n !, (8)

where the Vj are independent standard exponential random variables+ As we
next show, this approximate expression for the VR statistic as a weighted linear
combination of independent standard exponential random variables helps us both
to understand why the normal distribution provides a bad approximation for
large k and also to obtain an appropriate power transformation that improves
the normal approximation+

It is known ~see, e+g+, Anderson, 1994, p+ 509! that Wk~l! has a peak at the
origin and then damps down to zero for values of l further from the origin+
Furthermore, the larger k is, the more quickly Wk~l! damps down to zero, which
can be seen in Figure 1, where we plot Wk~l! for n � 128 and k � 8 and 16+
Thus, for large values of k, we see from ~8! that VR~k! will essentially be a
sum of too few independent standard exponential random variables for the cen-
tral limit theorem to properly take effect, resulting in right skewed distri-
butions+ However, Chen and Deo ~2004! have recently shown that power
transformations may be gainfully applied to random variables that have approx-
imate linear representations of the form in ~8!, yielding much better normal
approximations+ Using their results ~see Chen and Deo, 2004, eqn+ ~9!!, it fol-
lows that if one sets

Figure 1. Wk~l! for n � 128 and k � 8 and 16+
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b � 1 �
2

3

� (
j�1

@~n�1!02#

Wk~lj !�� (
j�1

@~n�1!02#

Wk
3~lj !�

� (
j�1

@~n�1!02#

Wk
2~lj !�2

, (9)

then the Gaussian distribution provides a better approximation to the distribu-
tion of VRb~k! than to that of VR~k!+ Indeed, from the results of Chen and Deo
~2004!, the Gaussian distribution approximation to the distribution of VRb~k!
is an entire order of magnitude better than the Gaussian approximation to the
distribution of VR~k!+ A dramatic visual display of this improvement is shown
in Figure 2+ The plot on the left is a QQ plot of 20,000 replications of the
VR~k! statistic, based on a sample size of n � 128 and k � 16 where the «t are
i+i+d+ standard normal+ The extreme curvature is indicative of the right skew-
ness of the distribution of VR~k!+ The plot on the right is a QQ plot of VRb~k!,
where b was computed using ~9!+ The plot now shows a straight line as would
be expected for observations from a normal distribution+ The power transfor-
mation thus provides a very simple method of getting almost near perfect nor-
mality for the finite-sample distribution of the VR statistic+ A standard Taylor
series argument applied to the result of Theorem 3 yields the asymptotic distri-
bution of VRb~k!, which can then be used for inference+ However, we feel that
because the power transformation is motivated by the representation ~7!, it might
be preferable to redefine the VR statistic and also its power transformation
directly in terms of the leading term of that expression, thus avoiding any effects
of the remainder term on its finite-sample distribution+ Toward that end, we

Figure 2. QQ plots of VR~k! and VRb~k! on 20,000 replications with n � 128, k � 16
and «t ; N~0,1!+
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now define the VR statistic based on the periodogram, for differencing period
k, as

VRp~k! �
1

~1 � k0n!

4p

n [s 2 (
j�1

@~n�1!02#

Wk~lj !I�X ~lj !, (10)

where I�X~lj !� ~2pn!�1 6(t�1
n ~xt � xt�1 � [m!exp~�ilj t !62+ Because the peri-

odogram is shift invariant at nonzero Fourier frequencies, we have I�X~lj ! �
I ~lj !, and hence the VRp~k! statistic as defined in ~10! based on the observed
data xt � xt�1 � [m is identical to the first term in ~7!, which is based on the
unobserved «t + It should be noted that this expression for the VR statistic, apart
from the normalization of ~1 � k0n!�1, which is just a finite-sample correction
ensuring a unit mean, is precisely the normalized discrete periodogram average
estimate of the spectral density of a stationary process at the origin and has a
long tradition in time series analysis+ See Brockwell and Davis ~1996!+ From
~7! it follows that VRp~k! will have the same asymptotic distribution as that of
VR~k! given in Theorem 3 and hence, by the usual Taylor series argument, the
asymptotic distribution of VRp

b~k! may be obtained+ It is however preferable to
have an expression for the variance of VRp~k!, and thus for that of VRp

b~k!,
that is accurate in finite samples and accounts for the finite-sample effects of
conditional heteroskedasticity+ Toward this end, we first define the quantities
Cn, k � n~n � k!�1 and

[tj � [s�4~n � j � 4!�1 (
t�j�1

n

~xt � xt�1 � [m!2~xt�j � xt�j�1 � [m!2,

where [tj is an estimator of s�4E~«t
2«t�j

2 !+ In part ~ii! of Lemma 7, we show
that the finite-sample variance covariance matrix of Vp � ~VRp~k1!,VRp~k2!, + + + ,
VRp~ks!!

' with remainder terms of order o~ks
20n2 ! is consistently estimated by

ZS � L'� ZA Zb

Zb' Zd�L, (11)

where L � ~lk1
, + + + , lks

!,

lki

' � �2Cn, ki
~1 � 10ki !, + + + ,2Cn, ki

~1 � ~ki � 1!0ki !, 0, + + + ,0,
assdssg

ks � ki terms

� ~ki Cn, ki
� n0~n � 1!!�, (12)

ZA � diag�n � j

n2
[tj �

j

n2� j � 1, + + + , ks ,
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Zb is a ks � 1 vector such that its j th element is given by ~2~n � j !n�3 [tj �
2jn�3!, and Zd � 2n�2+ We are now in a position to state the following theorem+

THEOREM 5+ Let the series $xt % satisfy equation (2) and assume that con-
ditions (A1)–(A6) hold. For a fixed positive integer s, let k1 � k2 � {{{ �
ks � n be positive integers such that k1 r `, ks n�1 r 0, and ki kj

�1 r aij

for 1 � i � j � s. For each ki , let bi be given by (9) and define Vp, b �
~VRp

b1~k1!,VRp
b2~k2 !, + + + ,VRp

bs~ks !!
'. Then

Vp,b �
D

N~mb ,Sb!,

where the ~i, j !th element of Sb is

bi bj [si, j

and the ith element of mb is

1 � 0+5bi ~bi � 1! [si, i ,

where [si, j is the ~i, j !th entry of ZS given in (11).

It is trivially seen that both VRp
P
&& 1 and VRp

b P
&& 1 under conditions ~A1!–

~A6!+ Our next theorem shows that both VRp and VRp
b also retain the consis-

tency of the VR statistic with regard to detecting the alternative hypotheses
assumed in Theorem 4+

THEOREM 6+ Let the assumptions of Theorem 4 hold. Then

VRp~k!
P
&&

sz
2 � 2(

j�1

`

gz~ j !

sz
2 � 2sy

2 � 2gy~1!

and

VRp
b~k! P

&& � sz
2 � 2(

j�1

`

gz~ j !

sz
2 � 2sy

2 � 2gy~1!
	
b

,

where sz
2 and sy

2 are the variances of zt and yt , respectively, whereas gz~ j !
and gy~ j ! are the respective autocovariances at lag j.

We have, so far, obtained the joint distribution of the VRp statistic computed
at various differencing periods+ These VR statistics can be combined into a sin-
gle statistic by computing the quadratic form

Qn � ~Vp � E~Vp !!
'Var~Vp !

�1~Vp � E~Vp !!, (13)
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where Vp � ~VRp~k1!, + + + ,VRp~ks!!
'+ Because of the asymptotic normality of Vp,

this quadratic form will have an asymptotic chi-squared distribution with s
degrees of freedom under the null hypothesis of a random walk+ The test sta-
tistic Qn can then be used to test whether the sequence of population variance
ratios all equal one for i � 1,2, + + + , s+ Because the quadratic form Qn is always
positive, rejection of the null hypothesis of a random walk occurs only in the
upper tail of the distribution of Qn+ However, under the important alternative
of mean reverting processes of the kind imposed in finance applications, the
population variance ratios, given by VRP~k! [ Var~(i�1

k «i !0~k Var~«1!!, are
generally expected to be less than 1 for large k+ For example, it can be
easily shown that for the alternative models that are the sum of permanent and
transitory components ~see Poterba and Summers, 1988; Fama and French,
1988!, VRP~k! is less than 1 for all values of k+ Hence, under such mean re-
verting processes, the alternative hypothesis actually has the one-sided form
Ha : VRP~k! � 1 for i � 1, + + + , s+ In such circumstances, ignoring the one-sided
nature of the alternative can lead to a loss of power of the test+ However, Foll-
mann ~1996! has proposed a test for the null hypothesis that the mean vector of
a multivariate normal random variable is zero, which has good power for alter-
natives where all the elements of the mean vector are negative+ Thus, Foll-
mann’s procedure would be directly applicable in the setting where the alternative
of interest is a mean reverting process+We now adapt Follmann’s procedure to
test for mean reverting alternatives using VRp statistics as follows+ In testing
the null hypothesis of a random walk

H0 : VRP~k1! � {{{� VRP~ks !� 1 i � 1,2, + + + , s

versus the one-sided alternative

Ha : VRP~k1! � 1, + + + ,VRP~ks ! � 1 i � 1,2, + + + , s

at the a level of significance, reject the null hypothesis if

(
i�1

s

@VRp~ki !� 1# � 0 and Qn � xs,2a
2 , (14)

where xs,2a
2 is the upper 2a critical value of a chi-square distribution with s

degrees of freedom+ From the asymptotic normality of VRp and Theorem 2+1 of
Follmann ~1996!, it follows that the procedure given previously has an asymp-
totic level of significance equal to a+ An analogous procedure can be devel-
oped using the power transformation as follows+ Reject the null hypothesis if

(
i�1

s

@VRp
bi~ki !� 1# � 0 and QPn � xs,2a

2 , (15)
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where

QPn � ~Vp,b�mb!
'Sb

�1~Vp,b�mb! (16)

and mb, Sb are as in Theorem 5+ The test procedure based on the power trans-
formation would be expected to have better size and power properties com-
pared to the one based on the original VRp statistics because the quadratic form
QPn should be expected to have a distribution closer to the expected chi-square
distribution+ In the next section, we report the results from a Monte Carlo study,
which evaluates the effectiveness of the new proposals we have made+

4. SIMULATION RESULTS

We carried out Monte Carlo simulations to evaluate the finite-sample perfor-
mance of tests based on our modified VR statistic+ The size properties under
the null hypothesis were evaluated using the following two models: ~i! xt �
xt�1 � «t , where «t ; i+i+d+ N~0,1!, ~ii! xt � xt�1 � «t , where «t � st vt ,
vt ; i+i+d+ N~0,1!, and st

2 � 0+0001 � 0+8575st�1
2 � 0+1171«t�1

2 + The parameter
values for the GARCH~1,1! model in ~ii! were chosen to reflect values obtained
when fitting such models to real data+ The sample sizes we considered were
n � 128 and 512, and the number of replications was 20,000+ For n � 128, we
used k1 � 8 and k2 � 16, whereas for n � 512 we used k1 � 16 and k2 � 32+
The first part of Table 1 reports the Monte Carlo sizes of the test statistics
under the Gaussian white noise case, whereas the second part of the table is for
the GARCH~1,1! model+ In both parts the nominal level of significance is 5%
and the test is two tailed+ The sizes are reported for the statistics VRp and VRp

b

for each combination of sample size and k, where b was computed for each
case using ~9!+ The sizes are reported for both the left and right tail to demon-
strate the skewness and the effect of the power transformation on it+ We also
report the sizes of the quadratic tests ~13!, denoted in the table by Qn, based
upon both the untransformed and transformed VR statistics+ Sizes for the mod-
ified intersection tests given in ~14! and ~15!, denoted in the table by IQn, are
also shown+

It is also of interest to study the finite-sample performance of the VR statis-
tic under the k0n r d � 0 asymptotics as proposed by Richardson and Stock
~1989!+We therefore also present empirical sizes and power of the VR statistics
for our configuration of ~k, n! values based on asymptotic critical values of the
Richardson–Stock distribution that were computed as follows+ For each combi-
nation of ~k, n!, we generated 20,000 replications of the VR statistic based on
Gaussian noise with n` � 12,000 and k` � ~k0n!n` � ~k0n!12,000 and the
percentiles of these 20,000 values were used to obtain the asymptotic critical
values+ The empirical sizes and powers based on these critical values are pre-
sented in Tables 1–3 in the row labeled RS+
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It is immediately apparent from Table 1 that whereas the distribution of VRp

is very right skewed, as is well known, the power transformation is able to
correct it and provide near perfect normality with sizes in each tail that are
very close to nominal+ One can also see that the power transformed statistic
VRp
b is able to retain the size close to the nominal even in the presence of

GARCH innovations+ On the other hand, it is seen from these tables that the
finite-sample performance of the VR statistic when compared to the critical val-
ues of the Richardson–Stock distribution is not as good+ In the case of Gauss-
ian noise, the test is undersized, particularly for n � 128, whereas in the case of
GARCH innovations, the test is oversized for n � 512+ Note that for our con-
figuration of ~k, n! values, the ratio k0n takes values 0+03125, 0+0625, and 0+125+
This clearly indicates that the k0n r d � 0 asymptotic distribution cannot
approximate the finite-sample distribution of the VR statistic when k0n is small
and is sensitive to the presence of conditional heteroskedasticity+

Table 1 also demonstrates that the quadratic and the modified intersection
tests based on the transformed VR statistics have much better size properties
than those using their untransformed counterparts+

To evaluate the power properties of our tests, we generated data from the
mean reverting process given by xt � rt � yt , where rt � rt�1 � wt , yt � 0+9yt�1 �

Table 1. Sizes in percentage of the null of random walk: xt � m � xt�1 � «t

n 128 512

k 8 16 16 32

Lower Upper Lower Upper Lower Upper Lower Upper

Gaussian white noise errors, «t ; N~0,1!
VRp 0+6 3+8 0+1 4+5 1+0 3+6 0+5 4+2
VRp
b 2+4 2+3 2+4 2+4 2+4 2+4 2+4 2+5

RS 1+3 1+5 1+7 1+8 1+8 2+0 2+0 2+4

Qn Qn
b IQn IQn

b Qn Qn
b IQn IQn

b

5+8 5+1 1+5 5+7 5+2 4+8 2+2 5+4

GARCH~1,1! white noise errors, «t ; N~0,st
2!,

st
2 � 0+0001 � 0+8575st�1

2 � 0+1171«t�1
2

VRp 0+3 4+1 0+0 4+6 0+6 3+9 0+2 4+4
VRp
b 2+0 2+4 2+0 2+6 2+0 2+5 1+7 2+4

RS 2+2 2+5 2+6 2+6 4+4 4+4 3+9 4+1

Qn Qn
b IQn IQn

b Qn Qn
b IQn IQn

b

6+2 4+6 1+3 4+9 5+7 4+3 1+5 4+5
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ut , and ut ; i+i+d+ N~0,1! and also independent of $wt %+ The errors wt were
assumed to be i+i+d+ N~0,sw

2! where sw
2 � 0+1, 0+25, and 0+5+ This model with

similar parameter configurations was considered in Lo and MacKinlay ~1989!
and Richardson and Smith ~1991!+ Table 2 reports the Monte Carlo power
values at 5% level of significance for this alternative model for the three
different values of sw

2 + As the value of sw
2 increases, the permanent compo-

nent dominates the process and the power of all tests decreases, as is to be
expected+ However, similar behavior of the tests is seen across the table+ It
is clear that the individual tests based on the transformed VR statistics pro-
vide power that is significantly superior to that of the untransformed ones, in
some cases increasing the power by as much as 10%+ Furthermore, the test
based on the transformed VR statistic provides power that is uniformly higher
than the power of the VR statistics under the Richardson–Stock asymptotic
distribution+

Table 2. Power in percentage against the alternative of random walk � AR~1!

n 128 512

k 8 16 16 32

Xt � rt � yt , rt � rt � 1 � wt , wt ; N~0,0+1!
VRp 4+0 0+5 70+0 74+9
VRp
b 12+2 15+3 82+6 94+1

RS 7+5 12+0 78+9 92+8

Qn Qn
b IQn IQn

b Qn Qn
b IQn IQn

b

2+2 13+4 4+7 22+2 39+1 86+5 70+9 93+8

Xt � rt � yt , rt � rt � 1 � wt , wt ; N~0,0+25!
VRp 3+4 0+4 51+5 47+3
VRp
b 10+1 11+6 67+1 78+2

RS 6+1 9+0 62+1 74+9

Qn Qn
b IQn IQn

b Qn Qn
b IQn IQn

b

2+2 10+8 4+0 18+0 21+7 65+5 47+6 79+3

Xt � rt � yt , rt � rt � 1 � wt , wt ; N~0,0+5!
VRp 2+8 0+5 30+9 22+4
VRp
b 8+0 8+5 45+9 51+4

RS 4+7 6+5 40+7 46+5

Qn Qn
b IQn IQn

b Qn Qn
b IQn IQn

b

2+3 8+7 3+4 14+4 10+5 40+4 26+7 56+0

yt � 0+9yt�1 � ut , ut ; N~0,1!+
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The quadratic test based on the transformed statistics also provides signifi-
cant power gain over that based on the untransformed statistics+ Furthermore,
it is seen that the modified intersection test, which is specially geared to take
into account the unidirectional nature of mean reverting alternatives, is able to
provide a significant advantage over the quadratic test, when based on the trans-
formed VR statistics+

We also generated data from the alternative mean reverting process given by
xt � 0+92xt�1 � ut where ut ; i+i+d+ N~0,1!+ This process is also considered in
Lo and MacKinlay ~1989!+ The simulation results are presented in Table 3+ It is
seen that the test based on the transformed VR statistics once again provides
significantly higher power than that based on the untransformed statistics as
well as that based on the Richardson–Stock distribution+

The simulations we present here are for the modified variance ratio statistic,
VRp, which is defined in the frequency domain as given in equation ~10!+ It is
of interest to see how good an approximation this statistic is to the variance
ratio statistic, VR, defined in the time domain in equation ~1!+ In Table 4, we
present the empirical size and power of the transformed statistics VRb and
VRp
b+ It is seen that the size and power are very similar, indicating that the

approximation is good, though as the theory suggests, this approximation will
worsen as k gets larger relative to n+

It should also be noted that according to our theory the normal approxima-
tion to the transformed statistics will be good only when k is not too large rel-
ative to n+ In the simulations we present here, the largest value of the ratio k0n
we consider is 0+125, and the normal approximation works well in this case+
We also did a simulation study, not presented here, in which k0n was set to be
0+25+ In this case, the normal approximation to even the transformed ratio sta-
tistic was poor+ This is not surprising because k is now very large relative to n
and thus violates the assumption+ Furthermore, in practice, one should not be
using such large values of k because, as Deo and Richardson ~2003! have shown,
the test would then be inconsistent against a wide class of alternatives+

Table 3. Power in percentage against the alternative of AR~1!

n 128 512

k 8 16 16 32

VRp 3+4 0+4 59+8 72+0
VRp
b 10+1 12+8 73+8 92+3

RS 6+1 9+7 69+4 90+7

Qn Qn
b IQn IQn

b Qn Qn
b IQn IQn

b

2+3 11+7 3+9 19+2 33+4 84+2 66+0 92+2

xt � 0+92xt�1 � ut , ut ; N~0,1!+
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5. CONCLUSION

From Deo and Richardson ~2003!, it is clear that large values of k should not
be used when testing for the mean revision using the VR statistic+ From our
theoretical results and Monte Carlo study, we conclude that when k is not too
large, the transformed VR statistic proposed in the paper is able to solve the
problem of skewness and is thus well approximated by the normal distribution
in finite samples+ This provides good size properties in addition to significant
power gains+ Furthermore, the distribution of the transformed VR statistic is
shown, both theoretically and through simulations, to be robust to conditional
heteroskedasticity+

Our simulation study also shows that the k0n r d � 0 asymptotic distribu-
tion cannot approximate the finite-sample distribution of the VR statistic when
k0n is small and is sensitive to conditional heteroskedasticity+ Furthermore, our
transformed VR statistic provides power that is uniformly higher than that of
the VR statistic based on the k0n r d � 0 asymptotic distribution+

Finally, the modified intersection test is also able to incorporate information
from various differencing periods and yet maintain good power+
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APPENDIX

Proof of Lemma 1. Because $ht % is a Gaussian stationary series with zero mean, it
can be expressed as ht �(j�0

` aj ut�j , where (aj
2 � ` and $ut % is a sequence of inde-

pendent standard normal variables+ Furthermore, $ut % and $vt % will also be independent+
Let �t � s~ut ,ut�1,ut�2, + + + , vt , vt�1, vt�2, + + + !+ By Lemma 3+5+8 and Theorem 3+5+8 of
Stout ~1974!, $«t % is an ergodic sequence+ Furthermore, Lemma 1 in Deo ~2000! shows
that «t satisfies ~A1!–~A3!+ Because $vt % is an independent zero mean sequence, ~A4! is
trivially true+ Also,

E~«t�n
2 «t�n�j

2 6�t !

� E 2~vt
2!exp�2 (

p�0

`

~ap�n � ap�n�j !ut�p� exp�2(
s�0

j�1

as
2 � 2 (

p�0

n�1

~ap � ap�j !
2�+
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Because (aj
2 � `, to prove ~A5! it suffices to show that

lim
nr`

Var�exp�2 (
p�0

`

~ap�n � ap�n�j !ut�p�� � 0 (A.1)

uniformly in j+ But

Var�exp�2 (
p�0

`

~ap�n � ap�n�j !ut�p��
� exp�8 (

p�0

`

~ap�n � ap�n�j !
2� � exp�4 (

p�0

`

~ap�n � ap�n�j !
2�

� exp�4 (
p�0

`

~ap�n � ap�n�j !
2��exp�4 (

p�0

`

~ap�n � ap�n�j !
2� � 1�+

Because (p�0
` ~ap�n � ap�n�j !

2 converges to 0 uniformly in j, ~A+1! is established+ The
proof of ~A6! follows along similar lines+ �

Proof of Lemma 2. Lemma 2 in Deo ~2000! proves ~A1!–~A3!+ An argument simi-
lar to the one provided on page 309 in the proof of Lemma 2 of Deo ~2000! also estab-
lishes ~A4!+ We now turn to proving ~A5!+ Iterating the expression for «t , we have

«t�n
2 � vt�n

2 v� vt�n
2 v (

k�1

n�2

P i�1
k ~avt�n�i

2 � b!� vt�n
2 st�1

2 P i�1
n�1~avt�n�i

2 � b! (A.2)

[ T11 � T12 � T13

and

«t�n�j
2 � vt�n�j

2 v� vt�n�j
2 v (

k�1

n�j�2

P i�1
k ~avt�n�j�i

2 � b!

� vt�n�j
2 st�1

2 P i�1
n�1~avt�n�j�i

2 � b!

[ T21 � T22 � T23 +

Thus,

E~«t�n
2 «t�n�j

2 6�t ! � (
p,q�1

3

E~T1pT2q 6�t !+ (A.3)

Consider the term T12T23+ Then we can easily see that we can express T12T23 as the
product T12T23 � AB, where

A � vst�1
2 vt�n�j

2 vt�n
2 ~avt�n

2 � b!P i�1
j�1~avt�n�i

2 � b!
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and

B � P i�1
n�1~avt�n�i

2 � b! (
k�1

n�2

P i�1
k ~avt�n�i

2 � b!+

Letting u1 � E~avt2 � b! and u2 � E~avt2 � b!2 and noting that Evt�n
4 � 3, we get

E~T12T23 6�t ! � vst�1
2 ~3a� b!u1

j�1 (
k�1

n�2

u2
ku1

n�1�k +

Because g � max~u1,u2! � 1, it follows that for all j � 1 there exists some finite con-
stant C such that

E~T12T23 6�t ! � Cst�1
2 ~n � 2!gn�1,

and hence

Var~E~T12T23 6�t !! � E~E~T12T23 6�t !!
2 � C 2E~st�1

4 !n2g2~n�1!

uniformly in j+ Thus,

lim
nr`

Var~E~T12T23 6�t !! � 0

uniformly in j+ Similar arguments yield

lim
nr`

Var~E~T1pT2q 6�t !! � 0 1 � p, q � 3 (A.4)

uniformly in j+ Thus, ~A5! follows from ~A+3!, ~A+4!, and the Cauchy–Schwarz inequal-
ity+ To prove ~A6!, we first note that using ~A+2!,

E~«t
2 6�t�n ! � v�1 � u1

n

1 � u1
�� u1

nst�n
2 +

Thus, E~«t
2«t�n

2 !� E~«t�n
2 E~«t

2 6�t�n !!� v~~1 � u1
n!0~1 � u1!!s

2 � u1
n E~st�n

4 !, and so

lim
nr`

E~«t
2«t�n

2 ! � v�1 � u1
n

1 � u1
�s 2 � s 4+ �

Proof of Theorem 3. By simple but tedious algebraic manipulation, it can be shown
that

@VR~ki !� 1# �
2n2

[s 2~n � ki � 1!~n � ki !
(
j�1

ki�1�1 �
j

ki
� [gj �

n~Ai � Bi !

[s 2ki ~n � ki � 1!~n � ki !

� op�
ki

n
�,
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where

[gj � n�1 (
t�j�1

n

«t «t�j ,

Ai � �2 (
v�0

ki�2

(
p�1

ki�1�v

(
s�p�1

ki�v�1

«s«s�p � 2 (
v�0

ki�2

(
p�1

ki�1�v

(
s�n�v�1

n

«s«s�p

� Ai1 � Ai2 ,

and

Bi � (
v�0

ki�1

(
q�1

ki�v�1

«q
2 � (

v�0

ki�1

(
q�n�v�1

n

«q
2 +

Because E~Bi ! � O~ki
2! trivially, it follows that @ki~n � ki � 1!~n � ki !#

�1nBi �
op~ @n�1ki #

102!+ By condition ~A1!, we have E~Ai ! � 0+ Furthermore, by using condi-
tion ~A3!, it can be easily seen that E~Ai1

2 !� E~Ai2
2 !� O~ki

4!+ By the Cauchy–Schwarz
inequality, it follows that Var~Ai !� O~ki

4! and hence @ki~n � ki � 1!~n � ki !#
�1nAi �

op~ @n�1ki #
102!+ Because [s2 P

&& s2, we have


 n

ki

@VR~ki !� 1# �
n2

[s 2~n � ki � 1!~n � ki !

n

ki

2 (
j�1

ki�1�1 �
j

ki
� [gj � op~1!+ (A.5)

Now consider


 n

ki

2 (
j�1

ki�1�1 �
j

ki
� [gj �

2

Mnki
(
j�1

ki�1�1 �
j

ki
�(

q�1

n�j

«q«q�j

�
2

Mnki
(
q�1

n�ki

(
j�1

ki �1 �
j

ki
�«q«q�j

�
2

Mnki
(

q�n�ki�1

n

(
j�1

n�q�1 �
j

ki
�«q«q�j

� Ri1 � Ri2 +

By conditions ~A1! and ~A3!, respectively, it follows that E~Ri2! � 0 and E~Ri2
2 ! �

o~1!, and hence


 n

ki

2 (
j�1

ki�1�1 �
j

ki
� [gj � Ri1 � op~1!+ (A.6)
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Now define N � @Mnks# and M � @N�1n# + Then, M r `, N r `, n�1N r 0, and
N�1ki r 0 for i � 1,2, + + + , s+ Also, define

Wi,q �
1

Mki
(
j�1

ki �1 �
j

ki
�«q«q�j q � 1,2, + + + , n � ki ,

Zi, p �
1

MN
$Wi, ~ p�1!N�1 � {{{� Wi, pN�ki

% p � 1,2, + + + ,M,

and

Vi, l � Wi, lN�ki�1 � {{{� Wi, lN l � 1,2, + + + ,M � 1+

Then we can decompose Ri1 as

Ri1 �
2

MM
(
p�1

M

Zi, p �
2

Mn
(
l�1

M�1

Vi, l (A.7)

[ Ui1 � Ui2 +

By condition ~A3!, it follows that E~Wi,aWi,b!� 0 for a � b and hence E~Vi,aVi,b!� 0
for a � b+ Thus,

E~Ui2
2 ! �

4

n (l�1

M�1

E~Vi, l
2 !�

4

n (l�1

M�1

ki E~Wi,1
2 !

� O� ki ~M � 1!

n
�� o~1! i � 1,2, + + + , s+ (A.8)

From equations ~A+6!–~A+8! it follows that


 n

ki

2 (
j�1

ki�1�1 �
j

ki
� [gj � Ui1 � op~1!,

and hence, from equation ~A+5!,


 n

ki

@VR~ki !� 1# �
n2

[s 2~n � ki � 1!~n � ki !
Ui1 � op~1!+

Because [s2 P
&& s2 and @~n � ki � 1!~n � ki !#

�1n2 r 1, the theorem will be proved if
we show that the vector ~U11,U21, + + + ,Us1!

' converges in distribution to a multivariate
normal distribution with mean zero and variance covariance matrix s4S+ To do this, it
is sufficient to show that for any set of s real numbers ci ,

(
i�1

s

ci Ui1 � 2M�102 (
p�1

M

(
i�1

s

ci Zi, p
D
&& N�0,s 4(

i, j
ci cjsij�, (A.9)

which we now proceed to demonstrate+
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Let �p, n � s$«pN ,«pN�1,«pN�2, + + + % be the sigma algebra generated by $«pN ,«pN�1,
«pN�2, + + + %+ Then, for any set of s real numbers ci , the sequence $(i�1

s ci Zi, p % forms a
martingale difference with respect to �p, n+ To show ~A+9!, we first need to establish
that

�(
p�1

M

E�(
i�1

s

ci Zi, p�2��1

(
p�1

M

E��(
i�1

s

ci Zi, p�2

6�p�1, n� P
&& 1+ (A.10)

Now, by condition ~A3!

E��(
i�1

s

ci Zi, p�2� � (
i�1

s

ci
2 E~Zi, p

2 !� 2(
i�u

ci cu E~Zi, p Zu, p !

� (
i�1

s

ci
2

N � ki

N
E~Wi,1

2 !� 2(
i�u

ci cu

N � ki

N
E~Wi,1Wu,1!+

By conditions ~A3! and ~A6!,

E~Wi,1
2 ! � ki

�1(
j�1

ki �1 �
j

ki
�2

E~«1
2«1�j

2 !r 4�1s 4sii

and

E~Wi,1Wu,1! � ~ku ki !
�102 (

j�1

ki �1 �
j

ki
��1 �

j

ku
�E~«1

2«1�j
2 !r 4�1s 4siu

for i � u+ Hence, we have

lim
Mr`

1

M (p�1

M

E��(
i�1

s

ci Zi, p�2� � 4�1s 4(
i, j

ci cjsij + (A.11)

We now show that

M�1 (
p�1

M

E��(
i�1

s

ci Zi, p�2

6�p�1, n� P
&& 4�1s 4(

i, j
ci cjsij , (A.12)

which along with ~A+11! will prove ~A+10!+ We have

E��(
i�1

s

ci Zi, p�2

6�p�1, n� � (
i�1

s

ci
2 E~Zi, p

2 6�p�1, n !

� 2(
i�u

ci cu E~Zi, p Zu, p 6�p�1, n !+

Letting f ~x!� ~1 � x!, Yi,u, p � E~Zi, p Zu, p6�p�1, n! and using condition ~A4!, we get for
i � u,

Yi,u, p � N�1~ki ku !
�102 (

a�1

N�ku

(
b�1

ki

f� b

ki
� f� b

ku
�E~«pN�N�a

2 «pN�N�a�b
2 6�p�1, n !+
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By condition ~A6!, there exists C � ` such that

E6E~«pN�N�a
2 «pN�N�a�b

2 6�p�1, n !� E~«t
2«t�b

2 !6 � C (A.13)

for all p, a, and b+ Furthermore, given any d � 0, by condition ~A5! and Jensen’s inequal-
ity there exists an integer N0 such that

sup
b � 0

E6E~«pN�N�a
2 «pN�N�a�b

2 6�p�1, n !� E~«t
2«t�b

2 !6 � d (A.14)

for all a � N0+ Hence, letting Hp,a,b � E~«pN�N�a
2 «pN�N�a�b

2 6�p�1, n !� E~«t
2«t�b

2 !, we
have for any « � 0

P��M�1 (
p�1

M

E~Zi, p
2 6�p�1, n !� M�1 (

p�1

M

N�1ki
�1 (

a�1

N�ki

(
b�1

ki

f 2� b

ki
�E~«t

2«t�b
2 !� � «�

� P�N�1ki
�1 (

a�1

N�ki

(
b�1

ki

f 2� b

ki
�M�1 (

p�1

M

6Hp,a,b 6 � «�
� P�N�1ki

�1 (
a�1

N0

(
b�1

ki

f 2� b

ki
�M�1 (

p�1

M

6Hp,a,b 6 � 2�1«�
� P�N�1ki

�1 (
a�N0�1

N�ki

(
b�1

ki

f 2� b

ki
�M�1 (

p�1

M

6Hp,a,b 6 � 2�1«�
� 2«�1N�1ki

�1 (
a�1

N0

(
b�1

ki

f 2� b

ki
�M�1 (

p�1

M

E6Hp,a,b 6

� 2«�1N�1ki
�1 (

a�N0�1

N�ki

(
b�1

ki

f 2� b

ki
�M�1 (

p�1

M

E6Hp,a,b 6

� 2«�1N�1N0 ki
�1 (

b�1

ki

f 2� b

ki
�C � 2«�1N�1~N � ki !ki

�1 (
b�1

ki

f 2� b

ki
�d, (A.15)

where the last inequality follows from equations ~A+13! and ~A+14!+ Because d can be
chosen to be arbitrarily small and N large enough that N�1N0 r 0, it follows from
equation ~A+15! that

M�1 (
p�1

M

E~Zi, p
2 6�p�1, n !� M�1 (

p�1

M

N�1ki
�1 (

a�1

N�ki

(
b�1

ki

f 2� b

ki
�E~«t

2«t�b
2 ! P

&& 0+

Because, by condition ~A6! we also have

M�1 (
p�1

M

N�1ki
�1 (

a�1

N�ki

(
b�1

ki

f 2� b

ki
�E~«t

2«t�b
2 !r s 44�1sii ,
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we obtain

M�1 (
p�1

M

E~Zi, p
2 6�p�1, n !

P
&& s 44�1sii +

A similar argument as before in conjunction with the fact that ku
�1 ki r aiu for i � u

yields

M�1 (
p�1

M

E~Zi, p Zu, p 6�p�1, n !
P
&& s 44�1siu +

Thus, ~A+12! is established giving equation ~A+10!+
By using condition ~A3!, one can employ the same argument given on page 539 of

Anderson ~1994! to show that E~Zi, p
4 ! is uniformly bounded in n for i � 1,2, + + + , s+ This

implies that E~(i�1
s ci Zi, p !

4 is also uniformly bounded in n, from whence we get

M�1 (
p�1

M

E��(
i�1

s

ci Zi, p�2

I��(
i�1

s

ci Zi, p� � «MM��r 0 (A.16)

for every « � 0+ By Chebyshev’s inequality, equation ~A+16! implies that

M�1 (
p�1

M

E��(
i�1

s

ci Zi, p�2

I��(
i�1

s

ci Zi, p� � «MM�6�p�1, n� P
&& 0+ (A.17)

Hence, equation ~A+9! follows from equations ~A+10! and ~A+17! and Theorem 5+3+4 of
Fuller ~1996!+ �

Proof of Theorem 4. We first note that by the weak law of large numbers, [sa
2 P
&&

Var~zt ! � Var~ yt � yt�1!+ Now, letting Vn, k [ n~ [sa
2 k~n � k � 1!~n � k!!�1, we get

VR~k! � Vn, k(
t�k

n

~xt � xt�k � k [m!2

� Vn, k(
t�k

n �� (
j�t�k�1

t

zj � k Sz� �(
t�k

n �yt � yt�k �
k

n
$ yn � y0 %��2

+ (A.18)

It is trivial to show that

(
t�k

n �yt � yt�k �
k

n
$ yn � y0 %�2

� op~nk!+ (A.19)

Now

(
t�k

n � (
j�t�k�1

t

zj � k Sz�2

�(
t�k

n � (
j�t�k�1

t

zj�2

� ~n � k!k 2 Sz 2 � 2k Sz(
t�k

n

(
j�t�k�1

t

zj

�(
t�k

n � (
j�t�k�1

t

zj�2

� ~n � k!k 2Op~n
�1 !

� 2k Sz�(
j�0

k

jzj � (
j�k

n�k

kzj � (
j�n�k

n

~n � j !zj�
�(

t�k

n � (
j�t�k�1

t

zj�2

� Op~k
2 !� Op~k

2 !+ (A.20)
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From ~A+20!, we get

Vn, k(
t�k

n � (
j�t�k�1

t

zj � k Sz�2

� Vn, k(
t�k

n � (
j�t�k�1

t

zj�2

� op~1!+ (A.21)

Letting [gj � [g�j � n�1 (t�j�1
n zt zt�j , some tedious algebra yields

(
t�k

n � (
j�t�k�1

t

zj�2

� nk (
j��~k�1!

k�1

~1 � 6 j 60k! [gj � A � B, (A.22)

where

A � �2 (
v�0

k�2

(
p�1

k�1�v

(
s�p�1

k�v�1

zs zs�p � 2 (
v�0

k�2

(
p�1

k�1�v

(
s�n�v�1

n

zs zs�p

� A1 � A2

and

B � (
v�0

k�1

(
q�1

k�v�1

zq
2 � (

v�0

k�1

(
q�n�v�1

n

zq
2 +

Now

E~A1
2 ! � 4 (

p�1

k�1

(
v�1

k�1�p

(
s�1

k�1

(
j�1

k�1�s

~k � v� p!~k � j � s!E~zv zv�p zj zj�s !+

From equation ~6+2+5! on page 315 of Fuller ~1996!, we have 6E ~zv zv�p zj zj�s!6 �
O~l6v6�6p 6�6 j 6�6s6!, and hence

E~A1
2 ! � O~k 4 !+

A similar argument shows that E~A2
2 !� O~k 4!, and hence, by the Cauchy–Schwarz and

Chebyshev inequalities, we get

A � Op~k
2 !+ (A.23)

Because E~B! � O~k 2! trivially, it follows from ~A+23!, ~A+22!, and ~A+21! that

Vn, k(
t�k

n � (
j�t�k�1

t

zj � k Sz�2

� Vn, k nk (
j��~k�1!

k�1

~1 � 6 j 60k! [gj � op~1!+

From Theorem 9+3+3 and Theorem 9+4+1 of Anderson ~1994!, it follows that

(
j��~k�1!

k�1

~1 � 6 j 60k! [gj
P
&& (
6 j 6�`

gz~ j !,
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and hence

Vn, k(
t�k

n � (
j�t�k�1

t

zj � k Sz�2
P
&& ~Var~zt !� Var~ yt � yt�1!!

�1 (
6 j 6�`

gz~ j !+ (A.24)

From ~A+18!, ~A+19!, ~A+24!, and the Cauchy–Schwarz inequality, we get

VR~k! P
&& ~Var~zt !� Var~ yt � yt�1!!

�1 (
6 j 6�`

gz~ j !+

LEMMA 7+

(i) *0
2pWk~l!I ~l! dl � ~4p0n!(j�1

@~n�1!02#Wk~lj !I ~lj ! � op~Mk0n !+
(ii) The finite-sample variance covariance matrix of Vp � ~VRp~k1!,VRp~k2!, + + + ,

VRp~ks!!
' with remainder terms of order o~ks

20n2 ! is estimated consistently by
the matrix ZS in (11).

Proof of (i). Using the fact that I ~l! � ~2p!�1(6s6�n [gs exp~�isl! and that

(
j�0

n�1

exp~�i ~s � p!lj ! � n if s � p � 0, 6n

� 0 otherwise,

we get

2p

n (j�1

n�1

Wk~lj !I ~lj ! �
2p

n (j�0

n�1

Wk~lj !I ~lj !�
2pk

n
I ~0!

�
2p

n (j�0

n�1

(
6p 6�k

~1 � 6p 60k!exp~iplj !~2p!
�1

� (
6s6�n

[gs exp~�islj !�
2pk

n
I ~0!

�
1

n (6p 6�k
(
6s6�n

~1 � 6p 60k! [gs (
j�0

n�1

exp~�i ~s � p!lj !�
2pk

n
I ~0!

� (
6p 6�k

~1 � 6p 60k! [gp � 2 (
p�1

k

~1 � p0k! [gn�p �
2pk

n
I ~0!

��
0

2p

Wk~l!I ~l! dl� 2 (
p�1

k

~1 � p0k! [gn�p �
2pk

n
I ~0!, (A.25)

where the last step follows from the identity [gj � *0
2p I ~l!exp~�ijl! dl+ We now

note that because I ~l! � ~2pn!�1 6(t�1
n «t exp~ilt !62, it follows that ~2pk0n!I ~0! �

k S«2 � Op~kn�1!� Op~Mk0n !+ Furthermore, Var~ [gn�p!� O~ pn�2!, whereas Cov~ [gn�p,
[gn�s!� 0, which implies that 2(p�1

k ~1 � p0k! [gn�p � Op~Mk0n !+ Part ~i! of the lemma
now follows by noting that

232 WILLA W. CHEN AND ROHIT S. DEO

https://doi.org/10.1017/S0266466606060099 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060099


~2p0n! (
j�1

n�1

Wk~lj !I ~lj ! � ~4p0n! (
j�1

@~n�1!02#

Wk~lj !I ~lj !�
2p

nk
I ~ln02 !d$n even,k odd% ,

where d is the indicator function due to the periodicity of the sine and cosine functions
on @0,2p# + �

Proof of (ii). Using a Taylor series expansion and equation ~A+25! in the proof of
part ~i!, we get

VRp~k! � 1 � Cn, k~4p0n! (
j�1

@~n�1!02#

Wk~lj !I ~lj !� [s 2 � Op~k
1020n!

� 1 � 2Cn, k (
j�1

k�1

~1 � j0k!~ [gj � [gn�j !� ~kCn, k � n0~n � 1!! S«2

� O~k0n! [g0 � Op~k
1020n!+

Now define the random vector U � ~ [g1 � [gn�1, [g2 � [gn�2, + + + , [gs � [gn�s, S«2!+ Because
Var~ [g0! � O~n�1!, it is seen that

Var~VRp~k!! � lk
' Var~U! lk � o~k 20n2 !, (A.26)

where lk is as defined in ~12!+ Letting tj � s�4E~«t
2«t�j

2 !, tedious but elementary cal-
culation shows that

Var~U! � �A0 b0

b0
' d0

� , (A.27)

where A0 � diag~~~n � j !0n2!tj � ~ j0n2!tn�j ! for j � 1, + + + , ks, b0 is a ks � 1 vector
such that its j th element is given by ~2~n � j !n�3tj � 2jn�3tn�j !, and d0 � n�3t0 �
6n�4 (u�1

n�1~n � u!tu � n�2+ Using the fact that by assumption ~A6! tj r 1 as jr `, it
is easily seen that 6n�2 (u�1

n�1~n � u!tu � 3 � o~1! and using these facts in conjunction
with substituting ~A+27! in ~A+26!, we get

Var~VRp~k!! � lk
'�A b

b' d
� lk � o~k 20n2 !,

where A � diag~~~n � j !0n2!tj � ~ j0n2!! for j � 1, + + + , ks, b is a ks � 1 vector such that
its j th element is given by ~2~n � j !n�3tj � 2jn�3!, and d � 2n�2+ The estimated vari-
ance covariance matrix is now obtained by replacing tj in the entries of A and b by [tj ,
and standard arguments from smoothing theory establish consistency of the resulting
estimated covariance matrix+ �

Proof of Theorem 6. In the proof of Lemma 7, we noted that

~4p0n! (
j�1

@~n�1!02#

Wk~lj !I ~lj ! � (
6p 6�k

~1 � 6p 60k! [gp � 2 (
p�1

k

~1 � p0k! [gn�p � k S«2+
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It is trivially true that under the assumptions of Theorem 6, S«2 � Op~n�1!+ The result
for VRp~k! now follows by noting that (p�1

k ~1 � p0k! [gn�p � op~1!, that [s2 p
&&

~Var~zt !� Var~ yt � yt�1!!, and that by Theorem 9+3+3 and Theorem 9+4+1 of Anderson
~1994!,

(
j��~k�1!

k�1

~1 � 6 j 60k! [gj
P
&& (
6 j 6�`

gz~ j !+

The result for VRp
b~k! follows by continuity+ �
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