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Using particle-in-cell numerical simulations with electron–positron pair plasma, we
study how the efficiencies of magnetic dissipation and particle acceleration scale
with the initial coherence length λ0 in relation to the system size L of the
two-dimensional ‘Arnold–Beltrami–Childress’ (ABC) magnetic field configurations.
Topological constraints on the distribution of magnetic helicity in two-dimensional
systems, identified earlier in relativistic force-free simulations, that prevent the
high-(L/λ0) configurations from reaching the Taylor state, limit the magnetic dissipation
efficiency to about εdiss � 60 %. We find that the peak growth time scale of the electric
energy τE,peak scales with the characteristic value of initial Alfvén velocity βA,ini like
τE,peak ∝ (λ0/L)β−3

A,ini. The particle energy change is decomposed into non-thermal and
thermal parts, with non-thermal energy gain dominant only for high initial magnetisation.
The most robust description of the non-thermal high-energy part of the particle
distribution is that the power-law index is a linear function of the initial magnetic energy
fraction.
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1. Introduction

Certain high-energy astrophysical sources are characterised by luminous and rapid flares
of energetic radiation. In particular, these include blazars (e.g. Aharonian et al. 2007;
Albert et al. 2007; Aleksić et al. 2011; Abdo et al. 2011b; Nalewajko 2013; Ackermann
et al. 2016) and the Crab pulsar wind nebula (Tavani et al. 2011; Abdo et al. 2011a; Buehler
et al. 2012; Lyubarsky 2012; Mayer et al. 2013; Striani et al. 2013). In these extreme
astrophysical environments, magnetic fields may dominate even the local rest-mass energy
density. Magnetic reconnection is considered a leading explanation for the efficient
particle acceleration behind the dramatic gamma-ray flares of blazars (Giannios, Uzdensky
& Begelman 2009; Nalewajko et al. 2011, 2012; Giannios 2013; Sironi, Petropoulou &
Giannios 2015; Petropoulou, Giannios & Sironi 2016). Through changes of the magnetic
line topology, particles are accelerated in current sheets, converting magnetic energy into
kinetic and thermal energy. In the case of the Crab pulsar wind nebula, the gamma-ray
radiation spectral peaks can surpass the classical synchrotron radiation reaction limit
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(∼160 MeV), which suggests a very efficient localised dissipation of magnetic energy
that allows for rapid particle acceleration (Arons 2012; Clausen-Brown & Lyutikov 2012;
Uzdensky, Cerutti & Begelman 2011; Komissarov & Lyutikov 2011; Komissarov 2012;
Buehler & Blandford 2014; Zrake 2016; Zrake & Arons 2017; Lyutikov et al. 2018).

Numerical simulations based on the kinetic particle-in-cell (PIC) algorithm have
demonstrated that relativistic reconnection in collisionless plasma is an efficient
mechanism of magnetic energy dissipation and particle acceleration (Zenitani & Hoshino
2001; Jaroschek et al. 2004; Zenitani & Hoshino 2007; Lyubarsky & Liverts 2008; Liu
et al. 2011; Bessho & Bhattacharjee 2012; Kagan, Milosavljević & Spitkovsky 2013;
Guo et al. 2014; Sironi & Spitkovsky 2014; Melzani et al. 2014; Guo et al. 2015, 2016;
Werner et al. 2016; Werner & Uzdensky 2017; Werner et al. 2018; Petropoulou & Sironi
2018; Petropoulou et al. 2019; Guo et al. 2019, 2020), and that it can produce extreme
radiative signatures – energetic, highly anisotropic and rapidly variable (Cerutti et al. 2012,
2013, 2014; Kagan, Nakar & Piran 2016; Nalewajko 2018a; Christie et al. 2018; Comisso,
Sobacchi & Sironi 2020; Mehlhaff et al. 2020; Ortuño-Macías & Nalewajko 2020). Most
of these simulations were initiated from relativistic Harris-type current layers (Kirk &
Skjaraasen 2003).

An alternative class of magnetostatic equilibria known as the ‘Arnold–Beltrami–
Childress’ (ABC) magnetic fields (Arnold 1965) has been recently applied as an initial
configuration for investigating relativistic magnetic dissipation (East et al. 2015). This
configuration involves no kinetically thin current sheets, but is unstable to the so-called
coalescence modes that lead to localised interactions of magnetic domains of opposite
polarities, emergence of dynamical current layers, instantaneous particle acceleration and
production of rapid flares of high-energy radiation. The overall process has been dubbed
magnetoluminescence – a generic term for efficient and fast conversion of magnetic energy
into radiation (Blandford et al. 2017).

Numerical simulations of ABC fields have been performed with relativistic
magnetohydrodynamics and relativistic force-free (FF) algorithms (East et al. 2015).
Detailed comparison between two-dimensional (2-D) and three-dimensional (3-D) ABC
fields in the FF framework has been performed by Zrake & East (2016). Some PIC
simulations of 2-D ABC fields have been reported by Nalewajko et al. (2016) with the
focus on the structure of current layers and particle acceleration, by Yuan et al. (2016)
including synchrotron radiation reaction and radiative signatures and by Nalewajko, Yuan
& Chruślińska (2018) including synchrotron and inverse Compton radiation. The ABC
fields have been also investigated in great detail (including PIC simulations) by Lyutikov
et al. (2017a,b, 2018) with application to the Crab Nebula flares. The first 3-D PIC
simulations of ABC fields have been reported in Nalewajko (2018b).

Previous works have established the following picture. The ABC fields simulated in
periodic numerical grids are unstable to coalescence instability only if there exists a
state of equal total magnetic helicity and lower total magnetic energy (East et al. 2015).
The growth time scale of the linear coalescence instability is a fraction of the light
crossing time scale that depends on the mean magnetisation (or equivalently on the
typical Alfvén velocity) (Nalewajko et al. 2016). The magnetic dissipation efficiency is
determined primarily by the global magnetic field topology, and it is restricted in 2-D
systems due to the existence of additional topological invariants (Zrake & East 2016).
The dissipated magnetic energy is transferred to the particles, resulting in non-thermal
high-energy tails of their energy distributions. These tails can be in most cases described
as power laws with a power-law index, but more generally they can be characterised by
the non-thermal number and energy fractions (Nalewajko et al. 2016). With increasing
initial magnetisation, the non-thermal tails become harder, containing higher number
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and energy fractions, similar to the results for Harris-layer reconnection (Guo et al.
2014; Sironi & Spitkovsky 2014; Werner et al. 2016). A limitation of the ABC fields
in comparison with the Harris layers is that the initial magnetisation is limited for a
given simulation size by the minimum particle densities required to sustain volumetric
currents.

The particle acceleration mechanisms of ABC fields, described in more detail in
Nalewajko et al. (2016), Yuan et al. (2016) and Lyutikov et al. (2017a), show similarities
to other numerical approaches to the problem of relativistic magnetic dissipation. During
the linear stage of coalescence instability, kinetically thin current layers form and evolve
very dynamically. The few particles that happen to straggle into one of those layers are
accelerated by direct non-ideal reconnection electric fields (E · B �= 0, |E| > |B|). This is
essentially the Zenitani & Hoshino (2001) picture of magnetic X-point, which is important
also in large-scale simulations of Harris-layer reconnection in the sense that particles
that pass through a magnetic X-point are most likely to eventually reach top energies
(Sironi & Spitkovsky 2014; Guo et al. 2019). The nonlinear stage of coalescence instability
features slowly damped electric oscillations that gradually convert to particle energies.
This can affect essentially all particles, as electric oscillations cross the entire simulation
volume multiple times. Particles accelerated during the linear stage now propagate on wide
orbits and can interact with electric perturbations at random angles. This is reminiscent
of a Fermi process, in particular of the kind envisioned by Hoshino (2012). With a
larger number of magnetic domains, the coalescence proceeds in multiple stages, with
the successive current layers increasingly less regular. The system becomes chaotic more
quickly and begins to resemble a decaying turbulence of the kind studied by Comisso &
Sironi (2019).

As the previous PIC simulations of ABC fields were largely limited to the lowest
unstable mode, in this work we present the results of new series of 2-D PIC simulations
of ABC fields for different coherence lengths λ0 in order to understand how they affect
the efficiency of magnetic dissipation and particle acceleration. Although the coalescence
instability is rather fast, it is followed by slowly damped nonlinear oscillations, and hence
our simulations are run for at least 25L/c light crossing times for the system size L to allow
these oscillations to settle. Our simulations were performed at three different sizes. In
addition we investigated the effects of numerical resolution and local particle anisotropy,
in order to break the relation between the effective wavenumber and the mean initial
magnetisation. We also compare our results with new 3-D simulations following the set-up
described in Nalewajko (2018b).

In § 2 we define the initial configuration of our simulations. Our results are presented in
§ 3, including spatial distributions of magnetic fields (§ 3.1), evolution of the total energy
components (§ 3.2), conservation accuracy of the magnetic helicity (§ 3.3) and particle
energy distributions (§ 3.4). A discussion is provided in § 4.

2. Simulation set-up

We perform a series of PIC simulations using the Zeltron code1 (Cerutti et al. 2013)
of 2-D periodic magnetic equilibria known as ABC fields (East et al. 2015). As opposed
to the Harris layers, these initial configurations do not contain kinetically thin current
layers. In two dimensions, there are two ways to implement ABC fields on a periodic grid,
which we call diagonal and parallel, referring to the orientation of the separatrices between

1http://benoit.cerutti.free.fr/Zeltron/
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individual magnetic domains. The diagonal ABC field is defined as

Bx(x, y) = B0 sin(2πy/λ0), (2.1)

By(x, y) = B0 cos(2πx/λ0), (2.2)

Bz(x, y) = B0[sin(2πx/λ0) + cos(2πy/λ0)], (2.3)

where λ0 is the coherence length. The parallel ABC field can be obtained from the diagonal
one through rotation by 45◦ and increasing the effective wavenumber by a factor of

√
2:

Bx(x, y) = B0[sin(
√

2π(x + y)/λ0) + sin(
√

2π(x − y)/λ0)]/
√

2, (2.4)

By(x, y) = B0[sin(
√

2π(x − y)/λ0) − sin(
√

2π(x + y)/λ0)]/
√

2, (2.5)

Bz(x, y) = B0[cos(
√

2π(x + y)/λ0) − cos(
√

2π(x − y)/λ0)]. (2.6)

With this, both the diagonal and parallel configurations satisfy the Beltrami condition
∇ × B = −(2π/λ0)B. In all cases, the mean squared magnetic field strength is 〈B2〉 = 2B2

0
and the maximum magnetic field strength is Bmax = 2B0.

These magnetic fields are maintained in an initial equilibrium by volumetric current
densities j(x) = −(c/2λ0)B(x) provided by locally anisotropic particle distribution (for
details, see Nalewajko et al. (2016) and Nalewajko (2018b)). The ABC fields are
characterised by vanishing divergence of the electromagnetic stress tensor ∂iT

ij
EM = 0

(equivalent to the vanishing j × B force), which implies uniform gas pressure that can
be realised with uniform temperature T and uniform gas density n. We chose the initial
particle energy distribution to be a Maxwell–Jüttner distribution of relativistic temperature
Θ = kT/mc2 = 1, and hence the mean particle energy is 〈γ 〉 � 3.37 and the mean particle
velocity is 〈β〉 � 0.906. The gas density (including both electrons and positrons) is given
by

n = 3B0

2eã1〈β〉λ0
, (2.7)

where ã1 � 1/2 is a constant that normalises the dipole moment of the local particle
distribution. We chose ã1 = 1/4 as a standard value, but we investigate the effect of
reduced local particle anisotropy with lower values of ã1 that result in higher particle
densities and lower magnetisation values. The initial kinetic energy density is

ukin,ini = 〈γ 〉nmec2 � 6π〈γ 〉
ã1Θ〈β〉

(
ρ0

λ0

)
〈uB,ini〉, (2.8)

where ρ0 = Θmec2/(eB0) is the nominal gyroradius and 〈uB,ini〉 = B2
0/4π is the initial

mean magnetic energy density. The initial mean hot magnetisation is given by

〈σini〉 = 〈B2〉
4πw

= ã1Θ〈β〉
3π(〈γ 〉 + Θ)

(
λ0

ρ0

)
, (2.9)

where w = (〈γ 〉 + Θ)nmec2 is the relativistic enthalpy density. For Θ = 1, we have
〈σini〉 � (4ã1)(λ0/182ρ0).

We performed simulations of either diagonal or parallel ABC fields and for different
wavenumbers k (k = L/λ0 for diagonal configuration and k = L/

√
2λ0 for parallel

configuration). For instance, a simulation labelled diag_k2 is initiated with a diagonal
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ABC field with L/λ0 = 2. In order to verify the scaling of our results, we performed
series of simulations for three sizes of numerical grids: small (s) for Nx = Ny = 1728;
medium (m) for Nx = Ny = 3456; and large (l) Nx = Ny = 6912. For numerical resolution

x = 
y = L/Nx, where L is the physical system size, we chose a standard value of

x = ρ0/2.4, but we investigated the effect of increased resolution on the medium
numerical grid. The numerical time step was chosen as 
t = 0.99(
x/

√
2c). All of our

simulations were performed for at least 25L/c light crossing times. In each case we used
128 macroparticles (including both species) per cell.

We also performed two new 3-D simulations for the cases diag_k2 and diag_k4,
following the configuration described in Nalewajko (2018b), but extending them to 25L/c.
In this case we chose the following parameter values: Nx = Ny = Nz = 1152, 
x = 
y =

z = ρ0/1.28, ã1 = 0.2 and 16 macroparticles per cell.

3. Results

The key parameters of our large simulations are listed in table 1, where we report basic
results describing global energy transformations that are discussed in § 3.2, and particle
energy distributions that are discussed in § 3.4.

3.1. Spatial distribution of magnetic fields
Figure 1 compares the initial (ct/L = 0), intermediate (ct/L � 4) and final (ct/L � 25)
configurations of the out-of-plane magnetic field component Bz. The initial configurations
have the form of periodic grids of Bz minima (blue) and maxima (red). The case diag_k1
is the only one that represents a stable equilibrium, as it involves only one minimum and
one maximum of Bz. The case para_k1 (investigated in detail in Nalewajko et al. (2016)
and Yuan et al. (2016)) begins with two minima and two maxima of Bz, by ct/L � 4 it is
just entering the linear instability stage and the final state appears very similar to the case
diag_k1, although the domains of positive and negative Bz are still slightly perturbed. As
we increase L/λ0, throughout the case of para_k4, the intermediate states become more
evolved, at further stages of magnetic domain coalescence, while the final states in all
cases consist of single positive and negative Bz domains. We notice that these domains
become separated by increasingly broad bands of Bz � 0.

3.2. Total energy transformations
The initial configurations investigated here involve various levels of magnetic energy EB,ini
as fractions of the total energy Etot. The initial magnetic energy fraction decreases with
increasing L/λ0 and increases with the system size. Our simulations probe the range of
EB,ini/Etot values from 0.19 to 0.88. Related to the initial magnetic energy fraction is the
initial mean hot magnetisation 〈σini〉 (see (2.9)), which in our simulations takes values
from 0.35 to 11.2.

Time evolutions of the magnetic energy fractions are presented in figure 2(a). In all
studied cases, the magnetic energy experiences a sudden decrease followed by a slow
settling. As the settling is largely complete by t = 20L/c, we measure the final magnetic
energy fraction EB,fin as the average over the 20 < ct/L < 25 period. We define the final
magnetic dissipation efficiency as εdiss,fin = 1 − EB,fin/EB,ini. Figure 2(b) shows that εdiss,fin
is a function of magnetic topology parameter L/λ0, almost independent of the system
size L (although it is slightly lower for reduced values of ã1). For large values of L/λ0,
magnetic dissipation efficiency appears to saturate at the level of εdiss ∼ 0.6. We have
fitted the large and medium 2-D results for the standard values of ã1 and ρ0/
x with a
relation εdiss = ε0 − ε2(λ0/L)2, finding ε0 � 0.62 and ε2 � 0.70.
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Config.
L
λ0

ã1
ρ0


x
〈σini〉 EB,ini εdiss,fin τE,peak p γmax fE

2-D small, Nx = 1728
para_k1

√
2 1/4 2.4 2.8 0.65 0.26 0.25 3.1 450 0.18

para_k2 2
√

2 1/4 2.4 1.4 0.48 0.52 0.17 3.75 190 0.16
para_k4 4

√
2 1/4 2.4 0.7 0.31 0.59 0.14 4.8 60 0.07

para_k8 8
√

2 1/4 2.4 0.4 0.19 0.65 0.17 — 30 0.02

2-D medium, Nx = 3456
para_k1

√
2 1/4 2.4 5.6 0.78 0.27 0.21 2.85 870 0.31

diag_k2 2 1/4 2.4 4.0 0.72 0.44 0.16 2.95 620 0.34
para_k2 2

√
2 1/4 2.4 2.8 0.65 0.53 0.13 3.2 590 0.28

diag_k4 4 1/4 2.4 2.0 0.56 0.57 0.11 3.65 270 0.20
para_k4 4

√
2 1/4 2.4 1.4 0.48 0.59 0.09 3.8 190 0.15

diag_k8 8 1/4 2.4 1.0 0.39 0.60 0.08 4.2 100 0.10
para_k8 8

√
2 1/4 2.4 0.7 0.31 0.61 0.08 4.8 60 0.06

para_k1
√

2 1/8 2.4 2.8 0.64 0.26 0.27 3.35 320 0.18
para_k1

√
2 1/16 2.4 1.4 0.48 0.26 0.40 4.5 80 0.07

para_k1
√

2 1/32 2.4 0.7 0.31 0.25 0.68 — 30 0.02
para_k2 2

√
2 1/8 2.4 1.4 0.48 0.51 0.19 4.2 150 0.13

para_k2 2
√

2 1/16 2.4 0.7 0.31 0.48 0.34 — 50 0.04
para_k4 4

√
2 1/8 2.4 0.7 0.31 0.57 0.17 5.2 60 0.05

para_k4 4
√

2 1/16 2.4 0.4 0.19 0.54 0.46 — 30 0.01
para_k8 8

√
2 1/8 2.4 0.4 0.19 0.58 0.20 — 30 0.01

para_k1
√

2 1/4 4.8 2.8 0.64 0.26 0.25 3.2 410 0.18
para_k1

√
2 1/4 9.6 1.4 0.48 0.26 0.32 3.8 160 0.10

para_k1
√

2 1/4 19.2 0.7 0.31 0.27 0.44 5.8 40 0.05
para_k2 2

√
2 1/4 4.8 1.4 0.48 0.52 0.17 3.75 200 0.17

para_k2 2
√

2 1/4 9.6 0.7 0.31 0.52 0.30 — 50 0.10
para_k4 4

√
2 1/4 4.8 0.7 0.31 0.58 0.13 4.75 60 0.09

para_k4 4
√

2 1/4 9.6 0.4 0.19 0.63 0.24 — 30 0.05
para_k8 8

√
2 1/4 4.8 0.4 0.19 0.64 0.15 — 30 0.03

2-D large, Nx = 6912
para_k1

√
2 1/4 2.4 11.2 0.88 0.26 0.18 2.4 1490 0.56

para_k2 2
√

2 1/4 2.4 5.6 0.78 0.53 0.10 2.95 1620 0.40
para_k4 4

√
2 1/4 2.4 2.8 0.65 0.60 0.07 3.3 510 0.26

para_k8 8
√

2 1/4 2.4 1.4 0.48 0.61 0.05 3.85 170 0.12

3-D, Nx = 1152
diag_k2 2 1/5 1.28 3.6 0.71 0.50 0.22 3.2 180 0.25
diag_k4 4 1/5 1.28 1.8 0.54 0.75 0.17 4.0 110 0.10

TABLE 1. Global parameters of energy conversion and particle acceleration compared for the
2-D and 3-D simulations. The initial values denoted with subscript ‘ini’ are measured at t = 0
and the final values (‘fin’) are averaged over 20 � ct/L � 25. The initial mean hot magnetisation
〈σini〉 is computed from (2.9). The initial magnetic energies EB,ini are normalised to the total
system energy Etot. The magnetic dissipation efficiency is defined as εdiss = 1 − EB,fin/EB,ini. We
report the peak value τE,peak of the linear growth time scale τE of electric energy, which scales
like EE ∝ exp(ct/LτE). For the final particle energy distributions, we report: the power-law index
p, the maximum Lorentz factor γmax and the non-thermal particle energy fraction fE.
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(b)

(a)

(c)

FIGURE 1. Spatial distributions of the out-of-plane magnetic field component Bz for ABC fields
of different initial topologies. Each column of panels compares the initial configuration at ct/L =
0 (a) with an intermediate state at ct/L � 4 (b) and with the final state at ct/L � 25 (c).

(b)(a)

FIGURE 2. (a) Time evolution of the magnetic energy EB as a fraction of the total energy
Etot for the medium (thin solid lines) and large (thick solid lines) simulation sizes. The thick
dashed lines indicate two 3-D simulations. The line colour indicates the effective wavenumber
L/λ0, as shown in the right-hand panel. (b) Final magnetic dissipation efficiency εdiss,fin = 1 −
EB,fin/EB,ini (evaluated at 20 < ct/L < 25) as a function of the effective wavenumber of initial
magnetic configuration L/λ0. The large/medium/small circles indicate new results obtained from
large/medium/small simulations, the plus symbols indicate simulations for non-standard values
of ã1, the cross symbols indicate simulations for non-standard values of ρ0/
x and the stars
indicate 3-D simulations. The symbol colours indicate the effective wavenumber L/λ0. The black
dashed line shows a 1 − λ0/L relation predicted by the relaxation theorem of Taylor (1974) and
matching the 3-D results, and the magenta dashed line shows a 0.62–0.70(λ0/L)2 relation fitted
to the 2-D results.
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(b)(a)

FIGURE 3. (a) Time evolution of the electric energy EE as a fraction of the initial magnetic
energy EB,ini. The line types are the same as in figure 2(a). Moments of minimum growth time
scale are indicated with filled symbols. (b) Minimum growth time scales for the total electric
energy τE as a function of the initial mean magnetisation 〈σini〉. The symbol types are the same
as in figure 2(b); in addition the blue diamonds indicate the para_k1 simulations from Nalewajko
et al. (2016), and original shorter 3-D runs from Nalewajko (2018b) are indicated. The black
dashed line shows a β−3

A trend (see (3.1)) fitted to all 2-D results. The blue dashed line shows a
different trend (see (4.1)) suggested previously by Nalewajko et al. (2016).

Also shown in figure 2 are analogous results for two 3-D simulations. These results are
consistent with a relation εdiss = 1 − λ0/L predicted by the relaxation theorem of Taylor
(1974).

The initial sudden decrease of the magnetic energy is mediated by rapid growth of
the electric energy. Time evolutions of the electric energy EE as a fraction of the initial
magnetic energy EB,ini are presented in figure 3(a). In all studied cases we find an episode
of rapid exponential growth of the electric energy, an indication of linear instability
known as coalescence instability (East et al. 2015). We indicate moments of peak electric
energy growth time scale τE,peak (defined by EE ∝ exp(ct/LτE)). Figure 3(b) compares the
values of τE,peak, multiplied by L/λ0, as a function of the initial mean magnetisation 〈σini〉.
Combining our 2-D results with the previous simulations for the case para_k1 reported in
Nalewajko et al. (2016), the relation between τE,peak and 〈σini〉 for the standard values of ã1
and ρ0/
x has been fitted as

τE,peak � 0.233 ± 0.005
(L/λ0)β

3
A,ini

, (3.1)

where βA,ini = [〈σini〉/(1 + 〈σini〉)]1/2 is the characteristic value of initial Alfvén velocity.
The four 3-D simulations (including two new full runs and two shorter runs from

Nalewajko (2018b)) show longer growth time scales compared with their 2-D
counterparts, with the cases para_k4 being strongly affected by the noise component of
the electric field.

3.3. Conservation of total energy and magnetic helicity
Figure 4 shows the conservation accuracy for the total system energy Etot and total
magnetic helicity H = ∫

H dV (where H = A · B with A the magnetic vector potential).
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(b)(a)

FIGURE 4. Conservation accuracies of total energy δE (a) and total magnetic helicity δH (b)
as functions of modified magnetisation parameters σE and σH, respectively, chosen to minimise
scatter around the suggested trends (dashed lines; σ

−5/2
E and σ−2

H , respectively). See the main
text for details. The symbol types are the same as in figure 2(b).

The conservation accuracy for parameter X is defined as δX ≡ max |X(ct < 25L)/X(t =
0) − 1|. The conservation accuracy of total energy δE is presented as a function of
modified magnetisation parameter σE ≡ 〈σini〉(2.4
x/ρ0)

−3/4(L/2880ρ0)
−3/4. For 1 <

σE < 6 (essentially for L/λ0 � 2
√

2), energy conservation accuracy scales like δE ∝
σ

−5/2
E ∝ 〈σini〉−5/2(
x/ρ0)

15/8�2(L/ρ0)
15/8�2, reaching the value of � 0.02 for σE � 1. For

σE > 6, energy conservation accuracy is found to be of the order of δE ∼ 3 × 10−4. In the
3-D cases, energy conservation is found to be worse by factor � 30 as compared with the
2-D results for the same value of σE .

The conservation accuracy of total magnetic helicity δH is presented as a function
of a different modified magnetisation parameter σH ≡ 〈σini〉/(4ã1) � λ0/182ρ0 (the
latter assuming Θ = 1). For σH < 2.5, magnetic helicity conservation accuracy scales
like δH ∝ σ−2

H ∝ (λ0/ρ0)
−2, reaching the value of � 0.1 for σH � 0.4. For σH > 2.5

(essentially for L/λ0 � 2), we find that simulations with reduced values of ã1 appear to
follow the same trend; however, large and medium simulations with standard ã1 value show
worse conservation of the order of δH ∼ 3 × 10−3. In the 3-D cases, magnetic helicity
conservation is found to be worse by factor ∼ 12 as compared with the 2-D results for the
same value of σH.

3.4. Particle energy distributions
Figure 5 shows the particle momentum distributions N(u) (closely related to the energy
distributions for u = √

γ 2 − 1 � 1) for the final states of the medium and large 2-D
simulations, as well as the 3-D simulations (averaged over the time range of 20 <
ct/L < 25). The non-evolving case diag_k1 is equivalent to the initial Maxwell–Jüttner
distribution. A high-energy excess is evident in all other cases.

There are several ways to characterise this excess component. In most cases, a
power-law section can be clearly identified. Accurate evaluation of the corresponding
power-law index p (such that N(u) ∝ u−p) is in general complicated, as it requires fitting
analytical functions that properly represent the high-energy cutoff (Werner et al. 2016).
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FIGURE 5. Momentum distributions u2N(u) of electrons and positrons averaged over the time
period 20 < ct/L < 25. The line types are the same as in figure 2(a).

Here, in order to avoid those complications, we estimate a power-law index using a
compensation method, multiplying the measured distribution by up with different p
values to obtain the broadest and most balanced plateau section. The accuracy of this
method is estimated at ±0.05. The best values of p estimated for our simulations are
reported in table 1. No power-law sections could be identified for certain cases with low
initial magnetisations 〈σini〉 < 1. The hardest spectrum with p � 2.4 has been found for
the large simulation para_k1. A similar spectrum with p � 2.45 (re-examined with the
same method) has been obtained in previous simulations for the case para_k1 reported
in Nalewajko et al. (2016) and characterised by slightly higher initial magnetisation of
〈σini〉 = 12.4.

Figure 6(a) shows the power-law index p as a function of the initial magnetic energy
fraction EB,ini/Etot. The value of p is strongly anti-correlated with EB,ini/Etot, independent
of the simulation size, with a Pearson correlation coefficient of � −0.98. A linear trend
has been fitted to the results of 2-D simulations with standard values of ã1 and ρ0/
x,
including the previous para_k1 simulations from Nalewajko et al. (2016):

p � (−3.9 ± 0.2)
EB,ini

Etot
+ (5.8 ± 0.1). (3.2)

Also shown are results for two 3-D simulations showing particle distributions slightly
steeper as compared with 2-D simulations with comparable initial magnetic energy
fractions.

The high-momentum excess component of the particle distribution can be alternatively
characterised by the maximum particle energy reached γmax. Here, the value of γmax is
evaluated at the fixed level of 10−3 of the u2N(u) distribution normalised to peak at
unity (cf. the bottom edge of figure 5). The final values of γmax for our large simulations
are reported in table 1. The highest value of γmax � 1620 has been found for the large
simulation para_k2. For the cases where the power-law index p could be evaluated (note
that γmax can always be evaluated), log γmax is strongly anti-correlated with p, with a
Pearson correlation coefficient of � −0.99.

Yet another approach to the high-momentum excess is to fit and subtract a
low-momentum Maxwell–Jüttner component and to calculate the non-thermal fractions
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(b)(a)

FIGURE 6. (a) Power-law index p of the momentum distribution N(u) ∝ u−p as a function of
the initial magnetic energy fraction EB,ini/Etot. The black dashed line shows a linear trend fitted
to all 2-D results. (b) Non-thermal energy fraction fE as a function of a modified magnetisation
parameter σf . The dashed lines indicate two trends: ∝ σ

3/4
f (blue) and ∝ σ 2

f (brown). For both
panels, the symbol types are the same as in figure 3(b).

of particle number fn and particle energy fE contained in the remaining excess. This fitting
was performed using the weighted least squares method with the weights proportional
to u−2. In all cases, the non-thermal number fractions were found to be closely related to
the energy fractions as fn � fE/3.5. The values of non-thermal energy fractions fE for our
simulations are reported in table 1. The highest value of fE � 56 % has been found for the
large simulation diag_k1. For the cases where p could be evaluated, fE is anti-correlated
with p, with a Pearson correlation coefficient of � −0.93.

Figure 6(b) shows the non-thermal energy fraction fE versus another modified
magnetisation parameter σf ≡ 〈σini〉(4ã1)

1/2. We also indicate the fE ∝ 〈σini〉3/4 trend
suggested by Nalewajko et al. (2016) and re-fitted only to the para_k1 results (deep
blue symbols). We confirm that this trend describes the para_k1 results reasonably well;
however, it is not followed by the high-(L/λ0) cases that probe lower magnetisation values
σf < 1. In the particular case of L/λ0 = 8

√
2 (brown symbols), the values of fE decrease

faster with decreasing σf , roughly like fE ∝ σ 2
f for σf < 1. For intermediate magnetisation

values 1 < σf < 10, the values of fE for L/λ0 >
√

2 are systematically higher as compared
with the para_k1 trend line. The 3-D simulations produced fE values that are consistent
with (in the case diag_k2) or somewhat lower than (in the case diag_k4) the 2-D results.

We use the final non-thermal energy fractions fE to divide the global energy gain of the
particles into the non-thermal and thermal parts:


Enth = fE Ekin,fin, (3.3)


Eth = (1 − fE)Ekin,fin − Ekin,ini, (3.4)

where Ekin,ini = Etot − EB,ini and Ekin,fin � Etot − EB,fin, since by ct = 25L the total electric
energy that mediates the dissipation of magnetic energy decreases to the level
of EE,fin < 10−2Etot. The two components of particle energy gain are presented in
figure 7 as functions of yet two other modified magnetisation parameters σth ≡
〈σini〉(4ã1)

−1/2(L/λ0)
3/4(2.4
x/ρ0)

3/4 and σnth ≡ 〈σini〉(4ã1)
1/2(L/λ0)

−1/4(2.4
x/ρ0)
−1/4,
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(b)(a)

FIGURE 7. Global gain of the particle energy divided into thermal 
Eth (a) and non-thermal

Enth (b) components, normalised to the total energy Etot, as functions of modified magnetisation
parameters σth and σnth, respectively, chosen to minimise scatter around suggested trends (dashed
black lines) ∝ σ

1/3
th and ∝ σnth, respectively. The symbol types are the same as in figure 3(b).

respectively. We find that the cases of para_k1 (deep blue symbols) stand out from
other cases, having significantly lower thermal energy gains, suggesting that they are
limited by the magnetic topology. On the other hand, their non-thermal energy gains
are comparable to other cases, but achieved at significantly higher values of σnth.
Power-law trends can be suggested only for sufficiently high wavenumbers (L/λ0 �
4
√

2): 
Eth ∝ σ
1/3
th and 
Enth ∝ σnth, respectively. However, in the diag_k8 cases (brown

symbols), a steeper trend for the non-thermal energy gain 
Enth ∝ σ
5/2
nth is apparent for low

magnetisation values σnth < 0.25. The highest value of 
Enth/Etot � 25 % is obtained for
our large simulation diag_k2.

4. Discussion

Our new results extend the previous study of 2-D PIC simulations of ABC fields for the
para_k1 case in the non-radiative regime (Nalewajko et al. 2016), and connect it with a
study of 3-D PIC simulations for the cases diag_k2 and diag_k4 (Nalewajko 2018b). They
can also be compared with the FF simulations of ABC fields presented in Zrake & East
(2016). In particular, the magnetic dissipation efficiency in the FF limit in two dimensions
has been estimated at εdiss � 70 %, while our results suggest εdiss � 62 % in the limit of
L/λ0 � 1. It should be noted, however, that in PIC simulations this limit forces us towards
lower magnetisation values.

In Nalewajko et al. (2016), a relation between the electric energy growth time scale
τE,peak and the initial characteristic hot magnetisation σhot was suggested in the following
form:

τE,peak � 0.13
vA(0.21σhot)

, (4.1)

where vA(σ ) ≡ [σ/(1 + σ)]1/2 was treated as a function in the form of Alfvén velocity
of arbitrarily scaled argument σ , and σhot ≡ 〈σini〉/2 was a characteristic value of hot
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magnetisation based on B2
0 instead of the mean value 〈B2〉 used here.2 The above relation is

shown in figure 3(b) with a dashed blue line (cf. figure 3 of Nalewajko et al. 2016). We can
see that the previously suggested trend agrees very well with the previous measurements
from Nalewajko et al. (2016), and is very close to the new trend line in the range
1.5 < 〈σini〉 < 12.5. However, the previous trend predicts significantly shorter growth time
scales for low magnetisation values 〈σini〉 < 1 that is probed here with simulations for
L/λ0 � 4

√
2.

Our new scaling described by (3.1) is more natural, without arbitrary scaling parameters.
It suggests that in the FF limit, when 〈σini〉 → ∞ and βA,ini → 1, we should expect that the
growth time scale should become τE,FF � 0.233/(L/λ0). For L/λ0 = √

2, this would yield
τE,FF � 0.16, somewhat longer than τE,FF � 0.13 indicated by Nalewajko et al. (2016). As
for why τE,peak(L/λ0) should scale with β−3

A,ini requires a theoretical investigation of the
linear coalescence instability beyond the FF limit, with proper treatment of magnetic nulls,
which is beyond the scope of this work.

We can only partially confirm a relation between non-thermal energy fraction and initial
mean hot magnetisation fE ∝ 〈σini〉3/4 originally suggested in Nalewajko et al. (2016). This
relation appears to hold for the para_k1 case, including new simulations extending into
the 〈σini〉 ∼ 1 regime, and possibly also for higher values of L/λ0 as long as σf > 1 (see
figure 6b). However, for the cases where a power-law index p can be determined, a simple
linear relation holds between p and the initial magnetic energy fraction EB,ini/Etot (see
(3.2)), at least over the studied range 0.3 < EB,ini/Etot < 0.9 (see figure 6a).

We have introduced several modified magnetisation parameters, as combinations of
the initial mean magnetisation 〈σini〉 with other input parameters, in order to describe
the scalings of global output parameters. The particular formulae for the modified
magnetisations were chosen in order to minimise scatter around the suggested trends, with
the exponents of 
x/ρ0, L/ρ0, L/λ0 and ã1 estimated empirically with an accuracy of
∼ ±1/4. The energy conservation accuracy for ABC fields simulated with the Zeltron
code is found to scale roughly like δE ∝ 〈σini〉−5/2(
x/ρ0)

2(L/ρ0)
2, not sensitive to λ0.

This is different from the reference case of uniform magnetic field, in which we found δE ∝
〈σini〉−1(
x/ρ0)

2, independent of L. On the other hand, the magnetic helicity conservation
accuracy is found to scale like δH ∝ (λ0/ρ0)

−2, but it is not sensitive to 
x/ρ0 or L/ρ0.
This is in contrast to the FF simulations of Zrake & East (2016), in which δH ∝ (
x)2.8.
Further investigation is required in order to explain these differences.

For the non-thermal energy fraction fE, the scaling with initial mean magnetisation 〈σini〉
is rather ambiguous. Only in the special case of L/λ0 = √

2 do we have sufficient range of
〈σini〉 values to claim that fE ∝ 〈σini〉3/4; this scaling is improved by additional dependence
on the particle anisotropy level ã1. The scalings of thermal and non-thermal kinetic energy
gains, 
Eth and 
Enth, respectively, can in principle be derived from the scalings of fE
and magnetic dissipation efficiency εdiss. The ambiguity of the fE scaling makes it not
straightforward to predict in detail the scalings of 
Eth and 
Enth.

The initial mean hot magnetisation 〈σini〉 of ABC fields with relativistically warm
plasma (Θ = 1) is strongly limited by the simulation size, especially if one would like to
resolve numerically all the fundamental length scales, in particular the nominal gyroradius
ρ0. For a given effective wavenumber L/λ0, higher values of 〈σini〉 can only be reached by
increasing the system size L/ρ0.3 It can be expected that larger simulations would show

2We note that the characteristic values of σhot reported in Nalewajko et al. (2016) were underestimated by a constant
factor of �1.13.

3One can achieve a somewhat higher 〈σini〉 by increasing the local particle anisotropic parameter ã1. However, some
numerical artifacts are observed for ã1 � 1/2.
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more effective non-thermal particle acceleration with harder high-energy tails indicated by
higher values of non-thermal energy fractions fe and lower values of power-law indices p.
Eventually, at sufficiently high 〈σini〉, and with L/λ0 � 2, it should be possible to achieve
particle distributions dominated energetically by the high-energy particles, with p < 2, as
has been demonstrated in the case of Harris-layer reconnection (Guo et al. 2014; Sironi &
Spitkovsky 2014; Werner et al. 2016; Kagan, Nakar & Piran 2018). What remains unclear,
though, is the level of thermal energy gains.

Our results show that the case para_k1 characterised by the lowest unstable effective
wavenumber L/λ0 = √

2, studied in detail by Nalewajko et al. (2016) and Yuan et al.
(2016), has a limited efficiency of both thermal and non-thermal particle acceleration,
which is related to the limited magnetic dissipation efficiency. On the other hand, 2-D
ABC fields with high L/λ0 values, although also limited by topological constraints (Zrake
& East 2016), can be used as a model for kinetic investigations of decaying relativistic
magnetised turbulence, an alternative to uncorrelated magnetic fluctuations (Comisso &
Sironi 2018, 2019; Comisso et al. 2020). Relativistic magnetised turbulence has also been
investigated extensively by means of PIC simulations in the driven mode (Zhdankin et al.
2017a,b, 2018, 2019, 2020; Wong et al. 2020).
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