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Approximations to wave scattering by an ice
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An investigation is carried out into the effect on wave propagation of an ice sheet
of varying thickness floating on water of varying depth, in three dimensions. By
deriving a variational principle equivalent to the governing equations of linear theory
and invoking the mild-slope approximation in respect of the ice thickness and water
depth variations, a simplified form of the problem is obtained from which the vertical
coordinate is absent. Two situations are considered: the scattering of flexural–gravity
waves by variations in the thickness of an infinite ice sheet and by depth variations;
and the scattering of free-surface gravity waves by an ice sheet of finite extent and
varying thickness, again incorporating arbitrary topography. Numerical methods are
devised for the two-dimensional versions of these problems and a selection of results
is presented. The variational approach that is developed can be used to implement
more sophisticated approximations and is capable of producing the solution of full
linear problems by taking a large enough basis in the Rayleigh–Ritz method. It is also
applicable to other situations that involve wave scattering by a floating elastic sheet.

1. Introduction
The effect on surface water waves of a floating elastic plate is of considerable

current interest in two particular application areas.
The first of these, and the one on which our approach is focused, is concerned

with the way in which the waves interact with thin sheets of sea ice. This issue is
particularly important in the Marginal Ice Zone (MIZ) in the Antarctic, a region
consisting of loose or packed ice floes that is situated between the ocean and the
shore-fast sea ice. As the ice sheets support flexural–gravity waves, the energy carried
by ocean waves is capable of propagating far into the MIZ, where it contributes to
ice break-up (see Squire et al. 1995 for an extensive review). Thin-plate, or Kirchhoff,
theory has been widely used to model this situation.

Another application area results from a proposal in Japan to build a floating
offshore runway, an example of a structure often referred to in the literature as
a VLFP (very large floating platform). Again, Kirchhoff theory is used to model
the motion of the elastic plate under external loading. Much of the work directed
specifically towards this application is either numerical (see, for example, Kashiwagi
1998) or uses approximation methods, such as the parabolic approximation (Takagi
2002) or geometric optics (as in Hermans 2003b).
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146 D. Porter and R. Porter

One of the most significant early attempts at solving problems involving thin elastic
plates on water can be found in Evans & Davies (1968), where the two-dimensional
problem of water waves incident upon a semi-infinite thin elastic plate floating on
water was solved using the Weiner–Hopf technique. At that time, the solution was
only studied in any detail using shallow water theory, although later attempts at this
problem, most notably those by Balmforth & Craster (1999), Chung & Fox (2002),
Linton & Chung (2003) and Tkacheva (2001a–c), have succeeded in deriving simple
expressions for the reflection coefficient in water of both finite and infinite depth.

The problem of two-dimensional water wave scattering by thin elastic plates
of finite length has been considered by a number of authors using a variety of
different techniques. Thus, for example, a Green’s function approach was used by
Meylan & Squire (1994) to formulate an integral equation over the plate. In contrast,
Newman (1994) developed a general theory for the interaction of water waves with
elastic structures. This involved expressing the motion of the structure, considered in
isolation, in terms of eigenmodes and identifying a radiation potential to describe
the wave response induced by each eigenmode when the structure and fluid motions
are coupled. Thus, the full potential for the scattering problem can be written in
terms of a superposition of the incident wave potential and an infinity of radiation
potentials, in much the same way as the motion of floating rigid bodies can be
described by six independent modes. Later, Wu, Watanabe & Utsunomiya (1995)
applied the theory of Newman (1994) to a finite length elastic plate and compared
their results with experimental data of Utsunomiya et al. (1995). Tkacheva (2002) has
recently used the Weiner–Hopf technique to formulate a solution for the finite plate
in terms of an infinite system of equations, whilst Hermans (2003a) has proposed
a method of solution based upon making a particular type of approximation to a
function representing the plate deflection, which subsequently appears as the unknown
function in an integro-differential equation. Andrianov & Hermans (2003) have also
examined scattering by a finite elastic plate for infinite, finite and shallow water depths
by deriving an integro-differential equation.

On the more difficult three-dimensional problem, less has been done and attention
has generally been focused on simplified geometries. In particular, wave interaction
with a circular elastic plate has been considered by Meylan & Squire (1996), who
used Green’s identity to formulate an integral equation over the plate and the theory
of Newman (1994) to expand the vertical deflection of the plate in term of its in vacuo
modes. In the case of shallow water, Zilman & Miloh (2000) were able to derive a
closed form expression for the solution of this problem. Sturova (2001) has considered
more general plate shapes using the shallow water approximation whilst, for the full
linearized equations, Meylan (2001) used a variational principle in conjunction with
the Rayleigh–Ritz approximation to investigate wave interaction with rectangular
plates numerically.

Most of the work described thus far has assumed a plate with non-zero (but small)
constant thickness and with zero draught. The latter assumption is often made in
order to facilitate analytical progress, although it was relaxed in the work of Wu et al.
(1995). Very little attention appears to have been paid to the determination of wave
scattering by plates of varying thickness. Squire & Dixon (2001) have considered
the two-dimensional problem where the entire fluid surface is covered by ice of one
constant thickness, with an inclusion of a different constant thickness, although the
submergence of each portion of ice is taken to be the same. Hermans (2003b) has
used a ray method for a plate of variable thickness, but unfortunately omitted terms
from the equation that describes the motion of the plate. The same is true of a
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Wave scattering by ice sheets 147

later paper by Hermans (2004) which adopts the solution technique developed in
Hermans (2003a), although the method of determining wave scattering by variable
thickness in this paper is to replace the variable plate properties by a piecewise
constant approximation. In the VLFP context, Takagi, Shimada & Ikebuchi (2000)
used eigenfunction matching to examine the damping effect on flexural waves of a
thick block at the edge of an infinite thin sheet and a wide spacing approximation to
infer corresponding results for a finite sheet.

The primary aim of the present paper is to develop a model to investigate
the effect on wave propagation of an ice sheet of variable thickness, noting that
the analysis presented is equally applicable in the VLFP context. The further
generalization of existing work is made that variations in the topography are also
allowed, without introducing an extra level of difficulty. This situation arises because
a ‘vertically integrated’ approximation is made to the full linear problem, to reduce the
computations to a feasible level. The approximation also gives an overall consistency
to the model in the sense that thin-plate theory, which is used to model the ice sheet,
arises by averaging across the plate and the same process is applied here through the
fluid depth.

A starting point is required to implement the approximation and we therefore
develop a variational principle that is equivalent to solving the field equation
and boundary conditions in the three-dimensional setting. By ensuring that the
integrand is the Lagrangian density we are, in effect, using Hamilton’s principle which
therefore also produces the edge conditions for a plate of varying thickness as natural
conditions, without these having to be built explicitly into the derivation.

It is pertinent to mention here that Meylan (2001), in contrast, combined a standard
variational principle for the ice sheet (but different from that used in the present
work) with a second principle that describes the fluid motion in terms of an inverse
operator involving a Green’s function. Meylan includes results for plates whose
thickness increases linearly but have zero draught, and he evidently does not use the
appropriate edge conditions.

Having established a suitable variational principle, the Rayleigh–Ritz approxima-
tion can be invoked, that a finite-dimensional approximation to the stationary point
of the functional is also an approximation to the solution of its natural conditions.
We adopt the simplest approach to approximating wave propagation at this point
by using a one-dimensional trial space based on the propagating modes for an ice
sheet of constant thickness on water of constant mean depth. The approximation is
therefore the counterpart in the present problem of the ‘mild-slope approximation’
for free-surface flows over undulating beds devised originally by Berkhoff (1973,
1976) and independently by Smith & Sprinks (1975). However, the equations that
we derive are extensions of the more recent modified mild-slope equation, derived by
Chamberlain & Porter (1995) and re-evaluated in Porter (2003), in which previously
neglected curvature terms are shown to be significant.

The effect of using the one-term trial function described is to remove the vertical
coordinate from the proceedings, reducing the problem to a pair of coupled partial
differential equations in two independent variables that determine the approximations
to the fluid motion and the sheet elevation. The variations in the bedform and in the
lower surface of the ice sheet appear in the coefficients of the differential equations
and it turns out, not surprisingly, that only the difference between these two levels is
significant in the approximation to the fluid flow. As indicated earlier, this outcome
is consistent with the appearance of the variable ice thickness in the thin-plate
model.
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148 D. Porter and R. Porter

Approximating the vertical structure of the fluid motion and the consequent
elimination of the vertical coordinate is reminiscent of shallow-water theory. The
mild-slope approximation for free-surface motions and its equivalent in the present
problem are, in fact, simply generalizations of the shallow-water approximation
having the advantage that they apply to all wavelengths and not merely to ‘long
waves’. Indeed, the shallow-water equations are the long-wave limits of those based
on the mild-slope approximation.

Using our model we develop a solution method for the two-dimensional problem
in which there is complete ice coverage. Here we envisage a flexural–gravity wave
incident from infinity upon a region of variable ice thickness and/or undulating
topography and determine the main characteristics of the scattered wave field.

To consider the different problem in which an ice floe of variable thickness occupies
a finite portion of the water surface, we have to reformulate the variational principle
in order to incorporate the free-surface regions and the interfaces between these and
the region with ice coverage. An illustration of this extension of the theory is again
provided in a two-dimensional setting, in which a free-surface wave is scattered by
the ice sheet.

The plan of the paper is as follows. The first main aim is to address the problem
in which the surface is completely covered by an ice sheet of variable thickness
and the bed has arbitrary undulations. In § 2 we formulate the problem and in § 3
derive a variational principle that can be used to generate approximations to it. The
approximation described above is developed in § 4 and it is implemented in § 5 for a
scattering problem in two dimensions. A selection of numerical results is given.

In § 6 we turn to our second objective by considering the extension of the problem
to one in which there is only partial ice cover. Here the various stages in the
development and resolution of the original problem are revisited and revised to apply
to the extended version, leading again to a sample of computational results.

2. Notation and formulation
We use Cartesian coordinates x, y, z with z directed vertically upwards, z = 0

coinciding with the equilibrium position of the free surface of the fluid in the absence
of ice. We follow previous authors in this area by modelling the ice sheet as an
elastic plate. In the present case, the plate floats in the surface and has constant
density ρi and varying thickness D(x, y), where D is continuous. In equilibrium,
the fluid is bounded below by an impermeable fixed bed located at z = −h(x, y),
where h is a positive-valued continuous function, and above by the continuous lower
surface z = −d(x, y) of the elastic plate. An example of this situation is shown in
a two-dimensional setting in figure 1, which also includes notation that will appear
later.

In motion, the ice sheet undergoes small-amplitude flexural oscillations and its
lower surface at the horizontal location x, y and time t is given by

z = −d(x, y) + ζ (x, y, t),

say, where ζ is an unknown of the problem.
Supposing the fluid to be inviscid, incompressible and homogeneous, its assumed

irrotational motion can be described by the velocity potential Φ(x, y, z, t) satisfying

∇2Φ = 0 (−h < z < −d + ζ ) (2.1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

04
00

92
67

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112004009267


Wave scattering by ice sheets 149

z

x
d(x)

h(x)
H(x)

D(x)

�

Ice

Water

Bed

Figure 1. Geometrical description in a two-dimensional setting of an ice sheet on water,
where the ice thickness and water depth variations are confined to the interval 0 < x < �.

and the bed condition

Φz + ∇hh · ∇hΦ = 0 (z = −h). (2.2)

Here ∇ = (∂/∂x, ∂/∂y, ∂/∂z), as usual, and ∇h = (∂/∂x, ∂/∂y, 0) is its projection onto
z = 0.

Within the fluid, the linearized version of Bernoulli’s equation gives the pressure
p(x, y, z, t) in the form

p = p0 − ρwΦt − ρwgz (−h � z � −d), (2.3)

in which ρw is the density of the water and p0 denotes the constant atmospheric
pressure above the ice sheet.

The motion of the sheet is due to the differential pressure across it and the governing
equation may be determined using thin-plate theory. Referring to Timoshenko &
Woinowsky-Krieger (1959) we deduce that

[p]−d+ζ = p0 + ρwgd + ρwgLζ + ρiDζtt , (2.4)

where [ ]z0
denotes the value of the included quantity on z = z0 and

Lζ ≡ ∇2
h

(
β∇2

hζ
)

− (1 − ν){βxxζyy + βyyζxx − 2βxyζxy}.

Here ν is Poisson’s ratio for ice and

β(x, y) = F (x, y)/ρwg, F (x, y) = ED3(x, y)/12(1 − ν2),

F being the flexural rigidity of the sheet and E Young’s modulus for ice.
The first two terms on the right-hand side of (2.4) ensure the equilibrium state of

the sheet, as is evident when the equation is combined with (2.3) to couple the ice
and fluid motions. Linearizing about z = −d on the basis that Φ and ζ are small we
find that

ρw(Φt + gζ ) + ρwgLζ + ρiDζtt = 0 (z = −d). (2.5)

The further coupling

∇hd · ∇hΦ + Φz = ζt (z = −d) (2.6)

arises from linearizing the kinematic condition ∇Φ · ∇S+St = 0 applied on the surface
S ≡ z + d − ζ = 0. By eliminating ζ between (2.5) and (2.6) we obtain the linearized
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boundary condition for Φ on the upper fluid surface in the form

ρw{Φtt + g(∇hd · ∇hΦ + Φz)} + ρwgL(∇hd · ∇hΦ + Φz)

+ ρiD(∇hd · ∇hΦ + Φz)t t = 0 (z = −d). (2.7)

At this point it is convenient to remove a harmonic time dependence by introducing
the given angular frequency ω and setting

Φ(x, y, z, t) =
g

iω
φ(x, y, z)e−iωt , ζ (x, y, t) = η(x, y)e−iωt ,

the real parts of which represent the required functions. These substitutions and
linearization transform (2.1) and (2.2) into

∇2φ = 0 (−h < z < −d), φz + ∇hh · ∇hφ = 0 (z = −h), (2.8)

whilst (2.5) and (2.6) become

(1 − α)η + Lη − φ = 0, ∇hd · ∇hφ + φz = κη (z = −d), (2.9)

in which we have introduced the quantities

κ = ω2/g, α(x, y) = κρiD(x, y)/ρw. (2.10)

The time-independent counterpart of (2.7) follows most directly by eliminating η from
(2.9) to give

(1 − α)(∇hd · ∇hφ + φz) + L(∇hd · ∇hφ + φz) = κφ (z = −d). (2.11)

The reduced potential φ is therefore determined by (2.8) and (2.11), together with
conditions specifying its far-field behaviour as x2 + y2 → ∞. This is a formidable
proposition except in the case of an ice sheet of constant thickness and a horizontal
bed and we therefore seek to approximate the boundary value problem.

3. The variational principle
The approximation is generated by means of a variational principle that is

equivalent to the governing equations. The derivation of the principle is most easily
carried out by considering the fluid and ice motions separately before coupling them
through (2.9).

Let D denote a simply connected, bounded domain in the plane z = 0 with
boundary C on which n is the outward normal unit vector and let the functions
ψ(x, y, z) and χ(x, y) be sufficiently differentiable for what follows.

We deal first with the equations (2.8) governing the fluid motion and note that the
functional

L1(ψ) =
1

2

∫ ∫
D

∫ −d

−h

(∇ψ)2 dz dx dy

has first variation

δL1 =

∫ ∫
D

∫ −d

−h

(∇ · (δψ∇ψ) − δψ∇2ψ) dz dx dy.
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After some manipulation to extricate δψ from the gradient operator, we find that

δL1 =

∫ ∫
D

{
[(∇hd · ∇hψ + ψz)δψ]−d − [(∇hh · ∇hψ + ψz)δψ]−h

−
∫ −d

−h

δψ∇2ψ dz

}
dx dy +

∫
C

n ·
∫ −d

−h

δψ∇hψ dz ds, (3.1)

where s measures arclength on C.
For the ice sheet the appropriate functional with the coupling term included is

L2(ψ, χ) =
1

2

∫ ∫
D

{
β
{(

∇2
hχ

)2 − 2(1 − ν)
(
χxxχyy − χ2

xy

)}
+ (1 − α)χ2 − 2χ[ψ]−d

}
dx dy.

The terms involving β represent the strain energy of the sheet, in the form given by
Timoshenko & Woinowsky-Krieger (1959). The remaining terms combine the effects
of the dynamic pressure on the plate and its acceleration.

The first variation of L2 is

δL2 =

∫ ∫
D

{
β
(
∇2

hχ
)(

∇2
hδχ

)
− β(1 − ν){χxxδχyy + χyyδχxx − 2χxyδχxy}

+ {(1 − α)χ − [ψ]−d} δχ − χ[δψ]−d

}
dx dy.

To simplify the first term in the integral we use a version of Green’s identity, namely,∫ ∫
D

{
β
(
∇2

hχ
)(

∇2
hδχ

)
−δχ∇2

h

(
β∇2

hχ
)}

dx dy =

∫
C

{
β∇2

hχ
∂

∂n
(δχ)−δχ

∂

∂n

(
β∇2

hχ
)}

ds,

where ∂/∂n= n · ∇h. Domain and boundary contributions can similarly be distin-
guished for the other term in δL2 involving β , since

β{χxxδχyy + χyyδχxx − 2χxyδχxy} = δχ(βxxζyy + βyyζxx − 2βxyζxy) + ∇h · c,

in which

c = {β(χyyδχx − χxyδχy) − (βxχyy − βyχxy)δχ}i

+ {β(χxxδχy − χxyδχx) − (βyχxx − βxχxy)δχ} j ,

the unit vectors having their usual meanings. These identities allow δL2 to be re-
arranged as

δL2 =

∫ ∫
D

{{(1 − α)χ + Lχ − [ψ]−d}δχ − χ[δψ]−d} dx dy.

+

∫
C

{
β∇2

hχ
∂

∂n
(δχ) − δχ

∂

∂n

(
β∇2

hχ
)

− (1 − ν)n · c
}

ds. (3.2)

We now form the functional LD ≡ L1 + κL2, that is,

LD(ψ, χ) =
1

2

∫ ∫
D

{∫ −d

−h

(∇ψ)2 dz − 2κβ(1 − ν)
(
χxxχyy − χ2

xy

)
+ κ{(1 − α)χ2 + β

(
∇2

hχ
)2 − 2χ[ψ]−d}

}
dx dy (3.3)

and we also assume the variations to be such that

δψ = 0 on C × [−h, −d], δχ = δχx = δχy = 0 on C. (3.4)
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This simplification is possible as our first aim is to approximate the vertical structure
of the motion and not to deal with conditions on lateral boundaries.

It therefore follows from (3.1) and (3.2) that

δLD =

∫ ∫
D

{
[(∇hd · ∇hψ + ψz − κχ)δψ]−d − [(∇hh · ∇hψ + ψz)δψ]−h

+ κ{(1 − α)χ + Lχ − [ψ]−d} δχ −
∫ −d

−h

δψ ∇2ψ dz

}
dx dy, (3.5)

from which we can immediately deduce that δLD = 0 at ψ = φ, χ = η for arbitrary
variations δψ and δχ satisfying (3.4) if and only if φ and η satisfy (2.8) and (2.9).
This outcome is not surprising as we have in effect applied Hamilton’s principle to
the problem.

Finding the stationary point (φ, η) of LD(ψ, χ) is therefore equivalent to solving
(2.8) and (2.9) and approximate solutions of those equations are obtained by
approximating the stationary point of LD.

Imposing the second of the natural conditions (2.9) as a constraint, by substituting

χ = κ−1(∇hd · ∇hψ + ψz) into LD(ψ, χ), defines the functional L̃D(ψ), say, and the

natural conditions of δL̃D = 0 will of course be (2.8) and (2.11). It is much more
straightforward, however, to use LD(ψ, χ) as it stands.

3.1. Jump conditions

We can exploit the variational principle further by deriving the natural conditions
that apply at an internal boundary of D. This aspect is significant in relation to
the approximation developed in the next section and to the case of partial ice cover
considered later.

Suppose then that the smooth, simple curve Γ divides D into two domains D+

and D−, say. The principle δ(LD+
+ LD−) = 0 subject to (3.4) gives (2.8) and (2.9) for

(x, y) ∈ D± and, in addition, natural conditions at the interface. Let 〈χ〉 = χ+ − χ−
denote the jump in χ across Γ and 〈〈ψ〉〉 = ψ+ − ψ− the jump in ψ across the surface
Γ × [−h, −d], the subscripts denoting the limiting values of the functions from D±.

We deduce from (3.1) and (3.2) that the contribution to δ(LD+
+ LD−) on Γ is

CΓ =

∫
Γ

n ·
〈∫ −d

−h

δψ∇hψ dz +
(
β∇2

hχ
)
∇h(δχ) − δχ∇h

(
β∇2

hχ
)

− (1 − ν)c
〉

ds. (3.6)

We have carried over the notation adopted for the external boundary of D to its
internal boundary, by using s to denote arclength on Γ and n the unit normal vector
on the curve, chosen here so that it is directed from D+ to D−.

To identify the natural conditions implied by CΓ = 0 it is necessary to transform
to boundary coordinates. Let n have direction cosines (cos θ, sin θ, 0) with respect to
the fixed Cartesian frame, where θ = θ(s), and introduce the unit vector s tangential
to Γ , orientated so that

n = i cos θ + j sin θ, s = −i sin θ + j cos θ.

A straightforward transformation then gives

n · c = (χss + θ ′χn)(βδχn − βnδχ) − (χns − θ ′χs)(βδχs − βsδχ),
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where ∂/∂s = s · ∇h. Therefore

CΓ =

∫
Γ

〈∫ −d

−h

δψ n · ∇hψ dz +
(
β∇2

hχ
)
δχn − δχ

(
β∇2

hχ
)

n

− (1 − ν){(χss + θ ′χn)(βδχn − βnδχ) − (χns − θ ′χs)(βδχs − βsδχ)}
〉

ds.

The net term in δχ is obtained after an integration by parts to remove δχs .
Thus, if we impose the essential conditions that ψ is continuous on Γx , χ and χn

are continuous across Γ we infer that

〈〈n · ∇hφ〉〉 = 〈Mη〉 = 〈Sη〉 = 0 (3.7)

are the natural jump conditions satisfied by the solutions ψ = φ and χ = η of
δ(LD+

+ LD−) = 0, where

Mη ≡ ∇2
hη − (1 − ν)(ηss + θ ′ηn),

Sη ≡
(
β∇2

hη
)

n
− (1 − ν){(ηss + θ ′ηn)βn − 2(ηns − θ ′ηs)βs − (ηns − θ ′ηs)sβ}.

In addition, the integration by parts referred to above gives the natural condition

ηns − θ ′ηs ≡ ηsn = 0

at every end of Γ , assuming that D 
= 0 there, the identity being a property of the
boundary coordinates that is easily established.

The conditions (3.7) respectively represent continuity of the horizontal fluid velocity
and continuity of bending moment and shear stress in the ice sheet. Continuity of fluid
pressure and of ice sheet displacement and velocity are guaranteed by the essential
conditions, which imply that 〈〈φ〉〉 = 〈η〉 = 〈ηn〉 = 0. The continuity conditions for the
ice sheet that we have derived are closely related to edge conditions prevailing at a
vertical crack in the ice sheet along Γ , for example, which have been given by Sturova
(2001) in the case of constant ice thickness. Although we have so far assumed that D

is continuous, the formulation given effectively incorporates the case where Γ is the
location of a thin crack. It is, of course, inevitable that a variational principle which
embodies the dynamics of the problem appropriately will give all of the relevant
conditions.

We remark at this point that, if radiation conditions for complex harmonic waves
are included in the set of natural conditions, different functionals are required. Thus
the integrand of L1(ψ) has to be modified to ∇ψ · ∇ψ , for example, with corresponding
changes in L2. The natural conditions that we have derived are not affected by this
adjustment and as we shall implement radiation conditions outside the framework of
a variational principle, we have been able to avoid more complicated functionals.

4. An approximation
Our objective is to reduce the dimension of the boundary value problem by

approximating the dependence of φ on z. This is achieved by basing the vertical fluid
motion on that for a horizontal bed and an ice sheet having uniform properties.

To establish the approximation we therefore consider a horizontal bed at z = −h0

and let the ice sheet have constant thickness D0 with its horizontal lower face at the
equilibrium level z = −d0. Correspondingly, α and β take the constant values α0 and
β0, respectively. In this reduced problem, (2.8) becomes

∇2φ = 0 (−h0 < z < −d0), φz = 0 (z = −h0), (4.1)
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and (2.9) takes the form(
1 − α0 + β0∇4

h

)
η − φ = 0, φz = κη (z = −d0).

These equations imply the simplified version(
1 − α0 + β0∇4

h

)
φz = κφ (z = −d0) (4.2)

of (2.11). It is easy to show that propagating plane wave solutions of (4.1) and (4.2)
with crests parallel to the y-axis are

φ±
p (x, z) = e±ik0x cosh k0(z + h0), (4.3)

where k = ±k0 are the only real roots of the dispersion relation(
1 − α0 + β0k

4
)
k tanh k(h0 − d0) = κ. (4.4)

This equation also has roots corresponding to evanescent modes, namely, four complex
roots symmetrically placed with respect to both the real and imaginary axes and
infinitely many purely imaginary roots.

We can use this information to approximate φ and η in the case of varying h, d

and D in a number of ways. The simplest is to set

φ(x, y, z) ≈ ψ(x, y, z) = ϕ(x, y)w(x, y, z),

w(x, y, z) = sech k(h − d) cosh k(z + h),

}
(4.5)

where k = k(x, y) denotes the positive real root of

(1 − α + βk4)k tanh k(h − d) = κ (4.6)

with h =h(x, y), d = d(x, y) and D = D(x, y). Because the dependence of ψ on z is
locally that in (4.3) we expect to approximate waves that propagate beneath the ice
sheet and are modulated by its varying thickness and the undulating bedform. We
note that the scaling w(x, y, −d) = 1 has been chosen for convenience and that η is
only approximated indirectly.

The assumption underlying the approximation is that the perturbations about
h =h0, d = d0 and D =D0 are slowly varying functions, that is,

|∇hh| � kh, |∇hd| � kd, |∇hD| � kD,

for all relevant values of x, y.
To implement the approximation (4.5) we substitute it into L(ψ, χ) and enforce

δL = 0, noting that δψ = wδϕ. It follows from (3.5) that L is stationary with respect
to arbitrary variations δϕ and δχ satisfying (3.4) (so that δϕ = 0 on C), provided that

[w{∇hd · ∇h(wϕ) + wzϕ − κχ}]−d − [w∇hh · ∇h(wϕ)]−h −
∫ −d

−h

w∇2(wϕ) dz = 0

and

(1 − α)χ + Lχ − [w]−dϕ = 0,

in which [wz]−h = 0 has been used. Rearranging the first of these equations by means
of the identity∫ −d

−h

w∇2
h(wϕ) dz = [w∇hd · ∇h(wϕ)]−d − [w∇hh · ∇h(wϕ)]−h

+ ∇h ·
∫ −d

−h

w2∇hϕ dz +

{
∇h ·

∫ −d

−h

w∇hw dz −
∫ −d

−h

(∇hw)2 dz

}
ϕ,
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and applying the normalization [w]−d = 1, we deduce the pair of formally self-adjoint
coupled equations

∇h · a∇hϕ + bϕ + κχ = 0,

(1 − α)χ + Lχ − ϕ = 0,

}
(4.7)

in which

a =

∫ −d

−h

w2 dz = (4k)−1sech2k(h − d){2k(h − d) + sinh 2k(h − d)},

b = k2a − k tanh k(h − d) + ∇h ·
∫ −d

−h

w∇hw dz −
∫ −d

−h

(∇hw)2 dz.

 (4.8)

Thus the approximations φ ≈ wϕ and η ≈ χ are determined by solving (4.7).
Alternatively, the equation

(1 − α + L)(∇h · a∇h + b)ϕ + κϕ = 0, (4.9)

which follows by eliminating χ from (4.7), can be solved and χ recovered from (4.7).
It is inevitable that the approximation (4.5) will lead to a sixth-order differential
equation for ϕ, as the effect of integrating out the variable z in the application of the
variational principle is to convert Laplace’s equation into a second-order equation
for ϕ and merge this with the boundary conditions on z = −h and z = −d and, in
particular, with the fourth-order condition on z = −d .

We note here that the shallow-water approximation kh � 1 corresponds to making
the different choice w = 1 in (4.5), which ensures that the horizontal velocity field
∇hφ ≈ ∇hψ is independent of z, as the approximation requires. Thus, putting φ ≈
ψ = ϕ in the variational principle δLD = 0 we arrive at

∇h · (h − d)∇hϕ + κχ = 0, (1 − α)χ + Lχ − ϕ = 0. (4.10)

The equations (4.7) may be regarded as the extension of the shallow-water
approximation to general values of kh and, as we would expect, they reduce to
(4.10) in the shallow-water limit.

For practical purposes the coefficients in the first equation of (4.7) must be converted
into a more explicit form. This can be achieved by first introducing the variables

Z = z + d, H = h − d (4.11)

(H is shown in figure 1) so that, by (4.6), k = k(H, D) and from (4.5)

w(x, y, z) ≡ W (H, D, Z) = sech (kH ) cosh k(Z + H ) (−H � Z � 0). (4.12)

Thus ∇hw = ∇hW = WH ∇hH + WD∇hD, where WH = ∂W/∂H and similarly for WD .
Using this expansion, the second element of (4.8) can be written as

b = k2a − k tanh(kH ) + (W, WH )∇2
hH + (W, WD)∇2

hD

+ C(1)(∇hH )2 + C(2)(∇hD)2 + C(3)∇hH · ∇hD, (4.13)

in which

C(1) = (W, WH )H − ‖WH ‖2, C(2) = (W, WD)D − ‖WD‖2,

C(3) = (W, WH )D + (W, WD)H − 2(WH, WD),

}
(4.14)
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and the inner product notation

(u, v) =

∫ 0

−H

uv, ‖u‖2 = (u, u)

has been introduced for brevity.
The equations (4.7) hold only in domains where h, d and D are differentiable and

they have to be replaced by equivalent jump conditions where this is not the case.
We suppose that ϕ, χ and ∇hχ are continuous everywhere, in accordance with the
essential conditions applied in the derivation of (3.7), and that ∇hh, ∇hd and ∇hD are
discontinuous along a smooth, simple curve Γ in the (x, y)-plane. It follows by using
ψ = ϕw in (3.6), and applying (4.11) to simplify the result, that the most general
jump conditions on Γ are

a〈n · ∇hϕ〉 + 〈n · {(W, WH )∇hH + (W, WD)∇hD}〉ϕ = 0,

〈Mχ〉 = 〈Sχ〉 = 0,

}
(4.15)

where we have adopted the notation used in (3.7).
By enforcing 〈ϕ〉 = 〈χ〉 = 〈n · ∇hχ〉 = 0 we have imposed continuity of pressure

across Γ × [−h, −d] and of ice sheet displacement and velocity across Γ , and the
natural conditions (4.15) resulting from the variational principle are the counterparts
of (3.7) for the approximate solution. The first represents conservation of energy flux
across Γ × [−h, −d], aggregated over the depth, and the other two show that the
bending moment and shear stress of the ice sheet are conserved across Γ , as they are
in the exact solution.

5. Two-dimensional scattering
We illustrate the approximation by applying it in a two-dimensional context where

h = h(x), d = d(x), D = D(x) and the motion is independent of y. In this case (4.7)
reduces to

(a(x)ϕ′)′ + b(x)ϕ + κχ = 0, (β(x)χ ′′)′′ + (1 − α(x))χ − ϕ = 0,

which can be written as the second-order system

(a(x)φ′
0)

′ + b(x)φ0 + κφ1 = 0,

β(x)φ′′
1 − φ2 = 0,

φ′′
2 + (1 − α(x))φ1 − φ0 = 0,

 (5.1)

where φ0 = ϕ, φ1 = χ and φ2 = βχ ′′ is the bending moment. In this framework, the
jump conditions (4.15) and the associated continuity hypotheses imply that

a〈φ′
0〉 + 〈(W, WH )H ′ + (W, WD)D′〉φ0 = 0,

〈φ0〉 = 〈φ1〉 = 〈φ2〉 = 〈φ′
1〉 = 〈φ′

2〉 = 0

}
(5.2)

hold where at least one of H = h − d and D has a slope discontinuity.
The first step is to determine the solutions of (5.1) for constant values of h, d and

D. Suppose that h = h0, d = d0 and D = D0 with the values of other quantities denoted
in the same way. For this purpose we can return to (4.9) in the reduced form

{β0(d/dx)4 + 1 − α0}
{
a0(d/dx)2 + k2

0a0 − k0 tanh(k0H0)
}
ϕ + κϕ = 0
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(where H0 = h0 − d0). If we seek solutions ϕ(x) = exp(iµx), we find that µ is determined
by

(β0µ
4 + 1 − α0)

{
a0

(
µ2 − k2

0

)
+ k0 tanh(k0H0)

}
= κ, (5.3)

from which κ can be eliminated using (4.4) to give(
µ2 − k2

0

){
a0(β0µ

4 + 1 − α0) + β0

(
µ2 + k2

0

)
k0 tanh(k0H0)

}
= 0. (5.4)

Thus two roots are µ = ±k0, as expected, and we recover the propagating waves
referred to earlier.

It is easily shown using (4.8) that the other four roots of (5.4) can be written in the
forms µ = ±µ0 and µ = ±µ0, where µ0 = p0 + iq0. Here, p0 and q0 are positive for all
parameter values and are given by setting h = h0 and so on in the expressions

p =
(
λ2

1 + λ2
2

)1/4
sin(θ/2), q =

(
λ2

1 + λ2
2

)1/4
cos(θ/2),

λ1 = k tanh(K)/2a, λ2
2 = (1 − α)/β + k4{1 − 4K2/(2K + sinh(2K))2},

θ = tan−1(λ2/λ1), K = kH.

These roots are not the complex roots of (4.4) as they are not associated with the
correct depth dependence, but they may be regarded as approximations to those roots
in the sense that they have the same form but have compensated for the fixed depth
function w. To include the exact evanescent modes corresponding to the complex
roots of (4.4) requires the use of a three-term approximation at the outset in place of
(4.5), and this leads to three coupled sixth-order equations.

We also remark that in the shallow-water case, where a0 is approximated by H0,
(5.3) reduces to

(β0µ
4 + 1 − α0)µ

2H0 = κ,

which is the shallow-water limit of the dispersion relation (4.4). The four complex
roots are therefore exact in this case, but this is to be expected as the vertical fluid
motion is approximated by taking w =1 and, unlike (4.5), does not select a particular
mode.

5.1. A particular problem

We now assume that the continuous functions h(x), d(x) and D(x) are such that

h(x) = h0, d(x) = d0, D(x) = D0 (x < 0),

h(x) = h1, d(x) = d1, D(x) = D1 (x > �),

where hi , di and Di are constants for i = 0, 1. This is the situation anticipated in
figure 1. For simplicity, we suppose that h′(x), d ′(x) and D′(x) are continuous for
0 < x < � but allow for discontinuities in these functions at x = 0 and x = �.

We have established that the propagating waves with h = h0, d = d0 and D = D0

are exp(±ik0x), k0 being the real, positive root of (5.4). We denote by exp(±ik1x) the
propagating waves in x > � and we shall similarly attach the subscript 1 to other
quantities to indicate that they are to be evaluated for h = h1, d = d1 and D = D1. We
therefore seek solutions for φ0 =ϕ that satisfy

φ0 ∼
{

A0e
ik0x + B0e

−ik0x (x → −∞),

A1e
ik1(�−x) + B1e

−ik1(�−x) (x → ∞),
(5.5)

in which A0 and A1exp(ik1�) are respectively the amplitudes of incident waves from
the left and right and B0 and B1exp(−ik1�) are the amplitudes of the waves scattered
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to the left and right, respectively. The scattering process may be summarized in the
equation (

B0

B1

)
= S

(
A0

A1

)
S =

(
R0 T1

T0 R1

)
, (5.6)

where Ri and Ti are (to within known phase factors) the complex amplitudes of the
reflected and transmitted waves resulting from an incident wave of unit amplitude
from x < 0 (i = 0) and x > � (i = 1). We remark that the far field for the approximation
to full velocity potential φ(x, z) corresponding to (5.5), that is,

φ ∼
{

{A0e
ik0x + B0e

−ik0x}w0(x, z) (x → −∞),{
A1e

ik1(�−x) + B1e
−ik1(�−x)

}
w1(x, z) (x → ∞),

(5.7)

has the form of the exact solution.
Expressing (5.1) in matrix form, we have to determine the solution of

(UΦ ′)′ = VΦ, Φ = (φ0, φ1, φ2)
T , (5.8)

which is continuous everywhere, with

U =

a 0 0

0 1 0

0 0 1

 , V =

−b −κ 0

0 0 β−1

1 α − 1 0

 . (5.9)

The differential equations may in turn be written as the first-order system(
Φ

UΦ ′

)′

=

(
0 U−1

V 0

)(
Φ

UΦ ′

)
, (5.10)

in which UΦ ′ is now regarded as a dependent variable.
To obtain a boundary value problem for (5.10) with 0<x <� we make use of the

solutions in the two regions with h, d and D constant. Now φ0 in this case is a linear
combination of exp(±ikix), exp(±iµix) and exp(±iµix) (where i = 0 for x < 0, i = 1
for x > �). It follows from (5.1) that a complete set of linearly independent solutions
of (5.8) in the domains where h, d and D are constant is

ci(ki)e
±ikix, ci(µi)e

±iµix, ci(µi)e
±iµix, (5.11)

with

ci(u) = (1, κ−1(aiu
2 − bi), −κ−1βiu

2(aiu
2 − bi))

T .

The appropriate solution for x < 0 can therefore be written as

Φ(x) = C0(A0e
ik0x, 0, 0)T + C0

(
B0e

−ik0x, B
(1)
0 e−iµ0x, B

(2)
0 eiµ0x

)T
, (5.12)

which incorporates (5.5) and in which B
(1)
0 and B

(2)
0 are the unknown complex

amplitudes of evanescent modes. C0 denotes the 3×3 matrix given by setting i = 0 in

Ci = (ci(ki), ci(µi), ci(µi)).
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We deduce from (5.12) that

Φ(0−) = C0 A0 + C0 B0, A0 = (A0, 0, 0)T , B0 =
(
B0, B

(1)
0 , B

(2)
0

)T
,

and that

Φ ′(0−) = iC0K0 A0 − iC0K0 B0,

in which Ki is the 3 × 3 matrix given by Ki = diag(ki, µi, −µi). Therefore

C−1
0 Φ ′(0−) + iK0C

−1
0 Φ(0−) = 2iK0 A0,

C−1
0 Φ ′(0−) − iK0C

−1
0 Φ(0−) = −2iK0 B0.

}
(5.13)

We infer from (5.2) that

a0{φ′
0(0−) − φ′

0(0+)} = j0φ0(0), φ′
1(0−) = φ′

1(0+), φ′
2(0−) = φ′

2(0+),

where

j0 = (W, WH )H ′(0+) + (W, WD)D′(0+) (5.14)

(with H = h − d) which implies that

U0{Φ ′(0−) − Φ ′(0+)} = J0Φ(0−) = J0Φ(0+), Ji = diag(ji, 0, 0).

Combining this jump condition with (5.13) we obtain

P0

(
Φ(0+)

U0Φ
′(0+)

)
= 2iK0 A0, Q0

(
Φ(0+)

U0Φ
′(0+)

)
= −2iK0 B0, (5.15)

in which the 3 × 6 matrices Pi and Qi are given by

Pi =
(
C−1

i U−1
i Ji + iKiC

−1
i , C−1

i U−1
i

)
, Qi =

(
C−1

i U−1
i Ji − iKiC

−1
i , C−1

i U−1
i

)
.

For x > � we take

Φ(x) = C1

(
A1e

ik1(�−x), 0, 0
)T

+ C1

(
B1e

−ik1(�−x), B
(1)
1 e−iµ1(�−x), B

(2)
1 eiµ1(�−x)

)T
, (5.16)

in accordance with (5.5), B
(i)
1 (i = 1, 2) being unknown evanescent wave amplitudes,

and this leads to

Q1

(
Φ(�−)

U1Φ
′(�−)

)
= −2iK1 A1, P1

(
Φ(�−)

U1Φ
′(�−)

)
= 2iK1 B1, (5.17)

where

A1 = (A1, 0, 0)T , B1 =
(
B1, B

(1)
1 , B

(2)
1

)
and we have introduced

j1 = (W, WH )H ′(�−) + (W, WD)D′(�−)

to parallel (5.14).
Recalling that the vectors Ai contain only the notionally assigned amplitudes Ai ,

we see that the first element of each of (5.15) and (5.17) is a boundary condition for
(5.10); the second elements determine the scattered wave amplitudes contained in the
vectors Bi once the solution of (5.10) is known for 0 � x � �.
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Suppose that Ψ (i) (i = 1, . . . , 6) denote six linearly independent solutions of (5.10)
in this interval, obtained by solving initial value problems. Then the general solution
of (5.10) for 0 � x � � may be written as(

Φ(x)

U(x)Φ ′(x)

)
= Ψ (x)E, Ψ = (Ψ (1), . . . , Ψ (6)), (5.18)

Ψ being a 6 × 6 matrix and E a constant 6 × 1 vector. From (5.15) and (5.17) we
readily obtain (

P0Ψ (0)

Q1Ψ (�)

)
E = 2i

(
K0 0

0 −K1

) (
A0

A1

)
,(

Q0Ψ (0)

P1Ψ (�)

)
E = −2i

(
K0 0

0 −K1

)(
B0

B1

)
.

Eliminating E we find that (
B0

B1

)
= Ŝ

(
A0

A1

)
, (5.19)

where Ŝ is the extended 6 × 6 scattering matrix given by

Ŝ = −
(

K0 0

0 −K1

)−1 (
Q0Ψ (0)

P1Ψ (�)

)(
P0Ψ (0)

Q1Ψ (�)

)−1 (
K0 0

0 −K1

)
,

which expresses the amplitudes of the scattered waves in terms of the incident wave
amplitudes and Ψ (�), Ψ (0) being assigned. The most obvious way of choosing initial
values for Ψ (i) is to take Ψ (0) = I, the 6 × 6 identity matrix.

Denoting the elements of Ŝ by Ŝij (i, j = 1, . . . , 6) and referring to the definition
of the usual scattering matrix S in (5.6), we deduce from (5.19) that

S =

(
Ŝ11 Ŝ14

Ŝ41 Ŝ44

)
.

An intrinsic property of S may be noted at this point. Referring to (5.7) we see that,
because the governing equations are real-valued, φ satisfies the same boundary value
problem as φ except for the notational changes that (B0, A0)

T replaces (A0, B0)
T and

(B1, A1)
T replaces (A1, B1)

T . It follows from (5.6) that solving the problem for φ will
lead to (

A0

A1

)
= S

(
B0

B1

)
and therefore, eliminating (A0, A1)

T and (B0, B1)
T ,

SS = I.

This equation implies a set of relationships between the components of S identical
to those derived by Kreisel (1949) for free-surface motions. It applies to the exact
solution of the boundary value problem posed in § 2 and to the approximate solution,
since (5.7) is common to both. As it is identically satisfied whatever Ψ (x) may be, it
is obviously not a check on a numerical solution method.
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A computational check can be obtained, however, by deriving an energy equation
for the approximate solution. It follows easily from (5.1) that

[a(φ0φ
′
0 − φ0φ

′
0) − κ(φ1φ

′
2 − φ1φ

′
2 + φ2φ

′
1 − φ2φ

′
1)]

x1
x0

= 0. (5.20)

The jump conditions show that the quantity in brackets is continuous even where D′

and H ′ are not (it is also continuous across cracks where D is discontinuous) and
the equation therefore holds for any pair of points x0 and x1. In particular, letting
x0 → −∞ and x1 → ∞ and using (5.12) and (5.16), (5.20) gives

E0(|A0|2 − |B0|2) + E1(|A1|2 − |B1|2) = 0,

Ei = kiai + 2κ−1βik
5
i tanh2(kiHi).

}
(5.21)

This is also the wave energy balance for the unapproximated problem, which is not
surprising as the approximate solution has the form of the exact solution for |x| → ∞,
as we noted after (5.7).

5.2. Numerical results

Numerical results have been obtained for the two-dimensional scattering problem
described in § 5.1 for a variety of different geometrical configurations. The NAG
routine, D02CJF which implements a variable-order, variable-step Adam’s method,
is used for the computation of Ψ (x) over the varying part of the ice/bed.

There are no results in the literature against which the numerical results can be
checked for accuracy. The energy balance relation given by (5.21), satisfied by both the
full linear problem and the approximation, can be used as a check on the numerical
scheme and consequently on the numerical solver described above. In all figures
presented here, (5.21) was satisfied to at least four significant figures. The accuracy
of the numerical solver breaks down when the wavelength in the ice (λ) is small
compared with the length of the varying part of the bed. This is due to the growth of
exponential solutions associated with the complex roots of the dispersion relation. A
more sophisticated numerical method should therefore be implemented when results
for smaller values of λ/l are considered.

In all of the results presented in this section we use the physical parameters for
ice given by Squire et al. (1995). Thus, we take E = 5 GPa, ν = 0.3, ρw = 1025 kg m−3,
ρi = 922.5 kgm−3, g = 9.81 m s−2. It is also known that ice sheets in the MIZ (marginal
ice-zone) are usually between 0.5 m and 2 m thick, and we use this to guide our
selection of D(x). Finally, we choose the varying ice thickness so that each segment of
the ice would be neutrally buoyant in the absence of surrounding ice, implying that
d(x) = (ρi/ρw)D(x) be satisfied. Of course, when there is total coverage of the fluid
such a condition is unnecessary although it does ensure that there are no internal
stresses within the ice when it is at rest.

In order to isolate the effects of wave reflection by ice of variable thickness and by
the undulating topography, we consider the two cases separately. Thus, in the first
examples, we take a flat bed and vary the thickness of the ice and, in particular, we
consider the ice thickness given by the functions

D(x) = D0 + 1
2
AD(1 − cos(2πx/l)), (5.22)

D(x) = D0 + 4ADx(l − x)/l2, (5.23)

D(x) = D0 + ADx/l, (5.24)

for 0 < x < l. The first two represent local bulges in the ice of size D0 + AD , with
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(a)
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Figure 2. The function D(x) given by (5.22), with D0 = 1 m and H0 = 20 m. In (a), AD = 1 m
with l = 80 m (solid), 60m (long dash), 40 m (short dash) and 20m (dotted). In (b), l = 40m
and AD = 0.25 m (solid), 0.5 m (long dash), 1 m (short dash), 2 m (dotted).

D0 = D1, whilst the last represents a linear increase in ice thickness over the
interval (0, l) with D1 = D0 + AD . In figures 2 and 3 the variation of reflection
coefficient with dimensionless wavelength λ/D0 = 2π/(k0D0) is shown. In these figures,
the transmission coefficient is obtained from |T0|2 = 1 − |R0|2 whilst |R1| = |R0| and
|T1| = |T0|. Both figures confirm that total transmission occurs in the two limits as the
wavelength tends to zero and infinity. In figure 2(a), the four curves show the effect of
the length of the varying part of the ice thickness on the reflection coefficient. For a
longer section of varying ice thickness, the peak in the reflection coefficient decreases
and occurs at longer wavelengths. In figure 2(b) we illustrate the effect that the size
of the bulge in the ice, AD , has on the reflection coefficient. As expected, the larger
the bulge, the larger the value of |R0| over all wavelengths although increasing the
value of AD still further does not result in any occurrences of total reflection.

Figures 3(a) and 3(b) demonstrate the effects of varying the depth of the fluid and
the thickness of the ice. In (a), depths of H0 = 10 m, 20 m and 40 m are used, whilst
numerical experimentation shows that for depths greater than 40 m, the reflection
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λ /D0

Figure 3. The function D(x) given by (5.22), with AD/D0 = 1, l/D0 = 40. In (a), D0 = 1 m
with H0 = 40 m (solid), 20 m (long dash), 10 m (short dash). In (b), H0 = 20 m with D0 = 0.5 m
(solid), 1 m (long dash), 2 m (short dash).

coefficient varies by less than 1% from those computed for H0 = 40 m over the range
of wavelengths presented.

Figures 4(a), 4(b) are the counterparts of figures 2(a), 2(b) in the case of a parabolic
ice profile given by (5.23). The principal difference is the presence of discontinuities
in D′(x) at x = 0 and x = l, which appear to have a fairly significant effect on the
reflection coefficient for smaller values of λ/D0. For larger wavelengths, the behaviour
of |R| in figure 4(a, b) is comparable with that shown in figure 2(a, b). A similar
phenomenon arises in free-surface motions, where discontinuities in the bed slope can
have a pronounced effect on wave reflection (see, for example, Porter 2003).

Figure 5(a, b) shows the variation of |R0| and |T0| with non-dimensional
wavenumber k0D0 for the ice thickness profile given by (5.24). In this case, in which
D0 
=D1 and H0 
=H1, |R1| = |R0| whilst |T1| 
= |T0| although a good approximation to
|T1| is given by 1/|T0|. The periodic structure of R0 is typical of problems in which
there are two principal sources of wave reflection (in this case, the points x =0 and
x = l). Note that as k0D0 → 0, the reflection coefficient tends to the shallow-water limit
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λ/D0

Figure 4. The function D(x) given by (5.23), with D0 = 1m and H0 = 20 m. In (a), AD =1m
with l = 80 m (solid), 60 m (long dash), 40 m (short dash) and 20m (dotted). In (b), l =40m
and AD = 0.25m (solid), 0.5 m (long dash), 1 m (short dash), 2 m (dotted).

given by Lamb (1932, § 176), namely |R0| =(1 −
√

H1/H0)/(1 +
√

H1/H0), where in the
three cases in figure 5(a, b), H1 = 19.55 m, 19.1m and 18.2 m.

We now turn to the other aspect of this particular problem, which is to determine
the effect of undulations in the bottom topography upon wave reflection, where the
ice sheet has constant thickness. The two bed profiles that we focus on are given by
the functions

H (x) = H0 − 1
2
AH (1 − cos(2πx/l)), (5.25)

H (x) = H0 − AHx/l, (5.26)

for 0 <x < l. The first represents a smoothly varying local elevation in the topography
of height AH whilst the second represents a linear slope from the depth H0 at x = 0
to H1 = H0 − AH at x = l. In the former case, we present in figure 6(a, b) the variation
of reflection coefficient with wavenumber for a selection of values of AH and lengths
l. As may be expected, the effect of increasing the size of the bed elevation is an
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Figure 5. The function D(x) given by (5.24), with D0 = 1 m, H0 = 20 m, l = 40 m. In (a),
|R0| = |R1| and in (b), |T0| with AD = 0.5 m (solid), 1 m (long dash), 2 m (short dash).

increase in reflection and larger values of |R0| also result when the varying part of
the bed is extended.

For the final example in this part of the paper, we consider the depth profile given
by (5.26) and present the variation of |R0| and |T0| with k0D0 for a linear shoaling
from H0 = 20 m to H1 = 10 m over the lengths, l = 80 m to l =20 m. The corresponding
results are shown in figure 7.

6. Partial ice cover
We now address the more demanding problem in which the ice sheet occupies

only a part of the whole surface. Our aim is to use the approximation developed in
the previous sections in conjunction with the corresponding approximation for an
unloaded free surface.

6.1. The free-surface case

First we have to consider how the variational principle and its implementation are
amended for D = d = 0. This is a straightforward matter of simplifying the existing
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Figure 6. The function H (x) given by (5.25), with D0 = 1 m, H0 = 20m. In (a), l = 80 m with
AH =5 m (solid), 10 m (long dash), 15 m (short dash) and in (b), AH = 10m with l =40m
(solid), 80 m (long dash), 160 m (short dash).

expressions and it inevitably leads to the modified mild-slope equation derived by
Chamberlain & Porter (1995). However, we need to give enough detail to establish
the notation and to allow us to derive a unified approximation that encompasses both
an ice sheet and a free surface.

Since α = β = 0 in the reduced problem, the natural condition χ = [ψ]0 on z = 0
of the variational principle δLD = 0 is implied by (3.5) and this can be imposed as a
constraint in LD to give the functional

LD(ψ, [ψ]0) ≡ L
(0)
D (ψ) =

1

2

∫ ∫
D

{∫ 0

−h

(∇ψ)2 dz − κ[ψ]20

}
dx dy, (6.1)

appropriate to free-surface motions. We will use the superscript (0) to indicate that the
quantities involved refer to the free-surface case. The natural conditions of δL

(0)
D = 0

with δψ = 0 on C × [−h, 0] may be deduced from (2.8) and (2.11) and they are

∇2φ = 0 (−h < z < 0), φz + ∇hh · ∇hφ = 0 (z = −h), φz = κφ (z = 0), (6.2)
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Figure 7. The function H (x) given by (5.26), with D0 = 1m, H0 = 20 m, AH = 10 m. In
(a), |R0| = |R1| and in (b) |T0| with l = 40 m (solid), 20m (long dash), 10m (short dash).

the familiar free-surface condition replacing (2.11). Only the element 〈〈n · ∇hφ〉〉 = 0
of the jump conditions (3.7) is relevant in this case.

The reduced version of the approximation defined by (4.5) and (4.6) is

φ(x, y, z) ≈ ψ(x, y, z) = ϕ(0)(x, y)w(0)(x, y, z),

w(0)(x, y, z) = sech (k(0)h) cosh k(0)(z + h),

k(0) tanh(k(0)h) = κ,

 (6.3)

in which k(0)(h) denotes the positive real root of the truncated dispersion relation.
We note that k(0)(h) = k(h, 0), where k(H, D) is the positive real root of (4.6). An
examination of the behaviour of the roots ±k0, ±µ0 and ±µ0 of (5.3) as D0 → 0 and

H0 → h0 shows that |µ0| → ∞ and k0 → k
(0)
0 , the solution of the reduced dispersion

relation in (6.3) corresponding to h = h0.
The result of setting ψ =ϕ(0)w(0) in δL

(0)
D = 0 can be deduced from (4.7), the second

equation of which condenses to just χ = ϕ. We may therefore eliminate χ and the
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system reduces to the single equation

∇h · a(0)∇hϕ
(0) + b(0)ϕ(0) = 0, (6.4)

which is the modified mild-slope equation referred to earlier. The coefficients can be
deduced from (4.12) and (4.13) and are

a(0) =
(
4k(0)

)−1
sech2

(
k(0)h

){
2k(0)h + sinh

(
2k(0)h

)}
,

b(0) = k(0) 2a(0) −
(
W (0), W

(0)
h

)
∇2

hh + C(0)(∇hh)2,

C(0) =
(
W (0), W

(0)
h

)
h

−
∥∥W

(0)
h

∥∥2
,

where W (0)(x, y, z) =W (h, 0, z) in the notation of (4.12) and H = h is implied in the
definition of the inner product.

The jump condition satisfied by the solution of (6.4) where ∇hh is discontinuous
follows from (4.15) in the form

a(0)
〈
nΓ · ∇hϕ

(0)
〉

+
(
W (0), W

(0)
h

)
〈nΓ · ∇hh〉ϕ(0) = 0.

6.2. The approximation

We are now in a position to consider the problem of partial ice cover, in which (2.8)
and (2.9) apply for a given domain Di in the (x, y)-plane and (6.2) applies for Df .
As we have already derived approximations for the two components of this problem
independently, the only outstanding issue is how the solutions of (4.7) and (6.4) have
to be linked in the overall approximation.

To resolve this issue we require the secure framework of a composite variational
principle that represents the hybrid case. This will obviously be based on the
functionals LD(ψ, χ) defined in (3.3) and L

(0)
D (ψ) defined in (6.1). It is convenient

to adapt notation that we used earlier and consider the domain D = D+ ∪ D− in
the (x, y)-plane. We again denote by Γ the smooth curve where the two subdomains
meet and use the subscripts ± to indicate the limiting values taken by functions on Γ

or Γ × [−h, −d] from D±. Further, the unit vectors normal and tangential to Γ and
the boundary coordinates introduced in § 3.1 will be applied in the present context.

Suppose then that we remove the hypotheses that d and D be continuous and let
an ice sheet with thickness D > 0 correspond to D+ and a free surface with D = 0
correspond to D−.

With the relevant elements of (3.4) in force, δ(LD+
+L

(0)
D−

) = 0 obviously implies the
appropriate natural conditions (2.8) and (2.9) for (x, y) ∈ D+ and (6.2) for (x, y) ∈ D−.
The contribution from the interface can be deduced from (3.6) as∫

Γ

n ·
{( ∫ −d

−h

δψ∇hψ dz

)
+

−
(∫ 0

−h

δψ∇hψ dz

)
−

+
{(

β∇2
hχ

)
∇h(δχ) − δχ∇h

(
β∇2

hχ
)

− (1 − ν)c
}

+

}
ds.

We assume that χ+ and (∇hχ)+ are bounded and that ψ+ = ψ− on Γ × [−h, −d],
implying the coupling δψ+ = δψ− there between the two functionals. The calculation
leading to (3.7) applies with only the minor adjustment that one-sided edge conditions
replace jump conditions and the natural conditions satisfied by the stationary point
ψ = φ, χ = η at the interface follow at once as

n · ∇hφ = 0 ((x, y) ∈ Γ, −d � z � 0), (6.5)
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and

〈〈n · ∇hφ〉〉 = (Mη)+ = (Sη)+ = 0. (6.6)

Thus, finding the stationary point of LD+
+ L

(0)
D−

is equivalent to satisfying the
relevant equations, including the appropriate conditions at the interface that the
bending moment and shear stress of the sheet must vanish at its edge and the normal
fluid velocity must be zero on the edge of the sheet and continuous elsewhere. The
continuity of pressure is imposed by the essential condition 〈〈ψ〉〉 = 0 which implies
that φ is continuous on Γ × [−h, −d].

At this point we make the assumption that d → 0 at the edge of the sheet, that is,
d+ = 0, but we retain the condition D+ > 0. The reason for this simplification is that,
although (6.5) is a natural condition of the variational principle and therefore does
not have to be satisfied by the trial functions chosen to generate an approximation, it
is unlikely that the one-term trial functions that we shall use will adequately represent
the abrupt change in the water depth implied by d+ > 0. However, there is an issue
at the interface which we do have to address. Our existing trial functions defined by
(4.5) and (6.3), namely,

ψ(x, y, z) = ϕ(x, y)w(x, y, z) ((x, y) ∈ D+, −h � z � −d),

ψ(x, y, z) = ϕ(0)(x, y)w(0)(x, y, z) ((x, y) ∈ D−, −h � z � 0)),

}
(6.7)

violate the essential condition ψ+ = ψ− because D+ > 0 implies that w 
= w(0). An
apparently simple resolution of this difficulty is to abandon the hypothesis D+ > 0
but we reject it on two grounds. First, it limits the generality of the model and
second because the moduli of the four complex roots of the dispersion relation
(4.6) tend to infinity as D → 0, as we noted earlier, and this would give rise to
computational difficulties in implementing the model. Therefore, in order to use the
existing approximations and retain (4.7) and (6.4) we instead remove the essential
condition that leads to the conflict and modify the variational principle so that
〈〈φ〉〉 = 0 is a natural condition.

This is achieved by introducing the auxiliary variable u(x, y, z) ((x, y) ∈ Γ, −h �
z � 0) as a Lagrange multiplier and the functional

I (ψ+, ψ−, u) =

∫
Γ

∫ 0

−h

(ψ+ − ψ−)u dz ds,

which takes account of the simplification that d = 0 at the interface. Then the
contribution to δ(LD+

+ L
(0)
D−

− I ) on Γ involving ψ± is

C̃Γ ≡
∫

Γ

∫ 0

−h

{δψ+{n · (∇hψ)+ − u}−δψ−{n · (∇hψ)− −u}−(ψ+ −ψ−)δu} dz ds. (6.8)

As C̃Γ must vanish for arbitrary variations δψ± and δu it follows that the stationary
point ψ = φ of the extended functional does indeed satisfy the natural jump condition
〈〈φ〉〉 = 0, in addition to those given in (6.6), and that u = n · (∇hφ)+ = n · (∇hφ)− at
the stationary point. The coupling between the functionals defined on D± is provided
by I in the revised principle, which does not require ψ to be continuous across
Γ × [−h, 0]. Therefore the natural conditions, including 〈〈φ〉〉 = 0, can be satisfied
arbitrarily closely by choosing the basis for the approximation ψ ≈ φ to be large
enough. One possibility is to extend (6.7) to include the eigenfunctions corresponding
to evanescent modes, as has been implemented in the case of the mild-slope equation
by Porter & Staziker (1995) and Athanassoulis & Belibassakis (1999).
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The present purpose is to use (6.7) as it stands, expressed for convenience in the
form ψ(x, y, z) =ϕ(x, y)w(x, y, z) for (x, y) ∈ D\Γ , with the superscripts temporarily
suppressed for (x, y) ∈ D−. A approximation that is of the same order as (6.7) and
consistent with it, in the sense of allowing the variable z to be integrated out, is
also required for u and we therefore take u(x, y, z) = ũ(x, y)v(x, y, z), in which v is
assumed to be known. It follows by substituting the approximations into (6.8) that

C̃Γ vanishes for arbitrary variations δϕ± and δũ provided that∫ 0

−h

w±{n · (∇h(ϕw))± − ũ v} dz = 0,

∫ 0

−h

{ϕ+w+ − ϕ−w−} v dz = 0. (6.9)

The final equation may be recognized as a weak form of 〈〈ψ〉〉 = 0 and all three may
be combined to give 〈∫ 0

−h

(ϕw) n · ∇h(ϕw) dz

〉
= 0,

which represents conservation of depth-averaged energy flux across Γ .
The basis function v approximates the vertical structure of the normal velocity

across the interface between the two fluid regions. We therefore represent it in terms
of w+ and w− by taking v = c+w+ + c−w− and ensure that it has the same average
with respect to both. Thus we choose c± so that (w+, v) = (w−, v), in which the inner
product used earlier applies with H = h. With this choice and elimination of ũ, (6.9)
implies the jump conditions〈∫ 0

−h

w n · ∇h(ϕw) dz

〉
= 0, 〈ϕ〉 = 0. (6.10)

(It can be shown that constants c± exist so that v has the required properties, but
their values are not required.)

We are now in a position to give the full set of natural conditions that results from
using (6.7) with the variational principle δ{LD+

+ L
(0)
D−

− I} = 0. It consists of (4.7),
holding for (x, y) ∈ D+, (6.4), holding for (x, y) ∈ D−, and the jump conditions

ϕ − ϕ(0) = (Mχ)+ = (Sχ)+ = 0,

an · ∇hϕ + ϕn · {(W, WH )∇hH + (W, WD)∇hD}+

= a(0)n · ∇hϕ
(0) + ϕ(0)n ·

{(
W (0), W

(0)
h

)
∇hh

}
−,

 (6.11)

holding on Γ . These incorporate (6.10) with the notation of (6.7) restored and the
transformation (4.12) from w to W carried out.

6.3. A two-dimensional problem

We return to the two-dimensional setting to illustrate how the solution of the equations
governing partial ice cover may be implemented.

There is considerable scope for combining a variable bedform and an ice sheet of
finite or semi-infinite extent. We consider here the simple example in which the ice
sheet occupies the interval 0 � x � � and take the mean water depth to be constant
for x < 0 and x > �. It is convenient to adopt the notation of § 4.1 as far as possible
and we set

h(x) = h0 (x < 0),

h(x) = h1 (x > �).
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It is assumed that the sheet elevation and thickness satisfy d(0+) = d(�−) = 0,
D(0+) > 0 and D(�−) > 0, consistent with the theory developed above. We also
suppose that h′(x), d ′(x) and D′(x) are continuous for 0 <x <�.

Within the semi-infinite regions, the solutions of (6.4) may be taken in the forms

ϕ(0) =

{
A0e

ik
(0)
0 x + B0e

−ik
(0)
0 x (x < 0),

A1e
ik

(0)
1 (�−x) + B1e

−ik
(0)
1 (�−x) (x > �),

(6.12)

in which the wavenumber k
(0)
i is that corresponding to the dispersion relation in (6.3)

with h = hi . As in the earlier example, the amplitudes of the scattered waves are
determined through (5.6).

For 0 < x < �, we use the form (5.1) of the equations and in terms of the variables
occurring there, the jump conditions (6.11) to be applied at x = 0 are

φ0(0+) = ϕ(0)(0−), φ2(0+) = φ′
2(0+) = 0,

a0φ
′
0(0+) + j (0+)φ0(0+) = a

(0)
0 ϕ(0) ′

(0−),

}
(6.13)

since h′(0−) = 0. Here we have introduced the jump coefficient

j (0+) = (W, WH )0H
′(0+) + (W, WD)0D

′(0+)

and used the subscripts 0 and 1 to indicate that a term is to be evaluated at
H = h = h0 and H = h = h1, respectively.

The corresponding conditions prevailing at x = � are

φ0(�−) = ϕ(0)(�+), φ2(�−) = φ′
2(�−) = 0,

a1φ
′
0(�−) + j (�−)φ0(�−) = a

(0)
1 ϕ(0) ′

(�+),

}
(6.14)

where

j (�−) = (W, WH )1H
′(�−) + (W, WD)1D

′(�−).

The system (5.8) has to be solved again, subject to appropriate boundary conditions.
By combining (6.12), (6.13) and (6.14) we find that

F0

(
Φ(0+)

U0Φ
′(0+)

)
= 2ik(0)

0 a
(0)
0 A0, F0

(
Φ(0+)

U0Φ
′(0+)

)
= −2ik(0)

0 a
(0)
0 B0,

F1

(
Φ(�−)

U1Φ
′(�−)

)
= −2ik(0)

1 a
(0)
1 A1, F1

(
Φ(�−)

U1Φ
′(�−)

)
= 2ik(0)

1 a
(0)
1 B1,


(6.15)

where U is defined by (5.9), Ai = (Ai, 0, 0)T , Bi = (Bi, 0, 0)T , and Fi is the 3 × 6 matrix
given by

Fi =

fi 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1


with

f0 = j (0+) + ik(0)
0 a

(0)
0 , f1 = j (�−) + ik(0)

1 a
(0)
1 .
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Applying (6.15) to the solution for 0< x < � in the form (5.18) easily leads to the
scattering matrix in the form

S = −
(

k
(0)
0 a

(0)
0 0

0 −k
(0)
1 a

(0)
1

)−1 (
G11 G14

G41 G44

) (
k

(0)
0 a

(0)
0 0

0 −k
(0)
1 a

(0)
1

)
,

where

G =

(
F 0Ψ (0)

F1Ψ (�)

)(
F0Ψ (0)

F 1Ψ (�)

)−1

.

The identity SS = I holds as in § 5, and so does (5.20) with x0 = 0+ and x1 = �−.
The scalar counterpart of (5.20) applying in the free-surface regions is[

a(0)(ϕ(0)ϕ(0)′ − ϕ(0)ϕ(0)′
)
]x1

x0
= 0,

where x0 < x1 < 0 − or �+ < x0 < x1. We can combine two versions of this equation
with (5.20) so as to encompass the whole interval −∞ <x < ∞. By using (6.13) and
(6.14) at the junctions and (6.12) to evaluate the contributions as |x| → ∞, we readily
find that

k
(0)
0 a

(0)
0 (|A0|2 − |B0|2) + k

(0)
1 a

(0)
1 (|A1|2 − |B1|2) = 0. (6.16)

This equation is also satisfied by the far-field wave amplitudes in the exact solution.
It can be deduced directly from (5.21) by setting β0 = β1 = 0 there.

6.4. Numerical results

The first task is to establish the accuracy of the model that we have presented in
this new setting. We remark that we do not expect the results in the case of partial
ice cover to be as accurate as those in the case where there is total ice cover. This
is because there is now an extra source of scattering not present previously, namely
at the ends of the ice sheet. Although the variational principle has been adapted in
order to satisfy continuity of pressure and mass flux, it is recognized that the one-term
approximations used may struggle to resolve the scattering process at the interface
between the ice-covered and free-surface regions.

As in § 5.2, where the case of total ice cover is considered, the energy balance
equations, given for the present case by (6.16), can be used as a check on the accuracy
of the numerical solver, and comments similar to those described in § 5.2 also apply
here.

Further evidence of the accuracy of the method can be obtained by referring to
established results.

Many authors who have considered the effect on waves of a thin finite elastic
sheet floating on water have chosen to focus on the elevation of the sheet rather
than the reflection and transmission coefficients. Those that have produced results for
the scattering coefficients (Andrianov & Hermans 2003 and Tkacheva 2002) provide
insufficient details of the parameters that they used to allow comparison with our
results. In contrast, Wu et al. (1995) list a detailed set of parameters in their analysis
of wave interaction with a finite-length floating platform of constant thickness, in
which they compared theoretical results for sheet elevation and bending moments
with the experimental results of Utsunomiya et al. (1995).

In Wu et al. (1995), E =103 MPa, ν = 0.3, ρi =220.5 kg m3, l = 10 m, D(x) = D0 =
38 mm, and H0 = 1.1 m. The draught of their sheet is 8.4mm, but we have set
this to zero for our calculations as we have restricted ourselves to the case where
d(x) → 0 as x → 0, l. A similar assumption was made by Tkacheva (2002) who also
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Figure 8. Curves showing (a) non-dimensional plate elevation and (b) non-dimensional
bending moment against length of plate for an incident wave period of τ = 0.7 s. The plus
symbols show the experimental results of Utsunomiya et al. (1995).

compared results for bending moments along the sheet to those given in Wu et al.
(1995). The incident wave has a period of τ = 0.7 s in figure 8 and τ =1.429 s in
figure 9. Each figure shows the variation along the plate of non-dimensional sheet
elevation, |χ̃ | = |χ(x)/A0|, and bending moment, |M̃ | =(ρwD0/lρi)φ2(x). The functions
χ(x) = φ1(x) and φ2(x) are easily obtained from Ψ (x), whilst other quantities such
as the dynamic pressure under the sheet and the shearing stress are proportional to
φ0(x) and φ′

2(x) and are therefore also readily obtained.
Despite the cautionary remark about accuracy made above, the results we have

obtained are in good agreement with those of Wu et al. (1995), Tkacheva (2002) and
Khabakhpasheva & Korobkin (2002), having the correct behaviour, although there
are slight discrepancies in the size of the elevation at the ends of the plate. The
experimental results of Utsunomiya et al. (1995) are overlaid onto the figures for
comparison.

It is worth noting that in this numerical experiment, where the sheet is of constant
thickness, there is, of course, an analytic solution for Ψ (x) composed of the set (5.11),
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Figure 9. Curves showing (a) non-dimensional plate elevation and (b) non-dimensional
bending moment against length of plate for an incident wave period of τ =1.429 s. The
plus symbols show the experimental results of Utsunomiya et al. (1995).

namely,

Ψ (x) =

(
C0g(x) C0g(x)

iU0C0K0g(x) −iU0C0K0g(x)

)
, g(x) = diag(eik0x, eiµ0x, e−iµ0x).

This analytic form for the solution over the ice has been used as a check on the
numerical solver.

In the example considered above we made the assumption that d(x) = 0 for 0 < x < l

in order to compare with existing work. We now consider examples in which we
require only that d(x) → 0 as x → 0, l whilst Archimedes’s principle is imposed to
ensure that the ice sheet is neutrally buoyant. That is, we require that the integral
of ρiD(x) − ρwd(x) over 0 < x < l to be zero. Let us consider an ice sheet having a
horizontal upper surface and a parabolic lower surface such that

D(x) = D0 + 4AD(1 − x/l)(x/l), (6.17)
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Figure 10. Reflection coefficient against wavelength for an elastic plate of constant thickness
D0 = 38 mm (solid) and one with the parabolic profile given by (6.17) with D0 = 30 mm
(dashed).
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Figure 11. Reflection coefficient against wavenumber k
(0)
0 for an ice sheet with the parabolic

profile given by (6.17) with D0 = 0.1 m, H0 = 20 m and l = 40m (solid), 80 m (long dash) and
160 m (short dash).

where D0 + AD is the maximum thickness of the sheet. Then d(x) = −4AD(1−x/l)(x/l)
and Archimedes’s principle implies that AD = 3

2
ρiD0/(ρw − ρi). In the particular case

considered previously, ρi ≈ 1
5
ρw and hence AD ≈ 3

8
D0. Then, the ‘average’ thickness of

the sheet described by (6.17) is 5
4
D0. Hence, choosing a thickness profile in (6.17) with

D0 = 30 mm will allow comparison with a sheet of constant thickness D0 = 38 mm
considered previously.

The reflection coefficients for these two cases are plotted in figure 10 against
the dimensionless wavelength λ/l (where now λ= 2π/k

(0)
0 ), and they show similar

behaviour with slightly reduced reflection for the sheet with a parabolic profile
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compared with that of constant thickness. In figure 10 the wave period varies from
τ = 0.98 s when λ/l = 0.15 to τ = 2.3 s when λ/l = 0.65.

For the remaining results, we revert to our original set of parameters for ice
described in § 5.2. As in the previous example, we use (6.17) to define the variation
of ice thickess but now AD =13.5D0, implying that the thickest part of the ice is
14.5 times the thickness at the edge of the ice. In figure 11 we have considered the
effect of the length of the ice sheet on the reflection coefficient where H0 = 20 m and
D0 = 0.1m over a range of wavenumbers k

(0)
0 .

Thus it can be seen that increasing the length of an ice sheet with the same
maximum thickness reduces the amount of reflection, as might be expected as the
gradient of the thickness is reduced.

7. Conclusions
One of the main features of the work described here is the derivation of a variational

principle that is equivalent to the linearized equations governing the motion of an
elastic sheet of varying thickness and infinite or finite extent, floating on water of
varying depth. The natural conditions of the principle include the edge conditions
for a sheet of non-constant thickness, in addition to the field equation and the
boundary conditions. The variational formulation can be used in conjunction with
the Rayleigh–Ritz method to produce solutions for a range of full linear problems
incorporated in the general setting, to any desired accuracy, and it is applicable to
other situations which involve wave propagation in and by floating elastic sheets.

Here we have exploited the formulation in a particular way, using it to simplify the
model and thereby obtain approximations at a significantly reduced computational
cost. This has been achieved by replacing the vertical component of the fluid motion
locally by the eigenfunction that supports propagating waves for an ice sheet of
constant thickness on water of constant depth. The approach therefore extends to
the problem under consideration the ‘mild-slope approximation’ used previously for
purely free-surface motions. This procedure is itself an extension of shallow-water
theory to the general wavelength régime.

The accuracy of the approximation can only be ascertained by comparing numerical
results for the model with the ‘exact’ solutions of test problems. As suggested above,
the latter could be obtained by returning to the variational principle and taking an
N-dimensional basis for the approximation by including the vertical eigenfunctions
corresponding to N − 1 evanescent modes. Numerical experiments will determine the
value of N required to achieve a given convergence criterion. This process has been
carried out for the mild-slope approximation to free-surface flows by Porter & Staziker
(1995) and Athanassoulis & Belibassakis (1999), the latter authors obtaining superior
convergence by extending the basis in a particular way. This and other evidence in the
form of comparisons with experimental data and with full linear solutions obtained
by other means, including that for periodic beds given recently by Porter & Porter
(2003), indicates that the mild-slope approach provides a good approximation for
free-surface motions, as long as the bedform gradient is not too large. On this basis,
we suppose that the one-term trial function used in the present problem is also likely
to lead to a reasonable first approximation, at least for moderate bedform and ice
thickness slopes. As we suggested in § 6, the approximation will almost certainly be
at its weakest in resolving the scattering effects at the edges of ice sheets and this is
where the inclusion of evanescent modes could prove to be most significant.
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In addition to the multi-mode exploitation of the variational principle, the generality
of the formulation allows a wide range of problems to be considered using just the
single mode approximation. Here we have restricted attention to particular examples
of two-dimensional scattering, to show how numerical solutions can be constructed
and demonstrate the overall viability of the approach. The model equations derived
can be applied directly to three-dimensional problems, such as wave scattering by
a circular ice sheet, wave trapping and crack problems (similar to those considered
by Khabakhpasheva & Korobkin 2002 for example), and the interplay between and
individual effects of ice sheet thickness and depth variations can be explored more
thoroughly than we have attempted here.

Appendix
We require the values of the various inner products involving W (H, D, Z) and its

derivatives that occur in (4.13), where W is given in (4.12). The wavenumber k(H, D)
occurring in W is defined implicitly by (4.6), which can be expressed in the form

f (k, D) tanh(kH ) = κ, f (k, D) = {1 − α(D) + β(D)k4}k. (A 1)

Now

WH = kH sech(kH )Z sinh k(Z + H ) + (kH )H sech2(kH ) sinh(kZ),

WD = kD{sech(kH )Z sinh k(Z + H ) + H sech2(kH ) sinh(kZ)},

and it follows by direct integration that

2(W, WH ) = (kH/4k2) sech2K{2K − sinh(2K) − 4K2 tanh K} − Ksech2K tanh K,

2(W, WD) = (kD/4k2) sech2K{2K − sinh(2K) − 4K2 tanh K},

in which the abbreviation K = kH has been used.
We note that the identity (W, WH )H − ‖WH ‖2 = (W, WHH) + (WWH )Z=−H gives

an alternative way of calculating the value of this term and similarly for the other
coefficients of the same form. Referring to the notation (4.14) we find that

C(1) = sech2K{(kHH/8k2)A +
(
k2

H/8k3
)
B + (kH/2k)C + k tanh K(K tanh K − 1)},

C(2) = sech2K
{
(kDD/8k2)A +

(
k2

D/8k3
)
B

}
,

C(3) = sech2K{(kHD/4k2)A + (kHkD/4k3)B + (kD/2k)C},

in which

A = 2K − sinh(2K) − 4K2 tanh K,

B = 8K3 tanh2 K − 4K2 tanh K + sinh(2K) − (8/3)K3 − 2K,

C = 4K2 tanh2 K − K2 − 5K tanh K.

The required derivatives of k are readily found from (A 1) and are given by

EkH = −2f k, EkD = −fD sinh(2K),

EkHH = −Fk2
H − 4kH {f + kfk cosh2 K},

EkDD = −Fk2
D − 2kD{fkD sinh(2K) + 2HfD cosh2 K} − fDD sinh(2K),

EkHD = −FkHkD − kH {fkD sinh(2K) + 2HfD} − 2kD{f + kfk} − 2kfD,
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in which

E = fk sinh(2K) + 2Hf, F = fkk sinh(2K) + 4Hfk cosh2 K.

The derivatives of f are

fk = 1 − α + 5βk4, fD = −D−1k(α − 3βk4),

fkk = 20βk3, fkD = −D−1(α − 15βk4), fDD = 6D−2βk5,

in which the expressions for α and β given in (2.10) have been used.
In the case d = D = 0, (A 1) reduces to the dispersion relation for an unloaded

free surface with f = k. We then have

EkH = −2k2, E = 2K + sinh(2K),

EkHH = −4Hk2
H cosh2 K − 4kkH (1 + cosh2 K).

Using these equations and noting that H = h, it can be confirmed that the above
expressions for the coefficients (W, WH ) and C(1) reduce to the corresponding terms
given by Chamberlain & Porter (1995) for the modified mild-slope equation.

REFERENCES

Andrianov, A. I. & Hermans, A. J. 2003 The influence of water depth on the hydroelastic response
of a very large floating platform. Marine Structures 16, 355–371.

Athanassoulis, G. A. & Belibassakis, K. A. 1999 A consistent coupled-mode theory for the
propagation of small-amplitude water waves over variable bathymetry regions. J. Fluid Mech.
389, 275–301.

Balmforth, N. J. & Craster, R. V. 1999 Ocean waves and ice sheets. J. Fluid Mech. 395, 89–124.

Berkhoff, J. C. W. 1973 Computation of combined refraction-diffraction. Proc. 13th Conf. on
Coastal Engng, July 1972, Vancouver, Canada, vol. 2, pp. 471–490. ASCE.

Berkhoff, J. C. W. 1976 Mathematical models for simple harmonic linear waves. Wave diffraction
and refraction. Delft Hydr. Rep. W 154-IV.

Chamberlain, P. G. & Porter, D. 1995 The modified mild-slope equation. J. Fluid Mech. 291,
393–407.

Chung, H. & Fox, C. 2002 Calculation of wave-ice interaction using the Wiener-Hopf technique.
New Zealand J. Maths 31, 1–18.

Evans, D. V. & Davies, T. V. 1968 Wave-ice interaction. Rep. 1313. Davidson Lab – Stevens Institute
of Technology, New Jersey.

Hermans, A. J. 2003a Interaction of free-surface waves with a floating dock. J. Engng Maths 45,
39–53.

Hermans, A. J. 2003b The ray method for the deflection of a floating flexible platform in short
waves. J. Fluids Struct. 17, 593–602.

Hermans, A. J. 2004 Interaction of free-surface waves with floating flexible strips. J. Engng Maths
49, 133–147.

Kashiwagi, M. 1998 A B-Spline Galerkin scheme for calculating hydroelastic response of a very
large floating structure in waves. J. Mar. Sci. Tech. 3, 37–49.

Khabakhpasheva, T. I. & Korobkin, A. A. 2002 Hydroelastic behaviour of compund floating plate
in waves J. Engng Maths 44, 21–40.

Kreisel, G. 1949 Surface waves. Q. Appl. Maths 7, 21–44.

Lamb, H. 1932 Hydrodynamics. Cambridge University Press.

Linton, C. M. & Chung, H. 2003 Ocean waves and ice sheets. Wave Motion 38, 43–52.

Meylan, M. H. 2001 A variational equation for the wave forcing of floating thin plates. Appl. Ocean
Res. 23, 195–206.

Meylan, M. H. & Squire, V. A. 1994 Response of ice floes to ocean waves. J. Geophys. Res. 99,
891–905.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

04
00

92
67

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112004009267


Wave scattering by ice sheets 179

Meylan, M. H. & Squire, V. A. 1996 Response of a circular ice floe to ocean waves. J. Geophys.
Res. 101, 8869–8894.

Newman, J. N. 1994 Wave effects on deformable bodies. Appl. Ocean Res. 16, 47–59.

Porter, D. 2003 The mild-slope equations. J. Fluid Mech. 494, 51–63.

Porter, D. & Staziker, D. J. 1995 Extensions of the mild-slope equation. J. Fluid Mech. 300,
367–382.

Porter, R. & Porter, D. 2003 Scattered and free waves over periodic beds. J. Fluid Mech. 483,
129–163.

Smith, R. & Sprinks, T. 1975 Scattering of surface waves by a conical island. J. Fluid Mech. 72,
373–384.

Squire, V. A. & Dixon, T. W. 2001 On modelling an iceberg embedded in shore-fast sea ice. J. Engng
Maths 40, 211–226.

Squire, V. A., Dugan, J. P., Wadhams, P., Rottier, P. J. & Liu, A. K. 1995 Of ocean waves and ice
sheets. Annu. Rev. Fluid Mech. 27, 115–168.

Sturova, I. 2001 The diffraction of surface waves by an elastic platform floating on shallow water.
J. Appl. Maths Mech. 65(1), 109–117.

Takagi, K. 2002 Surface wave diffraction on a floating elastic plate. Appl. Ocean Res. 24, 175–183.

Takagi, K., Shimada, K. & Ikebuchi, T. 2000 An anti-motion device for a very large floating
structure. Marine Struct. 13, 421–436.

Timoshenko, S. & Woinowsky-Krieger, S. 1959 Theory of Plates and Shells, 2nd Edn. McGraw-
Hill.

Tkacheva, L. A. 2001a Scattering of surface waves by the edge of a floating elastic plate. J. Appl.
Mech. Tech. Phys. 42, 638–646.

Tkacheva, L. A. 2001b Hydroelastic behavior of a floating plate in water. J. Appl. Mech. Tech.
Phys. 42, 991–996.

Tkacheva, L. A. 2001c Surface wave diffraction on a floating elastic plate. Fluid Dyn. 36, 776–789.

Tkacheva, L. A. 2002 Diffraction of surface waves at a thin elastic floating plate. Proc. 17th Intl
Workshop on Water Waves and Floating Bodies, Cambridge, UK (ed. R. C. T. Rainey & S. F.
Lee), pp. 104–107. W. S. Atkins.

Wu, C., Watanabe, E. & Utsunomiya, T. 1995 An eigenfunction matching method for analyzing
the wave induced responses of an elastic floating plate Appl. Ocean Res. 17, 301–310.

Utsunomiya, T., Watanabe, E., Wu, C., Hayashi, N., Nakia, K. & Sekita, K. 1995 Wave response
analysis of a flexible floating structure by the BE-FE combination method. Proc. 5th Intl
Offshore and Polar Engng Conf. The Hague pp. 400–405. ISOPE.

Zilman, G. & Miloh, T. 2000 The diffraction of surface waves by an elastic platform floating on
shallow water. Appl. Ocean Res. 22, 191–198.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

04
00

92
67

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112004009267

