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Abstract

Let ℘� denote the Weierstrass function with a period lattice �. We consider escaping
parameters in the family β℘�, i.e. the parameters β for which the orbits of all critical values
of β℘� approach infinity under iteration. Unlike the exponential family, the functions con-
sidered here are ergodic and admit a non-atomic, σ -finite, ergodic, conservative and invariant
measure μ absolutely continuous with respect to the Lebesgue measure. Under additional
assumptions on ℘�, we estimate the Hausdorff dimension of the set of escaping parameters
in the family β℘� from below, and compare it with the Hausdorff dimension of the escap-
ing set in the dynamical space, proving a similarity between the parameter plane and the
dynamical space.

1. Introduction

In a series of papers, J. Hawkins and L. Koss [5, 6, 7] described the dynamics of Wei-
erstrass functions. The ergodic theory of non-recurrent elliptic functions was developed by
J. Kotus and M. Urbański in [12, 13, 14]. Recently, in [8], examples have been given of all
possible types of behaviour of non-recurrent elliptic functions (in that paper, referred to as
critically tame functions). This class includes maps with critical values approaching infinity.
The aim of this paper is to show that the escaping parameters form a rather ‘big’ set.

Let f : C → C be a transcendental meromorphic function where C = C � {∞} denotes
the Riemann sphere. For n ∈ N, denote by f n the nth iterate of f . The Fatou set F( f ) of
f is the set of points z ∈ C such that all iterates f n(z) are well-defined and { f n}n∈N forms
a normal family in some neighbourhood of z. The complement J ( f ) of F( f ) in C is called
the Julia set of f . P. Domı́nguez in [4] proved that for transcendental meromorphic functions
with poles the escaping set

I ( f ) =
{

z ∈ C : lim
n→∞ f n(z) = ∞

}
is non-empty and J ( f ) = ∂ I ( f ). Later, P. Rippon and G. Stallard [17] showed that if
additionally f is in the Eremenko–Lyubich class B, then I ( f ) ⊂ J ( f ), which follows that
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IntI ( f ) = �. Recently, several authors [1, 2, 3, 18, 19] have studied properties of the
escaping set for entire and meromorphic functions. The Hausdorff dimension dimH (I ( f ))

of the escaping set for some class of meromorphic functions was estimated from below by
J. Kotus in [10]. Applying her result to elliptic functions of the form gβ = β℘�, β ∈ C\{0},
where ℘� is the Weierstrass elliptic function, we have dimH (I (gβ)) � 4/3. This estimate
together with the fact proved by Bergweiler, Kotus and Urbański in [2, 12] that the upper
bound on dimH (I (gβ)) is the same as the lower bound gives

dimH (I (gβ)) = 4

3
.

In this paper, we additionally assume that the lattice of ℘� is triangular and the critical values
of ℘� are poles. As a counterpart of the escaping set I (gβ) we consider the set of escaping
parameters in the family gβ , i.e.

E =
{
β ∈ C \ {0} : lim

n→∞ gn
β(ci) = ∞, i = 1, 2, 3

}
,

where ci is a critical point of ℘�. For these maps the Julia set is the Riemann sphere C. In
this paper, we construct a collection of Cantor subsets of E with a prescribed growth rate and
estimate their Hausdorff dimension from below. The main result is the following theorem.

THEOREM. For any one-parameter family of functions gβ(z) = β℘�(z), where β ∈
C \ {0}, � = [λ1, e2π i/3λ1] is a triangular lattice such that all critical values of ℘� are
poles, the Hausdorff dimension of the set of escaping parameters E is greater or equal to
4/3.

The paper is organised as follows. In Section 2, we give background definitions and results
for studying elliptic functions, in particular the Weierstrass ℘�-function. We also summarise
metric properties of maps in E . In Sections 3 and 4, we show how one can find escaping
parameters. In the final section, we estimate dimH (E) from below.

2. General preliminaries

We begin with the definition and basic properties of elliptic functions. For λ1, λ2 ∈ C\{0}
such that Im(λ1/λ2)� 0, a lattice � ⊂ C is defined as

� = [λ1, λ2] = {lλ1 + mλ2, l, m ∈ Z}.

Definition 2·1. An elliptic function is a meromorphic function f : C → C which is peri-
odic with respect to a lattice �, i.e. f (z) = f (z + lλ1 + mλ2) for all z ∈ C and l, m ∈ Z.

We denote by bl,m = lλ1 + mλ2, l, m ∈ Z, lattice points of � and by

R = {t1λ1 + t2λ2; 0 � t1, t2 < 1}
the fundamental parallelogram of �. For a non-constant elliptic function and a given w ∈ C

the number of solutions to the equation f (z) = w in R equals the sum of multiplicities of
poles in the fundamental parallelogram. Since the derivative of an elliptic function is also an
elliptic function which is periodic with respect to the same lattice, then each elliptic function
has infinitely many critical points but only finitely many critical values. Due to periodicity,
elliptic functions do not have asymptotic values. Thus, they belong to the class S.
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A special case of an elliptic function is the Weierstrass elliptic function defined by

℘�(z) = 1

z2
+

∑
w∈�\{0}

(
1

(z − w)2
− 1

w2

)

for all z ∈ C and every lattice �. It is well known that ℘� is periodic with respect to � and
has order 2. The derivative of the Weierstrass function is also an elliptic function which is
periodic with respect to � and is defined by

℘ ′
�(z) = −2

∑
w∈�

1

(z − w)3
.

The Weierstrass elliptic function and its derivative are related by the differential equation(
℘ ′

�(z)
)2 = 4 (℘�(z))3 − g2℘�(z) − g3, (2·1)

where g2 = g2(�) = 60
∑

w∈�\{0}(1/w4), g3 = g3(�) = 140
∑

w∈�\{0} (1/w6). The
numbers g2(�), g3(�) are invariants of the lattice � in the following sense: if gi (�) =
gi (�

′), i = 2, 3, then � = �′. Moreover, for any g2, g3 such that g3
2 − 27g2

3 � 0 there is
a lattice � with invariants g2, g3. For any lattice � the Weierstrass function ℘� satisfies the
property of homogeneity, i.e.

℘α�(αz) = 1

α2
℘�(z) (2·2)

for every α ∈ C \ {0}. The Weierstrass function has poles of order 2 at lattice points and
its derivative has poles of order 3. In the fundamental parallelogram the map ℘� has three
critical points which we denote by

c1 = λ1

2
, c2 = λ2

2
, c3 = λ1 + λ2

2
.

We use the symbols ei = ℘�(ci), i = 1, 2, 3 to denote the critical values of ℘�. They are
related to each other with the equations

e1 + e2 + e3 = 0, e1e3 + e2e3 + e1e2 = −g2

4
, e1e2e3 = g3

4
. (2·3)

We consider only Weierstrass functions which are periodic with respect to triangular lattices,
i.e. lattices � = [λ1, λ2] such that λ2 = e2π i/3λ1. In other words a lattice is triangular if
� = e2π i/3�. For triangular lattices g2 = 0 and the critical values of ℘� are the cube
roots of g3/4. Moreover, (2·1) and (2·3) imply that the critical value e3 is a non-zero real
number and e1, e2 are given by the formulas e1 = e4π i/3e3, e2 = e2π i/3e3. The iterates of
the critical values turn out to have the same property, i.e. ℘n

�(e1) = e4π i/3℘n
�(e3), ℘n

�(e2) =
e2π i/3℘n

�(e3), n � 1. It is a consequence of invariance of the triangular lattice with respect
to the rotation z �→ e2π i/3z and the homogeneity of ℘� given in (2·2) (see [6] for details).

We additionally assume that all critical values of the Weierstrass function ℘� are poles.
An example of a family of such lattices was given by Hawkins and Koss in [6].

Example 2·2. Let � = [ω1, ω2] be a lattice with invariants g2 = 0, g3 = 4. It is a trian-

gular lattice for which e1 = e4π i/3, e2 = e2π i/3, e3 = 1. Let γ1 = 3

√
e4π i/3ω2

1/m, where m is
an odd negative number and γ2 = γ1ω2/ω1. Then, the lattice � = [γ1, γ2] is triangular and
all critical values of ℘� are poles.
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Now, we describe ergodic properties of the so-called critically tame elliptic functions
studied by Kotus and Urbański in [14]. We start with some definitions and notations.

Definition 2·3. Let f : C → C be an elliptic function and z ∈ C such that all iterates
f n(z), n ∈ N are well-defined. A point w ∈ C is called an ω−limit point of z for f , if there
is a sequence of natural numbers nk → ∞ such that

lim
k→∞

dists( f nk (z), w) = 0,

where dists denotes the spherical metric in C. The ω−limit set of z is a set of all ω−limit
points of z and we denote it by ω(z).

Definition 2·4. Suppose that:

(i) g : D → C is an analytic map where D ⊂ C is a domain;
(ii) U (z, g−1, r) is the connected component of g−1(B(g(z), r)) containing z for given

z ∈ C and r > 0;
(iii) c ∈ Crit(g).

Then, there exist r = r(g, c) > 0 and K = K (g, c) � 1 such that

1

K
|z − c|p � |g(z) − g(c)| � K |z − c|p

and
1

K
|z − c|p−1 � |g′(z)| � K |z − c|p−1

for all z ∈ U (c, g−1, r) and some natural p = p(g, c), and also such that

g(U (c, g−1, r)) = B(g(c), r).

The number p is called the order of g at the critical point c and is denoted by pc. The number
pc − 1 is the multiplicity of the zero of g′ at c.

Denote by Pn( f ), n � 1, the set of prepoles of order n of f , i.e.

Pn( f ) = {z ∈ C : f n(z) = ∞}.
In particular, P1( f ) is the set of poles of f .

Definition 2·5. Suppose that f : C → C is an elliptic function and b ∈ P1( f ). Let ηb

denote the multiplicity of the pole b. We define

q := sup{ηb : b ∈ P1( f )} = max{ηb : b ∈ P1( f ) � R}.

Denote by Crit( f ) the set of critical points of f , i.e.

Crit( f ) = {z ∈ C : f ′(z) = 0}.
Let Critb( f ) be the set of all prepole critical points, i.e.

Critb( f ) = Crit( f ) �
⋃
n∈N

Pn( f ).

Moreover, we define the set of all critical points of f whose trajectories approach infinity,
i.e.

Crit∞( f ) =
{

c ∈ Crit( f ) : lim
n→∞ f n(c) = ∞

}
.
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Note that Pn( f ) = f −1(Pn−1( f )) for all n � 2 and Pn( f ) ⊂ J ( f ). For every c ∈ Critb( f )

there is a unique n ∈ N such that c ∈ Pn( f ). For all c ∈ Crit∞( f ) and every R > 0 there
exists a natural N such that for all n � N : | f n+1(c)| > R. This inequality is equivalent to
the fact that f n(c) lies close to a unique pole bn . That implies that for all c ∈ Crit∞( f ) one
can define a sequence of poles bn close to the iterates of f .

Definition 2·6. Let f : C → C be an elliptic function. For c ∈ Crit∞( f ) we define

qc := lim sup
n→∞

ηbn ,

where the sequence {bn}n�1 was defined above. Moreover, let

l∞ = max{pcqc : c ∈ Crit∞( f )},
where pc is as in Definition 2·4.

Definition 2·7. Let f : C → C be an elliptic function and c ∈ Crit( f ). We say that f is
critically tame if the following conditions are satisfied:

(a) if c ∈ F( f ), then there exists an attracting or parabolic cycle of period p, S =
{z0, f (z0), . . . , f p−1(z0)} such that ω(c) = S.

(b) if c ∈ J ( f ), then one of the following holds:

(i) ω(c) is a compact subset of C such that c � ω(c);
(ii) c ∈ Critb( f );

(iii) c ∈ Crit∞( f ) and

dimH (J ( f )) >
2l∞

l∞ + 1
.

Denote by Tr( f ) ⊂ J ( f ) the set of all transitive points of f , that is the set of points in
J ( f ) such that their forward trajectories are dense in J ( f ).

We quote two results from [14], which became an inspiration for studying the escaping
parameters E . Below, a conformal measure m is defined by means of the spherical metric.

PROPOSITION 2·8. Suppose that f is a critically tame elliptic function, denote h =
dimH (J ( f )). Then there exist:

(a) a unique atomless h-conformal measure m for f : J ( f ) \ {∞} → J ( f ) where m is
ergodic, conservative and m(Tr( f )) = 1;

(b) a non-atomic, σ -finite, ergodic, conservative and invariant measure μ for f , equival-
ent to the measure m. Additionally, μ is unique up to a multiplicative constant and is
supported on J ( f ).

The next proposition gives sufficient conditions for an elliptic function f to satisfy the
conditions given in Definition 2·7.

PROPOSITION 2·9. If every critical point c of f is such that c ∈ Critb( f ) or c ∈
Crit∞( f ), then J ( f ) = C and f is critically tame.

Proposition 2·8 and Proposition 2·9 imply that the elliptic functions considered in sub-
sequent sections are ergodic with respect to the Riemann measure m. This shows a contrast
with Lyubich’s result [15] which says that ez is not ergodic with respect to the Lebesgue
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measure. The escaping parameters in the exponential family fλ(z) = λez , λ ∈ C \ {0},
were also studied by Urbański and Zdunik in [20]. Under the assumption that absolute val-
ues of points in the forward trajectory of 0 grow exponentially fast (this includes the case
λ > 1/e), they showed that ω(z) = { f n

λ (0) : n � 0} � {∞} for a.e. z ∈ J ( fλ) = C.
Later, Hemke [9] proved that these maps are non-recurrent. His results cover fast escaping
parameters in the tangent family fλ(z) = λ tan(z), λ ∈ C \ {0}, for which again he proved
that ω(z) = { f n

λ (±λi) : n � 0} � {∞} for a.e. z ∈ J ( fλ) = C. In all cases the existence
of a non-atomic, σ -finite, ergodic, conservative and invariant measure μ for f , absolutely
continuous with respect to the Lebesgue measure, follows from [11] or Proposition 2·8.

At the end of this section we recall the definition of distortion. Let U be an open subset
of C, f : U → C be a conformal map, then its distortion is defined as

L( f, U ) := supz∈U | f ′(z)|
infz∈U | f ′(z)| .

For conformal maps we have

L( f, U ) = L( f −1, f (U )). (2·4)

In order to prove the lower bound on dimH (E), we use the following theorem proved by
C. McMullen in [16].

PROPOSITION 2·10. For each n ∈ N, let An be a finite collection of disjoint compact
subsets of R

d , each of which has positive d-dimensional Lebesgue measure. Define

Un =
⋃

An∈An

An, A =
∞⋂

n=1

Un.

Suppose that for each An ∈ An there is An+1 ∈ An+1 and a unique An−1 ∈ An−1 such that
An+1 ⊂ An ⊂ An−1. If �n, dn are such that, for each An ∈ An,

vol(Un+1 � An)

vol(An)
� �n > 0,

diam(An) � dn < 1,

dn
n→∞−→ 0,

then

dimH (A) � d − lim sup
n→∞

n∑
j=1

| log � j |
| log dn| .

3. The escaping parameters

In contrast to the exponential and tangent families, there are no known examples of ℘�-
Weierstrass functions with critical values approaching infinity. In this section, we review
results from [8] on how one can find elliptic functions with critical values eventually mapped
onto poles (Lemma 3·1) and maps with critical values escaping to infinity (Lemma 3·2).

We consider a one-parameter family of functions

gβ(z) = β℘�(z),
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where β ∈ C \ {0}, � = [λ1, e2π i/3λ1] is a triangular lattice such that all critical values of
℘� are poles (see e.g. Example 2·2). The functions under consideration gβ are periodic and
their critical points are the same as for the Weierstrass function ℘�. It was shown in [8] that
the critical orbits of gβ behave symmetrically, i.e.

gn
β(c2) = γ 2gn

β(c1), gn
β(c3) = γ gn

β(c1) (3·1)

for all n ∈ N, where γ = e2π i/3. Therefore it is enough to consider only one critical orbit,
so we consider the trajectory of the critical value gβ(c1). Denote Bρ(∞) := {z ∈ C : |z| >

ρ}, ρ > 0. In order to prove the next lemma, we consider auxiliary functions hn(β) =
gn

β(c1), n ∈ N. It will become apparent that these functions are defined outside a countable
set of parameters.

LEMMA 3·1. Let � be a triangular lattice such that all critical values of ℘� are poles.
For every r > 0 and each n � 2, there is β ∈ B(1, r), such that gn

β(c1) = ∞.

Proof. Consider the function h1 defined above, i.e. h1 : B(1, r) → C, h1(β) = gβ(c1),
where 0 < r < 1/2. By assumption, h1(1) = g1(c1) = ℘�(c1) is a pole of ℘�. Now, we
define h2 : B(1, r) → C by the formula h2(β) = g2

β(c1) and denote by P(h2) the set of
its poles. Since h2(1) = g2

1(c1) = ℘2
�(c1) = ∞, then 1 ∈ P(h2). Thus, the theorem is

true for n = 2. We can take r so small that 1 is a unique pole of h2 in B(1, r). Actually,
let β ∈ B(1, r) \ {1} be a pole of h2. Thus, h2(β) = g2

β(c1) = β℘�(β℘�(c1)) = ∞,
so ℘�(β℘�(c1)) = ∞, which implies β℘�(c1) ∈ �. However ℘�(c1) ∈ �, so taking r
small enough we have β℘�(c1) � � for β ∈ B(1, r) \ {1}. Then, h2 is a non-constant
meromorphic function. Since 1 is a pole of the function h2, then there exists R2 � 22 such
that BR2(∞) ⊂ h2(B(1, r)). The set BR2(∞) contains infinitely many lattice points b(2)

l,m of �

and each of them (being a pole of ℘�) is the image of a parameter β
(2)

l,m ∈ B(1, r) \ {1} under
h2. Choose one of β

(2)

l,m and denote it, for simplicity, by β2. We denote the corresponding
pole by b2. We have constructed the map gβ2 , such that the orbit of the critical point c1 is the
following

c1 �−→ gβ2(c1) �−→ g2
β2

(c1) = b2 �−→ g3
β2

(c1) = ∞,

where gβ2(c1) is close to (but not equal to) the critical value ℘�(c1) and g2
β2

(c1) ∈ BR2(∞).

Let r1 := r and take 0 < r2 < r1/2 so small that B(β2, r2) ⊂ B(1, r) \ P(h2) and
h3(B(β2, r2)) ⊂ BR2(∞), where h3(β) = g3

β(c1). Restricting h3 to B(β2, r2), we take

R3 � 2R2 � 23 such that BR3(∞) ⊂ h3(B(β2, r2)). Each lattice point b(3)

l,m ∈ BR3(∞) is
the image of a parameter β

(3)

l,m ∈ B(β2, r2) \ {β2}. Note that this proves the existence of a
parameter β3 such that

c1 �−→ gβ3(c1) ≈ ℘�(c1) �−→ g2
β3

(c1) ≈ b2 �−→ g2
β3

(c1) = b3 �−→ g4
β3

(c1) = ∞,

where none of the ≈ are equality and bi ∈ � � BRi (∞) with Ri � 2i , i = 2, 3. Now,
by induction we define a map with the property that the critical point is a prepole of order
n � 4. Fix n � 4 and suppose for all k < n we have constructed the maps

hk : B(1, r) \
⋃

1<i<k

P(hi) −−→ C
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by the formulas hk(β) = gk
β(c1), where P(hi) is the set of poles of hi . We define a map

hn : B(1, r) \
⋃

1<k<n

P(hk) −−→ C

such that hn(β) = gn
β(c1). The set

⋃
1<k<n P(hk) is a set of essential singularities of hn . In

its complement the map hn is meromorphic, denote by P(hn) its set of poles. Set a pole
βn−1 ∈ P(hn). The equality hn(βn−1) = gn

βn−1
(c1) = ∞ implies that there is a small enough

constant 0 < rn−1 < rn−2/2 such that B(βn−1, rn−1) ⊂ B(βn−2, rn−2) \ ⋃1<k<n P(hk) and
hn(B(βn−1, rn−1)) ⊂ BRn−1(∞). Now, we can take Rn � 2Rn−1 � 2n such that BRn (∞) ⊂
hn(B(βn−1, rn−1)). Next, we choose one of the lattice points of � from BRn (∞) and denote
it by bn . We know that bn is the image of a parameter βn ∈ B(βn−1, rn−1) \ {βn−1}, i.e.
bn = hn(βn) = gn

βn
(c1). The orbit of the critical point c1 for the map gβn is the following

c1 �−→ gβn (c1) ≈ ℘�(c1) �−→ g2
βn

(c1) ≈ b2 �−→ · · · �−→ gn
βn

(c1) = bn �−→ gn+1
βn

(c1) = ∞,

where gi
βn

(c1) ∈ BRi (∞), i = 1, . . . , n. This completes the proof.

LEMMA 3·2. Let � be a triangular lattice such that all critical values of ℘� are poles.
Then, for every r > 0 there is a parameter β ∈ B(1, r) such that limn→∞ gn

β(ci ) = ∞, i =
1, 2, 3.

Proof. We show that limn→∞ gn
β(c1) = ∞. The ‘symmetry’ of the critical orbits given

in (3·1) implies the lemma is true for c2 and c3. By Lemma 3·1, there is a sequence of
parameters {βn}n�2 such that∣∣gn

βn
(c1)

∣∣ > Rn and gn+1
βn

(c1) = ∞,

where Rn � 2n and a decreasing sequence of balls B(βn, rn) ⊂ B(1, r1) \ ⋃1<k<n P(hk)

such that rn < 2−n . Since rn → 0, then there is the parameter β = ⋂
n�2 B(βn, rn). By the

construction from the proof of Lemma 3·1, β is an accumulation point of the set
⋃

n>1 P(hn).
The iterates of the critical point under gβ satisfy the conditions

∣∣gn
β(c1)

∣∣ > Rn � 2n for all
n � 2. Hence, limn→∞ Rn = ∞ which implies limn→∞ gn

β(c1) = ∞.

4. Escaping parameters with a prescribed growth rate of critical orbits

In this section, we construct a collection of subsets of E with a prescribed growth rate of
the critical orbits of gβ . We fix a function ℘� such that

� = [λ1, e2π i/3λ1]
is a triangular lattice and all critical values of ℘� are poles. We consider the one-parameter
family of functions

gβ(z) = β℘�(z), β ∈ B(1, r) for 0 < r <
1

4
− 1

2α + 4
≈ 0.04, (4·1)

where α = sin(π/8) =
√

2 − √
2/2. The functions gβ are periodic and their critical points

are the same as the critical points of the Weierstrass function ℘�. It follows from (3·1) that
the critical orbits of gβ behave symmetrically, i.e.

gn
β(c2) = γ 2gn

β(c1), gn
β(c3) = γ gn

β(c1)
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for all n ∈ N, where γ = e2π i/3. Since ℘� is periodic, there exists a constant

0 < ε0 < min{1, |λ1|/3}
and holomorphic functions G, H such that for each pole bl,m ∈ �

℘�(z) = a−2

(z − bl,m)2
+ a−1

z − bl,m
+

∞∑
k=0

ak(z − bl,m)k =: G(z)

(z − bl,m)2
,

℘ ′
�(z) = b−3

(z − bl,m)3
+ b−2

(z − bl,m)2
+ b−1

z − bl,m
+

∞∑
k=0

bk(z − bl,m)k =: H(z)

(z − bl,m)3

for all z ∈ B(bl,m, ε0), where G(bl,m) = a−2 � 0, H(bl,m) = b−3 � 0. Shrinking ε0, if
necessary, we may assume that G(z)� 0 and H(z)� 0 for z ∈ B(bl,m, ε0). The periodicity
of ℘� implies that there exist universal constants K1, K2 > 0 such that

K −1
1 � |G(z)| � K1, K −1

2 � |H(z)| � K2

on all balls B(bl,m, ε0). Hence,

K −1
1

|z − bl,m |2 � |℘�(z)| =
∣∣∣∣ G(z)

(z − bl,m)2

∣∣∣∣ � K1

|z − bl,m |2
and

K −1
2

|z − bl,m |3 � |℘ ′
�(z)| =

∣∣∣∣ H(z)

(z − bl,m)3

∣∣∣∣ � K2

|z − bl,m |3
for all l, m ∈ Z and z ∈ B(bl,m, ε0). For every β ∈ B(1, r), where r is defined in (4·1) and
for all z ∈ B(bl,m, ε0), l, m ∈ Z, we have

C−1
1

|z − bl,m |2 �
∣∣gβ(z)

∣∣ = |β℘�(z)| � C1

|z − bl,m |2 (4·2)

and
C−1

2

|z − bl,m |3 �
∣∣g′

β(z)
∣∣ = |β℘ ′

�(z)| � C2

|z − bl,m |3 (4·3)

where C1 = 2K1, C2 = 2K2. Since 0 < r < 1/4 − 1/(2α + 4), then |Argβ| � arcsin(1/4 −
1/(2α + 4)) ≈ 0.04 for β ∈ B(1, r). Hence, shrinking ε0 if necessary, we can choose
constants M1, M2, 0 < M2 − M1 < π/4 such that

M1 � arg(βG(z)) � M2 (4·4)

for all β ∈ B(1, r) and z ∈ B(bl,m, ε0), l, m ∈ Z. We recall from Section 3 that

h1 : B(1, r) → C, h1(β) = gβ(c1),

where c1 is the critical point of ℘�. We choose ε > 0 such that the following conditions are
simultaneously satisfied

ε < min{ε0, |℘�(c1)|/3},
B(℘�(c1), ε) ⊂ h1(B(1, r)),

℘� is one-to-one in each of the segments defined in (4·6).

(4·5)

Let

U (z0, ε) :=
{

z ∈ C : − 3π

8
� Arg(z − z0) � 3π

8
, |z − z0| � ε

}
, (4·6)
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where z0 ∈ � and ε is defined above. Next, we take R1 > 0 such that

U (℘�(c1), ε) ⊂ P(0, R1, 2R1) := {z ∈ C : R1 < |z| < 2R1}.
Using (4·2) and (4·4), we get{

z ∈ C : |z| � C1

ε2
, −3π

4
+ M2 � argz � 3π

4
+ M1

}
⊂ gβ(U (bl,m, ε))

⊂
{

z ∈ C : |z| � C−1
1

ε2
, −3π

4
+ M1 � argz � 3π

4
+ M2

}
for all l, m ∈ Z, β ∈ B(1, r). Since 0 < M2 − M1 < π/4, there exists φ ∈ R such that{

z ∈ C : |z| � C1

ε2
, φ − π

8
� argz � φ + 9π

8

}
⊂ gβ(U (bl,m, ε)). (4·7)

We choose R̃2 such that

R̃2 >
C1

(1 − α)ε2
, (4·8)

where α = sin(π/8). Let a1 = R̃2/R1 > C1/((1 − α)ε2 R1). Now, we define a constant

a0 = max

⎧⎨
⎩2, a1,

1

R1
,

3C3/2
1

C2 R1
,

64C6
1

C4
2 R5

1

,

(
4ε(1 + r)C3/2

1

C2 R5/2
1

)2/3

,

√
C1

3
√

C2
√

R1

⎫⎬
⎭ . (4·9)

Fix

a > a0

and consider a sequence of radii

Rn := an−1 R1, n � 2.

Let

P(0, Rn, 2Rn) := {z ∈ C : Rn < |z| < 2Rn}, n � 2,

and

P+(0, Rn, 2Rn) := {z ∈ C : Rn < |z| < 2Rn, φ < argz < φ + π}, n � 2, (4·10)

where φ is as in (4·7). The condition a > a0 � 2 guarantees that the annuli P(0, Rn, 2Rn)

are pairwise disjoint. It follows from (4·7) that

{z ∈ C : |z| > R2 � R̃2, φ � argz � φ + π} ⊂ gβ(U (bl,m, ε)) (4·11)

for all poles bl,m and β ∈ B(1, r). Recall that in the previous section we defined the auxiliary
functions hn(β) = gn

β(c1), n ∈ N.

Definition 4·1. We define the following family of sets

A0(a) = {A0 = B(1, r)},
A1(a) = {A1 = h−1

1 (U (℘�(c1), ε)) ⊂ A0},
A2(a) = {A2 ⊂ A1 | ∃b(2)

l,m ∈ � : U (b(2)

l,m, ε) ⊂ P+(0, R2, 2R2), A2 = h−1
2 (U (b(2)

l,m, ε))},
. . .

An(a) = {An ⊂ An−1 | ∃b(n)

l,m ∈ � : U (b(n)

l,m, ε) ⊂ P+(0, Rn, 2Rn), An = h−1
n (U (b(n)

l,m, ε))},
. . .
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Fig. 1.

where h−1
n (U (b(n)

l,m, ε)) denotes a component of the preimage of U (b(n)

l,m, ε). Let

Un(a) =
⋃

An∈An(a)

An, A(a) =
∞⋂

n=1

Un(a).

The sets defined above are illustrated in Figure 1.

PROPOSITION 4·2. For each n ∈ N, the set An(a) defined above is non-empty.

Proof. In the previous section, we showed that the function h2 has a pole at β = 1 =
h−1

1 (℘�(c1)) ∈ ∂ A1. Thus, A1(a) � �. Since h1(A1) = U (℘�(c1), ε), it follows from
(4·11) that

h2(A1) = {gβ(h1(β))|β ∈ A1} ⊃ P+(0, R2, 2R2).

Take a pole b(2)

l,m ∈ � � P+(0, R2, 2R2) with U (b(2)

l,m, ε) ⊂ P+(0, R2, 2R2). Since h2(A1) ⊃
P+(0, R2, 2R2), there exists β

(2)

l,m ∈ A1 such that h2(β
(2)

l,m) = b(2)

l,m . Thus, the set A2(a) is non-
empty. Now, we fix n � 3 and suppose that An−1(a) � �. We will show that An(a) � �.
Since hn−1(An−1) = U (b(n−1)

l,m , ε) for some b(n−1)

l,m ∈ �� P+(0, Rn−1, 2Rn−1), it follows from
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(4·11) that

hn(An−1) = {gβ(hn−1(β))|β ∈ An−1} ⊃ P+(0, Rn, 2Rn),

as Rn = an−2 R2 and a > a0 � 2 in view of (4·9). Choosing β
(n)

l,m ∈ An−1 such that hn(β
(n)

l,m) =
b(n)

l,m ∈ � � P+(0, Rn, 2Rn) and U (b(n)

l,m, ε) ⊂ P+(0, Rn, 2Rn), we get An(a) � �. By
induction, the lemma is true for all n ∈ N.

THEOREM 4·3. Let gβ be the family of maps defined in (4·1) and let a0 be the constant
given in (4·9). Then, for every a > a0 there is a Cantor subset A(a) of E , and for this subset

dimH (A(a)) � 4

3
− 6 log 2

log a
.

COROLLARY 4·4. For a ↗ +∞ we have dimH (A(a)) � 4/3 − 6 log 2/ log a ↗ 4/3
and dimH (E) � 4/3.

5. The proofs

In this section, we prove Theorem 4·3. We fix a > a0 and consider the sets An(a), n � 1,
given in Definition 4·1. We drop the parameter a and keep notation from the last section.

The first two lemmas include the estimates of the derivatives h′
n , n � 2.

LEMMA 5·1. Let An ∈ An, n � 2. Then, for every β ∈ An

h′
n(β) = 1

β

n−1∏
k=1

g′
β(gk

β(c1))

[
gβ(c1) +

n∑
k=2

gk
β(c1)∏k−1

i=1 g′
β(gi

β(c1))

]
.

Proof. Let n = 2. Then:

h1(β) = gβ(c1) = β℘�(c1);
h2(β) = g2

β(c1) = β℘�(β℘�(c1));

h′
2(β) = ℘�(β℘�(c1)) + β℘ ′

�(β℘�(c1))℘�(c1) = g2
β(c1)

β
+ g′

β(β℘�(c1))gβ(c1)

β

= 1

β
g′

β(gβ(c1))

[
gβ(c1) + g2

β(c1)

g′
β(gβ(c1))

]
.

Suppose that the lemma is true for some n � 2. We show that it is true for n + 1.

hn+1(β) = β℘�(hn(β)),

h′
n+1(β) = ℘�(hn(β)) + β℘ ′

�(hn(β)) · h′
n(β)

= gn+1
β (c1)

β
+ g′

β(gn
β(c1)) · 1

β
·

n−1∏
k=1

g′
β(gk

β(c1)) ·
[

gβ(c1) +
n∑

k=2

gk
β(c1)∏k−1

i=1 g′
β(gi

β(c1))

]

= gn+1
β (c1)

β
+ 1

β
·

n∏
k=1

g′
β(gk

β(c1)) ·
[

gβ(c1) +
n∑

k=2

gk
β(c1)∏k−1

i=1 g′
β(gi

β(c1))

]

= 1

β
·

n∏
k=1

g′
β(gk

β(c1)) ·
[

gβ(c1) +
n∑

k=2

gk
β(c1)∏k−1

i=1 g′
β(gi

β(c1))
+ gn+1

β (c1)∏n
i=1 g′

β(gi
β(c1))

]

= 1

β
·

n∏
k=1

g′
β(gk

β(c1)) ·
[

gβ(c1) +
n+1∑
k=2

gk
β(c1)∏k−1

i=1 g′
β(gi

β(c1))

]
.
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As can be seen from the previous section (see (4·2), (4·3)), there are universal constants
C1, C2 > 0 such that

C−1
1

|z − bl,m |2 �
∣∣gβ(z)

∣∣ � C1

|z − bl,m |2 ,
C−1

2

|z − bl,m |3 �
∣∣g′

β(z)
∣∣ � C2

|z − bl,m |3
for all l, m ∈ Z, every z ∈ B(bl,m, ε) and all β ∈ B(1, r). To simplify the formulas in the
following part of the paper, we write

|gβ(z)| � C1

|z − bl,m |2 , |g′
β(z)| � C2

|z − bl,m |3 . (5·1)

Note that if β ∈ Un, n � 2 and z = g j
β(c1) with j ∈ {1, 2, . . . , n − 1} we have gβ(z) =

g j+1
β (c1) = h j+1(β) ∈ U (b( j+1)

l,m , ε) ⊂ P+(0, R j+1, 2R j+1) and moreover, using (5·1),

R j+1 � |gβ(z)| � C1

|z − bl,m |2 � 2R j+1 (5·2)

for some bl,m ∈ � � P(0, R j , 2R j ). The inequality (5·2) implies that

C1

2R j+1
� |z − bl,m |2 � C1

R j+1
,

which is equivalent to (
C1

2R j+1

)3/2

�
∣∣z − bl,m

∣∣3 �
(

C1

R j+1

)3/2

.

Then,
C2(

C1

R j+1

)3/2 � |g′
β(z)| � C2∣∣z − bl,m

∣∣3 � C2(
C1

2R j+1

)3/2

or, equivalently,

C2 R3/2
j+1

C3/2
1

� |g′
β(z)| �

23/2C2 R3/2
j+1

C3/2
1

(5·3)

for β ∈ Un, n � 2 and z = g j
β(c1) with j ∈ {1, 2, . . . n − 1}.

LEMMA 5·2. Let An ∈ An, n � 2. Then, for every β ∈ An

1

2(1 + r)

(
C2

C3/2
1

)n−1

a
3n(n−1)

4 R
3n−1

2
1 �

∣∣h′
n(β)

∣∣ � 5

2(1 − r)

(
23/2C2

C3/2
1

)n−1

a
3n(n−1)

4 R
3n−1

2
1 .

Proof. In Lemma 5·1, we proved that

h′
n(β) = 1

β

n−1∏
k=1

g′
β(gk

β(c1))

[
gβ(c1) +

n∑
k=2

gk
β(c1)∏k−1

i=1 g′
β(gi

β(c1))

]

for all n � 2 and every β ∈ An . First, we estimate the product
∏n−1

k=1 g′
β(gk

β(c1)). Observe
that

gβ(gk
β(c1)) = gk+1

β (c1) = hk+1(β), k = 1, 2, . . . , n − 1.
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The functions h2, . . . , hn are well-defined for β ∈ An , because An ⊂ Ak, k = 2, . . . , n.
Since hk+1(β) ∈ P(0, Rk+1, 2Rk+1), then using (5·3), we get∣∣∣∣∣

n−1∏
k=1

g′
β(gk

β(c1)

∣∣∣∣∣ � 23/2C2 R3/2
2

C3/2
1

· . . . · 23/2C2 R3/2
n

C3/2
1

=
(

23/2C2

C3/2
1

)n−1

a
3n(n−1)

4 R
3(n−1)

2
1 .

Analogously, we get the estimate from below∣∣∣∣∣
n−1∏
k=1

g′
β(gk

β(c1)

∣∣∣∣∣ �
(

C2

C3/2
1

)n−1

a
3n(n−1)

4 R
3(n−1)

2
1 .

Finally,(
C2

C3/2
1

)n−1

a
3n(n−1)

4 R
3(n−1)

2
1 �

∣∣∣∣∣
n−1∏
k=1

g′
β(gk

β(c1)

∣∣∣∣∣ �
(

23/2C2

C3/2
1

)n−1

a
3n(n−1)

4 R
3(n−1)

2
1 . (5·4)

Now, using (5·4), we estimate the sum
∑n

k=2
gk

β (c1)∏k−1
i=1 g′

β (gi
β (c1))

.∣∣∣∣∣
n∑

k=2

gk
β(c1)∏k−1

i=1 g′
β(gi

β(c1))

∣∣∣∣∣ �
n∑

k=2

2Rk(
C2

C3/2
1

)k−1
a

3k(k−1)

4 R
3(k−1)

2
1

=
n∑

k=2

2(
C2

C3/2
1

)k−1
a

(k−1)(3k−4)

4 R
3k−5

2
1

= 2C3/2
1

C2
4
√

a R1

n∑
k=2

(
C3/2

1

C2

)k−2
1

a
3k2−7k+3

4 R
6k−11

4
1

.

Since a > a0 � 2 and 3k2 − 7k + 3 � 6k − 11 for k = 2, 3, . . ., then

n∑
k=2

(
C3/2

1

C2

)k−2
1

a
3k2−7k+3

4 R
6k−11

4
1

�
n∑

k=2

(
C3/2

1

C2

)k−2
1

(a R1)
6k−11

4

.

Using the inequality (6k − 11)/4 � k − 2 for k � 3/2 and the fact that a > a0 �
max{1/R1, 3C3/2

1 /(C2 R1)}, we get

n∑
k=2

(
C3/2

1

C2

)k−2
1

(a R1)
6k−11

4

�
n∑

k=2

(
C3/2

1

C2a R1

)k−2

�
∞∑

k=2

(
C3/2

1

C2a R1

)k−2

= 1

1 − C3/2
1

C2a R1

<
3

2
.

Hence, ∣∣∣∣∣
n∑

k=2

gk
β(c1)∏k−1

i=1 g′
β(gi

β(c1))

∣∣∣∣∣ � 3C3/2
1

C2
4
√

a R1
� R1

2
, (5·5)

because a > a0 � 64C6
1/(C

4
2 R5

1). Using (5·5), we get

R1

2
= R1 − R1

2
�
∣∣∣∣∣gβ(c1) +

n∑
k=2

gk
β(c1)∏k−1

i=1 g′
β(gi

β(c1))

∣∣∣∣∣ � 2R1 + R1

2
= 5R1

2
. (5·6)

Plugging (5·4), (5·6) into the formula for h′
n from Lemma 5·1, we obtain

|h′
n(β)| � 5

2(1 − r)

(
23/2C2

C3/2
1

)n−1

a
3n(n−1)

4 R
3n−1

2
1
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and

|h′
n(β)| � 1

2(1 + r)

(
C2

C3/2
1

)n−1

a
3n(n−1)

4 R
3n−1

2
1 .

Both estimates prove the lemma.

In Proposition 4·2, we showed that each set An provided in Definition 4·1 is non-empty
and each of its elements, which are sets An , contains boundary parameters βn such that
hn(βn) ∈ � � P(0, Rn, 2Rn). Later in this section, we estimate the diameters of An and the
ratios vol(Un+1 � An)/vol(An) and in order to do that we have to prove that the functions
hn are conformal on An ∈ An . Note that the maps hn, n � 2, are holomorphic outside a
countable set of points and have poles at βn−1 ∈ ∂ An−1.

LEMMA 5·3. For each An ∈ An, n � 1, the map hn is conformal on An.

Proof. The map h1 is one-to-one and holomorphic on A1. By induction, we show that the
maps hn, n � 2 are conformal. Suppose that hn, n � 1 is conformal on An , we prove that
hn+1 is conformal on An+1 ⊂ An . If n = 1 then we take the segment

U (b(1)

l,m, ε) ⊂ P(0, R1, 2R1)

with b(1)

l,m = ℘�(c1) and if n � 2 we consider a segment

U (b(n)

l,m, ε) ⊂ P+(0, Rn, 2Rn).

We know that An = h−1
n (U (b(n)

l,m, ε)), n � 1. Let b(n)

l,m = bn, βn = h−1
n (bn) ∈ ∂ An and

b(n+1)

l,m = bn+1. If U (bn+1, ε) ⊂ P+(0, Rn+1, 2Rn+1), then h−1
n+1(U (bn+1, ε)) = An+1 ⊂ An .

We define a map ĥn+1(β) = βn℘�(hn(β)), β ∈ An . It follows from (4·7) that

ĥn+1(An) ⊃
{

z ∈ C : |z| � C1

ε2
, φ − π

8
� argz � φ + 9π

8

}
.

We show that ĥn+1 is one-to-one in An . Take β ′, β ′′ ∈ An such that ĥn+1(β
′) = ĥn+1(β

′′).
By definition of the map ĥn+1, we have ℘�(hn(β

′)) = ℘�(hn(β
′′)), where hn(β

′), hn(β
′′) ∈

hn(An) = U (bn, ε). Since ℘� is one-to-one in U (bn, ε), then hn(β
′) = hn(β

′′) and this
implies that β ′ = β ′′. This follows from the injectivity of the map hn . There is a set Ân+1 ⊂
An such that

ĥn+1( Ân+1) =
{

z ∈ C : (1 − α)Rn+1 < |z| < (2 + α)Rn+1, φ − π

8
< argz < φ + 9π

8

}
(5·7)

for α = sin(π/8) and φ as in (4·7). Now, we show that An+1 ⊂ Ân+1. Note that
ĥn+1(β) = (βn/β)hn+1(β). Since hn+1(An+1) = U (bn+1, ε) ⊂ P+(0, Rn+1, 2Rn+1) and
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0 < r < 1/4 − 1/(2α + 4), then for β ∈ An+1 we have:

|ĥn+1(β)| >
1 − r

1 + r
Rn+1 >

3α + 8

5α + 8
Rn+1 ≈ 0.92Rn+1 > (1 − α)Rn+1 ≈ 0.62Rn+1;

|ĥn+1(β)| <
1 + r

1 − r
2Rn+1 <

2(5α + 8)

3α + 8
Rn+1 ≈ 2.17Rn+1 < (2 + α)Rn+1 ≈ 2.38Rn+1;

argĥn+1(β) < φ + π + 2 max
β∈B(1,r)

Argβ < φ + π + 2 arcsin

(
1

4
− 1

2α + 4

)

≈ φ + π + 0.08 < φ + 9π

8
;

argĥn+1(β) > φ − 2 max
β∈B(1,r)

Argβ > φ − 2 arcsin

(
1

4
− 1

2α + 4

)
≈ φ − 0.08 > φ − π

8
.

Thus, ĥn+1(An+1) ⊂ ĥn+1( Ân+1). Since the map ĥn+1 is one-to-one in An , then An+1 ⊂
Ân+1. It follows from (4·10) and (5·7) that

U (bn+1, ε) = hn+1(An+1) ⊂ P+(0, Rn+1, 2Rn+1)

⊂
{

z ∈ C : (1 − α)Rn+1 < |z| < (2 + α)Rn+1, φ − π

8
< argz < φ + 9π

8

}
= ĥn+1( Ân+1).

Since 0 < r < 1/4 − 1/(2α + 4) then, taking ζ = hn(β) for β ∈ ∂ Ân+1, we have

2r |℘�(ζ )| <

(
1

2
− 1

α + 2

)
|℘�(ζ )| =

(
1

2
− 1

α + 2

) ∣∣∣∣∣ ĥn+1(β)

βn

∣∣∣∣∣
�
(

1

2
− 1

α + 2

)
(2 + α)Rn+1

|βn| = αRn+1

2|βn| < αRn+1,

as |βn| � 1 − r > 1/2. Hence (see Figure 1),

dist(ĥn+1(β), hn+1(An+1)) � αRn+1 > 2r |℘�(ζ )|.
We define auxiliary maps Hn+1(β) = hn+1(β) − w, Ĥn+1(β) = ĥn+1(β) − w with w ∈
hn+1(An+1). Thus, for β ∈ ∂ Ân+1 we have

|Ĥn+1(β)| = |ĥn+1(β) − w| � dist(ĥn+1(β), hn+1(An+1)) > 2r |℘�(ζ )|
and

|Hn+1(β) − Ĥn+1(β)| = |hn+1(β) − ĥn+1(β)| = |β℘�(ζ ) − βn℘�(ζ )|
= |β − βn||℘�(ζ )| < 2r |℘�(ζ )|.

Hence, |Ĥn+1(β)| > |Hn+1(β) − Ĥn+1(β)| in the set ∂ Ân+1. Since the map hn+1 is holo-

morphic on intAn , then the maps Hn+1, Ĥn+1 are holomorphic on Ân+1. Thus, the assump-
tions of the Rouché theorem are satisfied. It implies that Ĥn+1 and Hn+1 = Ĥn+1 + Hn+1 −
Ĥn+1 have the same number of zeros in Ân+1, or, equivalently, the equations ĥn+1(β) = w

and hn+1(β) = w have the same number of roots in Ân+1. Since the map ĥn+1 is one-to-one
in Ân+1, then the former equation has a unique root for a given w. Thus, so does the latter.
Since An+1 ⊂ Ân+1, then hn+1 is one-to-one in An+1. The map hn+1 is holomorphic on intAn ,
so is conformal on An+1.

Remark 5·4. In Lemma 5·3, we showed in fact that there is a unique set

A1 = h−1
1 (U (℘�(c1), ε))
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and the segments U (bn, ε) ⊂ P+(0, Rn, 2Rn), n � 2, are in one-to-one correspondence
with the sets An ∈ An . Hence, each An , n � 1, is a finite collection of the sets An .

LEMMA 5·5. Let An ∈ An, n � 2. Then

L(hn, An) � 5(1 + r)

1 − r
· 2

3(n−1)

2 .

Proof. Using the definition of distortion and Lemma 5·2, we get

L(hn, An) = supβ∈An
|h′

n(β)|
infβ∈An |h′

n(β)| �
5

2(1−r)

(
23/2C2

C3/2
1

)n−1
a

3n(n−1)

4 R
3n−1

2
1

1
2(1+r)

(
C2

C3/2
1

)n−1
a

3n(n−1)

4 R
3n−1

2
1

= 5(1 + r)

1 − r
· 2

3(n−1)

2 .

LEMMA 5·6. For each An ∈ An, n � 2,

diam(An) � 4ε(1 + r)(
C2

C3/2
1

)n−1
a

3n(n−1)

4 R
3n−1

2
1

,

where ε is as in (4·5).

Proof. From Definition 4·1 we know that each set of the form hn(An) is a segment of
radius ε, so diam(hn(An)) � 2ε. Using Lemma 5·2, we get

diam(An) � diam(hn(An))

infβ∈An |h′
n(β)| � 2ε

1
2(1+r)

(
C2

C3/2
1

)n−1
a

3n(n−1)

4 R
3n−1

2
1

= 4ε(1 + r)(
C2

C3/2
1

)n−1
a

3n(n−1)

4 R
3n−1

2
1

.

Remark 5·7. Observe that diam(An) → 0 as n → ∞, since a > a0 � 2. This proves that
the set A from Definition 4·1 is a Cantor set of parameters.

By Lemma 5·6, the numbers dn given in Proposition 2·10 are equal to

dn = 4ε(1 + r)(
C2

C3/2
1

)n−1
a

3n(n−1)

4 R
3n−1

2
1

, n � 2 (5·8)

and d1 = diam(A1) � 2r < 1 by (4·1). A straightforward calculation shows that the
condition d2 < 1 is equivalent to a > (4ε(1 + r)C3/2

1 /(C2 R5/2
1 ))2/3. Using (5·8), we get

dn+1/dn = C3/2
1 /(C2a3n/2 R3/2

1 ) and

d3

d2
= C3/2

1

C2a3 R3/2
1

< 1 ⇐⇒ a >

√
C1

3
√

C2
√

R1
.

Since a > a0 � max
{
1,
( 4ε(1+r)C3/2

1

C2 R5/2
1

)2/3
,

√
C1

3√C2
√

R1

}
and dn+1/dn < d3/d2 for n � 3, we get

dn < 1, n = 2, 3, . . . as required in Proposition 2·10.

Next, we estimate the density of the sets Un+1 � An in the set An ∈ An from below for all
n � 1.
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LEMMA 5·8. There exists M > 0 such that

vol(Un+1 � An)

vol(An)
� M

29n Rn+1
,

for each An ∈ An, n � 2. Moreover,

vol(U2 � A1)

vol(A1)
� M ′

R2
,

for some M ′ > 0.

Proof. First, we estimate the number Nn of parallelograms of the lattice � in the half-
annulus P+(0, Rn, 2Rn) for n � 2. We have

Nn � 4π R2
n − π R2

n

2a2(�)
= 3π R2

n

2a2(�)
, (5·9)

where a2(�) is the measure of each parallelogram of �. Recall that in Definition 4·1 we
considered the segments

U (bl,m, ε) =
{

z ∈ C : − 3π

8
� Arg(z − bl,m) � 3π

8
, |z − bl,m | � ε

}
,

where bl,m ∈ � and ε > 0 as in (4·5). Hence, vol(U (bl,m, ε)) = 3πε2/8.

Fix n � 2 and An ∈ An . There exist l, m ∈ Z such that An = h−1
n (U (b(n)

l,m, ε)), where
U (b(n)

l,m, ε) ⊂ P+(0, Rn, 2Rn). Moreover, for each Ak ∈ An+1 there are l ′ = l ′(k), m ′ =
m ′(k) ∈ Z such that Ak = h−1

n+1(U (b(n+1)

l ′,m ′ , ε)), where U (b(n+1)

l ′,m ′ , ε) ⊂ P+(0, Rn+1, 2Rn+1).

To simplify the formulas, we denote b(n)

l,m by bn . There are finitely many sets Ak ∈ An+1

contained in An . We denote by bk the pole corresponding to Ak . Let βn := h−1
n (bn) ∈

An, βk := h−1
n+1(bk) ∈ Ak . Lemma 5·3 implies that hn are conformal on An . Using (2·4), we

get

L(hn, An) = L(h−1
n , hn(An)).

Hence,

vol(An) =
∫∫

U (bn ,ε)

∣∣(h−1
n )′(z)

∣∣2 dz �
∫∫

U (bn ,ε)

(
sup

z∈U (bn ,ε)

|(h−1
n )′(z)|

)2

dz

= vol(U (bn, ε))

(
L(h−1

n , U (bn, ε)) inf
z∈U (bn ,ε)

|(h−1
n )′(z)|

)2

� 3πε2

8

(
L(hn, An)|(h−1

n )′(bn)|
)2 = 3πε2

8

(
L(hn, An)

|h′
n(βn)|

)2

. (5·10)
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Set Pn+1 := P+(0, Rn+1, 2Rn+1).

vol(Un+1 � An)

=
∑

Ak⊂An

vol(Ak) =
∑

bk∈Pn+1

vol(h−1
n+1(U (bk, ε)))

=
∑

bk∈Pn+1

∫∫
U (bk ,ε)

∣∣(h−1
n+1)

′(z)
∣∣2 dz �

∑
bk∈Pn+1

∫∫
U (bk ,ε)

(
inf

z∈U (bk ,ε)
|(h−1

n+1)
′(z)|

)2

dz

= 3πε2

8

∑
bk∈Pn+1

(
supz∈U (bk ,ε)

|(h−1
n+1)

′(z)|
L(h−1

n+1, U (bk, ε))

)2

� 3πε2

8

∑
bk∈Pn+1

(
|(h−1

n+1)
′(bk)|

L(h−1
n+1, U (bk, ε))

)2

= 3πε2

8

∑
βk∈Ak⊂An

(
L(hn+1, Ak)|h′

n+1(βk)|
)−2

. (5·11)

Now, using (5·10) and (5·11), we estimate the density of the sets Un+1 � An in An .

vol(Un+1 � An)

vol(An)
� |h′

n(βn)|2
(L(hn, An))2

∑
βk∈Ak⊂An

(
L(hn+1, Ak)|h′

n+1(βk)|
)−2

. (5·12)

Lemma 5·1 and the inequalities (5·6) give

|h′
n(βn)| � R1

2(1 + r)

∣∣∣∣∣∣
n−1∏
j=1

g′
βn

(g j
βn

(c1))

∣∣∣∣∣∣ (5·13)

and

|h′
n+1(βk)| � 5R1

2(1 − r)

∣∣∣∣∣∣
n∏

j=1

g′
βk

(g j
βk

(c1))

∣∣∣∣∣∣ . (5·14)

It follows from Lemma 5·5 that

(L(hn, An))
2 �

(
1 + r

1 − r

)2

5223(n−1) (5·15)

and

(L(hn+1, Ak))
2 �

(
1 + r

1 − r

)2

5223n. (5·16)

Plugging (5·13)–(5·16) into (5·12), we have

vol(Un+1 � An)

vol(An)
�

(
R1

2(1+r)

)2 ∣∣∣∏n−1
j=1 g′

βn
(g j

βn
(c1))

∣∣∣2(
1+r
1−r

)2
5223(n−1)

×
∑

βk∈Ak⊂An

1(
1+r
1−r

)2
5223n

(
5R1

2(1−r)

)2 ∣∣∣∏n
j=1 g′

βk
(g j

βk
(c1))

∣∣∣2
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=
(

1 − r

1 + r

)6 1

5623(2n−1)

∣∣∣∣∣∣
n−1∏
j=1

g′
βn

(g j
βn

(c1))

∣∣∣∣∣∣
2 ∑

βk∈Ak⊂An

1∣∣∣∏n
j=1 g′

βk
(g j

βk
(c1))

∣∣∣2

=
(

1 − r

1 + r

)6 1

5623(2n−1)

∑
βk∈Ak⊂An

⎛
⎝n−1∏

j=1

∣∣∣g′
βn

(g j
βn

(c1))

∣∣∣∣∣∣g′
βk

(g j
βk

(c1))

∣∣∣
⎞
⎠

2

· 1∣∣g′
βk

(gn
βk

(c1))
∣∣2 . (5·17)

For each j = 1, 2, . . . , n − 1

gβn (g j
βn

(c1)) = g j+1
βn

(c1) = h j+1(βn) ∈ P+(0, R j+1, 2R j+1)

and

gβk (g j
βk

(c1)) = g j+1
βk

(c1) = h j+1(βk) ∈ P+(0, R j+1, 2R j+1),

since βn ∈ An ⊂ A j+1 and βk ∈ Ak ⊂ An ⊂ A j+1. Thus, by (5·3), for j = 1, 2, . . . , n − 1
we have

|g′
βn

(g j
βn

(c1))| �
C2 R3/2

j+1

C3/2
1

and |g′
βk

(g j
βk

(c1))| �
23/2C2 R3/2

j+1

C3/2
1

.

This implies that ∣∣∣g′
βn

(g j
βn

(c1))

∣∣∣∣∣∣g′
βk

(g j
βk

(c1))

∣∣∣ � 1

23/2
, j = 1, 2, . . . , n − 1. (5·18)

Analogously,

gβk (gn
βk

(c1)) = gn+1
βk

(c1) = hn+1(βk) ∈ P+(0, Rn+1, 2Rn+1)

as βk ∈ Ak ∈ An+1. By applying this to (5·3), we get

|g′
βk

(gn
βk

(c1))| �
23/2C2 R3/2

n+1

C3/2
1

. (5·19)

Putting (5·18), (5·19) into (5·17), by Remark 5·4 and (5·9), we obtain

vol(Un+1 � An)

volAn
�
(

1 − r

1 + r

)6 1

5623(2n−1)

(
1

23/2

)2(n−1) C3
1

23C2
2 R3

n+1

∑
βk∈Ak⊂An

1

�
(

1 − r

1 + r

)6 23

5629n

C3
1

C2
2 R3

n+1

Nn+1 �
(

1 − r

1 + r

)6 23

5629n

C3
1

C2
2 R3

n+1

R2
n+1

= M

29n Rn+1
,

where M = 23(1 − r)6C3
1/(5

6(1 + r)6C2
2 ).

Similarly, we consider the case n = 1. By Definition 4·1, the set A1 has only one element,
i.e. A1 and its Lebesgue measure vol(A1) � πr 2. The set A1 contains finitely many subsets
Ak ∈ A2. As for n � 2, we denote by bk the pole corresponding to Ak . Arguing as in (5·11),
we get

vol(U2 � A1) � 3πε2

8

∑
βk∈Ak⊂A1

(
L(h2, Ak)|h′

2(βk)|
)−2

.

https://doi.org/10.1017/S0305004112000448 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004112000448


Hausdorff dimension of the set of elliptic functions 117

Setting n = 1 in bounds (5·14), (5·16) we have

|h′
2(βk)| � 5R1

2(1 − r)
|g′

βk
(gβk (c1))| and (L(h2, Ak))

2 �
(

1 + r

1 − r

)2

5223,

which implies that

vol(U2 � A1) � 3πε2

8

∑
βk∈Ak⊂A1

1(
5R1

2(1−r)

)2 |g′
βk

(gβk (c1))|2
(

1+r
1−r

)2
5223

.

Analogously as in (5·19), we obtain

|g′
βk

(gβk (c1))| � 23/2C2 R3/2
2

C3/2
1

and, using Remark 5·4 and (5·9), we conclude that

vol(U2 � A1)

vol(A1)
� 3πε2

8πr 2

∑
βk∈Ak⊂A1

1(
5R1

2(1−r)

)2 ( 23/2C2 R3/2
2

C3/2
1

)2 (
1+r
1−r

)2
5223

= 3ε2(1 − r)4C3
1

2754r 2(1 + r)2C2
2 R2

1

∑
βk∈Ak⊂A1

1

R3
2

� M ′ N2

R3
2

� M ′ R2
2

R3
2

= M ′

R2
,

where M ′ = 3ε2(1 − r)4C3
1/(2

754r 2(1 + r)2C2
2 R2

1).

By Lemma 5·8, the numbers �n from Proposition 2·10 are equal to

�1 = M ′

R2
, �n = M

29n Rn+1
, n � 2.

Assembling the preceding lemmas, we may now prove Theorem 4·3.

Proof of Theorem 4·3. Lemma 5·8 implies that
n∑

j=1

| log � j | = | log �1| +
n∑

j=2

| log � j | =
∣∣∣∣log

M ′

R2

∣∣∣∣ +
n∑

j=2

∣∣∣∣log
M

29 j R j+1

∣∣∣∣
= log(a R1) − log M ′ +

n∑
j=2

log(29 j a j R1) − (n − 1) log M

= log M − log M ′ + n log R1 − n log M + 9 log 2
n∑

j=2

j + log a
n∑

j=1

j

= log
M

M ′ + n log
R1

M
+ 9(n + 2)(n − 1)

2
log 2 + n(n + 1)

2
log a. (5·20)

In view of Lemma 5·6, we have

| log dn| =

∣∣∣∣∣∣∣log
4ε(1 + r)(

C2

C3/2
1

)n−1
a

3n(n−1)

4 R
3n−1

2
1

∣∣∣∣∣∣∣
= (n − 1) log

C2

C3/2
1

+ 3n(n − 1)

4
log a + 3n − 1

2
log R1 − log 4ε(1 + r). (5·21)
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The final estimate follows from (5·20) and (5·21).

dimH (A(a)) � 2 − lim sup
n→∞

log M
M ′ + n log R1

M + 9(n+2)(n−1)

2 log 2 + n(n+1)

2 log a

(n − 1) log C2

C3/2
1

+ 3n(n−1)

4 log a + 3n−1
2 log R1 − log 4ε(1 + r)

= 2 −
1
2 log a + 9

2 log 2
3
4 log a

= 4

3
− 6 log 2

log a
.

Thus, the theorem stated in Section 1 follows from Theorem 4·3.

Question. Is the Hausdorff dimension of the escaping set E equal to 4/3?

Acknowledgements. We are grateful to the referee for helpful comments.
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