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We investigate the temporal and spatio-temporal buoyancy instabilities in a horizontal
liquid layer supported by a poorly conducting substrate and subjected to an oblique
temperature gradient (OTG) with horizontal and vertical components, denoted as HTG
and VTG, respectively. General linear stability analysis (GLSA) reveals a strong stabilizing
effect of the HTG on the instabilities introduced by the VTG for Prandtl numbers Pr > 1
via inducing an extra vertical temperature gradient opposing the VTG through energy
convection. For Pr < 1, a new mode of instability arises as a result of a velocity jump in
the liquid layer caused by cellular circulation. A long-wave weakly nonlinear evolution
equation governing the spatio-temporal dynamics of the temperature perturbations is
derived. Spatio-temporal stability analysis reveals the existence of a convectively unstable
long-wave regime due to the HTG. Weakly nonlinear stability analysis reveals the
supercritical type of bifurcation changing from pitchfork in the presence of a pure VTG to
Hopf in the presence of the OTG. Numerical investigation of the spatio-temporal dynamics
of the temperature disturbances in the layer in the weakly nonlinear regime reveals the
emergence of travelling wave regimes propagating against the direction of the HTG and
whose phase speed depends on Pr. In the case of a small but non-zero Biot number,
the wavelength of these travelling waves is larger than that of the fastest-growing mode
obtained from GLSA.
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1. Introduction

Liquid layers subjected to an oblique temperature gradient (OTG) are encountered in
geophysical settings (Weber 1978; Ortiz-Pérez & Dávalos-Orozco 2011, 2014), additive
manufacturing (Kowal, Davis & Voorhees 2018), material processing and crystal growth
(Lappa 2010) and various industrial processes (Kistler & Schweizer 1997). The present
investigation is concerned with the understanding of the effect of the horizontal component
of the OTG, referred to in what follows as the horizontal temperature gradient (HTG), on
the buoyancy instability arising as a result of the vertical component of the OTG, referred
to as the vertical temperature gradient (VTG). The present model can be also applicable
to partially filled jacketed chemical reactors where the energy is provided/extracted by
the liquid circulating in the jacket. The reactor fluid is heated at the bottom wall and the
sidewalls by the liquid flowing in the jacket, thereby imposing an OTG. If the fluid flowing
in the jacket provides heat energy then it will lead to circulation towards the centre of the
reactor from the wall along the interface and in the reverse direction near the bottom and
vice versa (Levenspiel 1999). The model considered here mimics the situation in that part
of the above system away from the sidewalls.

A liquid layer with a free surface, supported by a solid substrate from below, and
subjected to a purely HTG can lead to two types of flows due to thermocapillarity: (i)
‘linear flow’ possessing a linear profile which is present in an infinitely long liquid layer
and (ii) ‘return flow’ which is present in a rectangular cavity and exhibits a parallel
core flow away from the vertical walls of the cavity (Smith & Davis 1983a,b). These
flows arise as a result of the thermocapillary stresses exerted at the free surface which
in turn originate from the temperature dependence of the surface tension. The stability
of the linear and return flows was explored in detail by Smith & Davis (1983a,b).
Furthermore, the thermocapillary instabilities arising due to an imposed OTG have been
also investigated by Nepomnyashchy & Simanovskii (2004), Shklyaev & Nepomnyashchy
(2004), Nepomnyashchy & Simanovskii (2009) and Patne, Agnon & Oron (2020b,
2021a,b). Shklyaev & Nepomnyashchy (2004) and Patne et al. (2021a) revealed a strong
stabilizing effect of the imposed HTG component on the instability triggered by the VTG
component of the imposed OTG. Additionally, Patne et al. (2021a) demonstrated the
existence of an entirely new class of thermocapillary modes arising as a result of the
interaction between the imposed HTG and VTG.

Similarly, a liquid layer confined between two horizontal rigid or free-surface
boundaries and subjected to a purely HTG can exhibit a flow as a result of the buoyancy
forces termed as Hadley circulation (Hart 1972, 1983). The buoyancy forces arise due
to the temperature dependence of the liquid density, which then lead to a circulation.
Unlike the linear and return flows caused by thermocapillarity, the buoyancy gives rise
to a parallel core flow even in an infinite liquid layer. Hart (1972, 1983) investigated
the stability of such flows and found both oscillatory and stationary modes of buoyancy
instability due to the imposed HTG in contrast to only stationary modes emerging when
the liquid layer is subjected to a purely VTG. Gill (1974) theoretically investigated the
stability of Hadley circulation with a focus on liquid metals. Hurle, Jakeman & Johnson
(1974) studied experimentally the same problem using molten gallium and validated the
theoretical results obtained by Gill (1974). The buoyancy instabilities in a horizontal liquid
layer due to the presence of a hot patch creating a HTG were studied by Walton (1985). The
nonlinear evolution of the buoyancy instabilities in Hadley circulation was investigated by
Kuo & Korpela (1988) and Wang & Korpela (1989). More experimental and numerical
studies by Braunsfurth et al. (1997), Juel et al. (2001) and Hof et al. (2004) dealt with a
similar problem restricted to molten gallium in greater detail.
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Buoyancy instabilities in a liquid layer

The buoyancy instability in a liquid layer constrained between two horizontal rigid
boundaries subjected to an OTG was first studied by Weber (1973) for a small HTG. Later,
Sweet, Jakeman & Hurle (1977) extended the theory of Weber (1973) to larger values of
the imposed HTG, where the mean values of the basic velocity and temperature profiles
were specified, while carrying out a stability analysis. Weber (1978) considered the same
problem in a liquid layer but now contained between two horizontal stress-free or two
rigid, perfectly conducting boundaries. His analysis showed the existence of longitudinal
and transverse rolls in addition to oscillatory instability with the dominant mode depending
on the Prandtl number. A detailed analysis of the instabilities arising due to an imposed
OTG in the same settings was carried out by Nield (1994); however, due to numerical
difficulties, his analysis was restricted to Rayleigh numbers below 6000. A detailed
analysis of various instability modes in a layer between two horizontal rigid boundaries
was recently performed by Ortiz-Pérez & Dávalos-Orozco (2011, 2014). Their analysis
revealed the emergence of a new dominant oscillatory oblique mode for Prandtl numbers
less than unity.

The previous studies of Weber (1973), Sweet et al. (1977), Weber (1978), Nield (1994)
and Ortiz-Pérez & Dávalos-Orozco (2011, 2014) dealt with a liquid layer constrained
by two horizontal free-surface or two rigid, perfectly conducting boundaries. However,
various industrial applications and geophysical flows feature a liquid layer supported
by a solid substrate on one side and bounded by a free surface at the other side.
Additionally, heat exchange with ambient at the free surface takes place in reality, so the
case of an imposed temperature at the gas–liquid interface is rather artificial. The present
investigation fills this practically important gap.

Weber (1973), Sweet et al. (1977), Weber (1978), Nield (1994) and Ortiz-Pérez &
Dávalos-Orozco (2011, 2014) considered only the temporal evolution of disturbances in
emerging flows. However, a temporal stability analysis does not provide information about
the growth of the disturbances in space or in both space and time simultaneously. This
requires a spatio-temporal stability analysis, the instabilities of which may be further
classified as either absolute or convective. A convective instability implies that, given
sufficient time, the disturbances will decay at any point in space, while an absolute
instability leads to the growth of disturbances at any point in space.

A closely related problem is that of a liquid layer subjected to the thermocapillary effect
under the action of an OTG. Recent studies by Nepomnyashchy & Simanovskii (2004),
Shklyaev & Nepomnyashchy (2004), Nepomnyashchy & Simanovskii (2009) and Patne
et al. (2020b, 2021a,b) dealing with thermocapillary instabilities alone are relevant to thin
liquid layers. The ratio of the Rayleigh and Marangoni numbers is the dynamic Bond
number, which is proportional to the second power of the liquid layer thickness; thus an
increase in the thickness of the liquid layer favours buoyancy instability. In the present
study, we neglect the thermocapillary effect; thus the results are applicable to thicker liquid
layers. Below we give an estimate for the lower bound for the layer thickness satisfying
several relevant constraints.

The present work investigates the buoyancy instability in a liquid layer with a free
non-deformable surface, supported by a poorly conducting planar substrate from below,
and subjected to an OTG. Here we carry out both general linear stability analysis (GLSA)
and long-wave analysis. We further explore the stabilizing effect of the HTG and the
origin of the new instability modes using energy budget analysis and physically supported
arguments.

The rest of the paper is arranged as follows. The problem statement, the original
governing equations and boundary conditions, the base-state fields and the governing
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Figure 1. Schematic of the system considered here. The liquid and gas layers are present in a long rectangular
container. Both layers are subjected to an OTG with dimensional VTG component −β and dimensional HTG
component −η∗, each indicated by an arrow. Such temperature gradients can be imposed by heating the bottom
and the left sidewall of the container and/or cooling the top and the right sidewall of the container. The location
of the liquid–gas interface at a distance d from the bottom corresponds to y = 1 in the sketch.

equations for the evolution of perturbations imposed on the base state are all considered in
§ 2. The numerical technique employed in resolving the GLSA is briefly outlined in § 3 and
its results are presented in § 4. Section 5 is devoted to the energy budget analysis and to the
presentation of the physical mechanisms for the stabilization/destabilization of base flow.
The linear temporal, spatio-temporal and nonlinear stability analyses in the framework of
the long-wave approximation are presented in § 6. The major conclusions of the present
investigation are summarized in § 7.

2. Problem formulation

Consider a three-dimensional system that consists of a layer of an incompressible
Newtonian liquid of mean thickness d supported from below by a planar solid wall and
an inert gas in a long rectangular container with the liquid–gas interface assumed to be
non-deformable. The entire system is subjected to an imposed temperature gradient in the
gravity field g, as shown in figure 1. The density of the liquid ρ is assumed to linearly
depend on temperature, with the rest of the liquid properties, namely dynamic viscosity μ,
thermal diffusivity κ and thermal conductivity kth, all being assumed to be independent of
temperature. The imposed temperature gradient is assumed to be oblique, i.e. to possess
components both parallel and normal to the substrate plane, as illustrated in figure 1. These
components of the OTG are referred to as the HTG and VTG, denoted by −η∗ and −β,
respectively.

The coordinate system used here is Cartesian with the axes x and z located in the
substrate plane, whereas the axis y is normal to the substrate and directed into the liquid
layer with the reference point y = 0 located on the substrate plane. The aspect ratio of the
system is assumed to be small d/L � 1 with L being the length of the container along the
x and z axes, thereby allowing for the existence of parallel flow in the core region away
from the sidewalls (Smith & Davis 1983a; Mercier & Normand 1996).

The length, time, velocity and temperature are non-dimensionalized by d, d2/κ , κ/d and
βd, respectively, with the value of β to be specified below. Furthermore, the pressure and
stresses are scaled by μκ/d2. Thus, the entire system (the substrate, the liquid layer and
the gas phase) is subjected to a constant OTG with the dimensionless VTG component
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Buoyancy instabilities in a liquid layer

(−1) in the y direction and the HTG component (−η) in the x direction, where

η = η∗

β
. (2.1)

Let the dimensionless fluid velocity field be v = (vx, vy, vz) with vX being the velocity
components in the direction X = x, y, z. The dimensionless continuity and momentum
conservation equations upon using the Boussinesq approximation are

∇ · v = 0, (2.2a)

1
Pr

[∂tv + (v · ∇)v] = −∇p + Ra T∇y + ∇2v, (2.2b)

where p and T are the dimensionless pressure and temperature, respectively,

Pr = μ

ρ0κ
, Ra = ρ0gαβd4

μκ
(2.2c)

are the Prandtl and Rayleigh numbers, ∇ = (∂x, ∂y, ∂z) is the gradient operator, ∇2 ≡
∂2

x + ∂2
y + ∂2

z is the Laplacian operator and ∂X denotes partial derivative with respect to X.
Here, ρ0 is the density at an arbitrary reference temperature and α = −1/(ρ0(dρ/dT)p)
represents the volumetric expansion coefficient of the liquid at constant pressure.

Finally, the dimensionless heat advection–diffusion equation is written as

∂tT + (v · ∇)T = ∇2T. (2.2d)

The governing equations (2.2a)–(2.2d) are subjected to the following boundary
conditions. At the solid substrate y = 0, these are no-slip (in terms of the x and z
components of the velocity field), impermeability and a specified VTG condition:

vx = 0; vz = 0; vy = 0; ∂yT = −1, (2.3a)

respectively.
At the gas–liquid interface located at y = 1, the boundary conditions are the kinematic

boundary condition for a flat and stationary interface, zero stress in the two tangential
directions and the continuity of the heat flux:

vy = 0, (2.3b)

∂vx

∂y
+ ∂vy

∂x
= 0, (2.3c)

∂vz

∂y
+ ∂vy

∂z
= 0, (2.3d)

∇T · n = −Bi(T − T∞ + ηx), (2.3e)

respectively, where Bi = qd/kth is the Biot number. Here, T∞ and q are the dimensionless
temperature at some point of the gas ambient and the coefficient of thermal convection at
the free surface, respectively.

Let us now discuss the physical limitations of the current mathematical model. First,
the Boussinesq equations are valid when αΔT � 1, where ΔT is a temperature difference
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between the bottom and the free surface of the liquid layer along a vertical line. This
constraint is equivalent to

Ra � Ga ≡ gd3

νκ
, (2.4)

where Ga is the Galileo number. Since the values of the Rayleigh number Ra appearing in
what follows are below Ra ≤ Ram = 109, it follows from (2.4) that the range of validity is

d � d1 ≡
(

Ramκν

g

)1/3

, (2.5)

which in the case of water yields d � 2 cm.
To neglect the thermocapillary effect with respect to the buoyancy effect, the following

condition is to be met:

Ra � Ma ≡ γβd2

νκ
, (2.6)

where Ma is the Marangoni number whose definition contains the temperature gradient of
surface tension γ . The condition (2.6) yields

d � d2 ≡
(

γ

ρ0gα

)1/2

, (2.7)

which in the case of water leads to d � 1 cm. To combine these two constraints we deduce
that the limitation for the forthcoming analysis is that the layer thickness should satisfy the
condition d � max(d1, d2); thus, for a water layer, it yields d � 2 cm.

2.1. Base state
For the base state assumed to be v̄x = v̄x( y), v̄y = 0, v̄z = 0, p̄ = p̄(x, y), T̄ = T̄(x, y)
(note that an overbar denotes hereafter the base state quantities), the governing equations
(2.2) are subjected to the following boundary conditions. At the solid substrate y = 0:

v̄x = 0; v̄y = 0; v̄z = 0; ∂T̄
∂y

= −1; (2.8a)

whereas at the flat and stationary (due to mass conservation) gas–liquid interface y = 1:

v̄y = 0, (2.8b)

∂v̄x

∂y
= 0, (2.8c)

∂yT̄ = −Bi(T̄ − T∞ + ηx). (2.8d)

We also assume the emergence of a cellular flow and require a zero total liquid flow rate
at any vertical cross-section of the system:∫ 1

0
v̄x dy = 0. (2.8e)
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Buoyancy instabilities in a liquid layer

The governing equations (2.2) for a steady and fully developed base-state flow reduce to

−∂ p̄
∂x

+ ∂2v̄x

∂y2 = 0, (2.9)

−∂ p̄
∂y

+ RaT̄ = 0, (2.10)

∂2T̄
∂y2 = v̄x

∂T̄
∂x
. (2.11)

To obtain the base state, pressure is eliminated from (2.9) and (2.10). This leads to the
profiles of the longitudinal velocity component, temperature and pressure in the base state
in the form

v̄x = −ηRa
48

(6y − 15y2 + 8y3); v̄y = 0; v̄z = 0, (2.12a)

T̄(x, y) = C1 − ηx − y + η2Ra y3

960
(20–25y + 8y2), (2.12b)

p̄ = pa + Ra
∫ 1

0
T̄( y) dy, (2.12c)

where C1 = T∞ + 1 + η2Ra/960 + Bi−1. It is also found using (2.12b) that

β = BiΔ̃T
(1 + Bi)d

, (2.13)

where Δ̃T is the difference between the temperatures of the substrate and the far field
along the y axis. Note that the presence of the term Bi−1 in the expression for C1 does not
mean that the temperature is high for small Bi, since the temperature is scaled with βd, so
Bi cancels out.

It follows from (2.12b) that the HTG induces an additional VTG that modifies the
imposed negative VTG expressed by the linear term in y. The higher-order terms in y
are also present in T̄ and their presence plays a major role in determining the stability of
the flow as elaborated in § 4. Furthermore, the induced VTG is proportional to η2 implying
a symmetry with respect to the sign of the imposed HTG.

2.2. Perturbed state
Next, infinitesimally small perturbations are imposed on the base state given by (2.12)
to carry out the linear stability analysis of the system. Squire’s theorem (Schmid &
Henningson 2001) is not applicable in the present case due to the symmetry break via
the imposed HTG. Thus, in what follows, three-dimensional disturbances are considered.

The governing equations are then linearized around the base state given by (2.12) and
normal modes

f ′(x, t) = f̃ ( y) exp [i(kx + mz − ωt)] (2.14)

are substituted into those. Here f ′(x, t) is a perturbation to a dynamic quantity f (x, t), such
as the components of the fluid velocity field vx, vy and vz, pressure p and temperature T ,
and f̃ ( y) is the corresponding eigenfunction in the Laplace–Fourier space. The parameters
k and m are the wavenumbers of the perturbations in the x and z directions, respectively,
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and ω = ωr + iωi is the complex frequency. The flow is temporally unstable if at least one
eigenvalue satisfies the condition ωi > 0. For the spatio-temporal stability analysis, both k
and ω are complex. The condition for the existence of absolute instability is presented in
§ 6.3.

As a result of this procedure, the linearized continuity, momentum conservation and
energy equations become

ikṽx + Dṽy + imṽz = 0, (2.15a)

1
Pr

[−iωṽx + ikv̄xṽx + ṽyDv̄x
] = −ikp̃ + (D2 − k2 − m2)ṽx, (2.15b)

1
Pr

[−iωṽy + ikv̄xṽy
] = −Dp̃ + (D2 − k2 − m2)ṽy + Ra T̃, (2.15c)

1
Pr

[−iωṽz + ikv̄xṽz
] = −imp̃ + (D2 − k2 − m2)ṽz, (2.15d)

−iωT̃ + ikv̄xT̃ + ∂xT̄ ṽx + ∂yT̄ ṽy = (D2 − k2 − m2)T̃, (2.15e)

where D ≡ d/dy.
Equations (2.15) are then supplemented with the following boundary conditions: at y =

0, no slip, no impermeability and a specified temperature gradient at the lower plate imply

ṽx = 0; ṽy = 0; ṽz = 0; DT̃ = 0. (2.16a)

The boundary conditions at y = 1 become

ṽy = 0, (2.16b)

ikṽy + Dṽx = 0, (2.16c)

imṽy + Dṽz = 0, (2.16d)

DT̃ + BiT̃ = 0. (2.16e)

Equations (2.15) and (2.16) constitute a generalized linear eigenvalue problem which is
to be solved for the eigenvalue ω and the eigenfunctions for a specified set of parameter
values Bi,Pr and Ra. To determine the spectrum of the eigenvalue problem (2.15) and
(2.16), numerical solution based on the pseudospectral method is carried out.

3. Numerical method

To carry out the linear stability analysis of the problem (2.2)–(2.3e), the pseudospectral
method is employed, in which the eigenfunctions corresponding to each dynamic field are
expanded into series of the Chebyshev polynomials as

f̃ ( y) =
m=N∑
m=0

amTm( y), (3.1)

where Tm( y) are Chebyshev polynomials of degree m and N is the highest degree of the
polynomial in the series expansion or, equivalently, the number of collocation points. The
coefficients of the series am are the unknowns to be solved for.

The generalized eigenvalue problem is constructed in the form

Ae + ωBe = 0, (3.2)

where A and B are matrices obtained from the discretization procedure and e is the vector
containing the coefficients of all series expansions.
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Buoyancy instabilities in a liquid layer

Further details of the discretization of the governing equations and boundary conditions,
and the construction of the matrices A and B are presented in the standard procedure
described by Trefethen (2000) and Schmid & Henningson (2001). Application of the
pseudospectral method for similar problems can be found in Patne, Agnon & Oron (2020a)
and Patne et al. (2021a). We use the polyeig MATLAB routine to solve the generalized
eigenvalue problem given by (3.2). To filter out the spurious modes from the genuine,
numerically computed spectrum of the problem, the latter is determined for N and N + 2
collocation points, and the eigenvalues are compared with an a priori specified tolerance,
e.g. 10−4. The genuine eigenvalues are verified by increasing the number of collocation
points by 25 and monitoring the variation of the obtained eigenvalues. Whenever the
eigenvalue does not change up to a prescribed precision, e.g. to the sixth significant digit,
the same number of collocation points is used to determine the critical parameters of the
system. In the present work, N = 50 is found to be sufficient to achieve convergence and to
determine the leading, most unstable eigenvalue within the investigated parameter range.

4. General linear stability analysis

For convenience of the presentation and discussion of the results, the results are subdivided
into three separate sections. The first two sections deal with the streamwise instabilities
(m = 0) for Pr > 1 and Pr < 1, whereas the third section deals with the spanwise modes
(k = 0) of instability.

4.1. Pr > 1
In the absence of the imposed HTG, i.e. η = 0, for a poorly conducting substrate, i.e.
with a zero heat flux due to temperature perturbations, a long-wave mode of buoyancy or
Rayleigh instability is present due to the imposed VTG, hereafter simply referred to as the
‘long-wave mode’ (Chapman & Proctor 1980; Gertsberg & Sivashinsky 1981). The critical
Rayleigh number Rac = 320 at Bi = 10−5 for the present configuration can be analytically
obtained as shown in § 6. It must be noted that for a liquid layer bounded by two rigid plates
at y = 0 and y = 1, Rac = 720 (Gertsberg & Sivashinsky 1981). Since the instability in
this case is monotonic, the variation in Prandtl number Pr does not affect Rac. A strong
stabilizing effect of the increasing strength of the imposed HTG relative to the strength
of the imposed VTG denoted by η is shown in figure 2. For η = 0, the long-wave mode
is stationary. However, from figure 2, the imposed HTG not only stabilizes the long-wave
mode but also makes it an oscillatory mode travelling against the HTG direction since
ωr > 0. The stabilizing effect of an increase in η on the long-wave mode is also illustrated
by the neutral stability curves shown in figure 3.

In the companion problem of a liquid layer subjected to an OTG and thermocapillarity
(Patne et al. 2021a), a new mode of the thermocapillary instability was demonstrated to
exist. This mode arises as a result of an interaction between the imposed HTG and VTG,
while the long-wave thermocapillary mode driven by the imposed VTG is stabilized due
to the imposed HTG. Figure 3 shows that similar to the thermocapillary long-wave mode,
the imposed HTG has a strong stabilizing effect on the long-wave buoyancy mode too.
However, unlike the thermocapillary problem, here, a new mode does not arise with an
increase in η as illustrated in figure 3.

The stabilization of the long-wave mode due to the imposed HTG leads to the formation
of an island of instability in the η–Rac plane as illustrated for Pr = 10 in figure 4. It
must be noted that a liquid layer subjected to a HTG also exhibits buoyancy instability
in addition to the thermocapillary instability (Mercier & Normand 1996). However, as
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Figure 2. Variation of the long-wave mode with η in the ωr–ωi space at Bi = 10−5, m = 0, k = 0.1, Ra =
400 and Pr = 10. The figure illustrates the stabilization and transformation of the long-wave mode from
monotonic at η = 0 into oscillatory with an increase in η.

0 0.5 1.0 1.5 2.0

k

300

350

400
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500

550

Ra

η = 0
η = 0.1
η = 0.2

Figure 3. Neutral stability curves (ωi = 0) in the Ra–k space at Pr = 10 and Bi = 10−5 for several values of
η. The figure confirms the stabilizing effect of an increase in η on the long-wave mode.

follows from figure 4, for η > 0.25, the liquid layer is linearly stable with respect to
the buoyancy instabilities. Unlike thermocapillary instability investigated by Patne et al.
(2021a) at high η, there is an absence of the unstable mode of buoyancy instability due
to the imposed HTG. Thus, the VTG also has a strong stabilizing effect on the buoyancy
instability introduced by the imposed HTG. The island of instability depicted in figure 4
for Pr = 10 slightly shifts towards higher Rac for Pr = 1000, showing a weak effect of
the variation in Pr. It must be noted that independently of η, the critical wavenumber is
kc ∼ 0.1, implying that the mode of instability remains a long-wave mode.
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Figure 4. Variation of the critical Rayleigh number Rac with the dimensionless strength of the HTG η at
Pr = 10, m = 0 and Bi = 10−5. The long-wave mode driven by the VTG forms an island of instability
constrained to η < 0.25. Unlike in the low-Pr case discussed in § 4.2, the new mode of instability is absent
for high Pr, thus providing an avenue for a complete suppression of the buoyancy instability. The island of
instability is negligibly affected with a further increase in Pr. The upper bound on the stability island is the
asymptote Rac = 320/η2, which is deduced, see (4.1), directly from the base-state temperature gradient.

The upper Rac boundary of the instability island shown in figure 4 represents in fact that
the stabilization boundary exhibits scaling of Rac ∼ 1/η2 for η � 1, which is deduced
directly from the expression for the induced temperature component given by the quintic
polynomial in the base-state temperature as appears in (2.12b). The line Ra = 320/η2

represents a line along which the average VTG obtained by integrating (2.12b) across the
layer y ∈ [0, 1], and equating the result to zero:

η2Ra
320

− 1 = 0 ⇒ Ra = 320
η2 . (4.1)

To reiterate, this asymptotic line is a result of the balance between the imposed VTG and
the induced VTG. The induced VTG, which arises due to the imposed HTG, is positive,
whereas the imposed VTG is negative. Hence the induced VTG opposes the imposed
VTG, thereby stabilizing the long-wave mode driven by the imposed VTG. Therefore, the
imposed HTG is responsible for the stabilization of the long-wave mode via the induced
VTG. A further observation of figure 5 shows that for a sufficiently high Bi, the upper
branch of the curve can cross the line Rac = 320/η2. This feature implies that although the
average VTG for the base flow becomes positive, a locally negative temperature gradient
near the substrate with sufficiently high, but still small, Biot number may still produce an
instability.

The effect of variation in Bi on the critical parameters is presented in figure 5. An
increase in Bi from 10−5 to 0.1 leads to a slight shift in the lower boundary of the island
of instability to a higher Rac implying a stabilizing effect. The upper boundary, which
displays a scaling Rac ∼ 1/η2, also shifts to a higher Rac leading to a broadening of
the Rac range for the island of instability. It must be noted that for the entire range of
η, the critical wavenumber kc ∼ 1 and kc = 0.1 for the Bi = 0.1 and Bi = 10−5 cases,
respectively. Therefore, kc remains invariant with respect to variation in η.
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Figure 5. Variation of Rac with η at Pr = 10 and m = 0. An increase in Bi causes a shift of the island
boundaries towards higher values of Rac, which effectively leads to a broadening of the instability island in
terms of Rac for Bi = 0.1, as compared with the Bi = 10−5 case.

An important remark is now in order. The dynamic Bond number, i.e. the ratio of the
Rayleigh and Marangoni numbers Ra/Ma, is proportional to d2; thus for an increase
in the thickness of the liquid layer, the buoyancy instability will dominate over the
thermocapillary instability. However, the buoyancy instabilities are absent for η > 0.25,
while the thermocapillary instabilities are present (Patne et al. 2021a); thus even for
thicker liquid layers the Marangoni instability will be present. This conclusion provides
an interesting avenue to experimentally observe the thermocapillary instability even in the
case of thick liquid layers subjected to an OTG.

4.2. Pr < 1
The absence of buoyancy instability for η > 0.25, as discussed in § 4.1 for Pr > 1, does
not hold true for Pr < 1. Figure 6 shows that the long-wave mode is stabilized by the
induced VTG with an increase in η in the range η < 0.1. However, for η > 0.1, a new
finite-wavenumber mode with kc /= 0 emerges, henceforth simply referred to as a ‘new
mode’. For η > 0.1, Rac of the long-wave mode starts a rapid increase to reach a maximum
at η ∼ 0.2, while kc deviates from 0 to undergo a rapid growth to reach its maximum at
η ∼ 0.15. A further increase in η leads to a fast decrease in both kc and Rac, but for η > 1,
kc tends to a constant value ∼ 0.88. However, Rac continues to decrease with an increase
in η and exhibits a characteristic scaling Rac ∼ 1/η for η > 1.

It is interesting to note that a liquid layer subjected to an OTG exhibits a new mode of
thermocapillary instability for high η and the critical Marangoni number Mac exhibits
a scaling Mac ∼ 1/η (Patne et al. 2021a), similar to that of Rac in the present study.
Thus, for Pr < 1, the buoyancy instability exhibits characteristics similar to those of the
thermocapillary instability.

At very low Pr, the stability picture presented for Pr = 0.1 in figure 6 undergoes further
modification. For Pr = 0.001 (see figure 7b), the long-wave mode forms an instability
island similar to the case for Pr > 1, but the new mode is also present. The latter bifurcates
from the long-wave curve at η ∼ 0.005. The neutral stability curves shown in figure 7(a)
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Figure 6. Variation of Rac and kc with η at Pr = 0.1, m = 0 and Bi = 10−5. The base-state flow is unstable
for Ra > Rac. At η > 0.15, the unstable long-wave mode switches to a new mode. The new mode results from
an interaction of the imposed HTG and VTG, and shows a characteristic scaling Ra ∼ 1/η for η > 1.
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Figure 7. (a) Neutral stability curves. The formation of two minima is observed with an increase in η showing
the origin of the new mode from the long-wave mode. (b) Variation of Rac and kc with η at Pr = 0.001, m = 0
and Bi = 10−5. The long-wave mode driven by the imposed VTG creates an island of instability constrained to
η < 0.1. At η ∼ 0.005, the long-wave mode gives rise to a new finite-wavenumber mode which becomes the
most unstable mode at higher η. Similar to the case of Pr = 0.1, the new mode displays a characteristic scaling
Rac ∼ 1/η for η > 0.1. The curve for kc of the new mode shows a rapid increase from 0 when the new mode
separates from the long-wave mode to a constant value ∼1.4 at high η.

illustrate the origin of the emergence of the new mode from the long-wave mode. At η = 0,
the neutral stability curve is the same as that for Pr = 10, as presented in figure 3. However,
as η increases, the neutral stability curve tends to form a minimum at k /= 0, as observed in
figure 7(a) for η = 0.005 and η = 0.01, thereby illustrating the signs of formation of the
new mode. Eventually, for η = 0.05 the long-wave mode exhibits two clear minima, one
at k = 0 corresponding to the long-wave mode and the other at k ∼ 1.4 corresponding to
the new finite-wavelength mode.

Returning to figure 7(b), the critical wavenumber kc for the new mode rapidly increases
from 0 and reaches a constant value ∼ 1.4 at η ∼ 0.01. Observation of figures 6 and 7(b)
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Figure 8. The unstable spanwise mode pair in the eigenspectrum of the problem at Pr = 0.001, k = 0,
m = 0.3, Ra = 55, η = 1 and Bi = 10−5. These modes become unstable for Pr < 1 and possess the same
growth rate travelling in the opposite directions with the same phase speed.

shows that as Pr increases, the new mode shifts towards higher Rac, eventually leading
to a complete stabilization for Pr > 1. It is emphasized that liquid metals, owing to
their high thermal conductivity, satisfy the condition of Pr ∼ 0.001–0.1. Thus, the new
mode revealed here, in principle, may be experimentally observed in liquid metal layers
subjected to an OTG, which also illustrates the practical significance of the present
study.

4.3. Spanwise mode (k = 0)
The analysis for the spanwise mode shows that the imposed HTG has a stabilizing effect
on the spanwise long-wave mode similar to that for the streamwise long-wave mode
for Pr > 1. In fact, the spanwise long-wave mode forms an island of instability exactly
the same as the curve shown in figure 4 for the streamwise long-wave mode. For the
sake of brevity, we do not present the corresponding curve for the spanwise long-wave
mode.

Similar to the new mode revealed for Pr < 1, the spanwise new modes of instability also
exist with one difference, namely, while the streamwise perturbations exhibit a single new
mode of instability, the spanwise perturbations consist of a pair of new modes possessing
the same growth rate ωi, with one of them travelling in the positive z direction, whereas
the other one propagates in the negative z direction with the same phase speed, as shown
in figure 8. Here, we refer to the modes travelling in the positive and negative z direction as
downstream and upstream modes, respectively. These modes possess considerably higher
values of Rac than the streamwise new mode discussed in § 4.2. For example, at η =
0.1, for the streamwise mode the critical Rayleigh number is Rac ∼ 65, whereas for the
spanwise unstable pair it is Rac ∼ 140. Therefore, the spanwise new modes may not be
of much relevance to the present problem, and they are not analysed in detail below. It
must be noted that these modes are purely spanwise, i.e. an increase of the streamwise
wavenumber k leads to a strong stabilization of these modes.
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5. Energy budget analysis and physical mechanism

5.1. Energy budget analysis
To understand the origins of the new mode of instability emerging for Pr < 1, we carry
out an energy budget analysis for the case of two-dimensional (m = 0) perturbations and
follow the approach used by Hu, He & Chen (2016), Hu et al. (2017) and Patne et al.
(2021a).

First, the Navier–Stokes equations in the Boussinesq approximation (2.2b) are linearized
around the base state v̄, p̄, T̄, and recast in the form

1
Pr
∂v′

∂t
= −∇p′ + ∇ · τ ′ + Ra T ′∇y − 1

Pr

[
(v′ · ∇)v̄ + (v̄ · ∇)v′] , (5.1)

where τ ′ is the disturbance of the stress tensor for a Newtonian fluid. Taking the scalar
product of (5.1) with the perturbation velocity vector v′, integrating the result over the
flow domain and simplifying the resulting integrals yields an equation describing the time
evolution of the total kinetic energy of the perturbations,

E = 1
2

∫
v′ · v′ dV, (5.2)

in the form

1
Pr
∂E
∂t

= −1
2

∫
τ ′ : γ̇ ′ dV + Ra

∫
T ′v′

y dV − 1
Pr

∫
v′ · ¯̇γ · v′ dV

≡ −Ib + IRB − IR, (5.3)

where Ib, IRB and IR are the bulk stress work, Rayleigh–Bénard integral or buoyancy work
and the Reynolds stress work (Drazin 2002) in the energy balance, respectively, dV is
the volume element and γ̇ ′ = ∇v′ + ∇v′T and ¯̇γ = ∇v̄ + ∇v̄T represent the strain-rate
tensors associated with the perturbed and base states, respectively.

Since the perturbations of the normal component of the velocity field v′ vanish at
both non-deformable interfaces, namely the free interface y = 1 and the liquid–solid
interface y = 0, the pressure work term in the energy balance equation (5.3) containing
area integrals evaluated at these two interfaces vanishes, and thus is not presented there
explicitly. Therefore, unlike the energy budget in the case of thermocapillary instability
(Patne et al. 2021a), the pressure work does not contribute here. Some sample values of the
various terms in (5.3) are shown in table 1. The buoyancy work term IRB in (5.3) is found
to be positive for the parameter values explored here; thus it exerts a destabilizing effect.
The bulk stress work component Ib is unconditionally positive in the case of a Newtonian
fluid, since τ ′ : γ̇ ′ = γ ′

ijγ
′
ji ≥ 0, and thus leads to a decrease in the perturbation energy

expressing the presence of viscous dissipation. Note that the long-wave mode for η = 0
may emerge even if the bulk stress work integral is positive. These long-wave modes may
become unstable due to the energy supplied by the buoyancy work IRB that overcomes the
stabilizing impact of the dissipation factors such as viscous forces and thermal diffusion
of the energy.

The Reynolds stress work IR in the energy balance equation (5.3) represents a
volume-averaged correlation between the perturbations in the horizontal and vertical
components of the velocity field. This term is also responsible for the energy exchange
between the base state and the perturbation fields. It must be noted that IR is found to
be negative for the parameter range studied here. The role of the Reynolds stress work
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Parameters Ib IR

k = 0.01, Ra = 400, η = 0 0.00015 0
k = 1.4, Ra = 400, η = 0.01 0.12282 −1.39266
k = 1.4, Ra = 60, η = 10 0.208261 −365.186

Table 1. Sample values of the bulk stress work Ib and Reynolds stress work IR components in the energy
balance equation (5.3) normalized by the value of the buoyancy work IRB for Bi = 0.001, m = 0 and Pr = 0.001
in the case of the unstable stationary long-wave mode (the first row) and the new modes (the last two rows).
The bulk stress work remains positive as expected, and hence has a stabilizing effect driven by the viscous
dissipation. The Reynolds stress work is negative and increases rapidly with an increase in η, which results in
the growth of the perturbation energy. Therefore, the main source of destabilization for the new mode is the
Reynolds stress work.

is enhanced at low values of Pr and high values of η. It follows from table 1 where all
values of the integrals are normalized with respect to the buoyancy work term IRB, that
the contribution of the latter to the energy balance is the main source of the perturbation
energy for the long-wave mode, as seen in the first row of table 1. However, as follows
from the last two rows of table 1, the contribution of the buoyancy work term IRB to the
perturbation energy for the new mode becomes less important with an increase in η.

As shown in figure 7(b), the new mode bifurcates from the long-wave mode at
η ∼ 0.005 and table 1 illustrates that the Reynolds stress work and the buoyancy work
are of comparable magnitudes for η = 0.01. Thus, the buoyancy work also significantly
contributes to the destabilization of the new mode in the low-η domain, but its influence
diminishes with an increase in η. To conclude, the major sources of the perturbation energy
for the long-wave and the new modes are the buoyancy work and the Reynolds stress work,
respectively. However, the emergence of the new modes for Pr < 1 is associated with the
rise in the Reynolds stress work.

It must be noted that the perturbation energy analysis carried out here can only provide
an idea about perturbation energy sources that may lead to destabilization (Drazin 2002).
However, the right critical parameter values may be obtained only using the GLSA.

5.2. Physical mechanism
The physical mechanism responsible for the onset of buoyancy-driven or Rayleigh–Bénard
convection in a liquid layer subjected to a purely VTG is well understood. Given that the
substrate is at a higher temperature compared to the liquid–gas interface, a negative VTG
is imposed across the layer. Consider a liquid parcel located at y = y0. Due to the imposed
VTG, the density of the liquid parcel located at y = y0 will be lower compared with that of
the liquid layer present at y = y0 + Δy, where Δy > 0 is a small quantity. In the presence
of the gravity field, the liquid parcel will thus try to move to y = y0 + Δy. Such a motion
will be opposed by the dissipative effects such as viscosity and thermal diffusion of the
liquid, but if the VTG strength is sufficiently strong, then the parcel can overcome the
dissipative effects combined and succeed in moving to y = y0 + Δy owing to the buoyancy
forces, thereby setting in the buoyancy-driven instability. Having understood the physical
mechanism of the buoyancy-driven instability caused by the purely imposed VTG, we now
proceed to understand the effect of the imposed HTG on the VTG-induced convection and
the origin of the new mode of instability.
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Figure 9. Normalized perturbation fields for Bi = 10−5, Pr = 0.001, η = 1, Ra = 7.5, m = 0 and k = 0.38 for
the marginally stable eigenvalue ω = 0.055044. Here, (a) v′

x = Re[ṽx eikx], (b) v′
y = Re[ṽy eikx] and (c) T ′ =

Re[T̃ eikx]. The length of the domain in the x direction is equal to the wavelength of the perturbations 2π/k. For
convenience, the axes are normalized to the interval [0, 1]. The normal velocity perturbation field (b) exhibits
the maximal variation in the layer and vanishes at both boundaries providing a hint for the destabilization
mechanism of the new mode.

5.2.1. Long-wave mode stabilization
In § 4, we illustrated the strong stabilizing effect of the imposed HTG on the long-wave
mode introduced by the imposed VTG. The physical consequences of such stabilization
can be understood as follows. It is inferred from (2.12b) that along with the imposed VTG,
the latter also gives rise to an induced VTG which has a quartic polynomial form in y. The
average total VTG defined as 〈T̄y〉 ≡ ∫ 1

0 (∂T̄/∂y) dy is thus

〈T̄y〉 = η2Ra
320

− 1, (5.4)

which shows that the induced VTG being positive always opposes the imposed VTG.
As discussed in the previous section, for the buoyancy instability to set in the buoyancy

forces must overcome the viscous forces and thermal diffusion of the energy. However,
the induced VTG opposes the imposed VTG, which leads to the weakening in the
total VTG. The buoyancy force caused by the weakened VTG may not be sufficient to
overcome the viscous forces and thermal diffusion of the energy which then leads to
the predicted stabilization with an increase in Ra. When the vertically averaged imposed
and induced VTGs are of equal magnitude, the average VTG vanishes, which yields
the relationship Ra = 320/η2, thereby defining the upper bound on the threshold of the
long-wave instability, which turns out to be valid for very low values of the Biot number
Bi, as indeed shown in the case presented in figure 4. However, for higher but still low
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values of Bi, the instability may still exist for a positive averaged total VTG, as shown in
figure 5.

5.2.2. New mode
As discussed in § 5, the maximal contribution to the perturbation energy for the new mode
arises from the Reynolds stress work which involves a 1/Pr term. Thus, with a decrease in
Pr, the contribution of the Reynolds stress work increases with a further destabilization of
the base flow. A decrease in Pr implies an enhancement of the inertial effects as seen from
(5.1). Additionally, the condition of Pr < 1 for the emergence of the new mode emphasizes
the major role of inertia. The normalized perturbation fields for the new mode are shown
in figure 9. The temperature perturbation field exhibits variation through the entire liquid
layer; however, the normal velocity perturbation exhibits the maximal variation evaluated
by the absolute value of the gradient vector at y ∼ 0.578 and vanishes at both ends. The
base-state velocity v̄x vanishes at y ∼ 0.578 being positive for y > 0.578 and negative for
y < 0.578; therefore there exists a static layer arising as a result of the opposing shear
stresses exerted by the forward (v̄x > 0) and return (v̄x < 0) flows. As a result, there exists
a velocity jump over a thin layer at y ∼ 0.578, which is known to be responsible for various
kinds of instabilities (Hinch 1984). Here, such a jump could result in the emergence of
the new mode of instability provided that the inertial effects are sufficiently strong. To
conclude, the new mode of instability revealed here may emerge as a result of the velocity
jump in the liquid layer.

6. Long-wave analysis

In this section, we carry out the long-wave analysis of the system. In particular, we derive a
weakly nonlinear evolution equation governing the spatio-temporal dynamics of the liquid
layer in the limit of a small Biot number following the approach of Chapman & Proctor
(1980), Gertsberg & Sivashinsky (1981) and Oron & Nepomnyashchy (2004). Based on the
evolution equation derived here, we perform linear stability analysis, both temporal and
spatio-temporal, weakly nonlinear analysis to elucidate the type of bifurcation from the
equilibrium and finally we numerically investigate the nonlinear dynamics of the system
in the framework of the aforementioned evolution equation.

In what follows, we restrict our analysis to that of two-dimensional dynamics. Although
it is possible to extend the derivation of the evolution equation and the linear and weakly
nonlinear analyses to the three-dimensional case, it is impossible to numerically investigate
the nonlinear dynamics of the system in three dimensions, even only due to very large
times needed to be reached for the system to attain its saturated state.

6.1. Derivation of the evolution equation
In the governing equations (2.2), the dependent variables are expressed as vx = v̄x + v′

x,
vy = v′

y, p = p̄ + p′ and T = T̄ + T ′ to obtain the equations in terms of the deviations
from the base state:

∂xv
′
x + ∂yv

′
y = 0, (6.1a)

1
Pr

[
∂tv

′
x + (v̄x + v′

x)∂xv
′
x + v′

y∂y(v̄x + v′
x)

]
= −∂xp′ + (∂2

x + ∂2
y )v

′
x, (6.1b)
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Buoyancy instabilities in a liquid layer

1
Pr

[
∂tv

′
y + (v̄x + v′

x)∂xv
′
y + v′

y∂yv
′
y

]
= −∂yp′ + (∂2

x + ∂2
y )v

′
y + RaT ′, (6.1c)

∂tT ′ + (v̄x + v′
x)∂xT ′ + v′

y∂y
(
T̄ + T ′) = (∂2

x + ∂2
y )T

′, (6.1d)

where the dependent variables with primes represent the above-mentioned respective
deviations. Similarly, the boundary conditions (2.3e) are modified to read: at y = 0, no
slip, no impermeability and a specified temperature gradient at the lower plate imply

v′
x = 0; v′

y = 0; v′
z = 0; ∂yT ′ = 0. (6.2a)

At y = 1, the kinematic boundary condition, zero tangential stress and the heat transfer
condition become

v′
y = 0, (6.2b)

∂xv
′
y + ∂yv

′
x = 0, (6.2c)

∂yT ′ + Bi T ′ = 0. (6.2d)

The deviation velocities are further expressed via the streamfunction ψ using the relations

v′
x = ∂yψ; v′

y = −∂xψ. (6.3a,b)

As noted above, we assume small values of η, η = εη̂, so that η̂ = O(1) and ε � 1 is
a smallness scale of η used hereafter as a small expansion parameter in the asymptotic
analysis. The following scaling is applied:

ξ = εx; τ = ε4t; ψ = εψ̂; T ′ = T̂; Bi = ε4B̂i, (6.4a–e)

with a hat used to denote a scaled value. Equations (6.4a–e) are then substituted into
the governing equations (6.1) and the boundary conditions (6.2), the pressure field is
eliminated from the equations and these are modified using (6.3a,b). Furthermore, the
scaled streamfunction, the temperature and the Rayleigh number are expanded as

ψ̂ = ψ0 + ε2ψ2 + ε4ψ4 + · · · , (6.5a)

T̂ = T0 + ε2T2 + ε4T4 + · · · , (6.5b)

Ra = Ra0 + ε2R̂a2 + ε4R̂a4 + · · · . (6.5c)

Following elimination of pressure, (6.1) are rewritten along with (6.5) to yield at
zero-order approximation in ε

∂4
yψ0 + Ra0∂ξT0 = 0; ∂2

y T0 = 0. (6.6a,b)

The boundary conditions are similarly simplified. Given the linear form of the boundary
conditions in the present problem, for the sake of brevity, we do not write out the
boundary conditions in the following analysis since they are readily obtained from (6.2)
by substituting expansions (6.5).

Equations (6.6a,b) admit the solution for ψ0 and T0 in the form

T0 = F(ξ, τ ); ψ0 = Ra0

48
(3y2 − 5y3 + 2y4)∂ξF, (6.7a,b)

where F(ξ, τ ) is an unknown function at this stage whose governing evolution equation
is now being derived to determine the spatio-temporal dynamics of the system.
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R. Patne and A. Oron

We remind the reader that F represents the leading order in ε perturbation of the base-state
temperature field.

Similarly, the bulk equations (6.1) at O(ε2) read

− 48Pr∂4
yψ2 + 6η̂Ra0(8y − 5)∂ξψ0 + 48Pr R̂a2(∂ξF + ∂ξT2)

+ η̂Ra0y(−6 + 15y − 8y2)∂ξ ∂
2
yψ0 − 96Pr∂2

ξ ∂
2
yψ0 = 0, (6.8a)

∂2
y T2 + ∂2

ξF − ∂ξψ0 + −∂ξF∂yψ0

+ η̂Ra0

(
1
8

y − 5
16

y2 + 1
6

y3
)
∂ξF = 0. (6.8b)

Using the appropriate boundary conditions at O(ε2), the above equations are then solved.
To obtain the value for Ra0, (6.8b) is integrated with respect to y across the layer y ∈

(0, 1) using the boundary conditions at O(ε2). The resulting equation is then solved for
Ra0 to yield Ra0 = 320, which is in excellent agreement with Rac = 320 obtained from the
numerical solution for a liquid layer subjected to a purely VTG in § 4, thereby validating
the accuracy of the numerical approach. Also note that Gertsberg & Sivashinsky (1981)
find that in the case of a layer bounded by two solid walls, Rac = 720. A lower value of the
critical Rayleigh number Rac here is due to the fact that the case of solid wall-free surface
features less dissipation in the presence of one solid boundary, as compared to the case of
a layer bounded by two solid walls. Therefore, the system needs a lower value for Ra for
instability to set in.

The solution of (6.8) satisfying the appropriate boundary conditions at second order in
ε is

ψ2 = y2

9072Pr
(Pr∂ξF(189R̂a2( y − 1)(2y − 3)

+ 320(435 − 505y + 2y5(72 − 45y + 8y2))∂2
ξ F)

+ 32(1890Pr(−1 + y)(−3 + 2y)∂ξG − 5η̂(177 − 347y

+ 2Pr(435 − 505y + 2y5(72 − 45y + 8y2))

+ 2y3(378 − 630y + 522y2 − 225y3 + 40y4))∂2
ξF

+ Pr(90 + y(240 − 945y + 945y2 − 378y3 + 90y5 − 50y6 + 8y7))∂3
ξ F)), (6.9a)

T2 = G(ξ, τ )− 6y3

18
(20 − 25y + 8y2)(2η̂ − ∂ξF)∂ξF

+ y2

18
(8y6 − 30y5 + 30y4 − 9y2)∂2

ξF, (6.9b)

where G(ξ, τ ) is an unknown function, which turns out to be irrelevant for the evolution
of the system up to O(ε4).

At O(ε4), the energy equation reads as

− ∂τF + η̂∂yψ2 + ∂4
y T2 + 20η̂2y2∂ξψ0 − 100

3 η̂
2y3∂ξψ0

+ 40
3 η̂

2y4∂ξψ0 + ∂yT2∂ξψ0 − ∂ξψ2 + 1
8 η̂R̂a2y∂ξF

− 5
16 η̂R̂a2y2∂ξF + 1

6 η̂R̂a2y3∂ξF − ∂yψ2∂ξF + 40η̂y∂ξF

− 100η̂y2∂ξT2 + 160
3 η̂y3∂ξT2 − ∂yψ0∂ξF + ∂2

ξ T2 = 0. (6.10)
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Buoyancy instabilities in a liquid layer

To obtain the governing evolution equation for F(ξ, τ ), the solution at O(ε2) given by
(6.9) needs to be substituted into (6.10), and the latter is integrated with respect to y across
the layer y ∈ (0, 1) along with the appropriate boundary conditions. As a result, we obtain
the governing evolution equation for F(ξ, τ ) in the form

∂τF + 58
693

∂4
ξF −

[
1
6
η̂ + 5η̂

42Pr

]
∂3
ξF + 1

12
∂2
ξ

[(
∂ξF

)2
]

+
[
−760

189
η̂2 + 1

320
R̂a2 + 1520

189
η̂∂ξF − 760

189
(∂ξF)2

]
∂2
ξF + B̂i F = 0, (6.11)

where the Biot number term B̂iF arises due to the heat transfer boundary condition at
the free surface y = 1 at O(ε4). Before proceeding further we scale out ε from the above
equation by using the scaling (6.4a–e) expressing the system dynamics in terms of the
unscaled dimensionless variables and parameters to obtain

∂tF + 58
693

∂4
x F − η

[
1
6

+ 5
42Pr

]
∂3

x F

+ ∂x

[(
1

320
Ra2 − 760

189
η2 + 760

189
η∂xF − 760

567
(∂xF)2 + 1

6
∂2

x F
)
∂xF

]
+ BiF = 0,

(6.12)

where Ra2 = ε2R̂a2. The analyses below are carried out based on the evolution equation
(6.12).

6.2. Linear stability analysis
To carry out the linear stability analysis of the base state corresponding to F = 0, we
substitute F(x, t) = ζ exp(i(kx − ωt)) into (6.12) where ζ � 1 is an arbitrary constant.
Upon linearization and further simplification, we obtain the dispersion relation

ω = ηk3(5 + 7Pr)
42Pr

+ i
[
−Bi + Rk2 − 58k4

693

]
, (6.13)

where

R = Ra2

320
− 760η2

189
. (6.14)

The real and imaginary parts of (6.13) are

ωr = ηk3(5 + 7Pr)
42Pr

, (6.15a)

ωi = −Bi + Rk2 − 58k4

693
. (6.15b)

The variation of the growth rate ωi, i.e. the imaginary part of ω, as a function of the
wavenumber k with an increase in η is presented in figure 10. In agreement with the GLSA,
an increase in the HTG η has a strong stabilizing effect on the long-wave mode introduced
by the VTG.

Since at k = 0 the growth rate ωi = −Bi is negative and in the limit of k → ∞ the
growth rate ωi ∼ −k4 is also negative, the stability properties of the system are determined
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k
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–0.005

0

0.005

0.010

η = 0
η = 0.05
η = 0.1
ωi = 0 line

ωi

Figure 10. Variation of the growth rate ωi with the wavenumber k at Bi = 0.001, Pr = 10 and Ra2 = 16 for
various η as given by (6.15b). The figure illustrates a strong stabilizing effect of the increase in the relative
strength of the HTG η on the long-wave mode induced by the imposed VTG.

via the sign of the maximal value of ωi in the intermediate range. This leads to the result
that along the neutral stability curve, i.e. ωi = 0,

Ra2 = 243 200
189 η2 + 640

√
58
693 Bi. (6.16)

The critical Rayleigh number up to O(ε2) correction is thus

Rac = Ra0 + Ra2 = 320 + 243 200
189 η2 + 640

√
58

693 Bi. (6.17)

This clearly illustrates the stabilizing effect of an increase in η via an increase in the critical
Rayleigh number Rac on the long-wave mode in agreement with the GLSA.

Similarly, the effect of an increase in the Biot number Bi is also stabilizing, as seen
in figure 11, which presents the variation of the growth rate ωi with the wavenumber k
and the Biot number Bi for η = 0 and Ra2 = 16 representing 5 % supercriticality. Due
to the presence of heat transfer at the free surface, Bi /= 0, the long-wave mode k → 0 is
linearly stable. Similarly, short waves are damped due to dissipation promoted by viscosity
and thermal diffusivity of the liquid, ωi < 0 for k � 1. This leaves an intermediate (still
long-wave) range of the disturbance wavenumber k to exhibit instability ωi > 0, and
gives rise to the emergence of two values of k, k = k1 ≈ 0.133 and k = k2 ≈ 0.774 for
Bi = 0.001, where the growth rate ωi vanishes. The fastest growing linear mode k = km
is determined as usual via solution of the equation dωi/dk = 0, which yields in the case
of Bi = 0.001, k = km ≈ 0.5465. We refer to this figure below in discussion of the results
in the context of nonlinear dynamics of the system revealed via numerical solution of the
evolution equation (6.12).

Figure 12 displays a comparison of Rac obtained from both the numerical and long-wave
analyses. An excellent agreement between the two approaches for η < 0.2 proves the
validity of the long-wave asymptotic analysis. It is noteworthy that, as follows from (6.17),
the maximal value of the second-order correction is ≈31.5 for η < 0.1 and Bi ≤ 0.01,
which is much smaller (about 10 %) than Ra0 = 320.
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Bi = 0.01

ωi

Figure 11. Growth rate ωi as a function of the wavenumber k for Ra2 = 16 and η = 0 as given by (6.15b) for
different Bi. Note that the growth rate ωi is independent of the Prandtl number Pr.

10–3 10–2 10–1 100
102

104

106

108

Rac

GLSA

Long-wave analysis

η

Figure 12. Variation of Rac with η at Pr = 10 and Bi = 10−5. Along the lower branch, the analytically
obtained value of Rac given by (6.17) is in excellent agreement with the values of Rac determined numerically
for η < 0.2, thereby validating the former.

6.3. Spatio-temporal linear stability analysis
In this subsection, for the sake of simplicity, we present the results for the case of Bi = 0,
which remain practically unaffected for small but non-zero Bi (< O(10−4)). To carry out
the temporal stability analysis, ω is taken as a complex number, while the wavenumber k is
treated as a real number (Drazin & Reid 1981). To investigate the spatial stability analysis
aimed at determining the evolution of disturbances in space, the frequency ω is treated as a
real number while k is a complex number (Drazin 2002). Conversely, in a spatio-temporal
stability analysis, both ω and k are treated as complex numbers (Huerre & Monkewitz
1990; Schmid & Henningson 2001). This section is aimed at understanding the impact of
the HTG on the emergence of absolute instability.
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An instability is classified as either absolute or convective if the growth of disturbances
takes place in both upstream and downstream directions or the disturbances develop in the
downstream direction from their source, respectively (Briggs 1964; Huerre & Monkewitz
1990; Schmid & Henningson 2001). The proposed methodology to determine the existence
of absolute instability is by progressively moving the Laplacian contour in the ωr–ωi plane
and the Fourier contour in the kr–ki plane (Briggs 1964).

Thus, in the case of convective instability, the disturbances will decay at any fixed
position in space if sufficient time is allowed for that (Huerre & Monkewitz 1990). This
results in mixing in the downstream direction only, whereas absolute instability will
induce mixing in both upstream and downstream directions. The emergence of absolute
or convective instability can be illustrated by considering the response of a given base
velocity profile to an impulse excitation at asymptotically long times (Huerre & Monkewitz
1990).

The emergence of absolute instability for a given dispersion relation ω = g(k) with
a continuous and differentiable function g(k) can be detected if the group velocity of
the disturbances has at least one saddle point, i.e. there exists at least one root k for the
equation ∂ω/∂k = 0 (Huerre & Monkewitz 1990; Schmid & Henningson 2001). However,
the determined saddle point must also obey the causality principle for the existence of
absolute instability (Huerre & Monkewitz 1990).

To obtain a sufficient condition for the emergence of absolute instability, the equation
∂ω/∂k = 0 is solved in terms of k, which yields the saddle points of the dispersion relation.
If the saddle point k = k0 is of first order in the k plane, then a local Taylor expansion for
ω about this point yields (ω − ω0) ∼ (k − k0)

2, where ω0 ≡ ω(k0). This shows that the
mapping from the k plane (k = kr + iki) to the ω plane (ω = ωr + iωi) for a first-order
saddle point is characterized by angle doubling. Note that the k and ω planes are spanned
over kr–ki and ωr–ωi, respectively.

For realistic dispersion relations, finding a saddle point in the k plane and a cusp
point in the ω plane according to the method of Briggs (1964) becomes a cumbersome
mathematical and numerical task. A simpler alternative is the method of Kupfer, Bers &
Ram (1987), in which for a prediction of absolute instability, only the formation of a cusp
point in the ω plane is necessary. Figure 13 illustrates a genuine cusp point in the ω plane,
thereby illustrating the existence of absolute instability for a non-zero η.

For η = 0, (6.13) yields ωr = 0; thus disturbances do not travel and ωi > 0 for Ra2 > 0
for a range of sufficiently low k. Thus, in the absence of the imposed HTG, the flow is
absolutely unstable and the critical Rayleigh numbers for the onset of the temporal and
absolute instabilities are equal. However, for η > 0, ωr /= 0, and the flow may become
convectively unstable as illustrated in figure 14.

Given a simple structure of the dispersion relation (6.13), the location of a saddle point
in the k plane and that of a cusp point in the ω plane is readily obtained. Differentiating
(6.13) with respect to k once and then solving the equation dω/dk = 0 yields a saddle
point:

k0 = −i
1485η(5 + 7 Pr)

13 920 Pr

+
√

3 617 460 Pr2 Ra2 − 825η2 [66 825 + Pr(187 110 + 5 773 217Pr)]
13 920 Pr

. (6.18)

A mirror saddle point with kr < 0 and the same ki also exists as the second solution of
the equation ∂ω/∂k = 0. Since we consider now a solution with kr > 0 only, the saddle
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Figure 13. Cusp point formation at Pr = 7, Ra2 = 25, η = 0.1 and Bi = 0. The figure illustrates the
existence of absolute instability for a non-zero η in the ωr–ωi plane. The cusp point is located at
ω0 = 0.00189 + 0.00379i. A straight curve drawn from the cusp point ω = ω0 intersects the ki = 0 curve
once, i.e. an odd number of times, thereby confirming the genuine nature of the cusp point. The cusp point
corresponds to ωi0 > 0; thus for the chosen parameter set, the system is absolutely unstable.

0 0.2 0.4 0.6 0.8 1.0

–4

–2

0

2

4

ki = 0

ki = –0.03

ki = –0.06

ki = –0.0823

(×10–4)

(×10–5)

ωr

ωi

Figure 14. Cusp point formation in the case of Pr = 7, Ra2 = 14, η = 0.1 and Bi = 0. The cusp point is
located at ω0 = 3.1626 × 10−5 − 2.9339 × 10−7i, and corresponds to ωi0 < 0; thus the system with a given
parameter set is convectively unstable.

point with kr < 0 will not be used henceforth. It must be noted that the saddle point with
kr < 0 corresponds to the cusp point with ωr < 0 and both saddle points will yield the
same value of ωi0. We now substitute k = k0 into (6.13) and obtain the corresponding value
ω0 = ω(k0). The variation of the critical parameters for the emergence of the temporal and
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Figure 15. Variation of the critical parameters at Pr = 7 and Bi = 0. (a) The difference between the critical
Ra2 for the thresholds of the temporal and absolute instabilities and ki0 increases with an increase in η, thereby
showing the role of the imposed HTG in the emergence of convective instability. (b) A magnified part of (a) to
emphasize the existence of the convectively unstable streamwise mode.
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Figure 16. Variation of the cusp point location (ω0 = ωr0 + iωi0) with Pr at Ra2 = 20, η = 0.01 and Bi = 0.

absolute instabilities and the value of ki0 is shown in figure 15. For example, for η = 0.1,
the critical values for Ra2 in the cases of the temporal and absolute instabilities are ∼12.88
and ∼14.1, respectively. Also, with η = 0, the critical values Ra2 for the emergence of the
temporal and absolute instabilities are equal to zero.

Variation of the cusp point location in the ω plane with the Prandtl number Pr is
presented in figure 16. It follows from the governing equations (2.2b) that with a decrease
in Pr, the inertial terms become more important. This leads to a stronger convection,
thereby even resulting in the convective instability at sufficiently low Pr. On the other
hand, as Pr increases, the flow becomes absolutely unstable with a rapid initial rise in the
growth rate ωi until Pr ∼ 0.2 where the latter achieves a constant value which remains the
same with a further increase in Pr.
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Buoyancy instabilities in a liquid layer

6.4. Weakly nonlinear analysis
Similar to the previous subsection, for the sake of simplicity, we present the results in the
case of Bi = 0 which remain practically unaffected for small but non-zero Bi (< O(10−4)).
To carry out the weakly nonlinear stability analysis, we follow the approach used by Cheng,
Chen & Lai (2001), Oron & Bankoff (1999) and Patne et al. (2021a) and introduce slow
time scales T1 = δt, T2 = δ2t, where δ � 1 is a small parameter related to the deviation
of the Rayleigh number Ra from its critical value Rac via (6.19a). The Rayleigh number
Ra and the temperature disturbance F(x, t) are expanded into series of δ as

Ra2 = Ra2c(1 + δ2), (6.19a)

F(x, t) = 1 + δF1(x, t, T1, T2)+ δ2F2(x, t, T1, T2)+ δ3F3(x, t, T1, T2)+ · · · , (6.19b)

where Ra2c is the critical value of the Rayleigh number obtained by solving (6.15b) for
ωi = 0 with k = kc = 2π/L being the cut-off wavenumber and L the length of the periodic
domain, namely

−Bi +
(

Ra2c

320
− 760η2

189

)
k2

c − 58
693

k4
c = 0. (6.20)

These are substituted into (6.12). The problem is then solved order by order in δ in terms
of Fi.

At first order in δ, the correction to the temperature disturbance F1 due to the
perturbations is obtained in the form

F1(x, t, T1, T2) = a(T1, T2) exp (i(kcx − ωrt))+ c.c., (6.21)

where a(T1, T2) is the complex amplitude of the perturbation, yet unknown, evolving
in slow time and c.c. denotes complex conjugate. At second order in δ, the solvability
condition yields that the complex amplitude A is independent of the slow time scale
T1, namely A = A(T2). Also, the solution of the differential equation at second order
is exponential similar to F1 above, namely F2(x, t, T1, T2) = b(T2) exp[(2i(kcx − ωrt)] +
c.c. with the complex amplitude b(T2) proportional to a(T2)

2.
Finally, at third order in δ, the Landau equation governing the temporal evolution of the

amplitude function a ≡ a(T2) in slow time T2 is obtained:

∂T2a = λ1a + λ2|a|2a, (6.22a)

where λ1 and λ2 are the Landau parameters:

λ1 = δ−2k2
c (Ra2 − Ra2c) , λ2 = λ2n

λ2d
− 760

189
k4

c , (6.22b)

where
λ2n = 880(1520η + 63ikc)(3040η + 63ikc)k6

cPr, (6.22c)

λ2d = 189[320k2
c(8360η2Pr + 696k2

cPr + 99iηkc(5 + 7Pr))

− 2079k2
cPr Ra2c − 332 640iPrω], (6.22d)

and ω = ωr + iωi. Recall that at the stability threshold, the complex frequency is real, i.e.
ω = ωr. As usual, the linear term on the right-hand side of the Landau equation (6.22a) is
associated with the value of supercriticality Ra2–Ra2c and that the cubic coefficient of the
Landau equation λ2 is in general complex due to wave propagation.
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Figure 17. Variation of the imaginary part of the Landau coefficient λ2i with η at select values of (a) Pr and
(b) L. A non-zero λ2i for η /= 0 indicates the change in the bifurcation from pitchfork with η = 0 to Hopf
bifurcation.

For a liquid layer subjected to a purely VTG, namely η = 0, the Landau equation (6.22a)
is real, since then ω = 0 at the stability threshold, and thus λ2 is real and negative.
Therefore, the system undergoes a pitchfork (supercritical) bifurcation. In the case of a
liquid layer subjected to a purely VTG when both bounding surfaces are rigid (Gertsberg
& Sivashinsky 1981), the bifurcation is also supercritical provided that the fluid viscosity
is constant.

In the case of η /= 0, the Landau equation (6.22a) is complex. For sufficiently low values
of η, the real part of λ2 remains negative, λ2r < 0. Thus, the imposed HTG does not
affect the supercritical type of bifurcation; however, for non-zero HTG, η /= 0, owing to
the presence of the imaginary part of λ2, the bifurcation changes from pitchfork to Hopf
bifurcation, as shown in figure 17.

6.5. Nonlinear dynamics of the system
This subsection is devoted to the numerical investigation of the evolution equation (6.12)
formulated in terms of the function F representing the leading-order perturbation of the
temperature field with respect to the base-state distribution of the temperature in the layer.

Equation (6.12) is numerically solved with periodic boundary conditions in the domain
0 ≤ x ≤ L and the initial condition

F(x, t = 0) ≡ F0 = δ cos
(

2πx
L

)
, (6.23)

where δ is a small number, typically δ = 0.1. We use the numerical technique based on
the Newton–Kantorovich method presented in Boyd (2001) and implemented for solution
of a single partial differential equation (Oron 2000; Oron & Gottlieb 2002). We refer
the reader to details presented there. Typical values of the number of grid points in the
periodic domain and the time step sufficient for convergence are 400–1000 varying with
the parameter set of (6.12) and O(10−3), respectively.

In the case of η = 0, the system is subjected to a purely VTG and preserves left–right
symmetry. Figure 18 presents a typical outcome of the spatio-temporal evolution of the
temperature disturbance F for η = 0, Bi = 0 and Ra2 = 16 with the spatial periodicity
of L = Lm, L = 2Lm, L = 4Lm and L = 8Lm, as displayed by curves 1–4, respectively.
Note that in the case of η = 0, the Prandtl number does not affect the evolution of the
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Figure 18. Evolution of the temperature disturbance F in the framework of (6.12) with η = 0, Bi = 0 and
Ra2 = 16. Here ξ = x/L. Curves 1, 2 and 3 correspond to the steady states of the system with L = Lm and
L = 2Lm both at t = 4000, and with L = 4Lm at t = 20 000. Curve 4 corresponds to the transient of the system
with L = 8Lm at t = 100 000. The inset illustrates a coarsening process in the system with L = 8Lm at t = 5000,
t = 10 000 and t = 100 000 shown by curves a, b and c, respectively. Curve c in the inset and curve 4 in the
main figure are the same.

temperature field and therefore does not appear in the parameter list. We also note that
a formal use of Bi = 0 represents well the results obtained for Bi � 10−5. The value of
Lm represents the wavelength of the fastest-growing linear mode, Lm = 2π/km. The layer
evolution is slow and is characterized by the tendency of coarsening, so at the end, one
cell of the maximal horizontal extent will emerge. Curves 1, 2 and 3 show steady states
of F at t = 4000, t = 4000 and t = 20 000, respectively. For the sake of convenience of
presentation the horizontal spatial variable is scaled with respect to the periodicity L, ξ =
x/L. Curve 4 displays a transient state of F at a very large time t = 100 000. The coarsening
dynamics is displayed in the inset, which shows its main stages at t = 5000, t = 10 000
and t = 100 000 marked by a, b and c, respectively. The temperature distribution at these
times exhibits 7, 5 and 4 humps, respectively. We conjecture that at even larger times, the
humps seen in curve 4 will merge and their number will further decrease, so at the end
of the evolution, a one-hump pattern taking the entire periodic domain, similar to curves
1–3 in the figure itself, will form. This type of dynamics could be expected since a hot
liquid parcel rising to the layer free surface will travel the longest possible distance along
it before sinking by retaining heat and not releasing it to ambient since Bi = 0 (or releasing
it extremely slowly for Bi ≤ 10−5). On the other hand, with a larger Bi, e.g. Bi = 0.001,
the heat loss to ambient takes place faster; therefore, a liquid parcel moving along the film
interface is expected to travel a finite distance before its temperature decreases and it sinks.
As a result of this, a number of convective cells is expected to emerge for these values of
Bi, and we turn to this case next.

Figure 19 presents the results of a typical evolution of the temperature disturbance F
in the case of a moderately small non-zero Biot number, e.g. Bi = 0.001, with η = 0 and
Ra2 = 16. Figure 19(a) depicts the time evolution of the maximal Fmax and minimal Fmin
values of F for the cases of L = Lm, L = 2Lm, L = 4Lm and L = 8Lm marked by 1–4,
respectively. While in the cases of L = Lm and L = 2Lm, the longest mode exp (2iπx/L)
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Figure 19. Evolution of the temperature disturbance F in the framework of (6.12) with η = 0, Bi = 0.001 and
Ra2 = 16. Note that in the case of η = 0, the Prandtl number does not affect the dynamics of the system. Here
ξ = x/L. (a) Temporal evolution of the maximal and minimal values of F shown by solid and dashed curves,
respectively. Curves 1–4 correspond to the system with L = Lm, L = 2Lm, L = 4Lm and L = 8Lm, respectively.
(b) Profiles of F. Curves 1–4 show steady states of the system with L = Lm at t = 5000, L = 2Lm at t = 6000,
L = 4Lm at t = 25 000 and L = 8Lm at t = 25 000, respectively.

admissible in the domain of size L is linearly unstable for the given set of parameters, and
thus Fmax increases and Fmin decreases in the short-time range, the two other cases evolve
differently. As shown in figure 11, due to the fact that the range of small wavenumbers k
belongs to the linearly unstable range, for a sufficiently long periodic domain, in ‘short’
times, the initial disturbance of F decays. This takes place for the cases shown by curves
3 and 4 in figure 19(a). Following this decay, the nonlinearities present in (6.12) transfer a
sufficient amount of energy into higher modes, so the energetically dominant mode enters
the linearly unstable domain, and the temperature disturbance grows in time and then
saturates. In the long-time limit, the amplitude of F tends to constants for both Fmax and
Fmin.

Figure 19(b) displays steady states for all the four cases reached each at its time. In
these cases with L = NLm, N = 1, 2, 4 and 8 shown here, the fastest-growing linear modes
k = 2jπ/L correspond to j = N. Since the steady states presented in figure 19(b) display
one convective cell for the cases of L = Lm and L = 2Lm, and three and seven cells in
the cases of L = 4Lm and L = 8Lm, respectively, the following conclusion is drawn: the
wavelength of the steady pattern is larger than that of the fastest-growing linear mode,
except for the basic case of L = Lm.
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Figure 20. Evolution of the temperature disturbance F in the framework of (6.12) with Bi = 0.001 and Pr =
6.7 for various values of η with supercriticality of 5 %, namely Ra2 = 1.05Rac − 320 and L = 4Lm. Curves
1–3 correspond to the travelling waves at t = 25 000 with the parameter sets of (η = 0.05, Ra2 = 19.2169),
(η = 0.075, Ra2 = 23.2381) and (η = 0.1, Ra2 = 28.8677), respectively.

A typical example of the long-time evolution of the temperature field is shown in
figure 20, which presents stationary wave states of the system at t = 25 000 for three
parameter sets with η = 0.05, 0.075 and 0.1 with supercriticality of 5 %, namely Ra2 =
1.05Rac − 320 for each of the cases. The values of the Biot and Prandtl numbers are fixed
at Bi = 0.001 and Pr = 6.7, and the size of the periodic domain is L = 4Lm. As in the case
of η = 0 shown in figure 19, the patterns display three humps, but this time, they travel
to the right, i.e. against the direction of the HTG, as travelling waves (the corresponding
phase plane portraits are closed curves – not shown) with a speed of c = 0.0004, 0.0006
and 0.0008 evaluated numerically in cases 1–3, respectively. The propagation direction
of these travelling waves of the temperature disturbances is in accord with the result of
the linear stability theory given by (6.15a). As a reference, in the case of the parameter
sets corresponding to the curves displayed in figure 20, the corresponding wave speeds as
predicted by the linear stability analysis are clin = ωr/k = 0.0015, 0.0023 and 0.0031 for
η = 0.05, 0.075 and 0.1, respectively, where k is the actual wavenumber of the travelling
wave; in our case in figure 20, k = L/3. It is interesting to note that the values of the
travelling wave speed c are lower than those for clin and are roughly proportional to η, as
predicted in the linear stability theory for ωr by (6.15a) along with clin = ωr/k.

Knobloch (1990) investigated various versions of the weakly nonlinear evolution
equations emerging in long-wave convection. However, since the equation investigated
there possesses an even parity with respect to the independent variables, the results
obtained there cannot be applied in our case, where (6.12) contains among the same terms
as in Knobloch (1990) two additional terms, namely the dispersive term proportional to
∂3

x F and the term proportional to ∂x[(∂xF)2], which have a broken parity. Both of these
terms emerge from the presence of the imposed HTG.

As mentioned above, the presence of the dispersive term ∼ Fxxx begets thermal wave
propagation against the direction of the imposed HTG. It turns out that the presence of the
other broken-parity term ∂x[(∂xF)2] induces a special property of the wave shape.
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Frequently, evolution equations with a broken left–right symmetry, which describe
instabilities in a liquid layer, contain the advection term of the form FFx like in the
nonlinear wave equation. In these cases, the sign of the coefficient of the advection term
designates the direction of the wave propagation. If it is positive (negative), the wave
travels to the right (left). Accordingly, the leading front of the wave is steeper than its
rear front. In the case at hand, (6.12) does not feature this term; instead of it, ∂3

x F and
∂x(∂xF)2 are present.

In the case of η /= 0, the waves displayed in figure 20 travel to the right according to the
sign of the dispersive term ∼∂3

x F and (6.15a) and show asymmetric shapes where the rear
fronts are steeper than their leading fronts. Let us now explain this effect imparted by the
term ∂x[(∂xF)2]. To do this consider the equation

∂tF + 760
189

η∂x[(∂xF)2] = 0. (6.24)

Differentiating (6.24) with respect to x and defining φ = Fx yields the equation

∂tφ + 1520
189

η∂x (φ∂xφ) = 0, (6.25)

which displays backward diffusion of φ (instability) for φ > 0 and forward diffusion of
φ for φ < 0, namely for the increasing and decreasing branch of the function F(x, t),
respectively. This causes a stretching with time, i.e. an increase in the variation of φ
equivalent to an increase in the gradient of F with time along the increasing branch
of F. The opposite takes place along the decreasing branch of F, where the variation
of φ tends to decrease with time, as usual for a normal (forward) diffusion, which
materializes in a decrease in the gradient ∂xF. These changes ensuing from the presence
of the term proportional to ∂x[(∂xF)2] increase proportionally to the value of η and can
be seen in figure 20, where the increasing branches (rear fronts) are always steeper than
the decreasing ones (leading fronts). We reiterate that this feature is opposite to that of
well-known travelling waves driven by advection FFx as in the nonlinear wave equation
where the leading front will be always steeper than the rear one.

We note that (6.12) is not invariant under the following mappings: F → −F,
(F → −F, x → −x) and (F → −F, x → −x, η → −η). As a result, the temperature
distributions F are asymmetric with respect to the line F = 0, namely |Fmax| /= |Fmin|.
It is observed that the spatial variation of the temperature disturbance indeed satisfies
this observation, and in all solutions presented here in figures 18–20 except for curve
4 in figure 18 which still evolves in time and space, |Fmax| < |Fmin|. Also, it is found
that both the temperature amplitude Fmax and peak-to-peak size of the temperature wave
Fmax − Fmin grow with η, as illustrated in figure 20.

We next explore the nonlinear evolution of a layer for a varying Prandtl number Pr. To do
this, we chose a silicone oil with Prandtl number of Pr = 50. The Prandtl number appears
in the dispersive term ∼ Fxxx, and, as suggested by the linear stability analysis based on
(6.12), affects its critical wave speed ωr; see (6.15a). The critical speed ωr decreases with
an increase of Pr. We have found numerically that the speed of a travelling wave pattern
indeed decreases with Pr. It is interesting to note that in flow regimes with Pr = 50, the
values of Fmax and Fmin are equal to their respective values in the regimes displayed in
figure 20 for Pr = 6.7. We thus conjecture that the Prandtl number does not affect the
maximal and minimal values of the amplitude of the temperature variation in the saturated
travelling wave regime with the rest of the parameters fixed.
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7. Conclusions

The present work deals with the buoyancy instability in a liquid layer subjected to an OTG
resting on a poorly conducting horizontal substrate and bounded by a free non-deformable
interface separating the liquid and the ambient gas phase. The GLSA reveals a strong
stabilizing effect of the imposed HTG on the buoyancy instability triggered by the imposed
VTG for Pr > 1. The imposed HTG stabilizes the instability caused by the imposed VTG
by inducing a VTG which opposes the imposed VTG. For Pr < 1, relevant to liquid
metals, a new mode of instability arises as a result of the velocity jump in the liquid layer
and the presence of inertia.

Exploiting the long-wave nature of the instability introduced by the VTG in the
case of low Biot numbers, we carry out a long-wave nonlinear analysis and derive
the evolution equation governing the weakly nonlinear spatio-temporal dynamics of the
leading-order perturbations to the base-state temperature field. The linear stability analysis
based on this evolution equation confirms the stabilizing effect of the imposed HTG. The
spatio-temporal stability analysis predicts the existence of convective instability due to
the imposed HTG. The critical parameters for the onset of the temporal and absolute
instabilities are equal in the absence of an imposed HTG. However, in the presence of
the HTG, the critical parameters for the onset of the absolute instability are higher than
those for the temporal instability and the emergence of convective instability is possible.
The weakly nonlinear analysis based on the aforementioned evolution equation reveals the
change of the bifurcation from pitchfork to Hopf for a non-zero HTG.

Numerical investigation of the weakly nonlinear dynamics of the temperature
disturbances’ field based on the evolution equation derived here shows that instead of
time-independent flow emerging in the absence of an imposed HTG, the latter leads to the
formation of travelling cells propagating against the direction of the imposed HTG with a
speed roughly proportional to the strength of the HTG. The wavelength of the stationary
travelling temperature disturbance pattern emerging in the nonlinear stage of the evolution
is found to be larger than the wavelength of the fastest-growing linear mode.

A comparison between the stability properties of the buoyancy instability with the
companion physical setting of the thermocapillary instability considered elsewhere by
Patne et al. (2021a) both driven by an OTG reveals a possibility of the emergence of
the thermocapillary instability in a thick liquid layer in the case of Prandtl number larger
than one. This paper calls for an experimental verification of this phenomenon.

In the present paper, we have considered the case of a horizontal layer of
a Newtonian liquid. However, many practical applications and industrial processes
involve non-isothermal horizontal layers of non-Newtonian fluids subjected to an either
intentionally or unintentionally created OTG. Also, to ease on technicalities we have
assumed a temperature-independent viscosity of the fluid, whose possible variation with
temperature may lead to a modification in the critical parameters obtained here. The
present investigation is to be extended to include this effect along with the non-Newtonian
nature of the fluid.
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