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Abstract

In this paper, we use copula-GARCHmodels applied to daily data fromMarch 2010 toMarch
2018 to test the time-varying dependence of the Liv-ex 50, a secondary market fine wine index
comprised of the ten most recent vintages of the five Bordeaux First Growths, with a portfolio
composed of the six main stock markets (S&P 500, CAC 40, DAX 30, FTSE 100, and Hang
Seng). Our results suggest that the Liv-ex 50 underperforms the six stock indexes, but provides
diversification benefits in terms of volatility, asymmetry, and extreme events. (JEL
Classifications: G110, G120, Q14)
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I. Introduction

A substantial body of literature is devoted to assessing the returns, portfolio-diver-
sification benefits, and the correlation between wine and financial assets (see espe-
cially Dimson, Rousseau, and Spaenjers, 2015). Based on returns calculated from
raw price data or existing indices, Sharpe ratio (Fogarty, 2010; Lucey and Devine,
2015), CAPM (Sanning, Shaffer, and Sharratt, 2008; Masset and Weisskopf,
2018), Fama-French Three-Factor model (Sanning, Shaffer, and Sharratt, 2008)
and Markowitz’s efficient frontier models (Masset and Henderson, 2010; Aytaç
and Mandou, 2016) are used to study wine performance and its risk profile.
Alternative methods such as the VECM are also applied to discover long-term
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relationships between fine wine and financial markets (Cardebat and Jiao, 2018).
However, these methods have known limitations.

Recent econometric methods used in standard finance studies present advantages
for the analysis of risk. Over the last years, new econometric tools have been intro-
duced to improve the analysis of wine assets. DCC-GARCH and ADCC-GARCH
were applied to test the time-varying volatilities of wine returns and the contagion
effects between fine wine and financial indices (Bouri and Roubaud, 2016; Le Fur
et al., 2016a; Le Fur et al., 2016b). Furthermore, copula functions were used to
explore the dependence between Bordeaux en primeur prices and Parker ratings
(Cyr, Kwong, and Sun, 2017).

However, there is still no consensus as to whether fine wine is an attractive asset to
portfolio risk management. Krasker’s (1979) paper suggests that the return to wines
is below the return to government bonds. Various subsequent studies find that wine
outperformed government bonds and other collectibles but underperformed equities
(e.g., Burton and Jacobsen, 2001; Fogarty, 2006; Dimson, Rousseau, and Spaenjers,
2015). Nevertheless, several recent studies indicate that, during certain periods,
wine actually outperformed equities (Lucey and Devine, 2015; Aytaç and Mandou,
2016).

The correlation with other assets and the exposure to risks remains an open ques-
tion. Wine assets are first found to provide advantages in portfolio diversification
(see, e.g., Sanning, Shaffer, and Sharratt (2008); Kourtis, Markellos, and
Psychoyios (2012); and for an overview, Storchmann, (2012)). However, later
research casts doubts on fine wines’ diversification benefits. Fogarty and Jones
(2011) and Fogarty and Sadler (2014) find that assumed diversification benefits
are sensitive to the data sample and the estimation method of return and diversifica-
tion tests. In contrast to previous studies, Dimson, Rousseau, and Spaenjers (2015)
found significant positive correlations between wine and equity returns and high
exposure to systematic risk (β is 0.73 for the full period, 0.57 if excluding 1941–
1948). Cardebat and Jiao (2018) discover long-term relationships between prices
of fine wine and of common stock. Masset and Weisskopf (2018) suggest that the
inconsistency between different results may be partly due to the sensibility of data
frequency and illiquidity. After adjustments for illiquidity, the potential risk associ-
ated with wine investments appears greater than previously believed. More recent
studies find that the law of one price is not respected in fine wine markets and that
certain markets provide a geographical premium compared (Cardebat et al., 2017;
Masset et al., 2016).

The lack of consensus reflects not only limitations related to the nature of wine
assets, but also potentially weak methodologies. Studies in finance indicate that a
linear correlation is not sufficient to distinguish dependence among financial
assets. In fact, different pairs of assets with the same correlation can present a con-
siderable variety in the structure of dependence, and assets with zero correlation may
exhibit perfect dependence (Patton, 2004). In addition, there may also exist some
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asymmetry in dependence structures. Equity returns seem more dependent during
market downturns than market upturns. Likewise, international markets experience
an increase in dependence during a crisis period (known as financial contagion,
see Hong, Tu, and Zhou, 2006; Garcia and Tsafack, 2011). Furthermore, extreme
events occurring in one market may lead to extreme events in other markets.
This probability can be measured by the dependence in the tails of the distribution.
Ausin and Lopes (2010) highlighted the importance of tail dependence in
the calculation of Value-at-Risk (VaR), since an inadequate measure of the
dependence in the tails, could significantly affect the accuracy of the estimations
of VaR.

The literature also documents problems associated with linear regression models
(OLS, VAR, and VECM) and constant correlations. The assumption of constant
variance and covariance in these models do not capture the dynamics in market vol-
atilities or the time-varying dependence in asset returns (Wang, Wu, and Yang,
2015).

Time-varying copula models were introduced in the 2000s to describe the depen-
dence structures between asset returns, which technically measures “the joint prob-
ability of events as a function of the marginal probabilities of each event”
(Lourme and Maurer, 2017, p. 204). Various studies show that copulas can
capture linear correlation as well as asymmetric dependence and upper and lower
tail dependence, and thus provide a useful tool to obtain precise VaR estimations.
In the latest studies, the authors compare the performances of different copula struc-
tures applied in risk analysis (Lourme and Maurer, 2017).

In this paper, we use copula-GARCH models to test the time-varying dependence
of wine in a portfolio that includes six global stock market indices (S&P 500, CAC
40, DAX 30, FTSE 100, and Hang Seng). We choose the Liv-ex 50 as the represen-
tative wine-price index since it is the only wine index available on a daily basis.
The Liv-ex 50 comprises the ten most recent vintages of the five Bordeaux First
Growths, which belong to the most commonly traded wines on the secondary
wine market.

We find that the Liv-ex 50 underperforms the six stock indexes but provides the
best diversification abilities in terms of volatility, asymmetry, and extreme events.
Thus, the Liv-ex 50 may be an attractive diversification tool in the eye of risk-
averse investors.

The remainder of the paper is structured as follows. Section II describes the meth-
odology. Section III outlines the data and the statistical model and reports
the results. Section IV analyzes the risk, performance, and diversification benefits
of fine wine. Section V discusses the results and Section VI summarizes our
findings.
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II. Modeling the Dependence of Returns Using Time-Varying Copula
Functions

Copulas were introduced by Sklar (1959) as a tool to link diverse marginal distribu-
tions together in order to form a joint multivariate distribution. Although very
popular in the finance and economics literature to model tail dependence in the
context of portfolio and risk management (see, e.g., Ausin and Lopes, 2010), they
have been introduced in the field of wine economics only very recently. Cyr,
Kwong, and Sun (2017, 2019) use a range of popular copulas to investigate the
bivariate relationship between en primeur prices and Parker ratings in a static
copula framework.

The remainder of this text will follow the notation of Ghalanos (2015), with some
slight modifications.

A n-dimensional copula C(u1, ⋅ ⋅ ⋅ , un) is a n-dimensional distribution in the unit
hypercube [0, 1]n with uniform U(0, 1) marginal distributions. Sklar (1959) showed
that every joint distribution F(x1, ⋅ ⋅ ⋅ , xn), whose marginal are given by F1(x1),
⋅ ⋅ ⋅ , Fn(xn), can be written as

F (x1, � � � , xn) ¼ C(F1(x1), � � � , Fn(xn)), ð1Þ

for a function C that is called a copula of F.

Also worth mentioning: if the marginal distributions are continuous, then there is
a unique copula associated to the joint distribution F, which can be obtained from

C(u1, � � � , un) ¼ F (F�1
1 (u1), � � � , F�1

n (un)): ð2Þ

The corresponding density function may conversely be obtained as

f (x1, � � � , xn) ¼ c(F1(x1), � � � , Fn(xn))
Yn

i¼1
fixi, ð3Þ

where fi are the marginal densities and c is the density function of the copulawhich is
derived from Equation (2) and is given by

c(u1, � � � , un) ¼ f (F�1
1 (u1), � � � , F�1

n (un))Qn
i¼1 fi(F

�1
i (ui))

, ð4Þ

where F�1
i denotes the quantile functions of the margins.

Dias and Embrechts (2010) provide evidence that assuming a constant correlation
may cause substantial mispricing and errors in risk measurement. Because the
conditional dependence is time varying, its dynamics must be modeled. Engle
(2002) and Tse and Tsui (2002) propose a generalization of the constant conditional
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correlation model (CCC) of Bollerslev (1990) by making the conditional correlation
matrix time-dependent.

The Dynamic Conditional Correlation (or DCC) class of models opens the door
to using flexible GARCH specifications. As an example, Le Fur et al. (2016b) used a
bivariate DCC-GARCH model to compute time-varying betas and time-varying
risk premiums in the context of investments in fine wines.

While flexible, a salient drawback of the DCC models is that all the conditional
correlations obey the same dynamics. An alternative approach to modeling the con-
ditional dependence in financial time series of various asset classes and frequencies is
known as the copula-GARCHmodel. In contrast to GARCH-type models available
in the multivariate GARCH literature, copula-based GARCH models can flexibly
model the dependence structure of variables through a copula function.

Due to this interesting feature of copulas, many authors have considered copula
GARCH models where the marginal series follow univariate GARCH processes,
and the dependence structure between them is specified by a copula (see, e.g.,
Ausin and Lopes (2010); Dias and Embrechts (2010); Rodriguez (2007); Jondeau
and Rockinger (2006); Patton (2006)). In this paper, we use such a time-varying
copula GARCH model to take the dynamic behavior of the dependence structure
underlying the Live-ex Fine Wine 50 and the stock indexes into account.

III. Model Fitting and Estimation Results

A. Data

Our analysis draws on daily price data for the Liv-ex Fine Wine 50 Index, the S&P
500, the CAC 40, the DAX 30, the FTSE 100, the Hang Seng, and the Nikkei 225.
The data are extracted from Datastream (2018) and cover the period from March 1,
2010, to March 30, 2018. We compute the return series as

rt ¼ 100 × ln
Pt

Pt�1
,

where Pt denotes the observed daily price at time t and rt is the corresponding daily
return.

Table 1 displays the main empirical properties of the dataset. Unsurprisingly, like
most financial assets, the returns of each index are significantly negatively skewed,
indicating more probability on the left tail. Excess kurtosis is evident in S&P 500,
CAC 40, Nikkei 225, and dramatically so in Live-ex Fine Wine 50. As is well
documented, these patterns are common in financial assets.1

1See, e.g., Ang and Chen (2002) and Patton (2006).
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Table 1
Descriptive Statistics for the Log Returns of Seven Indexes

N= 2109 Liv-ex Fine Wine 50 S&P 500 CAC 40 DAX 30 FTSE 100 Hang Seng Nikkei 225

Min. –9.4384 –6.8958 –8.3843 –7.0672 –4.7794 –6.0182 –11.1534
Max. 7.7315 4.6317 9.2208 5.2103 5.0322 5.5186 7.4261
Mean 0.0091 0.0408 0.0149 0.0355 0.0126 0.0169 0.0353
St. dev. 0.6653 0.9209 1.2709 1.2223 0.9466 1.1100 1.3243
Skewness –1.3044 –0.5074 –0.1437 –0.2815 –0.1672 –0.3495 –0.5840
Kurtosis 36.1705 5.1141 4.1946 2.7488 2.6997 2.9816 5.9825
Jarque-Bera 115800*** 2396*** 1558.5*** 694.55*** 652.91*** 827.21*** 3274.1***
Multivariate Normality (Mardia)a

Skewness 2158.58
Kurtosis 180.12
MVN Rejected
Test of Dynamic Correlation (Engle and Sheppard, 2001)
n.lags = 5 20.8809***
n.lags = 10 42.0022***

*p < .10, **p < .05, ***p < 0.01

aMardia’s test performs multivariate skewness and kurtosis simultaneously and combines test results for multivariate normality (MVN). If both tests indicate multivariate normality, then the data follows a multivariate
normality distribution at the 5% significance level.
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All indexes in Table 1 yield negligible mean daily log returns. However, the mean is
positive, indicating that positive changes in stock price indexes are more dominant
than negative changes. Both the univariate (Jarque-Bera’s test) and multivariate
(Mardia’s test) normality assumption are rejected.

The non-constant correlation test (Engle and Sheppard, 2001) suggests that we
can reject the null hypothesis in favor of a dynamic correlation model (versus
static, see Table 1). This result highlights the advantage of using the DCC-
GARCH model along with a more refined specification such as, for example, a
time-varying copula approach.

The return data are plotted in Figure 1. As usual, in time series of financial asset
returns, one can observe volatility clustering. However, this phenomenon is not
present in the Live-ex-Fine Wine 50, which displays the lowest volatility (see Table 1).

B. The Student Copula AGDCC Model

Before going into details of the Student copula AGDCC model used in this paper to
model the time-varying dependence between the seven return indexes, we provide a
brief overview of copula GARCH models.

A n-dimensional vector of financial time series, yt = (y1, ⋅ ⋅ ⋅ , yp), follows a copula
GARCH model if the joint cumulative distribution function is given by

F (yt j μ, ht) ¼ C(F1(y1t j μ1, h1t), � � � , Fn(ynt j μn, hnt)), ð5Þ

whereC is a n-dimensional copula, Fi the conditional distribution function of the mar-
ginal series yit, for i= 1, ⋅ ⋅ ⋅ , n, and yit follows a standard univariate GARCHmodel:

yit ¼ μi þ
ffiffiffiffiffi
hit

p
εit ð6Þ

hit ¼ ωi þ αi(yi,t�1 � μi)
2 þ βihi,t�1, ð7Þ

where hit is the conditional variance of yit given the previous information Ii,t−1 =
{yi,t−1, yt−2, ⋅ ⋅ ⋅ }, ɛit are independent and identically distributed random variables
with zero mean, and ωi, αi, βi > 0 and αi+ βi< 1 to ensure positivity of hit and covari-
ance stationarity, respectively.

In this paper, we assume that the innovations follow a standardized skew Student
distribution, ɛit∼ fi(0, 1, ξi, υi ) (Fernández and Steel, 1998) with skew and shape
parameters ξ and υ, respectively. We select this distribution because it allows for
very flexible modeling of the skewness and fat tails features of the data.2 We also
assume that the dependence structure between marginal series is described by a

2As demonstrated by Fernández and Steel (1998).
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time-varying Student copula with conditional correlation Rt and constant shape
parameter η. The conditional density is given by

ct(uit, � � � , unt j Rt,η) ¼ ft(F�1
i (uitjη, � � � , F�1

i (uptjη) j Rt, η))Qn
i¼1 fi(F

�1
i (uitjη) j η)

, ð8Þ

where uit= Fit(yit|μit,hit,ξi,υi) is the Probability Integral Transformation (PIT) of
each univariate series by its conditional distribution Fit estimated via the first

Figure 1

Plots of the Daily Log-Returns of Seven Indexes
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stage GARCH process3; F�1
i (uitjη) denotes the quantile transformation of the

uniform margins subject to the common shape parameter of the multivariate
density; ft( ⋅ |Rt, η) is the multivariate density of the Student distribution with condi-
tional correlation Rt and shape parameter η; and fi( ⋅ |η) is the univariate margins of
the multivariate Student distribution with common shape parameter η.4

Although there are a plethora of copula functions available in the literature (see
Nelsen, 2006), we select the Student copula because we suspect possible tail depend-
ency between the marginals. Moreover, numerous previous studies suggest that the
Student copula is the best choice in many cases.5 Lastly, as observed by Cyr,
Kwong, and Sun (2017), goodness-of-fit testing for copulas is still a relatively unre-
solved issue, and the complexity increases in a multivariate setting due to high
dimensionality. Since we estimate here a GARCH-copula model in a d = 7-dimen-
sional setting, and given the computational tractability of time-varying elliptic
copulas in a multivariate setting (d≥ 3), the choice of the Student-t copula is suitable.

Finally, we assume that the dynamics of Rt follows an Asymmetric Generalized
Dynamic Conditional Correlations (AGDCC) model, as proposed by Cappiello,
Engle, and Sheppard (2006). This model generalizes the DCC GARCH model of
Engle (2002) by allowing for conditional asymmetries not only in volatilities but
also in correlations. The joint density of the 2-stage estimation is defined as

f (rtjμt, ht, Rt, η) ¼ ct(uit, � � � , uptjRt, η)
Yp

i¼1

1ffiffiffiffiffi
hit

p fit(εit, υi, ξi ), ð9Þ

where the two components of the likelihood are highlighted, one due to the joint
DCC copula dynamics and the other one related to the first stage univariate
GARCH dynamics.

The GARCH-DCC component of the multivariate Copula-GARCH specification
used in this paper is defined as a GARCH (1,1)-DCC (1,1) model. This GARCH-
DCC specification is extensively used in the financial economics literature.6 Also
worth noting, in many cases, GARCH (1, 1) specification cannot be outperformed
by more complex models (Hansen and Lunde, 2005).

The conditional mean process is modeled separately for each stock return index in
Table 1 in order to estimate each ARMAprocess independently. Selecting the “ideal”
order of an ARMA model may be a cumbersome task. We select the order of the

3Like the DCC model of Engle (2002), copula-GARCH models can be estimated using a two-step
maximum likelihood approach.
4For more details on the Student-t copula, see Demarta and McNeil (2005).
5See, for example, Wang, Wu, and Yang (2015) and Dias and Embrechts (2010). See also Lourme and
Maurer (2017) for a comprehensive empirical study of the Student-t copula in a risk management frame-
work and a rationale for using elliptic copula functions.
6See Bouri and Roubaud (2016) and Le Fur et al. (2016b) for two recent applications in wine economics.
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ARMA models based on the computation of the BIC and AIC information criteria
for different (p, q) pairs. As a rule of thumb, when deciding between two models, the
model with the lower order of differencing is preferred.

The log-likelihood function is given by the density function Equation (9).
Interestingly, the log-likelihood can be easily separated into two components: the
joint copula-DCC component and the univariate ARMA-GARCH component.
This allows the individual ARMA-GARCH parameters and their distributional
parameters to be estimated for each stock index in a first stage by maximizing the
univariate ARMA-GARCH component of the LL function. Then, the copula-
DCC parameters are estimated by maximizing the other component of the LL func-
tion. We use this two-stage Maximum Likelihood Estimation (MLE) approach to
estimate the whole set of parameters of the Student copula AGDCC model.

C. Estimation Results of the Student Copula AGDCC Model

The Student Copula AGDCC estimation results are reported in Table 2.

• Panel A reports the estimation results of the univariate ARMA-GARCH
model for the seven indexes in the portfolio, and

• Panel B reports the copula-DCC parameter estimation results.7

Panel A shows that the α, β correlation persistence parameters of the GARCH (1, 1)
are never jointly non-significant, indicating that a GARCH (1, 1) is better than a cons-
tant conditional variance. The high significance of the ξ, ν-skew, and ν-shape (or tail
thickness) parameters—on all indexes except the S&P 500 and FTSE 100 shape param-
eter—suggests that the standardized skew Student distribution of Fernández and Steel
(1998) is a conditional distribution consistent with the system of series.

The estimates of the ν-shape parameter of the skew Student distribution reported
in Panel A are low (ranging from 4.3233 to 7.2377). It should be noted that values
lower than 10 might indicate that the standardized residuals still exhibit fat-tailed-
ness even after the volatility adjustment of stock returns through the use of
GARCHmodeling. However, the copula approach copes with heterogeneity in mar-
ginal distribution efficiently. Therefore, the ν-shape parameter values in Panel A are
unlikely to lead to misspecification issues in the second stage of the whole likelihood
maximization process (Panel B).

Lastly, we calculate the persistence parameter P̂ ¼ Pq
j¼1 αj þ

Pp
j¼1 βj for the stan-

dard GARCH model (Bollerslev, 1986) to quantify the volatility clustering captured

7We used the R (http://cran.r-project.org/) package “rmgarch” (Ghalanos, 2015) for the parameter
estimation.
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Table 2
Copula-GARCH Fit

Liv-ex 50 S&P 500 CAC 40 DAX 30 FTSE 100 Hang Seng Nikkei 225

Panel A. Univariate ARMA-GARCH Parametersa (White Robust Standard Errors in Brackets)

ar1 –0.2602 –1.0442*** 0.8549*** –0.4108 –0.9082*** –0.5667 0.8100***
(0.2481) (0.0055) (0.1044) (0.3202) (0.0902) (0.5360) (0.1414)

ar2 –0.0352 –0.0552*** –0.0058 –0.0339 –0.0429 –0.0052 0.0108
(0.0262) (0.0090) (0.0266) (0.0245) (0.0345) (0.0184) (0.0246)

ma1 0.2546 0.9836*** –0.8967*** 0.4171 0.0879*** 0.5686 –0.8404***
(0.2497) (0.0004) (0.1026) (0.3200) (0.1452) (0.5347) (0.1416)

ω 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000* 0.0000
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (.0000)

α1 0.0515 0.1550 0.0918** 0.0786*** 0.1165 0.0449*** 0.1168***
(0.0449) (0.3046) (0.0332) (0.0117) (0.7521) (0.0066) (0.0247)

β1 0.9214*** 0.8417*** 0.9019*** 0.9203*** 0.8638 0.9406*** 0.8462***
(0.0524) (0.2529) (0.0337) (0.0116) (0.8227) (0.0085) (0.0321)

ξ 1.0066*** 0.9359*** 0.9415*** 0.9378*** 0.9144*** 0.9370*** 0.9588***
(0.0291) (0.0414) (.0231) (0.0196) (0.0877) (0.0216) (0.0230)

ν 7.2371*** 4.3233 5.5716*** 4.9915*** 6.2556 6.5767*** 4.9483***
(1.3331) (3.2002) (0.808) (0.5715) (10.975) (0.9043) (0.7525)

Persistence 0.9737 0.9975 0.9937 0.9980 0.9808 0.9911 0.9811

Panel B. Copula-DCC Parametersb (White Robust Standard Errors in Brackets)

a1 0.0107***
(0.0018)

b1 0.9788***
(0.0038)

g 0.0030***
(0.0002)

η 15.2504***
(1.8090)
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Table 2
Continued

Liv-ex 50 S&P 500 CAC 40 DAX 30 FTSE 100 Hang Seng Nikkei 225

Log-likelihood 53443.97
N 2109

*p < .10, **p < .05, ***p < 0.01

aar1, ar2, and ma1 denote the AR and MA parameters, respectively. ω is the estimated value of the variance intercept parameter from the standard GARCHmodel of Bollerslev (1986). Α and β denote ARCH(q) and
GARCH(p), respectively. They are also called the correlation persistence parameters, with α, β ∈ (0, 1), and α + β ∈ (0, 1). ξ and ν are the skew and shape parameters, respectively, from the standardized skew Student
distribution of Fernández and Steel (1998).

ba and b parameters tell whether DCC makes sense for the system of series. G denotes the asymmetry parameter of the Asymmetric Generalized DCC (AGDCC) of Cappiello, Engle, and Sheppard (2006). η is the
shape parameter of the Student-t copula.
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by such models. All persistence parameters in Panel A are higher than 0.9. Hence, we
conclude that a DCC model is more realistic than its constant counterpart (CCC).

We proceedwith a comprehensive set of fit diagnostics, including plots and various
tests.8 First, we assess the adequacy of the ARMA fit through aweighted Ljung-Box
portmanteau test on standardized residuals. Then, we test the null hypothesis of ade-
quately fitted ARCH process through an ARCH LM test (another weighted port-
manteau test).9 Lastly, to capture possible misspecification of the GARCH model,
we test the presence of leverage effects (asymmetric positive and negative shocks
on the conditional variance, see Glosten, Jagannathan, and Runkle, 1993) by
using the sign bias test of Engle and Ng (1993).10 Overall, the tests confirm that
the model assumptions are not seriously violated: no significant misspecification,
autocorrelation, or remaining ARCH effects are detected.

Regarding Panel B, the a, b DCC parameters are both non-zero parameters with
high significance, indicating that DCC is superior to CCC for the system of return
time series taken jointly. This is consistent with the results from the test of Engle
and Sheppard (2001) of dynamic correlation (Table 1). The g asymmetry parameter
of the Asymmetric Generalized DCC (AGDCC) model in Panel B is highly signifi-
cant.11 This result indicates a greater response to joint bad news than to joint good
news. The η shape parameter of the Student-t copula equals 15.2504. This relatively
high value suggests that the tail dependency of the standardized residuals is limited,
if not null. Figure 2 plots the time-varying correlations between each pair of assets
generated by the GARCH-Copula model.

The outputs from the time-varying GARCH-Copula-model estimation are then
used in a 1-ahead rolling forecast exercise in order to produce 1-step ahead forecasts
for the seven stock indexes under review. The starting values for the simulation are
provided by the corresponding outputs resulting from the estimation stage.12 The
number of simulations is set to 2,000.

IV. Risk and Performance Analysis

In this section, we consider two industry standards for measuring the risk-adjusted
performance of hedge funds, namely, the modified Sharpe ratio (Favre and Galeano,

8These are not reproduced here for the sake of brevity but are available upon request from the authors.
9See Fisher and Gallagher (2012) for further details on these tests.
10Simply put, the idea is to regress the squared standardized residuals on lagged negative and positive
shocks.
11The full diagonal version of the AGDCC model is given by Equation (5) in Cappiello, Engle, and
Sheppard (2006, p. 543).
12Univariate GARCH dynamics, residuals for the GARCH dynamics simulation, correlation, DCC-Q
value, and transformed standardized residuals used in the DCC model are used as starting values for
our simulation.

Frantz Maurer, Jean‐Marie Cardebat, and Linda Jiao 241

https://doi.org/10.1017/jw
e.2020.18  Published online by Cam

bridge U
niversity Press

https://doi.org/10.1017/jwe.2020.18


2002; Gregoriou and Gueyie, 2003) and the Sortino M-squared (or “M2 Sortino,”
see Bacon, 2008).

We complement the above risk-return analysis with two of the most extensively
used risk metrics: VaR and Expected Shortfall (ES). Note that, strictly speaking,
VaR and ES are not risk-adjusted performance indicators; rather, these metrics
monitor changes in portfolio risk and control for risk magnitudes.

A salient theoretical weakness of VaR is that it is not sub-additive (Artzner et al.,
1999).13 In other words, adding one asset to a portfolio may increase VaRα by more
than the individual risk of the new asset. Unlike VaR, ES (also known as Conditional

Figure 2

Conditional Correlations

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

6-Jul-09 18-Nov-10 1-Apr-12 14-Aug-13 27-Dec-14 10-May-16 22-Sep-17 4-Feb-19

Liv-ex Fine Wine 50 and CAC 40

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

06-Jul-09 18-Nov-10 01-Apr-12 14-Aug-13 27-Dec-14 10-May-16 22-Sep-17 04-Feb-19

Liv-ex Fine Wine 50 and DAX 30

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

6-Jul-09 18-Nov-10 1-Apr-12 14-Aug-13 27-Dec-14 10-May-16 22-Sep-17 4-Feb-19

Liv-ex Fine Wine 50 and FTSE 100

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

6-Jul-09 18-Nov-10 1-Apr-12 14-Aug-13 27-Dec-14 10-May-16 22-Sep-17 4-Feb-19

Liv-ex Fine 50 and HANG SENG

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

6-Jul-09 18-Nov-10 1-Apr-12 14-Aug-13 27-Dec-14 10-May-16 22-Sep-17 4-Feb-19

Liv-ex Fine 50 and NIKKEI

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

6-Jul-09 18-Nov-10 1-Apr-12 14-Aug-13 27-Dec-14 10-May-16 22-Sep-17 4-Feb-19

Liv-ex Fine Wine 50 and S&P 500

13 In contrast to ES, VaR is not a sub-additive risk measure. Sub-additivity requires that risks of the port-
folio should not exceed the sum of the risks of the individual components. The interested reader is referred
to Artzner et al. (1999) for an axiomatic definition of a coherent risk measure. See Rockafellar and
Uryasev (2002) for a mathematical presentation of ES (denoted in their paper as CVaR).
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Value-at-Risk “CVaR” or Expected Tail Loss “ETL”), has all the properties a risk
measure should have to be coherent in the sense of Artzner et al. (1999). ES has
also proven to be a reasonable risk predictor for many asset classes.

The rationale for using both VaR and ES in our analysis is twofold. First, even
though VaR is not a coherent risk measure (Artzner et al., 1999), the modified
version (“modified VaR”) improves upon the traditional mean-VaR for assets with
significantly non-normal distributions (see the Mardia’s test of normality in
Table 1). Indeed, the modified VaR incorporates skewness and kurtosis via an analyt-
ical estimation using a Cornish-Fisher (special case of a Taylor) expansion. Second,
ES measures ensure a more prudent capture of tail risk during periods of significant
stress in financial markets.14 Using such tools allow investors considering Liv-ex 50 as
an alternative asset for their diversified portfolio to uncover hidden risk.15

Risk analysis has not only become multi-dimensional but also multi-moment. The
co-moments of financial time-series provide evidence of the marginal contribution of
each asset to the portfolio’s resulting risk. The co-skewness and co-kurtosis, as
defined by Ranaldo and Favre (2005), help assess the diversification benefit of a
given asset to a portfolio.

Our analysis investigates the potential diversification benefits of the Liv-ex 50
index compared to the traditional stock market indexes of Table 1. To that effect,
we calculate the second, third, and fourth co-moments and their beta counterparts.
Our analysis thus investigates the diversification effect in terms of the volatility risk
(co-variance) as well as the risk of asymmetry (co-skewness) and extreme events (co-
kurtosis).

Measures of historical portfolio performance typically adopt an ex post approach.
In our analysis, however, we use (2000 × 7) 1-step ahead simulated returns derived
from our Student Copula AGDCC model.16

A. Modified Sharpe Ratio and Peer Performance Analysis

The traditional Sharpe ratio is a risk-adjusted measure of return per unit of risk
(where risk is represented by returns’ standard deviation). We instead use the
modified Sharpe ratio, as proposed by Favre and Galeano (2002), that is, the ratio
of expected excess return over the Cornish-Fisher VaR. Indeed, the Cornish-
Fisher VaR is more appropriate for return series featuring skewness and/or excess

14The revised standards for minimum capital requirements for Market Risk by the Basel Committee on
Banking Supervision (Bank for International Settlements, 2016) indicate a shift from VaR to an ES
measure of risk under stress.
15Note that the study of portfolio optimization with alternative investments such as Liv-ex 50 lies outside
the scope of this paper.
16This approach is motivated by Ausin and Lopes (2010), who used the estimated VaR and ES of a 1-step
ahead portfolio obtained with a time-varying copula GARCH model.
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kurtosis. Descriptive statistics in Table 1 show that the seven stock indexes under
review present such characteristics. In both cases—traditional or modified—the
higher the Sharpe ratio, the better the combined performance of risk and return.

The modified Sharpe ratios are displayed in Panel A of Table 3, calculated based on
the 1-step ahead simulated returns. The number of simulations in the bootstrap pro-
cedure is set to 2,000. The modified VaR used as an input to the modified Sharpe
ratio is estimated at the 99% confidence level in order to comply with Basel III and
IV requirements regarding market risk. The modified Sharpe ratio (Favre and
Galeano, 2002; Gregoriou and Gueyie, 2003) is one industry standard for measuring
the risk adjusted performance of portfolios. We complement the modified Sharpe ratio
with the peer-performance ratios of Ardia and Boudt (2018a, 2018b) displayed in
Panels B and C. The former highlights significant differences between the seven
mono-asset portfolios under review here, while the latter indicates the peer perfor-
mance ratios expressed as a probability of equal performance (equal), outperformance
(Outperf.), and underperformance (Underperf.). The portfolio’s outperformance
(resp. underperfomance) ratio is defined as the percentage number of peers that
have a significantly lower (resp. higher) modified Sharpe ratio, after correction for
luck by applying the false discovery rate approach by Storey (2002).

In Panel A, we observe that the Liv-ex 50 displays a negative modified Sharpe
ratio. This finding clearly indicates that the Liv-ex 50 is the lowest risk-adjusted per-
former of the indexes.

Each asset is considered as a mono-asset portfolio. In contrast, the peer perfor-
mance ratios developed by Ardia and Boudt’s (2018a, 2018b) work with all the
assets in the portfolio taken collectively. Therefore, their approach provides further
insights into the modified Sharpe ratio. Ardia and Boudt classify peer performance
into three categories: equal-performance, outperformance, and underperformance:

• Equal-performance is the percentage of peer funds (or stock indexes) that
perform as well as a benchmark fund (or stock index) for which the peer per-
formance is measured.

• Outperformance (resp. underperformance) is defined as the percentage of peer
funds (or stock indexes) that underperform (resp. outperform) the benchmark
fund (or stock index).17

As noted previously, both ratios explicitly correct for the presence of false positives
through the false discovery rate approach of Storey (2002) and control for both
relative performance using pairwise tests.18

17For the mathematical expression of the outperformance and underperformance ratios of fund or stock
index i, see Ardia and Boudt (2018a, p. 355).
18 In non-technical terms, in a pairwise testing framework, a fund or stock index can have a significantly
higher modified Sharpe ratio because of luck, while the true performance is identical.
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Table 3
Peer Performance Analysis

Liv-ex 50 S&P 500 CAC 40 DAX 30 FTSE 100 Hang Seng Nikkei 225

Panel A. Modified Sharpe Ratios

–0.0074 0.0448 0.0320 0.0634 0.0735 0.0160 0.0160

Panel B. Matrix of Modified Sharpe Ratios Differences

Liv-ex 50 NA –0.0522*** –0.0395*** –0.0709*** –0.0810*** –0.0234*** –0.0234***
S&P 500 NA 0.0127 –0.0186* –0.0287*** 0.0288** 0.0288***
CAC 40 NA –0.0313*** –0.0415*** 0.0160 0.0160
DAX 30 NA –0.0101 0.0444*** 0.0444***
FTSE 100 NA 0.0575*** 0.0575***
Hang Seng NA 5.46e-07
Nikkei 225 NA

Panel C. Equal/Outperformance/Underperformance Ratios (%)

Equal 0.00 0.00 0.00 0.00 0.00 25.25 23.80
Outperf. 0.00 66.66 50.00 83.33 1.00 6.56 7.14
Underperf. 1.00 33.33 50.00 16.66 0.00 68.18 69.04

*p < .10, **p < .05, ***p < 0.01

Note: As the portfolio under review includes seven indices, the number of peers is equal to six.
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Results from the peer performance evaluation of the seven stock indexes under
review are reported in Panels B and C of Table 3.19 The matrix in Panel B reveals
that the Liv-ex 50 modified Sharpe ratio is significantly different from all other
stock indexes at the 1% confidence level. Since those highly significant differences
are always negative, it can be inferred that the Liv-ex 50 risk-adjusted performance
is lower than that of the traditional stock indexes. Ratios in Panel C are expressed in
probabilities and provide an alternative way to look at the results. Like for Panel B,
the ratios in Panel C find underperformance for the Liv-ex 50. Indeed, the underper-
formance ratio of the Liv-ex 50 is equal to 100%, that is, the maximal possible value
given the definition of the peer performance ratios. In other words, the probability of
the Liv-ex 50 underperforming its six peers is equal to one; conversely, the probabil-
ity of outperforming its peers is null. The FTSE 100 provides an exact counter-
example.

B. M-squared for Sortino

The M-squared for Sortino or “M2 Sortino ratio” is an M-squared calculated for
downside risk instead of total risk. It is defined as:

M2
S ¼ rp þ Sortino ratio × (σDM � σD) , ð10Þ

whereM2
S is the M-squared for Sortino, rp is the annualized portfolio return, σDM is

the benchmark downside risk, and σD is the portfolio annualized downside risk.

The M2 Sortino ratio (and others such as the upside potential ratio) are metrics of
rank-ordering relative performance. The Sortino ratio defined in Equation (10) is an
improvement over the traditional Sharpe ratio, because it uses downside semi-vari-
ance as the measure of risk (Sortino and Price, 1994). Minimum Acceptable Return
(MAR) is the key component in such return-indicators adjusted for downside risk.
MAR measures risk in terms of “not meeting the investment goal.” Moreover, by
considering the real risk which investors should worry about—the downside risk—
all Sortino measures provide a more relevant picture of risk-adjusted performance.

Note that, since the Sortino ratio measures excess return per unit of downside risk, a
higher Sortino ratio is better. The M2 Sortino is interpreted in the same way. Table 4
presents the M-squared for Sortino of the seven return distributions under review.

Choosing the MAR is a difficult task, especially when comparing disparate invest-
ment strategies while trying to answer, “Is this something I might want in my port-
folio?” Some papers recommend using the risk-free rate as the MAR. We adopt a
more practitioner-oriented approach and select several standardized values, thus
reporting a range of scenarios.

19Both the Sharpe ratios differences in Panel B and the three peer performance ratios in Panel C are esti-
mated using the PeerPerformance R package developed by Ardia and Boudt (2018b).
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Table 4
The M-squared for Sortino

Panel A. M-squared for Sortino Where:

Minimum acceptable return (MAR) = Cum. return of each stock index
Benchmark =Return time series of the MSCI World Index

Liv-ex 50 S&P 500 CAC 40 DAX 30 FTSE 100 Hang Seng Nikkei 225

Cum. return 0.1569 1.1636 0.1558 0.8079 0.1875 0.2546 0.7512
(MAR1) (MAR2) (MAR3) (MAR4) (MAR5) (MAR6) (MAR7)

MAR1 = 0.1569 –0.0475 0.1668 0.1495 0.2780 0.3409 0.0952 0.0884
MAR2 = 1.1636 –0.0458 0.1689 0.1504 0.2790 0.3419 0.0943 0.0882
MAR3 = 0.1558 –0.0475 0.1668 0.1495 0.2780 0.3408 0.0952 0.0887
MAR4 = 0.8079 –0.0459 0.1688 0.1503 0.2789 0.3418 0.0944 0.0882
MAR5 = 0.1875 –0.0472 0.1672 0.1497 0.2782 0.3410 0.0950 0.0886
MAR6 = 0.2546 –0.0467 0.1678 0.1499 0.2784 0.3413 0.0948 0.0884
MAR7 = 0.7512 –0.0459 0.1687 0.1503 0.2789 0.3418 0.0944 0.0882

Panel B. M-squared for Sortino Where:

Minimum acceptable return (MAR) = Cum. return of the MSCI World index
Benchmark =Return time series of the MSCI World Index

Cum. return (MSCI World) = 0.6819 (MAR8)
MAR8 = 0.6819 –0.0460 0.1687 0.1503 0.2789 0.3418 0.0944 0.0882

Panel C. M-squared for Sortino Where:

Minimum acceptable return (MAR) = Cum. return of the MSCI Europe Index
Benchmark =Return time series of the MSCI Europe Index

Cum. return (MSCI Europe) = 0.1307 (MAR9)
MAR9 = 0.1307 –0.0549 0.1594 0.1423 0.2708 0.3336 0.0884 0.0818
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First, we sequentially use the historical compounded (geometric) cumulative
return over the whole time period (March 1, 2010 to March 30, 2018) of each of
the seven stock indexes in Table 3, Panel A. The return vector of the benchmark
asset used to derive the (benchmark) annualized downside risk calculated in
Equation (10) is the MSCI World index. As such, MAR1 in Panel A is the MAR
defined as the cumulative return of the Liv-ex 50, until MAR7 which denotes the
cumulative return of the Nikkei 225. Then, in Panel B, the MSCI World index is
used both as the MAR and the benchmark asset. Last, since the four stock
indexes in Table 3 are European, we use the MSCI Europe index both as the
MAR and the benchmark asset in Panel C.

We adopt the same sequential approach for the annualized portfolio return,
denoted as rp in Equation (10). As a result, each of the seven stock indexes serves
as a mono-asset portfolio. To illustrate, when using the cumulative return of S&P
500 as the MAR (i.e., MAR2 equals 1.1636 in Panel A), the resulting M2 Sortino
of the annualized S&P 500 portfolio return is equal to 0.1689. Similarly, when
using the cumulative return of Nikkei 225 (i.e., MAR7 equals 0.7512), the resulting
M2 Sortino of the annualized Nikkei portfolio return equals 0.0882.

As we can see from Panel A, the Liv-ex 50 M2 Sortino is negative for all MAR
(1 to 7)—confirming previous findings (i.e., Table 3 modified Sharpe ratio and
peer performance). The Liv-ex 50 may not be a good portfolio addition for the inves-
tor looking to optimize his returns adjusted for downside risk performance.
Unsurprisingly, no annualized mono-asset portfolio return outperforms the MSCI
World index (Panel B).

C. VaR and ES

In Table 5, VaRα(0< α< 1) is defined as

P(L � �VaRα) ¼ α, ð11Þ

where the profit and loss random variable L is defined from d equal-weighted returns
and the random vector of returns r= (r1, ⋅ ⋅ ⋅ , rd) as

L ¼
Xd

j¼1
ri=d:

Table (5) reports VaR and ES estimates, calculated based on the 1-step ahead sim-
ulated returns. The number of simulations in the bootstrap procedure is set to 2,000,
thus generating 2,000 1-step ahead simulated returns. mVaR99% and mES99% in
Panel A and B denote the modified Cornish-Fisher measures of VaR and ES, respec-
tively. Pf _mVaR99% and Pf _mES99% stand for the portfolio VaR and ES. The
component VaR and ES indicators, Conp_mVaR and Conp_mES, measure the con-
tribution to the VaR and ES portfolio. The component value for each stock index in
the portfolio must sum to the portfolio VaR and ES (values are rounded off to the
nearest five decimals). Comp_mVaR(%) and Comp_mES(%) are the percent
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Table 5
VaR and ES

Liv-ex 50 S&P 500 CAC 40 DAX 30 FTSE 100 Hang Seng Nikkei 225

Panel A. VaR

mVaR99% 0.02699 0.01455 0.01869 0.01636 0.01679 0.02557 0.02384
Pf_mVaR99% 0.01100
Comp_mVaR 0.00017 0.00138 0.00203 0.00173 0.00161 0.00210 0.00194
Comp_mVaR(%) 1.61 12.56 18.50 15.77 14.69 19.14 17.69

Panel B. ES

mES99% 0.02699 0.01558 0.02386 0.02123 0.02149 0.03667 0.03159
Pf_mES99% 0.01388
Comp_mES 0.00019 0.00181 0.00249 0.00211 0.00194 0.00288 0.00243
Comp_mES(%) 1.37 13.10 17.95 15.21 14.00 20.81 17.53

Panel C. Diversification Measures

Equally-weighted portfolio MDP
(Liv-ex 50, …, Nikkei 225) (Liv-ex 50, …, Nikkei 225)

Div. Ratio 79 1.8390
Con. Ratio 0.1496 0.2502
Vwac 0.2963 0.0605
Opt. Weights (%) 43.58 4.82 0.0004 5.14 26.53 8.31 11.58
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contribution to the portfolio VaR and ES. The percentage contributions to the port-
folio VaR and ES must add up to 100% (values are rounded off to the nearest two
decimals). We complement the VaR and ES estimates with the Diversification
Measures in Panel C, computed according to Choueifaty and Coignard (2008).
Opt. Weights (%) denotes the optimal weights (expressed as percentages) for the
Most Diversified Portfolio solution. Div. Ratio and Con. Ratio stand for the
Diversification ratio and the Concentration ratio, respectively. Vwac indicates the
Volatility weighted average correlation. By construction, the diversification ratio
of any long-only portfolio is strictly greater than 1 (except when the portfolio is
equivalent to a mono-asset portfolio, in which case the diversification ratio equals
1). A higher diversification ratio indicates a higher-diversified portfolio.

Panel A reports the VaR results. The Liv-ex 50 displays the highest modified VaR
at the 99% confidence level (mVaR99% in Panel A). Unsurprisingly, all individual
VaRs are higher than the entire portfolio VaR (Pf_mVaR99% in Panel A).

The component VaR is the risk contribution of each asset to the risk of the entire
portfolio VaR. Component VaRs add up to the value of the whole portfolio VaR. In
our analysis, the component VaR (Comp_mVaR in Panel A) indicates that the Liv-
ex 50 is the “strongest diversifier” within the seven-asset portfolio. In other words, it
is expected that removing the Liv-ex 50 would increase the portfolio VaR. With the
lowest component VaR, the Liv-ex 50 contributes only 1.61% of the portfolio total
risk (Comp_mVaR(%) in Panel A).

ES is defined as the mean expected loss when the loss exceeds the VaR. That is,

ESα ¼ �E(LjL � �VaRα): ð12Þ
To be consistent with the VaR calculation, we use a modified ES. The results from

Table 5 (Panel B) confirm the conclusions derived earlier from the analysis of VaR.
Indeed, the Liv-ex 50 reports the highest modified ES (mES99%) and is the “largest
diversifier.” The Liv-ex 50 is the smallest contributor to total portfolio risk
(Comp_mES), contributing only 1.37% to the portfolio ES (Comp_mES(%)).

Panel C of Table 5 complements the VaRand ES analysis with diversification mea-
sures proposed by Choueifaty and Coignard (2008). The analysis checks whether our
previous conclusions about diversification benefits hold true when diversification
measures are used.

We consider the following three diversification measures: (1) the diversification
ratio denoted as Div. Ratio in Panel C, (2) the concentration ratio (Con. Ratio),
and (3) the volatility weighted average correlation Vwac.20

20See Choueifaty and Coignard (2008) for a technical presentation.
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The diversification ratio of a portfolio is the weighted average of the assets’ vola-
tilities divided by the portfolio volatility, defined as

DR(ω) ¼
PN

i¼1 ωiσ iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 Pω

p , ð13Þ

whereN is the number of assets in portfolio, and Σ the variance-covariance matrix of
asset returns.

The concentration ratio is defined as

CR ¼
PN

i¼1 (ωi)
2

PN
i¼1 ωiσ i

� �2 : ð14Þ

The volatility-weighted average correlation of the assets is defined as

ρ(ω) ¼
PN

i>j (ωiσ iωjσ j)ρijPN
i>j (ωiσ iωjωj)

: ð15Þ

We first calculate these three metrics for an equally-weighted portfolio. We then
duplicate the analysis with the Most-Diversified Portfolio (MDP) derived from the
optimal weights (expressed in percentages in Panel C).21

As we can see in Panel C, the MDP diversification ratio (Div. Ratio) is, unsurpris-
ingly, higher than the equally-weighted portfolio’s Div. Ratio. This holds true when
looking at both the concentration ratio (Con. Ratio) and the volatility weighted
average correlation (Vwac).

The weights of the MDP, Opt. Weights (%), provide more interesting results. They
confirm that the Liv-ex 50 is the “strongest” or best diversifier (with the highest Opt.
Weights at 43.58%). In other words, an investor looking to reduce risk through diversifi-
cation should weight the Liv-ex 50 up to around 44%, thus obtaining maximum diver-
sification gains.22 This result confirms and refines conclusions drawn from the analysis of
VaR and ES (Panels A and B of Table 5). In sum, the Liv-ex 50 is a very powerful risk-
reduction alternative asset and might be a pillar of any portfolio diversification strategy.

D. Beta Co-Moments

The higher moments and co-moments of a return distribution can be analyzed to
identify diversification potential. They are the “beta” or “systematic” moments.
Higher moment betas are used to estimate the risk impact of adding an asset to a
portfolio. Ranaldo and Favre (2005) define co-skewness and co-kurtosis as the

21See Choueifaty and Coignard (2008, p. 42) for a better understanding of the properties of this ratio.
22He should also exclude CAC 40 from his portfolio (since the optimal weight is close to zero).
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skewness and kurtosis of a given asset analyzed with reference to the skewness and
kurtosis of a benchmark.

Table 6 reports the multivariate moments or co-moments (Panel A) and their beta
or systematic counterparts (Panel B) for seven portfolios of six assets each {Pf.1, …,
Pf.7}. These portfolios are then used in co-moments and beta co-moments analyses
as the reference or benchmark portfolio. co-skewness and co-kurtosis define the
skewness and kurtosis of a given asset analyzed with the skewness and kurtosis of
each of the seven benchmark portfolio {Pf.1, …, Pf.7}. Similarly, beta co-skewness
and beta co-kurtosis test for systematic skewness and kurtosis between a given
asset and the benchmark portfolio under review. A negative (resp. positive) co-skew-
ness means that a given asset tends to have an asymmetric tail extending towards
more negative (resp. positive) returns with respect to the distribution of the bench-
mark portfolio. co-kurtosis measures the likelihood that extreme returns jointly
occur in a given asset and in the benchmark portfolio. A positive (resp. negative)
co-kurtosis means that a given asset is adding (resp. subtracting) kurtosis to the
benchmark portfolio. Hence, the insertion (resp. exclusion) of this asset into the
benchmark portfolio will strengthen (resp. weaken) the likelihood of extreme returns.

Table 6
Beta Co-Moments

Benchmark Pf.* Pf.1 Pf.2 Pf.3 Pf.4 Pf.5 Pf.6 Pf.7

Skewness –0.10167 –0.06855 –0.08759 –0.12756 –0.08583 –0.16633 –0.13183
Excess kurtosis 0.81959 0.6737 0.83334 0.88718 0.84938 0.72912 0.82230

Panel A. Co-Moments

Co-variance (×103) –0.0024 0.0134 0.0211 0.0204 0.0177 0.0168 0.0161
Co-Skewness
(×104)

–0.0241 –0.0001 –0.0001 –0.0001 –0.0001 –0.0001 –0.0001

Co-Kurtosis (x106) –0.0003 0.0011 0.0015 0.0014 0.0013 0.0012 0.0012

Panel B. Beta Co-Moments

Beta Co-variance –0.0884 0.6009 1.1104 1.0603 0.8768 0.8681 0.8162
Beta Co-Skewness 0.5537 2.0633 1.9726 1.0279 1.90787 0.8604 0.9213
Beta Co-Kurtosis –0.1188 0.6204 1.0534 0.9801 0.8269 0.8305 0.7770

Notes: Positive values for skewness and excess kurtosis indicate positive skewness and leptokurtosis (long tails), respectively, whereas negative
values for skewness and excess kurtosis indicate negative skewness and platykurtosis (short tails). The number of simulations in the bootstrap
procedure is set to 2000.

*Each equally weighted benchmark portfolio under review includes six assets:

Pf.1 = {S&P, CAC, DAX, FTSE, Hang Seng, Nikkei}

Pf.2 = {Liv-ex 50, CAC, DAX, FTSE, Hang Seng, Nikkei}

Pf.3 = {Liv-ex 50, S&P, DAX, FTSE, Hang Seng, Nikkei}

Pf.4 = {Liv-ex 50, S&P, CAC, FTSE, Hang Seng, Nikkei}

Pf.5 = {Liv-ex 50, S&P, CAC, DAX, Hang Seng, Nikkei}

Pf.6 = {Liv-ex 50, S&P, CAC, DAX, FTSE, Nikkei}

Pf.7 = {Liv-ex 50, S&P, CAC, DAX, FTSE, Hang Seng}
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Theory suggests that ceteris paribus, rational investors dislike negative co-skew-
ness and positive co-kurtosis. For instance, Scott and Horvath (1980) show that
an investor with a positive preference for positive skewness—and displaying consis-
tent risk aversion—exhibit a negative preference for kurtosis. Harvey and Siddique
(2000) find that co-skewness is priced in equity markets.23 Dittmar (2002) finds
that co-kurtosis is priced in equity markets: investors require to be compensated
for the additional risk undertaken when a portfolio exhibits negative co-skewness
and positive co-kurtosis. In contrast, investors are willing to accept a lower return
in the opposite situation. In short, a positive co-skewness and a negative co-kurtosis
reduce the opportunities for seeking risk compensation.

The choice of a benchmark is critical since results may be sensitive to that choice.
To provide a four-moment extension to the two-moment CAPM, Christie-David and
Chaudhry (2001) use nine different market proxies (weighted to non-weighted future
indexes). They also employ an all-equity index—the S&P 500 cash index—as a
market proxy. They find that their results are robust to the market proxy used,
thus providing some freedom to select the benchmark portfolio.

In Table 6, we consider seven equally-weighted benchmark portfolios denoted as
{Pf.1, …, Pf.7}. Each is composed of six assets selected among the seven indexes
under review in this paper (the Liv-ex 50 and the six stock indexes). The co-
moments (Panel A) and beta co-moments (Panel B) in Table 6 are computed
between a single asset and a benchmark portfolio. The single asset i (i = 1,…, 7)
involves in the calculation of the co-moments and beta co-moments is not included
in the benchmark portfolio j (j= 1,… 7).

As an example, to compute the co-moments and beta co-moments between the
Liv-ex 50 and the first benchmark portfolio in Table 6, denoted as Pf1, we exclude
the Liv-ex 50 from this portfolio. The aim is to isolate the individual effect of a
single asset when it is adding to a benchmark portfolio.

For instance, if the Liv-ex 50 is added to the first benchmark portfolio Pf1 = {S&P,
CAC,DAX, FTSE,Hang Seng, Nikkei}, what about the co-moments and the beta co-
moments of this portfolio? Are they going to move upward or downward? Answering
this question is relevant from both a risk and portfolio management perspectives.

The results in Table 6 Panel B show a negative beta co-variance between the Liv-ex
50 and the benchmark portfolio Pf1. In other words, adding the Liv-ex 50 to this
portfolio will reduce its volatility.

Moreover, the Liv-ex 50 generates the highest diversification gain; it is the only one
displaying a negative co-variance. This result is really attractive for a risk-averse
investor. Indeed, the lower the beta, the higher the diversification effect in terms
of volatility, risk of asymmetry (co-skewness), and extreme events (co-kurtosis).

23This finding was extended to future markets by Christie-David and Chaudhry (2001).
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Positive beta co-skewness means that the asset under review (or, equivalently, the
mono-asset portfolio) tends to have an asymmetric tail extending towards more pos-
itive returns with respect to the distribution of the benchmark portfolio returns. A
rational investor prefers positive co-skewness due to the lower downside risk. The
Liv-ex 50 displays the lowest positive beta co-skewness. As aforementioned, the
lower the beta, the higher the diversification effect in terms of the risk of asymmetry.

A positive co-kurtosis (such as that displayed in portfolios Pf.2,…, Pf.7) adds kur-
tosis to the portfolio benchmark. To illustrate, adding S&P 500 in Pf.2 (built exclu-
sive of S&P 500) increases the kurtosis of the resulting Pf.2 benchmark portfolio. In
other words, adding S&P 500 increases the likelihood of extreme returns. In contrast,
the Liv-ex 50 is the only asset reporting a negative co-kurtosis with reference to its
Pf.1 benchmark portfolio (see Table 6 Panel B). This indicates that thanks to its pos-
itive beta co-kurtosis, the Liv-ex 50 is the only asset able to reduce the probability of
extreme co-variations with its benchmark portfolio.

To conclude, given its negative beta co-variance, low beta co-skewness and nega-
tive co-kurtosis (with reference to its benchmark portfolio), the Liv-ex 50 displays
the highest diversification benefits in terms of volatility, asymmetry, and extreme
events.

V. Discussion

The debate over the potential of wine as an alternative financial asset is opaque in
both academic and professional finance circles. Should one introduce wine into
their portfolio of traditional financial assets? As discussed in the introduction, the
academic literature is divided between those for which wine outperforms traditional
financial assets (Lucey and Devine, 2015; Aytaç and Mandou, 2016) and those for
which the only benefit of wine as a financial asset is lower risk (Sanning, Shaffer,
and Sharratt, 2008; Kourtis, Markellos, and Psychoyios, 2012). The question
becomes: Should one introduce wine into their portfolio to increase yield or to
reduce risk? The debate in the specialized press and in professional circles is less
nuanced. The French wine sales and quotation specialist iDealWine regularly pub-
lishes studies indicating that wine outperforms the equity market. Most investment
funds specializing in wine obviously do the same and praise the merits of wine (see
Masset and Weisskopf, 2015). However, the debate focuses on difficulties over the
valuation of wines given its illiquidity, and the calculation of indices, which are
very opaque (see Cardebat et al., 2017). The debate over the benefits of wine as an
alternative financial asset is still pending clarification. We hope to have contributed
in three respects.

First, this study is the first to use daily data in the field of wine finance. By focusing
on the liv-ex 50 index, we studied the most liquid wines on the market (i.e., those
traded daily and in large volumes). Using high frequency of data allowed us to
apply the econometric techniques that were not previously used in wine finance.
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Second, the use of copulas (student copula AGDCC model) in the field of wine
finance is unprecedented. The use of copulas allowed for an in-depth analysis of
dependence for wine and equity indices.

Third, our results show that wine is not an alternative asset for investors looking to
increase performance. These results contradict previous analyses that found wine
outperforms equities. However, these studies were based on the booming period of
wine investment (Lucey and Devine (2015): before 2010; Aytaç and Mandou
(2016): 2007–2014), while our analysis covers both recession and recovery.
Furthermore, previous studies did not capture asymmetric time-varying volatilities
in wine returns, potentially leading to bias in the estimation of performance.

Our results further show that wine is a very effective risk diversification asset and
significantly reduces risk in equity portfolios. Wine is particularly well suited to risk-
averse investors.

Our results, however, are derived from an analysis of the Liv-ex 50, which is com-
posed of the five most traded wines on secondary markets. Can our results be gen-
eralized to other wines? The Liv-ex company offers many other indices. Looking
at the graphs in Figure 3, we see that some wine groups clearly outperform the
Liv-ex 50, in particular, the Burgundy wine index and the Champagne wine index.
Wine performance is heterogeneous. Integrating the Burgundy and Champagne
indexes into a traditional portfolio could have a positive impact on the overall

Figure 3

Evolution of Fine Wine Price Indices

Source: Liv-ex. Liv-ex indices. https://www.liv-ex.com/news-insights/indices/ (accessed March 2018).
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performance of that portfolio. We did not integrate these indexes for two reasons.
The first is the unavailability of daily data. The second, related to the first, comes
from the illiquidity of these wines. Low liquidity leads to higher risk, but this risk
is very poorly assessed (see Cardebat et al., 2017). The great advantage of the
wines constituting the Liv-ex 50 is precisely their liquidity, which allows a very
easy exit (resale).

VI. Conclusion

Applying student copula AGDCC-GARCHmodels, we test the time-varying depen-
dence between fine wine and stock-market indexes (Liv-ex 50 and the six main stock
indexes). We measure wine’s risk-adjusted performance and portfolio diversification
benefit. Our results suggest that, for the period from March 1, 2010, to March 30,
2018, the Liv-ex 50 underperformed traditional stock markets. We also find,
however, that the Liv-ex 50 provides portfolio diversification benefits, in terms of vol-
atility, asymmetry, and extreme events. We conclude that Liv-ex 50 is a viable and
attractive diversifiers despite the limited returns.

Finally, we note that results may vary with time. This suggests future studies of
wine performance over different periods. The ever-increasing growth of transactions
also means the ever-increasing availability of data with which to study the wine
market. We hope to extend this study to other indices—covering multiple wine
categories and/or regions featuring higher returns.
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