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Abstract

We use deformations and mutations of scattering diagrams to show that a scattering diagram with initial
functions f1 = (1 + tx)μ and f2 = (1 + ty)ν has a dense region. This answers a question asked by Gross and
Pandharipande [‘Quivers, curves, and the tropical vertex’, Port. Math. 67(2) (2010), 211–259] which had
been proved only for the case μ = ν.
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1. Introduction

Scattering diagrams (introduced in [13]) are a method to combinatorially encode
families of automorphisms of an algebraic torus (or, more generally, elements of the
Lie group associated to a pronilpotent Lie algebra). They are related to various subjects
such as curve counting [1, 2, 4, 6, 10, 14], quiver representations [9, 16], stability
conditions [3, 5], cluster algebras [8, 14] and mirror symmetry [7, 11–13].

A scattering diagram D (in dimension two) is a collection of rays d ⊂ R2 with
attached functions fd ∈ C[x±1, y±1]�t�. It is completely described by the coefficients
ca,b of its functions. We use the factorised representation

fd =
∏
k>0

(1 + txayb)cka,kb .

Each ray or line d induces an automorphism θd ∈ AutC�t�C[x±1, y±1]�t�. Starting
with an initial diagram D0, there is a scattering algorithm that iteratively produces
scattering diagrams Dk such that the composition of the automorphisms θd is trivial
modulo tk. Taking the formal limit, one obtains a consistent scattering diagram D∞.
(See Section 2.1 for more details.)

The aim of this paper is to show that most consistent scattering diagrams have
a dense region in which, for every slope, there exists a ray with nontrivial function
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2 T. Gräfnitz and P. Luo [2]

fd � 1. To achieve this, we make use of three different techniques using certain
properties of scattering diagrams.

First (Section 2.2 and [8, 10]), we can assume that no more than two rays or lines
intersect in the same point. Otherwise, one can deform the diagram by slightly moving
its rays. If a ray d has a reducible function fd = f1 · · · fr, one can also split it into
several rays with irreducible functions f1, . . . , fr and then deform the diagram to obtain
nonintersecting parallel rays d1, . . . , dr.

Second (Section 2.3 and [8]), using a change of lattice we can assume that the two
rays or lines intersect transversally, so that the attached functions are f1 = (1 + tx)μ and
f2 = (1 + ty)ν. The corresponding consistent diagram is called a standard scattering
diagram Dμ,ν. By the above, it suffices to study standard scattering diagrams.

Third (Section 2.4 and [8, 9]), the rays in a standard scattering diagram Dμ,ν obey
certain symmetries related to the notion of mutations. Precisely, the corresponding
coefficients satisfy cμ,νa,b = cμ,νμb−a,b = cμ,νa,νa−b.

We use the above techniques to prove the theorem stated below.

DEFINITION 1.1. Let Dμ,ν be a standard scattering diagram, that is, the consistent
diagram obtained from the initial diagram consisting of two lines with functions
f1 = (1 + tx)μ and f2 = (1 + ty)ν. The function attached to the ray inDμ,ν with direction
(a, b), gcd(a, b) = 1, can be factorised as

f μ,ν(a,b) =
∏
k>0

(1 + txayb)cμ,νka,kb ,

defining positive integers (by Proposition 2.9) cμ,νka,kb ∈ Z>0.

DEFINITION 1.2. Define (μ,ν)-mutations Tμ,ν1 (a, b)= (μb−a, b),Tμ,ν2 (a, b)= (a,νa−b).

DEFINITION 1.3. We say that (a, b) ∈ Z2
>0 is in the dense region Φμ,ν if

μν −
√
μν(μν − 4)
2μ

<
b
a
<
μν +

√
μν(μν − 4)
2μ

.

THEOREM 1.4.

(a) If (a, b) ∈ Z2
>0 is in the dense region Φμ,ν, then cμ,νa,b � 0.

(b) Otherwise, cμ,νa,b � 0 if and only if (a, b) is obtained from (1, 0) or (0, 1) via a
sequence of (μ, ν)-mutations. In particular, (a, b) must be primitive in this case.

Theorem 1.4 will be proved in Section 3. The idea is as follows. It is enough to
show density inside a fundamental domain φμ,ν0 for the mutation actions (Section 3.1).
One can show that φμ+1,ν

0 (respectively, φμ,ν+1
0 ) is contained in Φμ,ν if μν > 4 and μ > 1

(respectively, ν > 1). Then, by induction and symmetry μ↔ ν, it is enough to show
density for Φ2,3 and Φ1,5 (Section 3.2). We show this explicitly by deforming D2,3 to
D2,2 plusD2,1 and deforming D1,5 toD1,3 plus D1,2 (Section 3.3). Part (b) follows from
the mutation actions (Section 3.4).
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[3] The dense region in scattering diagrams 3

REMARK 1.5. Theorem 1.4 answers [9, Question 4]. It was proved in the case μ = ν
in [9, Section 4.7], using an existence statement for quiver representations from
[15]. Reineke stated that there should be a similar argument in the case μ � ν using
bipartite quivers [18], but this has not been worked out in detail. Our proof is purely
combinatorial.

2. Preliminaries

2.1. Scattering diagrams. We provide a definition for scattering diagrams, based
on [10]. (See [8, 10] for more general definitions.)

Let M � Z2 be a lattice with basis e1 = (1, 0), e2 = (0, 1), and let N := HomZ(M,Z).
For m ∈ M, let zm ∈ C[M] denote the corresponding element in the group ring.
If x= ze1 , y = ze2 , then C[M] = C[x±1, y±1] is the ring of Laurent polynomials in x
and y.

Let R be an Artin local C-algebra with maximal ideal mR, and let

C[M]⊗̂CR = lim
←−
C[M] ⊗C R/mk

R.

We take M = N = Z2 and R = C�t�, so that C[M]⊗̂CR = C[x±1, y±1]�t� and mR = (t).

DEFINITION 2.1. A ray or line is a pair d = (d, fd), where d = bd + R≥0md if it is a ray
or d = bd + Rmd if it is a line, and fd ∈ C[zmd]⊗̂CR ⊆ C[M]⊗̂CR is a function such that

fd ≡ 1 (mod zmdmR).

A scattering diagram D is a collection of rays and lines such that, for every k > 0,
there are finitely many rays and lines (d, fd) with fd � 1 (mod mk

R).

DEFINITION 2.2. For a ray d and a curve γ in MR intersecting d transversally at
p, let nd ∈ N annihilate md and evaluate positively on γ′(p). Define θd = θγ,p,d ∈
AutC�t�(C[M]⊗̂CR) by

θd : zm 
→ zm f 〈m,nd〉
d

.

DEFINITION 2.3. A singularity of a scattering diagram D is either a base point of a
ray or an intersection between two rays or lines that consists of a single point.

Let γ : [0, 1]→ MR be a smooth curve that does not pass through any singularities
and whose endpoints are not in any ray or line in the diagram. If all intersections
of γ with rays or lines are transverse, then we define the γ-ordered product θγ,D ∈
AutR(C[M]⊗̂CR) in the following way. For each k, as there are finitely many rays or
lines with functions fd � 1 (mod mk

R), let 0 < p1 ≤ p2 ≤ · · · ≤ ps < 1 be such that, at
each pi, γ(pi) ∈ di for some ray or line (di, fdi ), and when pi = pj for i � j, di � dj are
different rays of the diagram. Then let θi = θγ,pi,di and

θkγ,D = θs ◦ · · · ◦ θ2 ◦ θ1.

Then we define θγ,D as the formal limit θγ,D = limk→∞(θkγ,D).
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4 T. Gräfnitz and P. Luo [4]

FIGURE 1. The standard scattering diagrams D1,1, D2,2 and D3,3.

We say that a diagram D is consistent if θγ,D is the identity map for every closed
curve γ (for which θγ,D is defined). Two diagrams D and D′ are equivalent if θγ,D =
θγ,D′ for every curve γ.

PROPOSITION 2.4 [13], [10, Theorem 1.4]. For a scattering diagram D, there exists a
consistent scattering diagram D∞ ⊇ D such that D∞ \D consists only of rays.

REMARK 2.5. The consistent diagram D∞ obtained from D is unique (up to equiva-
lence) if we require that it has no two rays d, d′ with the same support d = d′.

DEFINITION 2.6. If a consistent diagram D = D∞ has only one singularity, then (by
Remark 2.5, up to equivalence) there is at most one ray in each direction m ∈ Z2. We
write the function of this ray as fDm . If fDm = 1, then we can omit the ray.

DEFINITION 2.7. The standard scattering diagram Dμ,ν = D
μ,ν
∞ is the diagram

obtained by performing scattering on the initial diagram

D
μ,ν
0 = {(R(1, 0), (1 + tx)μ), (R(0, 1), (1 + ty)ν)}.

The scattering only produces rays in the first quadrant, that is, with md= (a, b)∈Z2
>0.

Consider an equivalent diagram to a standard scattering diagram such that there is a
unique ray in each direction (see Remark 2.5). We can express the function fd of the
ray d in direction (a, b) ∈ Z2

>0 as

f μ,ν(a,b) := fD
μ,ν

(a,b) =

∞∏
k=1

(1 + tka+kbxkaykb)cμ,νka,kb .

DEFINITION 2.8. The coefficients for Dμ,ν are these cμ,νa,b.

PROPOSITION 2.9 [8, Proposition C.13]. The coefficients of a standard scattering
diagram are positive integers: cμ,νa,b ∈ Z>0.

REMARK 2.10. Note that cμ,νa,b = cν,μb,a by symmetry: as Dμ,ν∞ is consistent, its reflection
along the diagonal R(1, 1) is as well, which gives a consistent diagram containingDν,μ0 .

EXAMPLE 2.11. Figure 1 shows the standard scattering diagrams D1,1, D2,2 and D3,3.
The diagram D1,1 has, apart from the initial lines, only one ray in direction (1, 1)

with function f 1,1
(1,1) = 1 + t2xy. Hence, the only nontrivial coefficient is c1,1

1,1 = 1.
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[5] The dense region in scattering diagrams 5

The diagram D2,2 has only rays in directions (1, 1), (n, n + 1) and (n + 1, n) for
n ∈ N, with

f 2,2
(1,1) = (1 − xy)−4, f(n,n+1) = (1 + xnyn+1)2, f(n+1,n) = (1 + xn+1yn)2.

Hence, the nonzero coefficients c2,2
a,b are

c2,2
n,n =

⎧⎪⎪⎨⎪⎪⎩
4 n = 2k,
0 otherwise,

c2,2
n,n+1 = 2, c2,2

n+1,n = 2.

In particular, the rays are discrete.
For D3,3 there is a dense region in which each ray appears with nontrivial function.

This is the statement of Theorem 1.4. The functions f 3,3
(a,b) and coefficients c3,3

a,b are very
complicated and unknown in general. Only for the slope 1 coefficients cμ,νk,k is there a
known formula, which was proved for μ = ν in [17, Theorem 6.4] and for μ � ν in [18,
Corollary 11.2]. (See also [10, Example 1.6] and [9, Section 1.4].)

2.2. Deformations. Given a consistent scattering diagram D, we can form the
asymptotic diagram Das by replacing every ray (bd + R≥0md, fd) with (R≥0md, fd), and
similarly for lines. By considering sufficiently large curves in D around the origin
containing all singularities, we see that Das is also consistent. We can use this to
consider deformations as follows. (For more details see [10, Section 1.4] and [8,
Proposition C.13, Step III].)

DEFINITION 2.12. The full deformation of Dμ,ν consists of general lines d1,1, . . . , d1,μ,
d2,1, . . . , d2,ν with functions

fd1,i = 1 + tx, fd2,i = 1 + ty.

Here the lines being general means that all rays in the consistent diagram intersect in
points, not in rays. We will also consider partial deformations by pulling out only one
factor.

PROPOSITION 2.13 [10, Section 1.4]. Let D′ be a partial or full deformation of D.
Then (D′∞)as = D∞.

EXAMPLE 2.14. Figure 2 shows a full deformation of D3,1 and a partial deformation
by pulling out one factor of (1 + x)3. This gives c3,1

1,1 = 3, c3,1
2,1 = 3, c3,1

3,1 = 1, c3,1
3,2 = 3.

LEMMA 2.15. If μ ≤ μ′ and ν ≤ ν′, then cμ,νa,b ≤ cμ
′,ν′

a,b .

PROOF. Deform Dμ
′,ν′ in such a way that we have a horizontal line with function

(1 + tx)μ and a vertical line with function (1 + ty)ν. From this, we get a ray contributing
cμ,νa,b. As all coefficients are positive by Proposition 2.9, we see that cμ,νa,b ≤ cμ

′,ν′

a,b . �

2.3. The change of lattice trick. There is a useful way to reduce to only needing to
consider standard diagrams (found in [8, Proof of Proposition C.13, Step IV]).
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6 T. Gräfnitz and P. Luo [6]

FIGURE 2. A full (left) and partial (right) deformation of D3,1.

PROPOSITION 2.16. Let D be the consistent diagram obtained from the scattering
diagram consisting of two lines d1 and d2 with functions f1 = (1 + tzm1 )d1 and
f2 = (1 + tzm2 )d2 . Let M′ ⊆ M be the sublattice generated by m1 and m2 and let N′ ⊇ N
be the dual lattice. If m ∈ M \M′, then fm = 1. Otherwise, write m = am1 + bm2. Then

fDm = ( f
d1e(m∗2),d2e(m∗1)
(a,b) )1/e(n),

where n ∈ N′ is orthogonal to m ∈ M′ and primitive and, for any n′ ∈ N′,

e(n′) := min{k ∈ N | kn′ ∈ N}.

In particular, the scattering of any scattering diagram consisting of two lines can be
computed from a standard scattering diagram.

PROOF. Any ray d in D has direction vector md contained in M′ ⊆ M. Hence, we can
consider d, D and D∞ in the lattice M or in the lattice M′. In the latter case, we write
d′,D′ andD′∞. By definition, the automorphism θd ∈ AutC�t�(C[M]⊗̂CC�t�) defined by
a ray d ∈ D∞ is given by

θd : zm 
→ zm f 〈m,nd〉
d

.

Let e(n′) be defined as above. Then we have nd = e(nd′)nd′ and the corresponding
automorphism θd′ ∈ AutC�t�(C[M′]⊗̂CC�t�) defined by d′ ∈ D′∞ is given by

θd′ : zm′ 
→ zm′ f 〈m
′,nd〉

d
= zm′ f e(nd′ )〈m′,nd′ 〉

d
= zm′ f 〈m

′,nd′ 〉
d′ .

This shows that fd′ = f e(nd′ )
d

. In particular, the initial functions f1 and f2 considered in
the lattice M′ are f ′1 = (1 + tx)d1e(m∗2) and f ′2 = (1 + ty)d2e(m∗1), where x = zm1 and y = zm2 .
These are the initial functions of the standard scattering diagram Dd1e(m∗2),d2e(m∗1).

We know that scattering gives a consistent diagram Dd1e(m∗2),d2e(m∗1)
∞ . We get a

consistent diagram containingD by replacing any ray d′ ∈ De(n1),e(n2)
∞ by dwith function

fd = f 1/e(nd′ )
d′ . By uniqueness of consistent diagrams up to equivalence (Remark 2.5),

this completes the proof. �
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[7] The dense region in scattering diagrams 7

FIGURE 3. The diagrams D4
det and D4,4 to order seven.

EXAMPLE 2.17. Let Dk
det be the scattering diagram consisting of two lines with

attached functions f1 = 1 + tx and f2 = 1 + tx−1yk. Let M′ be the sublattice generated
by m1 = (1, 0) and m2 = (−1, k) and consider m = am1 + bm2 ∈ M′ primitive with dual
n ∈ N′. Then

f
Dk

det
m = ( f k,k

(a,b))
gcd(k,m(1))/k,

where m(1) is the first component of m ∈ M. This is because we have e(m∗1) = e(m∗2) = k
and e(n) = gcd(k, m(1))/k. Figure 3 shows Dk

det and Dk,k for k = 4 to t-order seven.

2.4. Mutations

DEFINITION 2.18. For μ, ν ∈ Z>0 define two mutation actions on Z2 by

Tμ,ν1 : (a, b) 
→
⎧⎪⎪⎨⎪⎪⎩

(μb − a, b) b > 0,
(a, b) b ≤ 0,

Tμ,ν2 : (a, b) 
→
⎧⎪⎪⎨⎪⎪⎩

(a, νa − b) a > 0,
(a, b) a ≤ 0.

Here Z2 is the space of direction vectors (a, b) of rays in a scattering diagram, and
(a, b) will usually be assumed to be primitive, that is, gcd(a, b) = 1, and such that
(a, b), Tμ,ν1 (a, b) and Tμ,ν2 (a, b) are all contained in the first quadrant Z2

≥0.

PROPOSITION 2.19 [9, Theorem 7] and [8, Theorem 1.24]. We have

f μ,ν(a,b) = f μ,ν
Tμ,ν1 (a,b)

= f μ,ν
Tμ,ν2 (a,b)

.

3. Proof of Theorem 1.4

Consider a standard scattering diagram Dμ,ν (Definition 2.7). Mutations (Section
2.4) act on the directions Z2 (or slopes Q). They have some fixed points and naturally
divide the scattering diagram into certain regions. We will show the following. All
rays produced from scattering have slope 1/μ < ρ < ν (Proposition 3.13). For μν > 4,
there is a dense region Φμ,ν between slopes ρμ,ν− and ρμ,ν+ (Definition 3.1) in which
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8 T. Gräfnitz and P. Luo [8]

FIGURE 4. The regions of the scattering diagram.

every ray occurs with a nontrivial function (Theorem 3.3). It is made up of an infinite
number of fundamental domains φμ,νk for the mutation action. The central domain φμ,ν0
lies between the slopes ρμ,ν0,± (Lemma 3.5). Outside the dense region there is a discrete
number of rays and each of them appears with coefficients μ or ν, because they come
from mutation of the initial rays (Proposition 3.14). The situation is summarised in
Figure 4.

DEFINITION 3.1. In a standard scattering diagramDμ,ν where μν > 4, the dense region
Φμ,ν is the cone spanned by the rays from the origin with slope

ρ
μ,ν
± =

μν ±
√
μν(μν − 4)
2μ

=
2ν

μν ∓
√
μν(μν − 4)

.

A ray in direction (a, b) ∈ Z2
>0 is in the dense region if ρμ,ν− < b/a < ρμ,ν+ .

In this section, we will prove the theorem stated below, by induction.

DEFINITION 3.2. A cone φμ,ν ⊂ R2
>0 is full if cμ,νa,b � 0 for every (a, b) ∈ Z2

>0 (not
necessarily primitive) such that the ray in direction (a, b) lies in φμ,ν.

THEOREM 3.3 (Theorem 1.4(a)). Φμ,ν is full (and, in particular, dense with rays) when
μν > 4.
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[9] The dense region in scattering diagrams 9

3.1. Fundamental domains

DEFINITION 3.4. The fundamental region φμ,ν0 is the cone between the directions

ρ
μ,ν
0,+ =

ν

2
, ρ

μ,ν
0,− =

2
μ

.

A ray in direction (a, b) ∈ Z2
>0 is in φμ,ν0 if 2/μ ≤ b/a ≤ ν/2. For k > 0 and k < 0, define

recursively

ρ
μ,ν
k+1,+ = Tμ,ν1 (ρμ,νk,−), ρ

μ,ν
k−1,− = Tμ,ν2 (ρμ,νk,+).

LEMMA 3.5. The actions of Tμ,ν1 and Tμ,ν2 on the slope ρ = b/a are order reversing (or
strictly decreasing) for 1/μ < ρ < ν and have fixed points ρμ,ν0,− = 2/μ and ρμ,ν0,+ = ν/2,
respectively.

PROOF. This is clear from the definition (see Definition 2.18). The actions on the slope
are given by

T1(ρ) =
1

μ − 1/ρ
, T2(ρ) = ν − ρ. �

LEMMA 3.6. We have Tμ,ν1 (ρμ,ν+ ) = ρμ,ν− and Tμ,ν2 (ρμ,ν− ) = ρμ,ν+ .

PROOF. The second statement is

Tμ,ν2 (ρμ,ν− ) = ν −
μν −

√
μν(μν − 4)
2μ

=
μν +

√
μν(μν − 4)
2μ

= ρ
μ,ν
+ .

For the first statement, we show that the reciprocals are equal,

1
Tμ,ν1 (ρμ,ν+ )

= μ −
μν −

√
μν(μν − 4)
2ν

=
μν +

√
μν(μν − 4)
2ν

=
1
ρ
μ,ν
−

. �

LEMMA 3.7. We have limk→∞ ρ
μ,ν
k,± = ρ

μ,ν
± .

PROOF. The compositions Tμ,ν1 Tμ,ν2 and Tμ,ν2 Tμ,ν1 are strictly increasing continuous
functions for 1/μ < ρ < ν. Hence, they have unique fixed points, which, by Lemma
3.6, are given by ρμ,ν+ and ρμ,ν− . The limit of the recursively defined sequences ρμ,νk,− and
ρ
μ,ν
k,+ have to be fixed points of Tμ,ν1 Tμ,ν2 and Tμ,ν2 Tμ,ν1 , respectively. Hence, they are given

by ρμ,ν− and ρμ,ν+ . �

LEMMA 3.8. If φμ,ν0 is full, then so is Φμ,ν.

PROOF. By Lemmas 3.5, 3.6 and 3.7,Φμ,ν is the union of images of φμ,ν0 under repeated
application of Tμ,ν1 and Tμ,ν2 . This proves the claim. �

3.2. Induction step

LEMMA 3.9. If μν > 4 and μ > 1, then φμ+1,ν
0 is contained in Φμ,ν. Similarly, if μν > 4

and ν > 1, then φμ,ν+1
0 is contained in Φμ,ν.
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10 T. Gräfnitz and P. Luo [10]

FIGURE 5. Partial deformations showing that φ2,3
0 (left) and φ1,5

0 (right) are full.

PROOF. By symmetry, we only have to show the second statement, which is equivalent
to ρμ,ν+1

0,+ < ρ
μ,ν
+ and 1/ρμ,ν+1

0,− < 1/ρμ,ν− . The second inequality is

μ

2
<
μ +
√
μ2 − 4 μ

ν

2
⇐⇒ 0 < μ2 − 4

μ

ν
⇐⇒ μν > 4.

The first inequality is

ν + 1
2
<
ν +
√
ν2 − 4 ν

μ

2
⇐⇒ 1 < ν2 − 4

ν

μ
⇐⇒ μ > 4ν

ν2 − 1
.

For ν ≥ 5, the right-hand side is smaller than one, and hence any μ ∈ Z>0 satisfies
the inequality. For ν = 4, 3, 2, the inequality is satisfied by all μ ≥ 2, 2, 3, respectively.
Hence, all μ, ν ∈ Z>0 satisfying μν > 4 and ν > 1 also satisfy this inequality. This
completes the proof. �

PROPOSITION 3.10. If Φ2,3 and Φ1,5 are full, then Φμ,ν is full for all μν > 4.

PROOF. Start with a pair (μ, ν) with μν > 4. With μν > 4 do the following. If μ ≥ ν,
replace (μ, ν) by (μ − 1, ν). Otherwise, replace (μ, ν) by (μ, ν − 1). Doing this repeatedly
we eventually arrive at (1, 5) or (5, 1) or (2, 3) or (3, 2). Note that, if μν > 4 and μ ≥ ν,
then μ > 1. Similarly, if μν > 4 and ν > μ, then ν > 1. By Lemmas 3.8 and 3.9, we
conclude that Φμ,ν is full if Φ1,5, Φ5,1, Φ2,3 and Φ3,2 are full. By Remark 2.10, Φ5,1

is full if and only if Φ1,5 is full and Φ3,2 is full if and only if Φ2,3 is full. Hence, the
statement follows. �

3.3. The base cases

LEMMA 3.11. Φ2,3 is full.

PROOF. Consider a partial deformation of D2,3 into D2,2 and D2,1 by pulling out a
vertical line (see Figure 5). InD2,2, for every n ∈ N, there is a ray in direction (n, n + 1)
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with function (1 + t2n+1xnyn+1)2 (see Example 2.11). This intersects the pulled out
vertical line, which has function 1 + ty. By the change of lattice trick (Proposition
2.16), the diagram at the intersection corresponds to a standard diagram D2n,n. By a
full deformation, one easily sees thatD2n,n has rays in directions (1, 1), (1, 2), . . . , (1, n),
which correspond to rays in D2,3 with directions (n, n + 2), (n, n + 3), . . . , (n, 2n + 1).
Hence, for each direction (a, b) with a ≤ b ≤ 2a + 1, there exists a nontrivial ray in
D3,2. These include all directions with 1 ≤ b/a ≤ 2. But this contains the fundamental
region φ3,2

0 , which lies between ρ3,2
0,− = 1 and ρ3,2

0,+ =
3
2 . Therefore, φ3,2

0 is full, and so, by
Lemma 3.8, Φ3,2 is full. �

LEMMA 3.12. Φ1,5 is full.

PROOF. Consider a partial deformation of D1,5 to D1,3 and D1,2 (see Figure 5). As
c1,3

1,1 = 3 (see Example 2.14), we get a subdiagram corresponding to D3,2, with rays
(a, b) in D3,2 corresponding to rays (a, a + b) in D1,5. This maps the slope ρ 
→ ρ + 1,
so sends the dense region Φ3,2 between

ρ3,2
± =

6 ±
√

12
6

= 1 ± 1
√

3

to the region between 2 ± 1/
√

3 in D1,5. This contains the fundamental region φ1,5
0

which lies between ρ1,5
0,− = 2 and ρ1,5

0,+ =
5
2 . So φ1,5

0 is full, and hence Φ1,5 is full by
Lemma 3.8. �

Now Theorem 3.3 follows from Lemmas 3.11, 3.12 and Proposition 3.10.

3.4. Outside the dense region

PROPOSITION 3.13. In a standard scattering diagram Dμ,ν, every ray with direction
(a, b) ∈ Z2

>0 satisfies

1
μ
≤ b

a
≤ ν.

PROOF. We show that b/a ≤ ν. Then 1/μ ≤ b/a follows by symmetry under exchang-
ing (μ, a) and (ν, b). For ν = 1, a full deformation of Dμ,1 shows that only rays with
slope b/a ≤ 1 appear. Hence, we can assume that ν > 1. We proceed by induction
on a + b. The statement is clear for a + b = 1. For a + b = 2, we have a = b = 1, so
b/a = 1, and the statement is also true. For a + b > 2, consider the partial deformation
of Dμ,ν into Dμ,ν−1 and Dμ,1 by pulling out a vertical line. Consider the ray in Dμ,ν−1

with direction (a0, b0) ∈ Z2
>0. Its attached function is (1 + ta0+b0 xa0 yb0 )cμ,ν−1

a0,b0 . It intersects
the pulled-out vertical line, which has function 1 + ty. By the change of lattice trick

(Example 2.17), the diagram at the intersection point is equivalent to Da0cμ,ν−1
a0,b0

,a0 . It
produces rays with directions (a, b) = α(a0, b0) + β(0, 1) for some α, β ∈ Z>0. We have
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α ≤ a and β < b, so α + β < a + b and a0 + b0 < a + b. By the induction hypothesis,
we have β/α ≤ a0 and b0/a0 ≤ ν − 1. Then

b
a
=
αb0 + β

αa0
=

b0

a0
+
β

α

1
a0
≤ ν.

This completes the proof. �

PROPOSITION 3.14 (Theorem 1.4(b)). Outside Φμ,ν, the only rays that occur are those
given by mutations of the initial rays. In particular, rays cannot be dense.

PROOF. Let α0 = 0,α1 = 1/μ,αn+1 = T2(βn) and β0 = ∞, β1 = ν, βn+1 = T1(αn).
We know that there are no rays with slope α0 < ρ < α1 or β0 > ρ > β1, and, under

mutations, if there are no rays with slope αn−1 < ρ < αn or βn−1 > ρ > βn, then there
are none with slope αn < ρ < αn+1 or βn > ρ > βn+1.

Note also that α0 < ρ
μ,ν
− and β0 > ρ

μ,ν
+ and that T1, T2 : ρμ,ν± 
→ ρ

μ,ν
∓ are order

reversing, so αn < ρ
μ,ν
− and βn > ρ

μ,ν
+ . So we get bounded monotone sequences αn, βn

and they converge to α, β, respectively. As T2T1 is continuous and maps αn to αn+2
and βn to βn+2, respectively, α, β must be fixed points of T2T1. But the fixed points of

T2T1 : ρ 
→ ν − 1
μ − 1/ρ

are exactly ρμ,ν± . So α = ρμ,ν− and β = ρμ,ν+ , and we get the claim. �
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