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We mimic a flapping wing through a fluid–structure interaction (FSI) framework
based upon a generalized lumped-torsional flexibility model. The developed fluid
and structural solvers together determine the aerodynamic forces, wing deformation
and self-propelled motion. A phenomenological solution to the linear single-spring
structural dynamics equation is established to help offer insight and validate the
computations under the limit of small deformation. The cruising velocity and power
requirements are evaluated by varying the flapping Reynolds number (206Ref 6 100),
stiffness (represented by frequency ratio, 1.ω∗6 10) and the ratio of aerodynamic to
structural inertia forces (represented by a dimensionless parameter ψ (0.1 6 ψ 6 3)).
For structural inertia dominated flows (ψ � 1), pitching and plunging are shown to
always remain in phase (φ≈ 0) with the maximum wing deformation occurring at the
end of the stroke. When aerodynamics dominates (ψ > 1), a large phase difference
is induced (φ ≈ π/2) and the maximum deformation occurs at mid-stroke. Lattice
Boltzmann simulations show that there is an optimal ω∗ at which cruising velocity is
maximized and the location of optimum shifts away from unit frequency ratio (ω∗= 1)
as ψ increases. Furthermore, aerodynamics administered deformations exhibit better
performance than those governed by structural inertia, quantified in terms of distance
travelled per unit work input. Closer examination reveals that although maximum
thrust transpires at unit frequency ratio, it is not transformed into the highest cruising
velocity. Rather, the maximum velocity occurs at the condition when the relative tip
displacement ≈ 0.3.

Key words: flow–structure interactions, propulsion, swimming/flying

1. Introduction
Nature has endowed a wide variety of efficient locomotion mechanisms pertinent

to marine and aerial life for predator evasion, food search, navigation and migration.
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Analysis of passive flexion in propelling a plunging plate 563

Amongst them, flapping is one of the most prevalent modes of biological propulsion
and can be broadly classified into (i) undulatory motion and (ii) oscillatory motion
(Alexander 2003; Taylor, Triantafyllou & Tropea 2010). The former is predominantly
utilized by the aquatic animals and involves the movement or propagation of a wave
along the entire body or the caudal fin (posterior part) for onward translation (Evans
& Claiborne 2005). The latter stimulates propulsion via the reciprocating motion of
appendages (wings or pectoral fins) about the point of attachment or hinge and is
primarily employed by the airborne animals. Unlike aquatic or swimming animals
which are neutrally buoyant, flying animals have to simultaneously do a twofold job
of staying aloft (to balance the weight) and generate thrust (to propel forward) (Taylor
et al. 2010). Based upon investigations utilizing a quasi-steady and time-dependent
framework, new insights into mechanisms of lift and thrust generation have been
gained (Ellington 1984a,b; Dickinson & Gotz 1993; Ellington et al. 1996; Sane
2003; Alexander 2004; Shyy et al. 2010, 2013, 2016).

For birds and insects, the composition and morphology of their skeletal and wing
structures are contrasting and diverse. The flapping actuation of birds is distributed
along the wing as their muscles, attached to the bones, run through the entire span and
enable flexing in both span- and chord-wise directions, the phenomenon often termed
active flexing or bending (Alexander 2003; Taylor et al. 2010). On the contrary, insect
wings lack any internal muscles and bone structure due to which the entire flapping
is localized and actuated only from the base (Brodsky 1994; Dudley 2002; Alexander
2003). Thus, the physiology of an insect wing inhibits chord- and span-wise flexing
and is often termed passive as the extent of bending is predominantly governed by
the balance between aerodynamic, structural inertia and stiffness forces. Despite their
passive wing flexibility, insects are bestowed with similar manoeuvrability, navigation
and flight control as displayed by birds (Alexander 2003, 2004). Moreover, insect wing
structures, being lighter relative to their body weight, have stimulated scientists and
engineers towards a deeper examination of their flight to design the next generation
of flapping wing micro air vehicles (MAVs) that includes recent developments such
as the Nano Hummingbird (Keennon et al. 2012) and microrobot (Fuller et al. 2014;
Ma, Chirarattananon & Wood 2015).

In this regard, the scientific understanding of how passive flexibility affects
aerodynamic and propulsive performance of a flapping wing has been a subject
of active research through experimental, analytical and numerical studies being
performed. All of these studies indicated condition-dependent improvement in
propulsive performance with flexible wings in comparison to their rigid counterparts.
Moreover, the key areas touched upon in these studies mainly revolved around (i)
the behaviour of vortex shedding, bending pattern and comparison of energy/power
requirements and lift/drag generation with change in stiffness (Katz & Weihs 1978,
1979; Prempraneerach, Hover & Triantafyllou 2003; Heathcote, Martin & Gursul
2004; Heathcote & Gursul 2007; Toomey & Eldredge 2008; Ishihara, Horie & Denda
2009; Vanella et al. 2009; Eldredge, Toomey & Medina 2010; Qi et al. 2010; Thiria
& Godoy-Diana 2010; Yin & Luo 2010; Zhao et al. 2010; Zhao, Deng & Sane
2011; Dai, Luo & Doyle 2012; Liu et al. 2015), (ii) the association between peak
performance (efficiency or thrust/power coefficients) and structural resonance (Masoud
& Alexeev 2010; Ramananarivo, Godoy-Diana & Thiria 2011; Yeh & Alexeev 2014,
2016; Paraz, Schouveiler & Eloy 2016), (iii) locomotion attained as a consequence of
symmetry breaking and direction of propulsion as a function of plunging frequency
and stiffness in the case of studies of self-propulsion (Spagnolie et al. 2010; Zhang,
Liu & Lu 2010; Hua, Zhu & Lu 2013; Xiao, Hu & Liu 2014; Zhu, He & Zhang
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2014a,b; Olivier & Dumas 2016a) and (iv) dimensional analysis to summarize scaling
laws ranging across different structural parameters such as density, stiffness, wing
thickness and kinematic parameters such as plunging amplitude, frequency, Reynolds
number (Alben 2008; Kang et al. 2011; Alben et al. 2012; Kang & Shyy 2013, 2014;
Moore 2014, 2015; Kodali & Kang 2016). The implications drawn from these studies
comprising all of the aforementioned issues are hereby summarized.

Prempraneerach et al. (2003) found that corresponding to the Strouhal numbers
(parameter indicative of vortex shedding) at which rigid foils showed excellent
performance, propulsive efficiency of flexible foils increased by 36 % and they also
recorded higher thrust coefficients. Heathcote et al. (2004) and Heathcote & Gursul
(2007) discovered that wing deformation and phase lag between the leading- and
trailing-edge motions increase as the wing flexibility increases, with the effective
pitching angle found to be the most influential parameter as far as efficiency is
concerned. Thiria & Godoy-Diana (2010) showed that elasticity leads to (i) a
substantial reduction in consumed power, and (ii) an increase in propulsive force
by considering high inertia wings (relative density of O(103) with respect to air) with
four different thickness and stiffness combinations.

By considering simplifying assumptions on the flexing motion and inviscid flow,
most of the analytical studies supported the experimental inferences on improvement
in propulsion performance with flexibility. Katz & Weihs (1978, 1979) presented
a 20 % increase in efficiency of flexible foils over rigid foils, accompanied by a
negligible decrement in thrust. Alben (2008) and Alben et al. (2012) found that the
optimum thrust corresponds to a body flexed upwards at the trailing edge with a
quarter wavelength mode of deflection. Moore (2014, 2015) established a theoretical
solution using inviscid theory to model the passive pitching of a flapping wing
undergoing small-amplitude oscillation. It was shown through numerical optimization
that the flexibility localized at the wing’s leading edge generates more thrust than
that with uniform stiffness.

A significant contribution to scrutinizing the impact of flexibility on aerodynamics
involves numerical simulations corresponding to fluid–structure interactions. In this
regard, the most popular techniques or models implemented in the structural solvers
are: (i) the solid continuum (Masoud & Alexeev 2010; Qi et al. 2010; Yin & Luo
2010; Kang et al. 2011; Dai et al. 2012; Hua et al. 2013; Yeh & Alexeev 2014; Zhu
et al. 2014a,b; Olivier & Dumas 2016a,b; Yeh & Alexeev 2016), and (ii) lumped-
torsional flexibility (Toomey & Eldredge 2008; Ishihara et al. 2009; Vanella et al.
2009; Eldredge et al. 2010; Spagnolie et al. 2010; Zhang et al. 2010; Xiao et al.
2014; Beatus & Cohen 2015) approaches. While the former considers the wing or
membrane to be entirely flexible along its length and requires complex and expensive
computations, the latter involves simplifying assumptions with the flexibility localized,
leading to a dynamics dictated using an ordinary differential equation.

Using the former approach, Kang et al. (2011) showed that the maximum
propulsive force and optimum efficiency are obtained when flapping at the resonant
frequency and half the natural frequency, respectively. Masoud & Alexeev (2010)
examined hovering aerodynamics of flexible wings oscillating at resonance and found
that aerodynamic lift is significantly enhanced due to the induction of large-amplitude
oscillations at resonance. In their investigation, Qi et al. (2010) found that both lift
and drag increased with the increase in spanwise flexibility and reached a maximum
beyond which there was a sharp decline, indicating that the forces are flexibility
sensitive and can be optimized. Zhu et al. (2014a,b) found that introduction of
flexibility exerted two opposing effects on vortex circulation that could both hinder as
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well as initiate the wake asymmetry. Hua et al. (2013) identified forward, backward
and irregular zones of motion and reported that flexibility can be optimized to obtain
maximum propulsive efficiency, and detected both normal and deflected wake patterns
indicative of thrust and lift generation in the former and latter situations, respectively.
Yeh & Alexeev (2014, 2016) observed two distinct regimes: (i) the maximum velocity
(MV) that occurred at the resonant frequency and was accompanied by a large
trailing-edge displacement, and (ii) the maximum performance (MP) that transpired
near an off-resonance frequency and exhibited a bending pattern with minimum
displacement of the centre of mass. Olivier & Dumas (2016a,b), by utilizing two
dimensionless parameters, postulated different optimum flexibilities for thrust and
efficiency. For inertia driven deformations, thrust and efficiency both deteriorated with
an increase in flexibility.

Vanella et al. (2009) demonstrated that the best performance is achieved at one
third of the natural frequency and was 25 % higher than the rigid wing driven with
the same kinematics. Toomey & Eldredge (2008), Eldredge et al. (2010) showed
that wing flexibility usually reduces the power consumption in flapping compared
to a rigid wing as passive deflection leads to smaller drag. However, highly flexible
wings undergoing large deformations exhibited worse aerodynamic performance than
moderately flexible wings, indicating that flexibility is optimizable for maximizing
performance. Zhang et al. (2010) investigated the wake patterns by varying the
plunging amplitude, flapping Reynolds number and the spring stiffness and identified
four kinds of vortex structures, which mainly depend on the forward speed. Xiao
et al. (2014) found that the effect of stiffness was strongly influenced by the pitching
axis as the propulsion performance improved when the pivot point of the spring
moved from the centre to the leading edge. Maximum terminal velocity was attained
when flapping at the natural frequency, while the optimal efficiency was recorded at
half the natural frequency.

Based on these arguments, an optimum flexibility has been widely agreed to
result in the maximum cruising velocity and efficiency, and highly flexible and very
rigid wings are shown to be undesirable. However, contradicting results on peak
performance exist. Studies have demonstrated that the maximum terminal velocity (in
free swimmers) (see Spagnolie et al. 2010) or maximum thrust (in tethered flappers)
(see Kang et al. 2011) occurs at resonance or the system’s natural frequency. In
contrast, there are studies (Thiria & Godoy-Diana 2010; Ramananarivo et al. 2011;
Hua et al. 2013; Zhu et al. 2014b) which have reported that the highest cruising
velocity or highest propulsive efficiency usually transpires far below the natural
frequency. Despite many analytical studies, the proposed dimensionless quantity or
scaling parameter associated with the passive pitching and plunging was restricted
primarily to the small-amplitude limit with no emphasis on propulsion. Furthermore,
in all previous studies on lumped-torsional flexibility, a notable paucity was observed
in that the flexibility was concentrated at a single point (either at the leading edge or
centre) and this localized flexible system needs further improvement to mimic actual
scenarios.

Lack of coherence in earlier results and a missing key parameter that correlates
passive pitching with plunging lays the foundation for further research to be pursued.
Following this course, the specific aim of this study is to examine the role of
chordwise passive wing flexibility in forward propulsion for low Reynolds number
flows. In this regard, we develop a generalized lumped-torsional spring flexibility
model to mimic the chordwise flexibility of an insect wing. The computational
framework is also validated and verified against available data. The explicitness
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of the governing equations of the lumped-torsional flexibility model enabled us to
establish a phenomenological solution to the simplified version of this problem that
disseminates the contribution of a fluid–structure interaction (FSI) index, ψ . This
parameter unravels some complex aerodynamic phenomena with regard to passive
flexing that influences the propulsion characteristics of insect flight. Moreover, the
aerodynamics and flow patterns associated with a flexible plate have been investigated
for a range of Reynolds number and torsional stiffness. The key objectives of the
study are to

(I) construct a two-dimensional fluid–structure interaction (FSI) framework based
upon the multi-component lumped-torsional flexibility model for a self-propelled
plunging plate;

(II) formulate a phenomenological solution to the simplified single-spring structural
dynamics equation and identify key parameters that control passive pitching and
establish the relationship with imposed plunging motion;

(III) examine the role of structural and kinematic parameters (flapping Reynolds
number, plunging amplitude, density ratio, torsional stiffness, thickness) on the
propulsion performance (cruising velocity and power requirements);

(IV) address prevailing issue about the phenomenon of resonance and its influence on
propulsion; and

(V) elucidate the dominant wake patterns and investigate the role of shed vortices
and their interactions with the wing that contribute to forward motion or thrust
generation.

Through this work, important inferences on the role of passive wing flexibility will
be outlined, which could act as starting points for the design and analysis of realistic
and bio-inspired MAVs with inherent wing flexibility taken under consideration.
This analysis is anticipated to assist in understanding fluid–structure interaction and
efficiency of a self-propelled flexible plunging wing in a viscous fluid.

2. Problem description
2.1. Plunging kinematics and parameters

To circumvent the computational cost associated with expensive three-dimensional
self-propelled wing simulations, we consider a heaving flexible two-dimensional flat
plate unconstrained to translation in the horizontal direction and free to flex about
the leading edge. A vertical sinusoidal plunging motion is prescribed at the leading
edge. The key dimensional parameters expected to play a role in propulsion in a rigid
wing have been introduced in an earlier publication (Arora et al. 2016a) and for the
sake of brevity are briefly described here. These are the flapping Reynolds number
Ref =AγC/ν, the amplitude ratio β=A/C and the density ratio ρ∗=ρs/ρf . Here, ν is
the kinematic viscosity, C is the chord length, γ is the plunging frequency (γ = 1/T ,
where T is the time period of one stroke/cycle), A is the plunging amplitude, ρs and
ρf are the densities of the plate and fluid, respectively; δ is the thickness to chord
ratio (δ = e/C, where e is the dimensional wing thickness) which has been fixed at
2 % in this work as considered in earlier studies (Wu, Ifju & Stanford 2010; Kang
et al. 2011). With the incorporation of flexibility, additional parameters are introduced.
These are the non-dimensionalized torsional flexibility,

K∗ =
K

ρfγ 2C4
, (2.1)
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where K is the dimensional torsional flexibility, and the ratio of the natural frequency
(ωn) to the flapping frequency (Zhang et al. 2010), given as

ω∗ =
ωn

ω
. (2.2)

Here ωn =
√

K/I when a single torsion spring is attached at the leading edge of
the plate with I being the mass moment of inertia of the plate about the leading
edge. The resonance frequency in the fluid deviates from that in a vacuum as inferred
from a theoretical analysis by Sader (1998) and Van Eysden & Sader (2007). For
reasons given later, frequency normalization in this work has been done using the
vacuum resonance frequency. Henceforth, resonance refers to plunging at the natural
or resonant frequency in a vacuum and is called structural resonance, also denoted by
‘unit frequency ratio’ (ω∗= 1). Natural flyers usually operate at a frequency ratio ω∗>
1.2 (Kang & Shyy 2013). To assess the role of structural resonance on propulsion,
1 .ω∗ 6 10 has been considered (Zhang et al. 2010; Xiao et al. 2014).

Due to the fluid–wing interaction, an aerodynamic force is exerted on the flat plate.
The horizontal component of this force is responsible for the forward locomotion. The
non-dimensional horizontal position of the plate x∗p is updated by the equation

d2x∗p
dt∗2
=

2π2β2

ρ∗δ
F∗x , (2.3)

where t∗ = γ t is the dimensionless time and F∗x is the thrust coefficient defined as

F∗x =
Fx

1
2ρf V2C

, (2.4)

where V = 2πAγ is the maximum plunging velocity and Fx is the instantaneous
thrust (per unit depth) calculated using the momentum exchange method (Arora et al.
2014, 2016a; Arora, Gupta & Shyy 2016b). The dimensionless velocity component
in the horizontal direction is U = u/V , where u is the dimensional instantaneous
translational velocity. The translational Reynolds number is defined as Reu = uC/ν
where u= 1/T

∫
u dt is the time-averaged translational velocity attained by the plate

at the cruising condition and can similarly be non-dimensionalized as U = u/V .
Another important dimensionless number related to flapping flight and indicative of

vortex shedding is the Strouhal number (Taylor, Nudds & Thomas 2003) which is
defined as

St=
2γA

u
=

1
πU

(2.5)

and can also be expressed as St= 2Ref /Reu.
For estimating the power required to propel the wing, the cruising condition input

power 〈Pi〉 is determined by averaging instantaneous values of power over a time
period of 20 plunging strokes after steady propulsion is achieved, i.e.

〈Pi〉 =
Pi

1
2ρf V3C

=

∫ t∗0+20

t∗0

F∗y
( v

V

)
dt∗, (2.6)

where F∗y is the drag coefficient of the plunging wing, v is the instantaneous vertical
(or plunging) velocity and t∗0 is the plunging cycle after which quasi-steady propulsion
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commences. The power has been calculated with an assumption that any negative
contribution is ignored (Yin & Luo 2010). In self-propelled studies, the net horizontal
force is zero at the cruising condition, and hence the output power cannot be
calculated in a fashion similar to the input power. Cruising efficiency is one of
the measures to quantify propulsive performance of forward locomotion and can be
calculated as the kinetic energy gained per unit input work (Arora et al. 2016a).
However, in the present study, another parameter, known as the effectiveness, which
is described in a later section, has been used for measuring the performance.

2.2. Implementation of flexibility
The insect wing structures are inherently anisotropic due to the complex membrane–
vein structure (Combes & Daniel 2003a). Moreover, the spanwise bending stiffness
has been reported to be one or two orders of magnitude larger than the chordwise
bending stiffness in a majority of insects (Combes & Daniel 2003a,b). Therefore, the
focus of the present work is to develop a fluid–structure interaction framework in
which the role of flexibility in propulsion performance can be investigated through
a chordwise flexibility model. The lumped-torsional flexibility model has been widely
used to study the dynamics of a flexible wing (Toomey & Eldredge 2008; Ishihara
et al. 2009; Vanella et al. 2009; Eldredge et al. 2010; Spagnolie et al. 2010; Zhang
et al. 2010; Xiao et al. 2014; Beatus & Cohen 2015). However, all of these studies
consider flexibility located at the leading edge only. Other differences exist due to the
focus not being on self-propulsion (Toomey & Eldredge 2008; Ishihara et al. 2009;
Vanella et al. 2009; Eldredge et al. 2010), ignoring the effects of inertial acceleration
(Zhang et al. 2010; Xiao et al. 2014) or considering a membrane of high or negligible
thickness (Spagnolie et al. 2010; Zhang et al. 2010; Xiao et al. 2014).

Observing the notable shortcoming in all these studies due to the lack of a
generalized discrete flexibility model, we develop a multi-component system where
flexibility is not localized. Shown in figure 1 is one such illustration in which
flexibility has been implemented by segregating it into n rigid links connected with
each other through torsion springs. Due to inertia and fluid forces, the wing deforms
during the plunging motion and its impact on forward propulsion can be quantified.

For illustration purposes, the dynamics of a single plate–spring system (n= 1 with
the spring attached at the leading edge of the plate) can be modelled using the
equation

(I + Ia)
d2α

dt2
+ σ α̇ +Kα =−(m+ma)

C
2

cos αŸ +Λa, (2.7)

where I is the moment of inertia of the plate about the leading edge, m is the
mass of the plate, ma(Ia) is the added mass (added moment of inertia) for the flat
plate, σ is the linear damping coefficient (defined as σ = 2ξ Iωn with ξ being the
damping ratio), C is the chord length, Ÿ is the acceleration due to heaving, Λa is the
aerodynamic torque experienced by the spring due to fluid–structure interaction and
α is the deflection angle of the passively pitching wing. The aerodynamic torque is
calculated by the fluid solver and is the parameter which couples it to the structural
solver. Due to this torque, the angle of deflection is determined (by the structural
solver) which in turn affects the aerodynamic force (estimated by the fluid solver)
and vice versa.

Virtual or added mass characterizes the additional force to be considered as the
accelerating or decelerating body displaces a volume of the surrounding fluid (Brennen
1982; Techet 2005). The added mass is a 3 × 3 tensor for two-dimensional flows
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Torsion springs

Unconstrained

2nd link

1st link

nth link

x

y

FIGURE 1. (Colour online) Lumped-torsional flexibility model for n linkages.

(6×6 in three dimensions) which depends only on the shape and orientation of surface
of the body and is independent of the motion kinematics. Conventionally, the added
mass of various shaped bodies has been approximated by considering the surrounding
fluid as inviscid and incompressible. Then the added mass matrix (λ) can be written
as (Korotkin 2008)

λij =−ρf

∫∫
s

∂ϕi

∂n
ϕj dS (i, j= 1, 2, . . . , 6), (2.8)

where S denotes the surface of moving body, n is the outward direction normal
to surface S and ϕi represents the flow potential corresponding to translational and
rotational velocities for i = 1, 2, 3 and i = 4, 5, 6, respectively. In other words,
λij can be considered as an additional mass associated with the force acting on
a body in the ith direction as it moves with unit acceleration in the jth direction
(Techet 2005). Determining the added mass matrix is simpler for symmetrical bodies
with unidirectional movement in an inviscid fluid (Brennen 1982). However, it is
extremely challenging to assess the added mass matrix for bodies experiencing
time-evolving flows at finite Reynolds numbers (Brennen 1982), an aspect shared by
the fluid–structure interaction being modelled in this work. Although we note that by
considering the fluid to be inviscid, an approximate representation of the added mass
forces and moments could be obtained, this however will be applicable only if the
plate considered were rigid. With the implementation of flexibility, the shape of the
plate is expected to evolve at every time step. Hence, evaluation of added mass forces
is an extremely difficult assignment, especially with the bending being passive, where
both fluid and structural solvers are coupled. Moreover, the added mass is expected
to make a significant contribution for marine animals where ρ∗ ∼ O(100–101) and
can potentially be ignored for aerial animals where ρ∗ ∼O(102–103) (Brennen 1982).
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Thus, computing the added mass tensor was ignored in the present study and will be
the subject of a future investigation.

One of the main advantages of this simplified two-dimensional model is that
with the structural equation (2.7) being an ordinary differential equation (ODE),
the analytical solution to this problem can be easily attained (refer § 4.1), which is
otherwise difficult, for example, in passive pitching where the shape is a priori
unknown. Moreover, the above spring mass equation approaches the nonlinear
Euler–Bernoulli beam equation as the number of linkages and springs increase.
In all of the earlier studies on lumped-torsional flexibility, the number of linkages
or torsional springs was restricted to one or two. In the present study, we generalize
the lumped-torsional flexibility model for n number of linkages or springs, which can
better mimic a real flexible wing. The description of the algorithm for n linkages is
given in § 3.2.

3. Methodology

This section addresses the numerical methodology adopted to examine the role of
flexibility in a plunging plate. The numerical framework encompasses two stages of
modelling: (i) flow solver, for deciphering the fluid flow around the plunging wing
and the force calculation due to fluid–structure interaction, and (ii) structural solver,
for computing the bending or angular deflection of the wing due to aerodynamic and
inertia forces. Since the flexibility is passive, the wing deformation is unknown with
the fluid and structural dynamics equations coupled in a time-staggered manner. The
description of these solvers along with various performance checks and validations is
as follows.

3.1. Flow Solver
The fluid solver utilizes the multi-relaxation time (MRT) version of the lattice
Boltzmann method (LBM) to determine the flow physics and for force evaluation on
the plunging plate. The description of MRT, calculation of the macroscopic variables
(i.e. pressure and velocity) and force exerted on a moving object immersed in a fluid
are concisely described here, and details can be found in our earlier publications
(Arora et al. 2014, 2016a).

The single relaxation time (SRT) lattice Boltzmann model exhibits numerical
instability at high Re and displays spurious oscillations in force measurement (Arora
et al. 2016b). Citing these disadvantages, we employ the multi-relaxation time (MRT)
model that does not exhibit these problems. In this method, the distribution function
f (as defined in the SRT model) in the discrete velocity space B is mapped onto the
moment space Q by using a transformation matrix M (Arora et al. 2016a,b), i.e.

f̂ =Mf and f =M−1 f̂ , (3.1a,b)

where f̂ is a column matrix consisting of moments of the velocity distribution function
(each row vector) which represents the following quantities in two-dimensional space:

f̂ = [ρ, e, ε, jx, qx, jy, qy, pxx, pxy]
T, (3.2)

where ρ is the density, e signifies the kinetic energy, ε is the square of the kinetic
energy, jx and jy are the x and y components of the momentum flux, qx and qy are
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related to the x and y components of energy density and pxx and pxy refer to the
diagonal and off-diagonal terms in the viscous stress tensor.

The equilibrium values for the non-conserved moments can be obtained from the
conserved moments ρ and j ( jx and jy) as

eeq
=−2ρ +

3
ρ
( j2

x + j2
y), (3.3a)

εeq
= ρ −

3
ρ
( j2

x + j2
y), (3.3b)

qeq
x =−jx, qeq

y =−jy, (3.3c)

peq
xx =

1
ρ
( j2

x − j2
y), peq

xy =
1
ρ

jxjy. (3.3d)

The collision process is performed in the Q space which is as follows:

f̂∗ = f̂ − S[ f̂ − f̂ eq
], (3.4)

where f̂∗ is the post-collision operator, and S is the diagonal relaxation time matrix

S = diag[s1, s2, s3, s4, s5, s6, s7, s8, s9], (3.5)

where s1 = s4 = s6 = 0 (relaxation time for the conserved quantities).
The moments f̂ are transformed back and thus the advection step is carried out in

the B space on the distribution function f . Thus, (3.4) can be written as

f̃ =M−1 f̂ −M−1S[ f̂ − f̂ eq
], (3.6)

where f̃ is the post-collision distribution function in B space which is then streamed
to the neighbouring nodes in the direction of the lattice velocities.

For the case of a moving boundary, the solid surface is represented by a set
of boundary nodes which lie at the mid-points of the links connecting the fluid
and solid nodes. In this half-way bounce-back interpretation, both fluid and solid
nodes are treated indistinguishably and the collision and streaming is applied as
if a fictitious fluid were present in the interior of the solid (Arora et al. 2014,
2016a). This approach ensures that mass is conserved at the boundary nodes and
also avoids the necessity of creating and destroying fluid as the solid particle moves
(covering/uncovering of the fluid nodes).

The total force F̄ on the solid object is obtained by summing F over all the nodes
that constitute the boundary of the object along the directions α which involve the
exchange of distributions from fluid to solid nodes or vice versa (Arora et al. 2014,
2016a),

F̄
(

t+
1
2

)
=

∑
all xb

∑
α

F
(

x+
1
2

eα, t+
1
2

)
. (3.7)

Similarly, the total aerodynamic torque exerted on the object is given as

Λ̄a

(
t+

1
2

)
=

∑
all xb

∑
α

[
r×F

(
x+

1
2

eα, t+
1
2

)]
, (3.8)
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where r is the displacement vector of the boundary node or the moment arm about
the torsion spring. The overall force and torque are calculated at the intermediate time
step by taking the average of the respective components at half-integer time steps,

F̄(t)= 1
2 [F̄(t−

1
2)+ F̄(t+ 1

2)], (3.9a)

Λa(t)= 1
2 [Λa(t− 1

2)+Λa(t+ 1
2)]. (3.9b)

Some of the issues pertaining to the resolution of the moving body are ubiquitous
and can be resolved by refining the mesh near the surface of the solid. Thus, the
present study employs a novel and unconventional shifting discontinuous grid-block
MRT LBM where a fine block translates with the moving solid on a carpet of coarse
block (Arora et al. 2016a,b). With the implementation of flexibility, the role of the
structural solver comes into the picture and the focus is rather on presenting the
coupling between the fluid and structural solver.

3.2. Structural solver
The Newton–Euler approach (Thomson 1996) has been used to set up the multi-body
dynamics equations. Since the system deals with torsion springs, conservation of
angular momentum has been applied at all the joints to eliminate the effect of
contact forces. Thus, n links involve n conservation equations to determine the same
number of unknowns (or angular deflections). Setting up of the dynamics equations
of a multi-link body requires a generalized coordinate system for determining the
centre of mass positions, velocities and accelerations of all of the links.

With reference to figure 1, the length of the ith linkage is taken as ci and 2d is
the gap between two linkages and characterizes the width of the torsional spring
(taken to be equal to the half-thickness of each linkage). In the simulations, this
gap is transparent to the flow and does not affect the wing aerodynamics (Toomey
& Eldredge 2008; Eldredge et al. 2010). Thus, the effective length of each linkage,
i.e. centre to centre distance of the springs, is Li = ci + 2d. The total length or chord
of the wing is C= nci + (2n− 1)d where n > 1. The centre of mass position (Xi, Yi)

of the ith linkage is given by

Xi = XLE +

i−1∑
k=1

[
Lk cos

(
k∑

j=1

αj

)]
+ lcm,i cos

(
i∑

k=1

αk

)
, (3.10a)

Yi = YLE +

i−1∑
k=1

[
Lk sin

(
k∑

j=1

αj

)]
+ lcm,i sin

(
i∑

k=1

αk

)
, (3.10b)

where lcm,i = d+ ci/2, YLE = A sin(2πγ t) and αi(t) is the angular displacement of the
ith linkage relative to the (i− 1)th linkage. The translational velocity and acceleration
components of the ith linkage are given as Vx,i = Ẋi, Vy,i = Ẏi and ax,i = Ẍi , ay,i = Ÿi,
respectively.

The moment due to the inertial acceleration Minrta about the ith hinge in a direction
perpendicular to the plane of the wing is given as

Minrta,i =−mi

n∑
j=i

{ay,j[rx,j + ( j− i)Rx,j]} +mi

n∑
j=i

{ax,j[ry,j + ( j− i)Ry,j]}, (3.11)
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where mi is the mass of ith linkage and ri and Ri are the moment arms about the ith
spring and their components are given as

rx,i = lcm,i cos

(
i∑

j=1

αj

)
, ry,i = lcm,i sin

(
i∑

j=1

αj

)
, (3.12a)

Rx,i = Li cos

(
i∑

j=1

αj

)
, Ry,i = Li sin

(
i∑

j=1

αj

)
. (3.12b)

By conservation of angular momentum about the hinges, the equations governing
the dynamics for an n-link system can be generalized in a matrix form as

[I]n×n{α̈}n×1 + [K ]n×n{α}n×1 + [Q]n×n{α̇
2
}n×1 + [G]n×n{2α̇iα̇i+1}n×1

= {D}n×1 + {A}n×1, (3.13)

where I , K , Q and G are the inertia, stiffness, centrifugal force and Coriolis force
matrices, respectively, while D and A are the structural inertia and aerodynamic
contributions, respectively. As a representative case, the matrices obtained for a two
link system are given in appendix A. The fourth-order Runge–Kutta method has been
used to solve the simultaneous nonlinear equations to obtain the angular deflections
at each time step.

3.3. Computational domain and grid convergence
A pictorial representation of the computational domain is shown in figure 2. As shown,
a dynamic multi-block (finer mesh) has been considered around the structure in an
overall domain of size 50C × 20C. The leading edge of the wing was positioned
20C downstream of the inlet and 30C upstream of the outlet. It should be noted
that the simulations presented here are for a self-propelled wing in a quiescent fluid.
Hence, a no-slip boundary condition (zero fluid velocity) was applied on the top and
bottom walls of the domain along with the inlet. At the outlet, a fully developed
boundary condition (∂u/∂x= 0) was imposed (Aidun, Lu & Ding 1998). Along with
the fine block, the entire computational domain shifted with the movement of the wing.
Therefore, as the wing translated a unit distance in the coarse block, a layer of fluid
nodes was removed from the outlet and added at the inlet. At the inlet, the pressure
gradient was specified as (∂p/∂x= 0). With this technique an infinite region could be
replaced with a finite simulation domain.

To obtain leverage from the use of the LBM, the developed solver was parallelized
using MPI (message passing interface) in which the domain along the x direction was
sliced into z sub-zones, where z is the number of processors. Thus, each processor
was assigned a sub-domain of (50/z)C × 20C physical size. On average, a 24-core
i7 processor was able to perform simulations for ∼25 flapping cycles per day (which
varied with flapping frequency or Ref ) for the large domain considered in this work.

To test for the mesh independence and convergence of the numerical method
employed for the flexible wing simulations, three cases with progressively finer
mesh resolutions were examined. In case 1, a uniform coarse grid without any local
refinement was considered. In cases 2 and 3, a fine mesh was taken around the wing
(with grid refinement ratio of 2). The description of the grid spacing for these cases
is given in table 1. The dimensions of the dynamic fine mesh block which moved
along with the wing was taken as 2C × 3C to ensure that the plunging plate was
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Moving fine mesh block z zones Coarse grid

C 20C

O
utletIn
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t

FIGURE 2. (Colour online) Layout of the computational domain with imposed boundary
conditions.

Case Description Grid Spacing

1 Uniform coarse grid 1x= 0.01C
2 Uniform coarse grid with moving fine block 1xf = 0.005C, 1xc = 0.01C
3 Uniform coarse grid with moving fine block 1xf = 0.004C, 1xc = 0.008C

TABLE 1. Mesh resolution for different cases compared in figure 3.

well confined within the boundaries of the fine block. The convergence test for the
size of the moving mesh was also performed and it was observed that the horizontal
velocity profile with the current dimensions of the moving fine mesh exhibited good
agreement with the stationary fine mesh that spanned the entire horizontal length of
the computational domain (i.e. 50C× 3C).

A comparison of the instantaneous dimensionless thrust and drag for these cases
is shown in figure 3(a). As evident, there is not much deviation in the forces and
the degree of quantitative agreement with case 3 improves from case 1 to case 2. As
shown in figure 3(b), a similar trend was observed in the angular deflections of the
first spring as exhibited by the overlapping curves. However, to achieve a balance
between the accuracy associated with mesh resolution and computational cost, the
grid parameters corresponding to case 2 were chosen for performing all numerical
simulations.

3.4. Validation
The validation of the flow solver involving the force calculation and flow evolution
around rigid bodies translating in a fluid can be found in our earlier publications
(Arora et al. 2014, 2016a,b). To validate the structural solver, natural frequencies
and mode shapes of vibration obtained with the existing solver were compared with
the analytical solution of the linear Euler–Bernoulli beam equation by varying the
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FIGURE 3. (Colour online) A comparison in (a) of thrust and drag coefficient and (b)
angular deflection of the first linkage with different grid spacings at Ref =100 and ψ =0.6.
The description of the mesh resolution for these cases is given in table 1. Zoomed versions
of the rectangular snapshots are shown alongside.

number of linkages. With plunging kinematics imposed on the leading edge, a plate
with constant ρ∗ can be considered analogous to a cantilever beam subjected to
a uniformly distributed load (UDL). The Euler–Bernoulli equation governing the
bending of this beam subjected to a transverse load has a closed form solution when
linearized (i.e. under the limit of small deflection and ignoring the shear deformation).
The analytical solution for the natural frequencies and corresponding mode shapes of
vibration for different boundary conditions of a beam exists in the literature (Genta
2009) and has been used for the validation of the structural solver. For the sake
of comparison, the equivalent stiffness of a single torsion spring–plate system when
subjected to the same transverse load was found as Keq = 4EI/C corresponding to
the same tip deflection as that of the cantilever (i.e. ∆max = m∗C4/(8EI), where
m∗ is the mass per unit length and EI is the flexural rigidity of the beam) and is
shown in figure 4(a). In a similar fashion, a uniform Keq was calculated for multiple
linkages as well. Thus, using this value of Keq for vibration analysis, (3.13) reduces
to an eigenvalue problem whose solution gives natural frequencies as eigenvalues
and corresponding mode shapes as the eigenvectors. Figure 4(b) compares the first
four natural frequencies for different numbers of links n. As evident, the difference
between analytically and numerically obtained natural frequencies diminishes with
an increase in number of linkages. Even with n = 5 and 8, excellent agreement in
the first two natural frequencies can be observed, even though some disparity is
noticeable in the third and fourth natural frequencies. Since the operating frequency
of an insect wing is close to the first or second natural frequency (Zhang et al.
2010; Kang & Shyy 2013) only, the number of linkages in this study was chosen
as 5, which also enabled us to keep the computational cost manageable. The first
two normalized mode shapes of vibration, shown in figure 4(c,d), corroborate the
assumption, as there is an excellent agreement with the analytical solution.

To further test the applicability and coupling of the fluid with the structural (i.e.
combined FSI) solver, validation was performed against results by Eldredge et al.
(2010), where two rigid elliptical membranes linked through a torsion spring with the
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FIGURE 4. (Colour online) (a) A schematic representation of an equivalent stiffness of
a single spring–plate system corresponding to same maximum deflection as that of a
Euler–Bernoulli beam subjected to the same transverse load. A comparison between the
analytical solution and the n link torsional flexibility model for (b) the first four natural
frequencies of a cantilever beam, and (c) first and (d) second normalized mode shapes of
a cantilever between with different numbers of linkages.

system performing hovering motion was considered. The leading and trailing ellipses
acted as active and passive membranes, respectively. The simulations were carried
out at a fixed translational Reynolds number Reu = 220, where Reu = VL/ν (V is the
peak translational velocity and L is the total length of the body) with an aspect ratio
of 5 and mass density ratio ρ∗= 5. The pictorial representation of the two-component
system (adapted from Eldredge et al. 2010) is shown in figure 5(a). Further, the gap
between the two membranes d was chosen to be 0.05c and L to be 2.1c. The position
of the pitching axis about which the oscillatory (translational) and rotational (pitching)
kinematics were imposed, XD/L, was 0.48. The dimensionless heaving amplitude A0/L
was 2.67 and 5.33 and the phase difference between pitching and heaving φ was
taken to be 0 to 67.5◦. The stiffness, K∗, and damping coefficient, R∗, of torsion
spring were also non-dimensionalized as per the expressions K = K∗/(ρf f 2L4) and
R = R∗/(ρf f 2L4), respectively. Here f is the hovering frequency ( f = 1/T , T is the
time period of one cycle). R was fixed at 0.2, whereas K took a value of 5.1 or 23.

Based on these parameters, simulations were performed for a two-component wing
using the same kinematics. As no information was provided on the size of the domain
and boundary conditions imposed by Eldredge et al. (2010), a computational domain
of size 25L× 25L was taken with periodic boundary conditions on all four sides for
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FIGURE 5. (Colour online) (a) Schematic of a two-component flexible wing performing
hovering motion as considered by Eldredge et al. (2010). Variation of (b,c) lift coefficient
and (d) angular deflection of passive membrane with time at Reu = 220 for different
kinematic parameters compared against Eldredge et al. (2010).

carrying out the comparisons. Figure 5(b,c,d) shows a comparison of the time variation
of lift coefficient and angular deflection of the passive wing between the present study
and Eldredge et al. (2010) for the selected parameters. The results obtained show good
agreement both qualitatively and quantitatively and validate the coupled FSI solver
as well. The discrepancy in the later period of the computations could be due to
dissimilarity in the choice of boundary conditions and domain size.

Finally, simulations were also conducted to validate our solver with the results of
Yeh & Alexeev (2014) for R̂ef = 2πAγC/ν = 250 and β = A/C = 0.1. Simulations
were done for a flexible plunging plate by normalizing the plunge frequency using
the natural frequency in the fluid (ωn,fluid) (Sader 1998) as ω∗fluid = ωn,fluid/ω. Figure 6
shows a comparison of the dimensionless propulsion velocity Ū and dimensionless
tip displacement ∆t/A for different added mass values T = 1/(ρ∗δ) at two different
frequency ratios Φ = 1 and Φ = 2 (here Φ = (ω∗fluid)

−1) that were shown to correspond
to maximum velocity and maximum performance, respectively (Yeh & Alexeev 2014).
Good qualitative agreement is obtained for both cases with the opposite trend of
velocities for the post-resonance frequencies (the forward velocity decreases with
an increase in added mass and vice versa at Φ = 1 and Φ = 2, respectively) being
captured in our simulations. Also, figure 6(b) conforms with the finding in Yeh
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FIGURE 6. (Colour online) (a) Dimensionless forward velocity (Ū) and (b) dimensionless
tip displacement (∆t/A) as a function of added mass (T) and frequency ratio (Φ)
compared against Yeh & Alexeev (2014).

& Alexeev (2014) that trailing-edge displacements are directly proportional to the
cruising velocity. Although the comparison at Φ = 1 shows a slightly over-estimated
and under-estimated magnitude of velocities and tip displacements, respectively, this
is possibly due to the effect of tip vortices that is not captured in our simulations.
Nevertheless, the wing shapes at Φ = 1 and Φ = 2 for T = 1 plotted in figures 7(a)
and 7(b), respectively show an exact resemblance to the bending patterns shown in
figure 6(a) of Yeh & Alexeev (2014). In addition, the tip and root displacements as
a function of time in our simulations (figure 7c) also corroborate and are consistent
with their findings that showed that a phase difference of φ ≈ π/2 and φ ≈ π is
obtained at Φ = 1 and Φ = 2, respectively. This further confirmed that the calculation
of the resonance frequency in the fluid using the approach of Sader (1998) was
correctly implemented since a phase difference of π/2 can be observed between
plunging and tip displacement at Φ = 1. Thus, the numerical model was considered
to be suitable for the analyses of fluid–structure interaction pertaining to the present
problem.

4. Results and discussion
4.1. Phenomenological approach

In order to obtain the phenomenological solution for the structural deformation
or bending of the flexible plunging plate, a single spring–plate system (n = 1) is
considered. As shown in figure 8, the torsion spring is attached at the leading edge.

The dimensional form of vertical displacement imposed at the leading edge is given
as YLE = A sin(ωt) where A is the plunging amplitude and ω = 2πγ with γ being
the prescribed plunging frequency. Thus, the leading-edge plunging velocity ẎLE and
acceleration ŸLE are given as

ẎLE = V cos(ωt), ŸLE =−ω
2A sin(ωt), (4.1a,b)

where V =ωA is the maximum plunging velocity.
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FIGURE 7. (Colour online) Bending patterns of the wing at (a) Φ = 1 and (b) Φ = 2 for
T= 1. Black solid and red dotted lines represent upstroke and downstroke, respectively. (c)
Corresponding root displacement (∆r) and tip displacement (∆t) normalized with respect
to amplitude as a function of time.

x
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Torsion spring

FIGURE 8. (Colour online) A schematic diagram of the simplified flexibility model of a
self-propelled plunging plate with a single torsion spring attached at its leading edge.

As shown in the experiments of Vandenberghe, Zhang & Childress (2004) and
simulations of Alben & Shelley (2005), the self-propulsion velocity ū is proportional
to the plunge amplitude A and frequency γ in a wide flow regime. Hence, for a
self-propelled single torsion spring–plate system plunging in a quiescent fluid, the
dynamics of angular deflection is governed by (2.7), where Λa corresponds to the
moment exerted by the aerodynamic force (per unit span) and scales as

Λa ∼ pdynamicxC2
∼

1
2ρf (γA)2xC2, (4.2)

where x is the fraction of chord length (from LE) where the centre of pressure (COP)
is situated. From numerical simulations, it was observed that x is close to 0.5 for rigid
plates (i.e. cycle-averaged COP coincided with the centre of gravity for the considered
range of variables in Arora et al. (2016a)). With an increase in flexibility the COP
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shifted towards the leading edge, which has also been reported in Zhao et al. (2010),
and x varied from 0.25 to 0.5.

The aerodynamic moment can thus be represented as

Λa =
F∗y
2
ρfω

2A2xC2, (4.3)

where F∗y = f (Ref , ρ
∗, δ, β, θ) is the instantaneous drag coefficient (Arora et al. 2016a)

and θ is the instantaneous angle of attack.
For a self-propelled plunging plate, θ varies continuously during plunging which is

given as

θ = tan−1

(
ẎLE

u

)
, (4.4)

where u is the instantaneous horizontal velocity. At the cruising condition, the wing
propels with a velocity that is periodically varying, has a small amplitude and a
frequency of oscillation that is much larger than ˙YLE. Hence, the angle of attack
could be considered as a function of the instantaneous leading-edge plunging velocity
only. Subsequently, the drag coefficient F∗y and the aerodynamic moment Λa can also
be assumed to be varying with time as a cosine function (with reference to figure 7 in
Arora et al. (2016a)). This basis is in agreement with the study of Shih & Buchanan
(1971) which showed that the inertia (or plunging kinematics) and aerodynamics
are out of phase by an angle of π/2. A third-degree polynomial (using surrogate
models) for cruising power as a function of system variables (such as Ref , ρ∗, β)
was obtained in a previous study (Arora et al. 2016a). From this study, mean drag
〈F∗y 〉 can be obtained directly from (2.6) to derive the phenomenological solution.

Substituting the expression for aerodynamic and structural inertia moments, (2.7)
can thus be rewritten as

I
d2α

dt2
+ σ

dα
dt
+Kα =mω2A

C
2

cos α sinωt−
〈F∗y 〉

2
ρfω

2A2xC2 cosωt. (4.5)

The first and second terms on the right-hand side are the magnitudes of the
inertia and aerodynamic moments, respectively. Equation (4.5) is a nonlinear ordinary
differential equation which can be linearized under the small angular deflection
limit, i.e. cos α ≈ 1, and can be solved analytically. We non-dimensionalize (4.5) by
geometric, kinematic and structural parameters such as

m∼ ρseC (4.6)

I =mC2

(
1
3
+
δ2

12

)
∼= ρse

C3

3
, (4.7)

where the contribution of thickness to the mass moment of inertia has been ignored
(as δ� 1). Finally, the following equation governing the dynamics of a single-spring
rigid plate system is obtained,

ρ∗δ

3
α̈

γ 2
+ σ ∗

α̇

γ
+K∗α = 2π2ρ∗δβ sinωt− 2π2β2

〈F∗y 〉x cosωt, (4.8)

where σ ∗ is the dimensionless damping coefficient and defined as σ ∗= 2ξ
√
(K∗ρ∗δ)/3.

An insect wing is usually underdamped and the structural damping is negligible (Chen,
Chen & Chou 2008) and thus has been ignored in this study.
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The solution to this ODE can be obtained by using the Laplace transformation (LT)
method (where the LT of any function f (t) is defined as L{ f (t)}(s)=

∫
∞

0 e−stf (t) dt=
F(s) such that L−1

{F(s)} = f (t) (see Adkins & Davidson 2012)) and with initial
conditions α(0)= α̇(0)= 0,

α(t∗)= α0 sin(2πt∗ − φ), where α0 =
3β(ψ2

+ 1)1/2

2[(ω∗)2 − 1]
, (4.9)

where ω∗ = (1/2π)
√

3K∗/ρ∗δ is the natural to plunging frequency ratio. Here α0 is
the amplitude of the angular deflection or passive pitching. Equation (4.10) shows that
the passive pitching angle (α) lags behind the plunging motion by a phase difference
φ, given by

φ = tan−1(ψ), (4.10)

where ψ = β〈F∗y 〉x/ρ
∗δ. As evident from (4.9), the dynamics of passive bending of a

plunging plate is governed by (i) the natural to plunging frequency ratio ω∗, and (ii)
the parameter ψ . The physical significance of this parameter will be discussed in the
forthcoming sections. The drag coefficient 〈F∗y 〉 varied between 1.8 and 2.2 (based on
surrogate models developed in Arora et al. (2016a) for a rigid plate) and x≈ 0.5 for
the range of parameters considered. However, this numerical observation of 〈F∗y 〉x≈ 1
is still applicable for small angular deflections (up to 15◦) which is within the limit
of applicability of the phenomenological solution. The fact that the product of the
COP moment arm and drag coefficient is approximately 1 leads to direct scope for
comparison with input or design variables only and they are thereby excluded from
the definition of the fluid–structure interaction (FSI) index which now becomes only
a function of the kinematic parameter (β) and structural parameters (ρ∗ and δ). The
parameter ψ appears to have a close resemblance to the analytical solution obtained by
Kang et al. (2011) for maximum tip deflection (Υ ) which was shown to be a function
of the aerodynamics, structural inertia, stiffness and added mass forces. The expression
for Υ for a given combination of stiffness and plunging frequency (or frequency ratio)
was deduced as

Υ ∼
(1+ Add)St
ρ∗δk

, (4.11)

where Add = 4ρ∗δ/π is the added mass for a flat plate and k = St/β is the reduced
frequency (according to the kinematics adopted in Kang et al. (2011)). Note that
when Add is sufficiently small (i.e. for insects or flying animals), the above expression
reduces to

Υ
Added mass
−−−−−→

ignored

St
kρ∗δ

∼
β

ρ∗δ
=ψ, (4.12)

which implies that the FSI index is a measure of tip deflection for the large amplitude
considered herein. This substantiates the implications drawn from this work that large
passive deformations are induced when aerodynamics dominates the structural inertia
contribution (or ψ increases). The parameter ψ was also referred to as the ‘mass ratio’
in Thiria & Godoy-Diana (2010).

Rewriting (4.5), the following relationship between various moments governing the
structural deformation is obtained,

mω2A
C
2

sinωt︸ ︷︷ ︸
Plunging inertia moment

+ (K − Iω2)α0 sin(ωt− φ)︸ ︷︷ ︸
Stiffness-inherent inertia moment

− ρfω
2A2 C2

2
cosωt︸ ︷︷ ︸

Aerodynamic moment

= 0. (4.13)
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The structural inertia, stiffness and aerodynamics moments fluctuate at angular
speed ω. The structural inertia moment is composed of two components: (i) plunging
moment (mω2AC/2), which is always in phase with the plunging displacement Y , and
(ii) intrinsic inertia (Iω2α0), which happens to be in phase with the passive pitching
angle α. The stiffness moment (Kα0) always opposes the angular displacement and
thus leads pitching motion by a phase difference of π (in phase with the pitching
acceleration α̈). The aerodynamic moment lags the plunging inertia or displacement
by a phase difference of π/2, as explained earlier. The phase difference φ ensures
dynamic equilibrium and depends on the relative magnitude of the structural inertia
and aerodynamics moment which is obtained as

tan φ =
Aerodynamics moment

Plunging inertia moment
=

ρfω
2A2 C2

2

mω2A
C
2

=
β

ρ∗δ
=ψ. (4.14)

Hence, this non-dimensional number, the FSI index ψ = β/ρ∗δ which is the ratio of
aerodynamics to structural inertia moment, is a measure of fluid–structure interaction.
The value of ψ > 1 indicates a strong contribution of fluid forces in deforming
the plate, whereas ψ < 1 implies a weak interaction of the flexible body with the
fluid; ψ = 0 will be shown to represent no fluid interaction with the plunging plate.
With reference to (4.13), the aerodynamics is involved in a twofold manner: (i)
the horizontal component that is in phase with the structural damping introduces
aerodynamic damping in the system (although this term has been ignored, but
the structural damping vector σωα0 always leads the stiffness vector by π/2 and
here the horizontal component of aerodynamics absorbs it), and (ii) the vertical
component of the aerodynamics, moment which is in phase with the inherent inertia,
assists wing deformation. The aerodynamics moment can thus be held responsible
for inducing a phase difference between pitching and plunging (or in other words,
between two components of the structural inertia moment). If the aerodynamics
moment is negligible (ψ ≈ 0), the phase difference φ diminishes to zero and
both the displacement and passive pitching come into phase. This can be further
substantiated by demonstrating the behaviour of the phase difference φ with an
increase in magnitude of ψ and is elaborated in § A.1.

In order to corroborate the proposed phenomenological solution with the simulations,
an assessment of the maximum pitching angle α0 and phase difference φ as a
function of ω∗ was performed and is shown in figure 9. An excellent agreement
between numerical and phenomenological solutions for α0 is observed at ψ = 0.1.
However, some deviation is witnessed at ψ = 1 and ψ = 3, especially at intermediate
values of the frequency ratio (i.e. ω∗ ≈ 3–4 and ω∗ ≈ 4–6 in the former and latter,
respectively). Similar findings with the variation of α0 were also reported by Hua
et al. (2013) where a larger passive pitching angle was attained at smaller bending
modulus (i.e. higher flexibility or lower ω∗) and higher plunging amplitude (or higher
ψ). As far as φ is concerned, the appearance of a phase difference between the
flapping and passive pitching was also supported by the experiments performed on
a self-propelled insect model by Ramananarivo et al. (2011). Their results clearly
indicate that φ is dictated by the aerodynamics to solid inertia ratio as variation occurs
when the medium of flapping changes from a vacuum to air. Furthermore, and unlike
the phenomenological solution derived in this work, their study revealed that the
phase difference is also dependent on the frequency ratio that is also captured in our
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FIGURE 9. (Colour online) Comparison between phenomenological solution and numerical
simulations of the maximum pitching angle α0 as a function of frequency ratio and FSI
index at Ref = 20. Inset shows the numerically simulated phase difference φ as a function
of ω∗ and ψ at Ref = 40.

simulation results. However, this point of departure of our phenomenological solution
could be attributed to two reasons: (i) inapplicability of the model for large pitching
angles, and (ii) approximation on the aerodynamics moment which simplifies the
definition of ψ = (β〈F∗y 〉x)/(ρ

∗δ) to ψ = β/(ρ∗δ). In the latter form, the dependence
on ω∗ is not captured and is discussed in appendix A. Nevertheless, our numerical
simulations do reveal the dependence of the phase difference on ω∗, as evident from
the inset of figure 9.

The role of the amplitude ratio β in the phase lag as described in this work is
different from Moore (2014) and Medina & Kang (2018), where the phase lag was
shown to be independent of the plunge amplitude. In Moore (2014) and Medina &
Kang (2018), a uniform constant free stream was imposed on an oscillating wing.
The independence of the phase lag from the plunge amplitude was also found in
Kang et al. (2017), where a small-amplitude linearized aerodynamics model was used
to model the coupled wing and body dynamics. In this work, on the other hand,
the periodically varying horizontal propulsion velocity of the wing is computed as a
result of the fluid–structure interaction. As described above, we have used pdynamic ∼

ū2
∼ A2γ 2 as the aerodynamic loading. Because of the dependence of the propulsive

velocity ū on the plunge amplitude A, the resulting phase lag and, hence, the FSI
index, also depend on β.

4.2. Numerical simulations
4.2.1. Cruising velocity in forward flight

We now discuss the role of plunging parameters, i.e. Ref and ψ on the cruising
velocity of a flexible plate during forward flight for different values of the normalized
frequency.

The non-dimensional frequency can be defined by normalizing the motion frequency
with respect to either the characteristic structural resonance in a vacuum (ωn) or in
the presence of a fluid (FSI resonance frequency, ωn,fluid). The resonance frequency
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FIGURE 10. (Colour online) (a) Relative tip displacement (∆rel) versus frequency ratio
(ω∗fluid) and (b) cruising velocity (Ū) versus relative tip displacement at different FSI
indices (ψ).

in the fluid is supposed to be lower than that in a vacuum which is also indirectly
corroborated by our results in figure 7 above. Further, ωn,fluid has been defined in
different forms in the literature: (i) based on the phase lag of π/2 between plunging
and tip deflection (Yeh & Alexeev 2014); (ii) based on the frequency corresponding
to maximum deflection; (iii) based on an analysis for β � 1 (Sader 1998); or (iv)
based on peak Ū. Before choosing a normalization definition, a new parameter,
called the relative tip displacement, ∆rel = (∆t − ∆r)/A, is defined. The relative tip
displacement is more meaningful than the absolute tip displacement as the latter can
lead to erroneous interpretation of structural deformation when β ' 1. However, the
same is not a significant issue when β� 1.

The relative displacement obtained through simulations as a function of ω∗fluid
for various values of the FSI index ψ = β/(ρ∗δ) is shown in figure 10(a). These
calculations were done for β = 0.6. Clearly, the relative tip displacement keeps
increasing as ω∗fluid decreases. This is reasonable as the system appears to be reaching
a state of uncontrollable excitation with a decrease in normalized frequency.

Figure 10(b) shows the maximum velocity versus relative tip displacement for
different values of ψ . This figure shows that the relative tip displacement increases
till the maximum velocity is reached for a given ψ , but decreases after any further
increase in tip displacement. The analysis by Yeh & Alexeev (2014) showed that the
cruising velocity is directly proportional to the trailing-edge displacement by varying
two parameters, namely ‘added mass’ T = ρf L/ρsb (0.5 6 T 6 7.5) and Φ = ω/ωn,fluid

(0.5 6 Φ 6 2) for a plate plunging at a non-dimensional amplitude of β = 0.1. The
simulation results presented herein correspond to β = 0.6 and 0.17 6 T 6 5 (or
0.2 6 ρ∗δ 6 6). An important thing to note is that our range of the added mass
parameter falls into a regime that was previously unexplored, which is 0.176 T 6 0.5
(or 26 ρ∗δ6 6). This is a range which is dominated by inertia and hence is expected
to have little influence from aerodynamics. Quite spectacularly, the maximum velocity
seems to occur for the condition ∆rel ≈ 0.3. Several snapshots showing plate bending
patterns corresponding to ψ = 0.1 obtained for different relative tip displacements are
shown in figure 11.
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(a) (b) (c) (d ) (e)

FIGURE 11. (Colour online) Bending patterns at ψ = 0.1 corresponding to relative tip
deflections (a) ∆rel = 0.07, (b) ∆rel = 0.3, (c) ∆rel = 0.5, (d) ∆rel = 0.9 and (e) ∆rel = 1.5
shown in figure 10. Black and red colours represent upstroke and downstroke, respectively.

The phase difference between driving motion and the relative tip deflection for
∆rel ≈ 0.3 is further examined. Figure 12 shows the phase difference φ obtained
from our simulations at the condition of maximum velocity by varying ρ∗δ with
β = 0.6. A significant deviation from a phase difference of π/2 occurs when the
plunging inertia ρ∗δ> 2, which represents inertia dominated scenarios. With reference
to figure 10, it can be inferred that the resonance condition at large amplitudes is
not characterized by the condition at which the driving sinusoidal motion and the
resulting deflection exhibit a phase difference of π/2. As figure 10(b) shows, the
maximum velocity starts to decrease at ∆rel > 0.3. As the relative tip deflection
keeps increasing with a decrease in ω∗fluid, it is possible that the phase difference φ
approaches π/2 for very low values of ω∗fluid. However, a shortcoming of our solver
is that it no longer remains stable at such large tip displacements induced in the
inertia dominated zone because of the structure turning onto itself, leading to an
anomaly in the representation of the solid. Hence lower values of frequency ratio are
not presented.

In summary, for the normalization of frequency the phase lag definition was
not found to be appropriate in light of data obtained and shown in figure 12, the
maximum defection in fluid definition was not considered due to the computational
limitations of the solver for inertia dominated flows, and the analytical relationship
given by Sader (1998) was not applicable since it is valid only for β � 1 motions.
On the other hand, the frequency ratio based on the first natural frequency of the
structure is uniquely defined and has been followed by many authors previously
(Zhang et al. 2010; Ramananarivo et al. 2011; Dai et al. 2012; Hua et al. 2013;
Kang & Shyy 2013; Xiao et al. 2014; Tang et al. 2016). Thus, we show results of
frequency normalized using the structural resonance condition (i.e. ω∗ = ωn/ω) to
provide the reader a clear way to reproduce our results.

Figure 13(a) shows the variation in cruising velocity as a function of frequency
ratio ω∗ at different combinations of Ref (20 and 100) and FSI indices ψ (0.1, 0.3
and 3). The selected values of FSI indices can be categorized as strong (weak),
moderate (moderate) and weak (strong) for structural inertia (pressure) governed wing
deformations. The dimensionless plunging amplitude β and thickness ratio δ for all
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FIGURE 12. (Colour online) Phase difference (φ) corresponding to peak cruising velocity
versus ρ∗δ at β = 0.6.
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FIGURE 13. (Colour online) Cruising velocity Ū as a function of ω∗ at (a) different
combinations of constant Ref and ψ , (b) constant ψ and different Ref and (c) constant
Ref and different ψ .
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these simulations were kept constant at 0.6 and 0.02, respectively. The frequency ratio
was varied between 1.1 and 10. The natural and post-natural frequencies (ω∗ 6 1)
are not considered here and are dealt separately in the next section. Moreover, these
frequencies are beyond the physical operating range of insects with the likelihood that
energy calculations near resonance may convey incorrect propositions for comparison
and quantification of propulsion performance in forward flight.

At a constant Ref and ψ , the cruising velocity increases as ω∗ decreases until the
point of optimum flexibility is reached where Ū becomes maximum. However, the
position of optimum differs depending on the parameters considered. As is noticeable,
the location of the optimum keeps shifting towards unit frequency ratio (ω∗= 1) with
a decrease in ψ (for ψ = 3, 0.3 and 0.1, the optimum is obtained at ω∗ = 5, 2.2
and 1.9 respectively at Ref = 20). As stated earlier, the wing bending or deformation
is predominantly structural inertia dominated at low FSI values which begins to
shift towards aerodynamics subjugated with an increase in the FSI index. Both
structural inertia and aerodynamics moments are directly proportional to ω2 and their
magnitude increase with increase in plunging frequency. However, for structural inertia
dominated flows, the flapping frequency has to be high or (in other words) closer
to unit frequency ratio in order to produce substantial wing deformation for thrust
generation. Whereas, for aerodynamics subjugated bending (ψ > 1), phenomenological
results indicated that the structural deformation of the plate is much higher than for
the solid inertia dominated case for a given frequency (with reference to figure 24).
Therefore, high FSI flapping is actuated at a lower frequency (or high ω∗) as the
lesser magnitude of the aerodynamics moment is sufficient to generate the desirable
wing bending or requisite streamline shape that leads to maximum cruising velocity.
Accordingly, the peaks in Ū are registered at high ω∗ for aerodynamics dominated
flows and keep shifting away from unit frequency ratio with further increase in
ψ . It should be noted that the peak velocity was found to occur for pre-resonance
conditions (i.e. ω̄f = ω/ωn ≈ 0.6–0.7) in the experiments of Ramananarivo et al.
(2011) as well. Our simulations indicate that this phenomenon is primarily due to
the high-amplitude motion considered in this work. Further, occurrence of maximum
velocity at pre-resonance conditions is also in accordance with the analytical solution
obtained by Moore (2015) where the peaks in power and thrust shifted away from
unit frequency ratio as the mass density ratio decreased or aerodynamics dominated.
The shifting of optimum away from unit frequency ratio with an increase in ψ could
be explained in connection with the theoretical analysis of the flapping wing model
of Moore (2015). It was shown in their study that maximum thrust generation (or
optimum) always occurs at the resonant frequency in a fluid (ωn,fluid) for all density
ratios. According to Moore (2015), the frequency ratio measured against the structural
resonance and resonance in the fluid are related through a correction factor by

ω∗vacuum =ω
∗

fluid

√
1+ I∗a , where I∗a =

27πψ

128β
. (4.15)

Parameter I∗a is the dimensionless added fluid moment of inertia which is directly
proportional to the FSI index (for a fixed amplitude). Clearly, this expression also adds
credence to our key inference that the phenomenon of optimum shifting with a change
in density ratio (or ψ) is justified if the structural resonance is used for describing the
frequency ratio. To elaborate, according to this relationship, the peak cruising velocity
should occur at ω∗vacuum= 2.1 for ψ = 3, whereas the numerically simulated maximum
is attained at ω∗vacuum≈ 4. The disagreement in the exact value can be attributed to the
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FIGURE 14. (Colour online) Cruising velocity Ū as a function of ω∗fluid at (a) different
combinations of constant Ref and ψ , (b) constant ψ and different Ref and (c) constant
Ref and different ψ .

following assumptions in the earlier model (Moore 2015): (i) infinitesimal amplitude
(β�1), (ii) inviscid fluid, (iii) added mass approximated for a rigid plate and (iv) non-
propelled motion of wing. Nevertheless, the analytical model of Moore (2015) strongly
substantiates our findings on FSI index as it is primarily the normalization of resonant
frequency which differentiates the location of the optimum frequency ratio.

As shown in figure 14, the peaks in velocity coincided at ω∗fluid ≈ 2 when the data
for cruising velocity (Ū) were plotted as a function of ω∗fluid for all ψ . This behaviour
of maximum velocity occurring at the same value of ω∗fluid is in concurrence with Yeh
& Alexeev (2014). This occurred even though the wing bending pattern at β = 0.6
and β = 0.1 was similar for the maximum velocity state for aerodynamics dictated
situations (i.e. ρ∗δ < 1).

To further observe the behaviour of Ū individually with Ref and ψ , additional
simulations were performed and results are shown in figures 13(b) and 13(c),
respectively. The trends of cruising velocity in figure 13(c) reiterate the earlier claim
that the peak or maximum velocity is registered at higher ω∗ with an increase in FSI
index. It has been found that hawkmoth (Manduca sexta) and dragonfly (Orthetrum
pruinosum and Orthetrum sabina) are two insect species whose passive pitching
motions can be separately categorized into structural inertia dominated (ψ ≈ 0.3) and
aerodynamics dominated (ψ ≈ 2), respectively (Chen et al. 2008; Shyy et al. 2010,
2013). Further, it was reported that the former operates at ω∗ ≈ 1.8–2.2, whereas
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the latter has ω∗ ≈ 4–6, clearly indicating a direct relationship between the optimum
functioning zone of insects and their FSI indices. Thus, our findings have close
similarities with flapping locomotion endowed by nature.

Moreover, with reference to figure 13(a), it is clearly evident that the magnitude
of the maximum cruising velocity Ū increases with an increase in both ψ and Ref .
Further, for ψ > 1 the effect of Ref is even more pronounced. On the other hand, a
negligible and moderate increase in cruising velocity is recorded for ψ = 0.1 and ψ =
0.3, respectively. With an increase in Ref , the change in Ū is marginal, significant and
extremely large as Ref increases from 20 to 100 for ψ = 0.1, 0.3 and 3, respectively.
In addition, at high values of stiffness (ω∗ ≈ 10) with flow scenarios corresponding
to fixed Ref , the cruising velocity becomes nearly independent of the FSI index. For
ψ = 3, the velocity seems to be slightly higher than that for lower FSI indices for
the chosen frequency ratio range but was observed to approach the same value at
a greater ω∗ (ω∗ ≈ 15, not shown). Thus, the cruising velocity at a fixed Ref for a
wing with high stiffness is not greatly influenced by changes in structural inertia and
aerodynamics, which is also shown in our earlier publication (Arora et al. 2016a).

4.2.2. Comparison of peak Ū at different ψ
In order to understand the reasons for the improvement in cruising velocity with

an increase in the FSI index, comparisons are drawn between the respective peak
velocities at ψ = 0.1 and ψ = 3 at Ref = 100. In this regard, the evolution of tip
deflection, instantaneous shape and flow field for these two cases are examined.
Figure 15(a) shows the behaviour of tip deflection α as a function of time for the
two cases. Corresponding wing shapes at the marked time instants are compared
in figure 15(b). As shown, different bending patterns are exhibited by the plunging
wing for ψ = 0.1 and ψ = 3 when it propels with the maximum velocity. The main
difference between the two structural modes is that the maximum deflection of the
wing happens to occur at the middle of the stroke for ψ = 3, whereas it is at the end
of the stroke for ψ = 0.1. This difference in bending pattern is solely due to inertia
dominating over aerodynamics for ρ∗δ > 2 flows and is the key finding of this work.
Further, the magnitude of wing bending is larger for ψ = 3, which manifests in the
maximum thrust and highest cruising velocity amongst all the numerical simulations
performed. This aspect is better understood by studying the phase difference induced
between plunging and passive pitching motions at ψ = 3, whose existence was
also revealed by the phenomenological solution. When compared, the pitching and
plunging motions are almost in phase as their respective maxima and minima coincide
in time (shown by instants a,e,i in figure 15a) for ψ = 0.1, whereas the maxima and
minima of the tip deflection are coincident with zero plunging displacement for
ψ = 3. The latter observation confirms a phase difference of approximately π/2
between plunging and pitching displacements which was shown in figure 12 as well.

As per the universal conventions with respect to pitching, the ψ = 0.1 case
represents an advanced rotation mode as against the delayed or nearly synchronous
rotation for ψ = 3. Dai et al. (2012) also indicated that the presence of a phase
difference between plunging and passive pitching under hovering-type flapping
motion was accountable for better aerodynamic performance of flexible low mass
ratio wings (fluid force dominated) compared to high mass ratio wings (structural
inertia dominated). It was reported that pitching, which happened to be advanced
for high mass ratios, transformed to slightly delayed for low mass ratios during
stroke reversals. Earlier studies (Kang & Shyy 2013, 2014) also concluded that the
maximum lift occurs for a synchronized mode of rotation. The phase difference φ in
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FIGURE 15. (Colour online) (a) Tip deflection, α as a function of time at ψ = 0.1
and ψ = 3 with Ref = 100 along with instantaneous plunging displacement. A schematic
diagram illustrating the tip deflection of the plate is shown in the inset. (b) The shape
of the wing at different time instants during downstroke and upstroke at the time instants
represented by dotted lines in (a).

our simulations also indirectly confirms these results. It is clear that this understanding
of the phase difference between plunging and pitching can influence the choice of
kinematics necessary for highest thrust generation.

Another crucial observation is made with reference to the rate of change of angular
deflection shown in figure 15(b). For ψ = 3, it is remarkably high during stroke
reversals and very modest during the stroke, i.e. the plate changes its concavity
almost instantaneously (from a to b and e to f) and maintains the shape during the
remaining half-stroke (b to d and f to h). On the other hand, the rate of bending
remains unchanged during the stroke reversals and is moderate during the half-stroke
for ψ = 0.1. The time taken by the plate for adapting to a new concave shape at
ψ = 3 (a to b) is appreciably lower than for ψ = 0.1 (a to e).

In order to probe the relationship between plunging and passive pitching in terms
of propulsion performance, a comparison of thrust and drag coefficients for these two
cases is shown in figure 16. As anticipated, the thrust coefficient is significantly higher
and, simultaneously, the drag coefficient is surprisingly smaller at ψ =3. Analogous to
plunging and passive pitching motions, peaks in the thrust coefficients are temporally
displaced as well with a phase difference of ∼π/2. Additionally, the maximum thrust
occurs at the mean positions of both the half-strokes when the wing has a maximum
deflection, i.e. at time instants or positions (c,g). For ψ = 0.1, the maximum thrust
is recorded at the end of the stroke (between positions a,b during the downstroke
and e,f during the upstroke). Thus, the peak thrust for both cases is registered at
wing positions corresponding to maximum angular deflection. Interestingly, the drag
coefficient seems to be unaffected (except the magnitude) as both the curves are in
phase and their peaks coincide in time. Hence, for scenarios with high FSI index, it
can be inferred that the wing responds quickly during stroke reversals as its shape gets
aligned in compliance with the aerodynamic forces that maximize the aerodynamic
thrust and minimize drag, and the induced phase difference between plunging and
pitching has a large role in determining this.
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FIGURE 16. (Colour online) A comparison of instantaneous (a) thrust and (b) drag
coefficients for ψ = 0.1 and ψ = 3 with Ref = 100.
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FIGURE 17. (Colour online) Cruising power 〈Pi〉 as a function of ω∗ at Ref = 20 and
Ref = 100 with ψ = 0.1, 0.3 and 3.

4.2.3. Cruising performance
The cruising power coefficient 〈Pi〉 as a function of ω∗ at different combinations of

Ref and ψ is plotted in figure 17. Analogous to the cruising velocity, the input power
coefficient initially increases, reaches a maximum and subsequently decreases with a
decrease in ω∗ for a fixed Ref and ψ . Also, the location of the maximum 〈Pi〉 shifts
away from unit frequency ratio with an increase in ψ . Finally, for ψ =3 the sensitivity
to Ref is apparent as the input power coefficient increases with increasing Ref .

As shown in figure 17, the input power decreases with an increase in ψ with
the maximum and minimum power coefficients observed for ψ = 0.1 and ψ = 3,
respectively. Although the maximum input power at ψ = 3 (for Ref = 100) is quite
comparable with that at ψ = 0.3, the maximum cruising velocity attained in the
former case is significantly higher than in the latter. Although efficiency can be used
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FIGURE 18. (Colour online) Cruising performance ε as a function of frequency ratio at
(a) different Ref with constant ψ and (b) different ψ with constant Ref .

to evaluate propulsion performance in self-propelled studies, it can be shown from
a simple scaling analysis that efficiency is dependent upon the system variable ψ
(i.e. 〈η〉 ∝ Ū2/[〈Pi〉ψ]). Realizing that drawing comparisons using this definition may
not be the most unbiased procedure for evaluating performance in the current scenario,
another parameter, known as effectiveness and used by Yeh & Alexeev (2014, 2016),
has been used. This parameter is given by

ε =
Ū
〈Pi〉

, (4.16)

where ε represents the distance covered per unit work and is independent of the
aerodynamics to structural inertia ratio.

To illustrate its characteristics, figure 18(a) shows the variation of ε with ω∗

for various Ref and ψ . In general, cruising performance increases with an increase
in Ref for all ω∗ considered. As far as ψ is concerned, the cruising performance
results provide valuable insight that aerodynamics dominated deformation results in
better mileage or distance travelled per unit input work as compared to structural
inertia administered deformations (figure 18b). For low values of ψ (i.e. ψ 6 0.3),
an optimum stiffness up to which a marginal improvement in performance with
a decrease in K∗ (or decrease in ω∗) is noticeable. At ψ = 0.1, the performance
deteriorates for ω∗< 3 and even falls below that of the highly stiff case (i.e. ω∗= 10).

4.2.4. Role of structural resonance
For the sake of comparison with earlier studies and qualitative learning regarding

the role of structural resonance in propulsion for flows with weak aerodynamic
influence, additional simulations were performed with the plunging conditions
of Ref = 40 and ψ = 0.25. Due to the limitations already described with a
multiple-spring system plunging at frequency ratios near ω∗ = 1, simulations were
conducted with a single-spring-link system. Three values of K∗ or frequency ratios
ω∗ encompassing different flow behaviours and patterns were selected and the
corresponding instantaneous propulsion velocities are compared in figure 19. As ω∗
increases, the magnitude of the quasi-steady velocity also increases. Nevertheless, the
maximum fluctuations are observed for ω∗ = 0.95, which is understandable with the
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FIGURE 19. (Colour online) Dimensionless horizontal velocity of the flexible plunging
airfoil as a function of time at ω∗ = 0.5, 0.95 and 2 for Ref = 40 and ψ = 0.25.

wing heaving near the structural resonance frequency. Another key observation relates
to the direction of propagation of the velocity. For ω∗ = 0.95 and ω∗ = 2, the plate
propagated in the forward direction (towards the left or inlet of the computational
domain), whereas for ω∗ = 0.5 the plate moved in the backward direction (towards
the right or outlet). For all of those cases where the wing translated in a manner
opposite to the anticipated direction, the boundary conditions, i.e. inlet and outlet,
were reversed to ensure that far upstream of the wing the flow velocity remained
zero. Zhang et al. (2010) in their study had reported a similar reversal in the
movement of the plate from forward to backward at ω∗ < 1. Moreover, Spagnolie
et al. (2010) observed three different regimes of horizontal velocity corresponding to
different flapping frequencies: zones of outperformance (higher cruising velocity) and
underperformance, and a zone of hysteric locomotion in which the wing can move
either forward or backward.

Figure 20 shows the variation of pitching angle α with time for different values
of ω∗. Amongst the three cases, the plate undergoes minimum passive pitching at
ω∗ = 2, with α varying between −15◦ and 15◦. At ω∗ = 0.95 the angular deflection
increases greatly as α varies between −60◦ and 60◦. This happens since the plate
was heaving in the inertia dominated regime near unit frequency ratio. As opposed
to these two cases where the mean pitching angle was zero, α varied between
−60◦ and 15◦ at ω∗ = 0.5. This peculiar occurrence can be better explained by the
cycle-averaged pitching angle 〈α〉 (where 〈α〉 =

∫ t∗0+20
t∗0

α dt∗ is defined exactly like
〈Pi〉). The value of 〈α〉 becomes non-zero (or the neutral axis of angular deflection
becomes inclined to the horizontal) for the case of ω∗ = 0.5. The neutral pitching
axis is marked for all three cases in the plots of tip deflection in figure 20(a–c) and
a representative sketch illustrating this concept with respect to the pitching wing is
shown in figure 20(d). Also plotted is the vertical displacement, Y , to gauge the phase
difference, φ, between the plunging and pitching motions. The phenomenological
solution indicates that, for inertia dominated flows, the plunging and pitching are
nearly synchronous, i.e. φ= tan−1(0.25)= 14◦ for pre-natural frequency (ω∗> 1), and
become asynchronous (φ = π − tan−1(0.25) ≈ 166◦, see appendix A) at natural and
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FIGURE 20. (Colour online) Pitching angle α (in degrees) and dimensionless vertical
position Y (non-dimensionalized by chord C) versus plunging cycle at (a) ω∗=2, (b) ω∗=
0.95 and (c) ω∗= 0.5 for Ref = 40 and ψ = 0.25. The dotted lines represent time instants
during upstroke at which the flow field around the wing is shown in figure 21. Also, the
neutral pitching axis is marked for all three cases. (d) A representative illustration for zero
and non-zero cycle-averaged pitching.

post-natural frequencies (ω∗ 6 1). The numerical simulations confirm these outcomes
as plunging and pitching are almost synchronous for ω∗= 2 (figure 20a) with φ≈ 10◦.
Although minor disagreements are expected, nevertheless the phenomenological
solution does provide a qualitative picture for the phase difference as a function of
ω∗ and ψ , and its further implications will be discussed in the forthcoming section.
The backward movement of the wing at ω∗ = 0.5 can thus be attributed to the
out-of-phase plunging and pitching and suggests that biological flyers may operate at
ω∗< 1 to decelerate or come to a halt while perching. This is also consistent with the
results reported by Spagnolie et al. (2010) and Zhang et al. (2010) who stated that
the phase relationship between heaving and pitching varies with plunging frequency
and the wing translates in the backward direction when φ > 180◦.

The flow fields around the plunging flat plate at quasi-steady state for ω∗= 2, 0.95
and 0.5 are shown in figures 21(a), 21(b) and 21(c), respectively. As was shown in
figure 20(a), at ω∗=2 the wake pattern is symmetric. Two oppositely directed vortices,
one during upstroke and the other during downstroke, are shed from the leading edge
that advect downstream and form a visible wake. At ω∗ = 0.95 and ω∗ = 0.5, the
wake pattern obtained is deflected. For ω∗ = 0.5, the neutral pitching axis is inclined
to the horizontal. A closer scrutiny of the flow field around the wing for ω∗ = 0.95
revealed that, despite 〈α〉 being zero, the vortex shedding was not identical during
the two half-strokes, leading to a deflected wake. At the beginning of the downstroke,
a leading-edge vortex (LEV) in nascent form is shed that traverses downstream and
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FIGURE 21. (Colour online) Wake patterns for a single torsion spring plate plunging at
(a) ω∗= 2, (b) ω∗= 0.95 and (c) ω∗= 0.5 for Ref = 40 and ψ = 0.25 at cruising condition
(40th cycle). The vorticity scale chosen for non-dimensionalization is ζc= 2πβγ . Red and
blue colours indicate anti-clockwise (out of the plane of the paper) and clockwise rotation
(into the plane of the paper), respectively. The arrow indicates the direction of movement
of the wing.

pushes the oppositely rotating vortex from the trailing edge. Nevertheless, no LEV
is shed at the beginning of the upstroke that could shear the trailing-edge vortex
(TEV), prolonging the latter’s duration of attachment. Thus, the TEV is shed much
earlier during the downstroke and this premature disengagement results in an upward
deflected wake. As the TEV is detached intermediate of the downstroke, the narrow
layer that connects the TEV to the trailing edge gets assimilated into a feeble tail
which is deflected downward. It was observed that the direction of the deflected wake
reverses on altering the plunging kinematics (i.e. the upward directed wake obtained
with initial displacement y∗ = −β sin(2πt∗) transformed into a downward directed
wake with displacement y∗ = β sin(2πt∗)).

In addition, the highest thrust was noted at ω∗ = 0.95, as is shown in figure 22(a)
where instantaneous thrust profiles for all three cases are compared. Thus, it can
be inferred that the magnitude of thrust does not dictate the propulsion velocity
only, rather the timing of the peaks in thrust and its relationship with the plunging
motion have the bigger roles in influencing the forward velocity. More importantly,
this occurrence also sheds light on the contradicting theories that are prevalent
encompassing thrust and propulsion performance at structural resonance as discussed
in § 1. Most of these studies were conducted by implementing hovering kinematics
and hence could not envisage the manifestation of thrust converting into a propulsion
velocity. Thus, the importance of our work on a self-propelled wing is apparent in
revealing that although maximum thrust is generated at structural resonance, due to a
phase difference between plunging and passive pitching, this is not converted into a
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FIGURE 22. (Colour online) A comparison of instantaneous (a) thrust and (b) drag
profiles at ω∗ = 2, ω∗ = 0.95 and ω∗ = 0.5 for Ref = 40 and ψ = 0.25.

high propulsion velocity. Moreover, as evident in figure 22(a), the frequency of thrust
oscillations reduced from 2γ at ω∗= 2 to γ at ω∗= 0.5 with an intermediate value at
ω∗= 0.95 (which was also confirmed by the fast Fourier transform (FFT) analysis of
these time varying signals). Thus, the deflection of the wake and sudden increase in
thrust magnitude with a change in ω∗ for a flexible wing marks the onset of reversal
of the propulsion direction and can be referred to as the transition zone. A similar
phenomenon of wake deflection was also reported for a rigid plunging plate (Arora
et al. 2016a) which characterized the alteration from aperiodic to periodic vortex
shedding.

Another key observation regarding these wake patterns is the separation of vortex
shedding, which increases with an increase in ω∗ from 0.5 to 2. As stated earlier,
the separation between vortices of opposite rotation is inversely proportional to the
reduced frequency (k) (where k= γC/ū= St/2β ) which is recorded to be 0.18, 0.64
and 1.38 for cases (a), (b) and (c), with reference to figure 21 respectively. Thus, the
phenomenon of annihilation of vortices is much stronger for ω∗= 0.5 than for ω∗= 2,
which is why the vortex trail is missing or nearly absent in the former case (also
indicative of low propulsion velocity). In addition, for ω∗ = 0.5 the vortices formed
at the leading edge are dissipated before merging downstream with the wake, unlike
in cases (a) and (b). Thus, no contribution from the leading edge in the formation of
the wake can be observed at ω∗ = 0.5.

4.3. Comparison with flying/swimming animals
Based upon the various system (or performance) parameters considered and derived,
such as the frequency ratio ω∗, FSI index ψ (or the phase difference between
plunging and passive pitching φ) and Strouhal number St, we now present their
association with animal locomotion. With the help of morphological information of
insects available in the literature, i.e. flapping frequency, flexural rigidity and mass
loading of an insect wing, etc. their operating frequency ratios can be calculated.
It was reported in the literature (Chen et al. 2008; Shyy et al. 2010, 2013) that
the hawkmoth (Manduca sexta) and dragonfly (Orthetrum pruinosum and Orthetrum
sabina) are two insect species whose passive pitching motions can be separately
categorized into structural inertia dominated (ψ ' 0.3) and aerodynamics dominated
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(ψ ' 2), respectively. As stated earlier in this study, the frequency ratio for the
optimum cruising velocity increases with an increase in ψ . This finding is analogous
to the flapping locomotion endowed by nature as the hawkmoth usually operates at
a frequency ratio (ω∗ ' 1.8–2.2), whereas the dragonfly has a plying frequency ratio
(ω∗ ' 4–5).

For the connections of phase difference, experimental investigation of a harmonically
flapping foil mimicking the locomotion of the tail-fins of swimming animals
(Anderson et al. 1998; Triantafyllou, Triantafyllou & Yue 2000; Zhang et al. 2010)
showed that (φ) is approximately 75◦ to obtain maximum propulsive performance.
Moreover, the examination of kinematic data of the free flight of a dragonfly (Anax
parthenope julius) and a damselfly (Ceriagrion melanurum) revealed that φ lies
in the range 70◦–90◦ (Azuma & Watanabe 1988; Zhao et al. 2010) which can be
considered as optimal in terms of energy requirements. This is also in conformity
with the present study where we show that propulsive performance keeps increasing
with an increase in the FSI index ψ (or indirectly, an increase in the phase difference
φ). The optimum cruising performance in this study was attained at ψ = 3 (or a
phase difference of approximately φ = tan−1(3)= 72◦ analytically) with a numerically
calculated phase difference of 75◦, and is consistent with the data of real insect flight.
In addition, it was reported that φ increases from the base to the tip of dipteran
(e.g. Eristalis tenax and Calliphora vicina) wings (Ennos 1989; Zhang et al. 2010)
and this occurrence also can be explained using the concept of FSI index. As the
wing mass decreases from base to tip, aerodynamics dominates structural inertia and
consequently ψ is expected to increase in the spanwise direction and consequently φ
follows likewise.

The association of Strouhal number with swimming and flapping animals is now
discussed. Taylor et al. (2003) studied the cruising conditions of 42 different species
comprising birds, bats, insects, sharks, bony fish, dolphins, etc. and found that their
corresponding Strouhal numbers varied between 0.15 and 0.5. Since 80 % of the
species operated in the range of 0.2 6 St 6 0.4, this was then chosen as the natural
range for optimal performance or efficient flight of flying and swimming animals.
However, the maximum cruising performance in this study (corresponding to different
ψ) was slightly off-range and varied in the range 0.15–0.35 (although this remains
in the natural zone of flying animals). These numbers are in excellent agreement
with the slight shift in the optimum zone of performance reported by Zhang et al.
(2010) and Hua et al. (2013). An illustration of the relationship between Strouhal
number St and frequency ratio ω∗ for different Ref and ψ is shown in figure 23.
(Reynolds number of insects is typically defined using the maximum flapping speed
(i.e. V = 2πAγ ). However, for the sake of comparison with earlier studies, V/(2π)
was chosen as the characteristic velocity for defining Ref . Moreover, the flight
characteristics of a self-propelled wing is quantified by translational Reynolds number
Reu and is essentially used for describing insect flight (where Reu = 2Ref /St, and
is O ∼ (102–104) in the present study).) The resultant Strouhal number falling into
the operating range of swimming and flying animals is nevertheless interesting and
follows naturally in this work. As shown in figure 23, our results demonstrate that
the conditions for which the Strouhal number lies outside this range are ω∗6 1.5 and
ω∗ > 8, respectively. This leads to the inference that neither very flexible nor very
rigid wings fall under the natural flying conditions. As far as efficient locomotion is
concerned, there may be a physical mechanism in which the dynamics is tuned to
cruising at a speed of optimal propulsion. These interesting and important topics will
be addressed in the future.
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FIGURE 23. (Colour online) Strouhal number as a function of frequency ratio for different
combinations of Ref and ψ . The section between St= 0.2 and St= 0.4 characterizes the
operational zone of flying and swimming animals. The vertical dashed lines represent the
plying frequency range of the hawkmoth (ψ ' 0.3) and dragonfly (ψ ' 2).

5. Conclusions
This work was directed towards understanding the role of passive flexion for a

plunging plate leading to thrust generation and transverse locomotion. To mimic a real
flapping insect wing, a fluid–structure interaction framework based upon a generalized
two-dimensional lumped-torsional flexibility model for a multi-component system was
developed. The method involved two separate solvers, i.e. fluid and structure, which
together determined the system dynamics. Flexibility was implemented in a discrete
sense at a finite number of locations along the length of the plate with intermediate
rigid sections connected to each other through torsion springs.

A phenomenological solution to the simplified single-spring structural dynamics
equation was established which revealed that the dynamics of deformation is
governed by a balance between structural inertia, stiffness and aerodynamics. The
semi-analytical solution revealed that the ratio of aerodynamics to structural inertia
(defined as dimensionless parameter, the FSI index ψ = β/ρ∗δ) has an impact on
the induced phase difference (φ) between plunging and passive pitching for the
large amplitude considered. Quantitative evidence for this outcome was obtained by
conducting numerical simulations with the multi-link model to examine the effect
of flexibility on the cruising velocity and performance at different Ref and ψ . For
the high plunging amplitudes considered, pitching and plunging were shown to be in
phase (φ ' 0) for structural inertia dominated flows (ψ � 1). This was due to the
structural inertia attaining a peak value at the stroke reversals. On the other hand,
for aerodynamics dominated (ψ > 1) scenarios, a phase difference of φ ≈ π/2 was
induced owing to the fluid forces becoming maximum at mid-stroke. Moreover, such
flows were shown to result in larger passive deformation than the structural inertia
dominated scenarios. Although the phase difference was independent of the frequency
ratio, unit frequency ratio acted as the point of discontinuity and the phase difference
shifted by π near ω∗ = 1.
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It was shown that there exists an optimum flexibility at which the cruising velocity
is maximized and the location of the optimum varied with Ref and ψ at β = 0.6.
Simulations demonstrated that different bending patterns are exhibited by the plunging
wing for ψ� 1 and ψ > 1 when the plate propelled with the maximum velocity. The
main difference between the two structural modes was that the maximum deflection
of the wing happened to occur at the middle of the stroke for the latter, whereas it
was at the end of the stroke for the former case. The difference in bending patterns
was solely due to inertia dominating over aerodynamics for ρ∗δ > 2 flows and is the
key finding of this work. With an increase in ψ , the optimum shifted away from unit
frequency ratio and was also accompanied by an increase in cruising velocity and
decrease in input power, indicating the importance of aerodynamics over structural
inertia dominated deformation scenarios as the former delivered better performance in
terms of mileage or distance travelled per unit work. Concurrently, the instantaneous
shape of the wing suggested that the wing responded quickly during stroke reversals
with an increase of ψ . This was shown to result in a phase difference between
plunging and pitching, as also predicted by the phenomenological solution. Thus,
the wing shape became aligned in compliance with the ideal streamlined flapping,
maximized thrust and minimized drag indicating the dominance of aerodynamics
over structural inertia led deformations. Further, for a given ψ , a higher relative tip
displacement was indicative of a higher velocity, until a maximum in the latter was
reached. Any further increase in the relative tip displacement results in a decrease
in the transverse velocity. More importantly, the maximum velocity was shown to
occur not at unit frequency ratio, but rather at the condition when the relative tip
displacement ≈ 0.3. In addition, the effect of structural resonance was investigated
and it was shown that even though the maximum thrust occurred near unit frequency
ratio, it could not be transformed into the highest terminal velocity. Also, unit
frequency ratio served as the point of transition in the direction of locomotion which
changed from forward (ω∗ > 1) to backward (ω∗ < 1) accompanied by a deflected
wake. This phenomenon was in agreement with the phenomenological solution as
the change in direction of motion was due to the sudden shift in phase difference
from φ ' 0 to φ ' π. Strong connections are observed between the results inferred
from this study and real flying/swimming flight that provide an understanding of the
flapping locomotion principles prevalent in nature. Future work is directed towards
the extension to a three-dimensional FSI model and investigation of the role of tip
vortices and their interaction with LEVs in influencing the propulsion characteristics
of flexible plates.

Acknowledgements
N.A. and A.G. acknowledge the financial support received from the Aeronautics

Research and Development Board (ARDB) under SIGMA project no. 1705. C.-K.K.
is in part supported by NSF CMMI-1761618. The authors are grateful to Professor
S. Sane for his insightful suggestions and thank the IIT Delhi HPC facility for
computational resources.

Appendix A
A.1. Maximum angular deflection and phase difference as a function of ψ and ω∗

Figure 24 shows the empirically derived maximum angular deflection α0 and phase
difference φ (inset) as a function of ω∗ and ψ . It is observed from this figure
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that unit frequency ratio acts as the point of discontinuity. Thus for ω∗ > 1, the
initial phase difference between passive pitching α and plunging displacement Y is
shifted by π for ω∗ < 1 (inset). The consequence of this phenomenon on propulsion
performance can be seen in § 4.2.4. Further, an increase in φ with increase in ψ

is due to the dominating effect of aerodynamics over structural inertia. As argued,
figure 24 shows that with negligible aerodynamic forces (i.e. ψ ' 0) the phase
difference φ diminishes to zero. Moreover, when aerodynamics dominates (ψ ' 10),
the phase difference between plunging and pitching φ→π/2. This occurrence is also
endorsed by Moore (2014), where peaks in thrust were accompanied by maximum
trailing-edge displacement and a phase difference of π/2 between pitching and
heaving for massless wings (or ψ→∞).

The variation in α0 with ψ also signifies the amplification in passive pitching due
to the presence of surrounding fluid or the magnification factor (MF) in pitching,
i.e. ratio of the amplitude of angular deflection if the heaving was performed
in a fluid to that if it was carried out in a vacuum. As is evident, at a given
ω∗, pressure dominated flows (ψ > 1) cause larger passive deformations than
structural inertia dominated flows (ψ < 1). The fact that the magnification factor
keeps increasing with an increase in ψ clearly indicates the dominating effect of
aerodynamics over structural inertia in deforming the wing. However, for a fixed ψ ,
an insignificant variation in the magnification factor is witnessed with a decrease in
ω∗, except near or while approaching the point of discontinuity at ω∗ = 1 where α0

and MF→∞.

A.2. Two-component wing set-up

The matrices for a two-component system are given below:

[I]2×2 =

I1 + I2 +m1l2
cm,1 +m2 (L2

1 + 2L1lcm,2 cos α2 I2 +m2l2
cm,2

+l2
cm,2 +m2L1lcm,2 cos α2

I2 +m2l2
cm,2 +m2L1lcm,2 cos α2 I2 +m2l2

cm,2

 ,
[K ]2×2 =

[
K1 0
0 K2

]
,

[Q]2×2 =

[
0 −m2lcm,2L1 sin α2

m2lcm,2L1 sin α2 0

]
,

[G]2×2 =

[
0 −m2lcm,2L1 sin α2

0 0

]
,

[D]2×1 =

[
−m1Ÿlcm,1 cos α1 −m2Ÿ{lcm,2 cos(α1 + α2)+ L1 cos α1}

−m2Ÿlcm,2 cos(α1 + α2).

]
.


(A 1)

Here I1 and I2 are the mass moments of inertia about the centre of mass of the first
and second linkage, respectively.
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FIGURE 24. (Colour online) Phenomenological solution of phase difference φ (inset) and
maximum angular deflection α0 or magnification factor (MF) as a function of frequency
ratio (ω∗) at different aerodynamics to structural inertia ratios (ψ).
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