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SUMMARY

To evaluate the status of biodiversity and to determine
how current conservation efforts can be improved,
biodiversity monitoring is crucial. An important aspect
of data quality lies in its spatial resolution. It is unclear
how finer scale land cover and land value information
might further benefit biodiversity conservation. This
paper aimed to assess the impacts of scale by
modelling the conservation of endangered European
wetland species and their corresponding habitats.
Fine-scale datasets were derived by integrating
existing geographical, biophysical and economic data.
A habitat allocation model, based on principles
from systematic conservation planning and economic
theory, was developed to estimate area requirements
and opportunity costs of habitat protection in
Europe. Coarse-scale and fine-scale simulations were
compared by inputting both resolutions into the
model. Habitat locations were restricted either only
by historical species occurrence data at UTM 50
resolution or additionally by explicit wetland data at
1-km2 resolution. Coarse country-average land rents
were contrasted with spatially detailed land rent
estimates at a 5′ resolution. Costs of habitat protection
and area requirements for reserves may be severely
underestimated when conservation planning relies
only on coarse-scale data, which may result in notable
shortcomings in conservation target achievement.
Improvements in conservation benefits far outweigh
the additional costs of acquiring fine-scale data.
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INTRODUCTION

Earth observation (EO) has become fundamental to achieving
sustainable development (Group on Earth Observations
2005). Studies have started to examine the benefits of
global earth observation (Pricewaterhouse Coopers 2006;
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Fritz et al. 2008; Trapp et al. 2012), however, there have
been no comprehensive assessments of their economic,
social and environmental benefits to date. The development
of a high-quality, timely and comprehensive global earth
observation system of systems (GEOSS), to include a global
biodiversity observation system, would create a mechanism
to integrate biodiversity data with other observations more
effectively, leverage investments in local to national research
and observation projects, and provide networks for global
analysis and modelling. To evaluate the status of biodiversity
and to determine how current conservation efforts can be
improved, biodiversity monitoring is crucial (Balmford et al.
2005; Muchoney 2008). For example, there are proposals to
establish global biodiversity monitoring systems (Pereira &
Cooper 2006; Scholes et al. 2008) that include, harmonize
and expand on current monitoring activities (Henry et al.
2008). Herold et al. (2008) and Muchoney and Williams
(2010) identified global land-cover observations as being of
high importance for biodiversity conservation.

This study contributes to the benefit assessment of EO
in the realm of biodiversity and ecosystems. We specifically
investigated conservation plans for European freshwater
wetlands. Systematic conservation planning provides tools
to identify optimally located priority areas for conservation
(Margules & Pressey 2000; Possingham et al. 2000). However,
efficient land allocation is only possible when these tools are
used with adequate and reliable data.

An important element of data quality relates to spatial
resolution. Several empirical studies have evaluated the
effects of the spatial scale of databases on conservation plans
(Andelman & Willig 2002; Warman et al. 2004; Arponen
et al. 2012; Hermoso & Kennard 2012). However, the nature
and severity of impacts of data quality on conservation
outcomes are still not well understood (Grand et al. 2007;
Hermoso & Kennard 2012). Arponen et al. (2012) concluded
that fine-resolution analyses at large spatial extents were
computationally feasible and gave more flexibility to the
implementation of reserve networks. In this study, we
focused on two data categories that are important for wetland
biodiversity conservation planning. These were (1) data on
the distribution of existing and potential wetland habitat
areas and (2) land rent data. We found there were significant
limitations in the available and widely used datasets on these
topics. We found that no consistent adequately-resolved
records of the geographical distribution of wetland areas
in Europe existed. The spatial characteristics of European
wetlands were only well known for selected large wetland
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areas or wetlands of special ecological interest (Merot
et al. 2003). Furthermore, country statistics differ in spatial
accuracy, reliability, acquisition method and class definition.
At present, CORINE (Coordination of Information on the
Environment; EEA [European Environment Agency] 2000)
is the most detailed land cover database for the European
Union. However, wetland areas are not aggregated within a
single class, but are integrated within various different classes,
such as ‘forests’, ‘moors and heathland’, ‘inland marshes’ or
‘natural grassland’. Identification of wetlands within these
classes is only possible with further analyses (see Schleupner
2010). The digital map of the potential natural vegetation
of Europe (Bohn & Neuhäusel et al. 2003) shows a detailed
classification and potential distribution of wetland vegetation
types across Europe, however this distribution does not
account for human influences such as river regulation, peat
extraction or urbanization, which may substantially impair
wetland restoration. Given these limitations, a necessary step
is to develop fine-scale wetland data representing the current
situation of Europe’s wetlands. Accurate data on land rents are
also required to estimate the cost of habitat protection. Spatial
aspects of economic data seldom receive the same attention
in conservation planning as the spatial scale of biodiversity
data. Andelman and Willig (2002) analysed the effects of the
scale of species occurrence data on reserve selection, however
they set all site costs to a value of one. In a similar study on
the effect of species’ data resolution on conservation outputs,
Hermoso and Kennard (2012) used constant costs across all
planning units. Grantham et al. (2008) evaluated the benefits
of additional biodiversity data by analysing the return on
investment. They acknowledged that not only biodiversity,
but also economic data were likely to be highly variable
across planning units, but yet assumed uniform costs across
their study area. Richardson et al. (2006) were the first to
explicitly consider the issue of socioeconomic data resolution
in reserve design. They showed that the implementation of
fine-scale economic data in marine conservation planning
substantially reduced the monetary losses of fisherfolk. Bode
et al. (2008) showed that conservation outcomes were sensitive
to uncertainty in land cost data, claiming that better data on
conservation costs would lead to rapid improvements in the
efficiency of conservation spending. European statistics (such
as Eurostat, see epp.eurostat.ec.europa.eu/) and models such
as the Global Trade Analysis Project (GTAP) model (Lee et al.
2009) provide comprehensive data on land rents. However,
these data are not spatially explicit. To establish geographically
more accurate land rent data, we used productivity differences
at homogenous response units (HRU; Skalsky et al.
2008).

Obtaining finer scale EO data is costly, and questions arise
over whether conservation planning will benefit from the
availability of better data. Fritz et al. (2008) introduced the
benefit-chain-approach to address this issue. A meta-analysis
of the return on investment of EO data by Trapp et al. (2012)
concluded that the overall expected financial benefits were
about four times larger than the associated increased costs

produced by using higher resolution spatial data and their
infrastructures.

In this study of European wetlands, we consider the
impact of data and methodology on land allocation efficiency
for biodiversity conservation. We developed specific high-
resolution data on European wetland habitats and land rents
to replace the coarse spatial datasets frequently used in
conservation planning processes, and employed a conservation
planning tool that was able to analyse the impacts of differently
resolved datasets; we call this the Habitat model. We discuss
the different degrees of errors that may result from employing
coarse-scale data, and thereby assess the benefits of EO
data. We assessed 72 wetland species present across the
entire European continent to model the conservation of
European wetland biodiversity. To foster their use and
further development by the scientific community, the fine-
scale datasets we derived are available for download from the
internet (see http://www.wetlandresearch.de).

METHODS

Structure of the study

To analyse possible benefits of a finer resolution of EO data
in the context of conservation planning in Europe, we chose
a specific study setup. The spatial prioritization tool we used
for this analysis was the Habitat model (Jantke & Schneider
2011). Data on the geographical distribution and spatial extent
of valuable habitat types were one important input parameter.
A second major external dataset included information on the
costs of land to set aside for conservation purposes.

Both datasets were inserted into the Habitat model in
coarse-scale and fine-scale versions. The low-quality coarse-
scale dataset on habitat data included all land areas except
for urban and other sealed off (artificial surface) areas. The
Habitat model may allocate all these land areas to species’
reserves, provided that historical records of the respective
species existed. The coarse-scale land rent data were taken
from the GTAP model (Lee et al. 2009). These data differ only
between countries, not within them. The fine-scale datasets
were developed exclusively for this study. We produced
spatially explicit wetland habitat areas at 1-km2 resolution and
fine-scale land rent data at a resolution of 5′ for the European
continent.

To compare the impacts of these differing datasets, we
applied four conservation planning scenarios (Table 1). In
the ‘non-GEOSS’ scenario, we used coarse habitat and coarse
land rent data, the input data for this setup being available
without advances in the field of EO. In the ‘habitat-data’
scenario, we included fine-scale wetland habitat data, but land
rents remained uniform within each country. The ‘cost-data’
scenario examined the implementation of fine-scale land rent
data alone, with habitat data implemented at the coarse scale.
Finally, the ‘GEOSS’ scenario included fine-scale datasets for
both land rents and habitat areas.
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Table 1 Quality of habitat and rent data for each model scenario.
Coarse-scale habitat data included all land areas (except for urban
and other artificial surface areas) without differentiation of habitat
types. Coarse-scale land rent data differed only between countries,
not within them. Fine-scale habitat data comprised wetland areas at
1-km2 resolution, distinguishing wet forests, wet grasslands,
peatlands, water courses and water bodies. Fine-scale land rent data
were specific for each country and each HRU at a resolution of 5′.

Scenario Habitat area data Land rent data
Non-GEOSS scenario Coarse scale Coarse scale
Habitat-data scenario Fine scale Coarse scale
Cost-data scenario Coarse scale Fine scale
GEOSS scenario Fine scale Fine scale

The Habitat conservation planning model

Model characteristics and input data
Habitat is a deterministic, spatially-explicit mathematical
optimization model programmed in general algebraic
modelling system (GAMS), solved with a mixed integer
programming algorithm from CPLEX version 12.1.

Conceptually, the Habitat model depicts the set-
covering problem from systematic conservation planning.
Its objective is to minimize total resource expenditure,
subject to the constraint that all biodiversity features meet
exogenously given conservation targets (Possingham et al.
2000; McDonnell et al. 2002). In our model, conservation
targets account for the two principal conditions of systematic
conservation planning: representation and persistence of
the biodiversity features (Margules & Pressey 2000; Sarkar
et al. 2006). Each representation of a species corresponds
to one minimum viable population (MVP) of that species.
The land area necessary to sustain a MVP is allocated to
habitat types required by that species. In this application of
the Habitat model, 10 conservation targets were analysed.
Conservation target 10, for example, stands for the cost-
effective representation of 10 viable populations of each
considered species in a reserve system.

The Habitat model contains many planning units of
varying shape and size. The potential habitat area to be
selected was specified for each planning unit. There were
two possible conservation states indicating whether a planning
unit was used as a species’ reserve (1) or not (0). Assigning
a planning unit as a species reserve was only possible if this
species was historically observed in a planning unit or in its
close proximity. Parts of planning units necessary to fulfil
conservation targets were selected as reserves. If species’ area
requirements could not be fulfilled within a single planning
unit, further habitat was selected in adjacent planning units.

Seventy-two wetland vertebrate species of European
conservation concern mainly listed in the Birds Directive
(79/409/EEC, see URL http://ec.europa.eu/environment/
nature/legislation/birdsdirective/index_en.htm) and the
Habitats Directive (European Community Directive on the
Conservation of Natural Habitats and of Wild Fauna and Flora

92/43/EEC, see URL http://ec.europa.eu/environment/
nature/legislation/habitatsdirective/index_en.htm) served
as surrogates for biodiversity in our model. The species
assemblage included 16 amphibians, four reptiles, 43 breeding
birds and nine mammals. Recorded occurrences from species
atlases (Gasc et al. 1997; Hagemeijer & Blair 1997; Mitchell-
Jones et al. 1999) identified their European distributions. The
atlas data were provided in the universal transverse mercator
(UTM) projection with grid squares of about 50 × 50 km.
The non-marine parts of 2725 grid squares encompassing
the whole European continent served as planning units in
our model. Cyprus, Malta, and the Portuguese and Spanish
islands in the Atlantic Ocean were excluded from the analysis
due to data deficiencies.

Population density data for all 72 species were equal
to the maximum observed densities from a comprehensive
literature review. In addition, we used the proposed standards
for minimum population sizes from Verboom et al. (2001)
as proxies for MVP size. We distinguished five broad
wetland habitat types, namely peatlands, wet forests, wet
grasslands, water courses and water bodies. Information on
species’ habitat type requirements resulted from literature
review (Appendix 1, Table S1, see supplementary material at
Journals.cambridge.org/ENC).

Mathematical model structure
The Habitat model, with its sets, variables and exogenous
data, used the following notation.

Sets and set mappings: c = {1,. . ., C} is the set of countries,
p = {1,. . ., P} is the set of planning units, t = {1,. . ., T} is the
set of habitat types, s = {1,. . ., S} is the set of species, u(s, t)
identifies the mapping between species and habitat types, and
k(s, p, t) represents possible existence of species and habitats
in a planning unit.

Variables: O represents total opportunity costs, Zc

represents opportunity cost in country c, Yp,t depicts the
habitat area for planning unit p and habitat type t in hectares,
and Xs,p is a binary variable array, with Xs,p = 1 indicating
species s is represented in planning unit p, and Xs,p = 0
otherwise.

Exogenous data: rc,p denotes the annual land rent per
hectare in country c and planning unit p, ap,t contains the
maximum available area for planning unit p and habitat type
t, ds represents species-specific population density data, ms

is a species-specific proxy for the MVP size, ht,s determines
non-substitutable habitat requirements for habitat type t and
species s, ts is the desired representation target for species s,
and vs specifies possible deviations from the representation
target based on exogenously calculated occurrence maxima.

According to the respective model scenario (Table 1), either
the coarse- or the fine-scale datasets were implemented for the
parameters rc,p and ap,t.

Minimize O =
∑

c

Zc (1)
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subject to:

Zc =
∑

p,t

Yp,t · rc ,p for all c (2)

Yp,t ≤ a p,t for all p, t (3)

∑

p

Xs ,p ≥ ts − vs for all s (4)

Yp,t ≥ ht,s · Xs ,p for all p, t, s (5)

∑

t

Yp,t · ds
∣∣k(s ,p,t)∧u(s ,t) ≥ m s · Xs ,p for all p, s (6)

∑

p,t

Yp,t · ds
∣∣k(s ,p,t) ≥ ts · m s for all s . (7)

The objective function (Eq. 1) minimizes total costs across
all planning units. Equation (2) accounts the total conservation
costs in each country as product of habitat area times land rent
summed over all planning units. Constraint (3) limits habitat
areas in each planning unit to given endowments. Constraint
(4) implements representation targets for all species but allows
deviations if the number of planning units with occurrence
data is below the representation target. Constraint (5) depicts
minimum requirements of non-substitutable habitat types for
relevant species and planning units. Constraint (6) forces the
habitat area for the conservation of a particular species to be
large enough to support viable populations of that species.
The summation over habitat types depicts the choice between
possible habitat alternatives. Constraint (7) ensures that the
total population size equals at least the representation target
times the MVP size. This constraint was especially relevant
for cases where the representation target was higher than
the number of available planning units for conservation. For
example, a representation target of ten viable populations
with possible species occurrences in only nine planning units
would thus require one or more planning units to establish
enough habitat for more than one viable population. Further
versions of this habitat allocation model can be found in Jantke
and Schneider (2010), Jantke et al. (2011), and Jantke and
Schneider (2011).

Spatially explicit data on European wetlands

This study applied data from the empirical wetland
distribution model SWEDI (Spatial Wetland Distribution;
Schleupner 2009, 2010), which is based on a geographic
information system (GIS) and relies on multiple spatial
relationships of existing geographical data. Developed as
an extraction tool, it denotes wetland allocations in 37
European countries at resolution of 1 km2, distinguishing
between existing functional wetlands and sites suitable for
wetland restoration by considering recent land use options.

The evaluation of existing wetlands relied on a cross-
compilation of existing spatial datasets and extraction of
spatial wetland information. The determination of potential
wetland restoration sites was more complex, involving
the integration and interpretation of a variety of GIS
datasets by assuming that there is a relationship between
environmental gradients (Franklin 1995). Knowledge rules
for each biogeographical region were defined based on analysis
and observed correlation of independent variables such as
climate, hydrology, soil, elevation, and slope to analyse
environment-wetland relationships. The information was
extracted from spatial data, such as CORINE land cover (EEA
2000), the European Soil Database (Joint Research Centre
2004), BIOCLIM (Busby 1991), WorldClim (Hijmans et al.
2005), Gtopo30 (USGS [United States Geological Survey]
1996), and Potential Natural Vegetation (Bohn & Neuhäusel
et al. 2003). Regression parameters that vary across space
were estimated with the advantage that they allowed for
regional differences in relationships (Miller et al. 2007). This
was especially useful concerning the broad European scale of
the model. Urban and other sealed off areas and their direct
vicinity were assumed to be unsuitable for wetland restoration.
Sites that contained already existing conservation areas like
salt marshes or valuable sparsely vegetated areas were also
excluded from potential wetland restoration sites. The GIS
tool ArcGIS9.3 was used for analysis.

SWEDI distinguished three main wetland types (Fig. 1)
that were further sub-divided into five wetland categories:
wet forests (alluvial and swamp), wet grasslands (such as
reeds and sedges; only one category), and peatlands (bogs
and fens). However, most wetland species that were included
in the Habitat model also needed open water habitat. Spatial
data on the extent of water courses and water bodies were
derived from CORINE land cover (EEA 2000) and the Global
Lakes and Wetlands Database (GLWD) (Lehner & Döll
2004).

We integrated the fine-scale wetland data in terms of
total areas of each wetland habitat type per planning unit.
Both existing and wetland areas and sites suitable for
restoration were included. The wetland sites were represented
by the model parameter ap,t which contains the maximum
available area for planning unit p and habitat type t (spatially
explicit data on European wetlands are accessible via URL
http://www.wetlandresearch.de).

Spatially explicit data on European land rents

Detailed data on land rents covering the entire European
continent were estimated at HRU resolution (Fig. 1;
Appendix 1, Table S2, see supplementary material at
Journals.cambridge.org/ENC for the land rents for all
European countries). An HRU is a discrete characterization
of land quality with pre-defined ranges on relatively stable
attributes at a precision of 5′. We used discrete classifications
of altitude, slope and soil texture established through previous
research (Skalsky et al. 2008, based on Schmid et al. 2006;
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Figure 1 An example of fine-scale data for south-eastern Germany.
(a) Wetland habitats at 1-km2 resolution (source: Schleupner 2009,
2010). (b) Land rents at a 5′ resolution.

Balkovič et al. 2006; Stolbovoy et al. 2007). HRUs were
delineated on the assumption that within defined ranges of
attributes, biophysical processes (such as plant growth or
nutrient movement) respond similarly to any set of exogenous
impacts (such as rainfall or land management). Available data

at HRU level included their spatial extent, biomass yields
and environmental impacts on major food and non-food
cropping systems. The last data resulted from simulations
with the Environmental Policy Integrated Climate (EPIC)
model (Izaurralde et al. 2006; Williams 1995). In addition,
we used country specific land rents from the Global Trade
Analysis Project (GTAP; Lee et al. 2009). Based on these data,
we approximated detailed land rent data that were unique for
each country and HRU.

We used the following notation: u = {1,. . .,U) is the set of
HRU, c = {1, . . . ,C} is the set of countries, su,c represents the
share of a given HRU u within country c, mru,c denotes the
marginal revenue of land for HRU u in country c, vc is a value
parameter representing the difference between the weighted
commodity price and all production costs except for the costs
of land in country c, iu,c depicts the weighted average yield per
hectare for HRU u and country c, mcc represents the marginal
costs of land in country c, and mcu,c depicts the marginal costs
of land per HRU u in country c.

∑

u

s u,c · mru,c =
∑

u

s u,c · iu,c · νc = mcc (8)

νc = mcc∑
u

s u,c · iu,c
(9)

mcu,c = iu,c · νc (10)

Based on classic economic theory for competitive markets,
Eq. (8) forced an identity between marginal revenues and
marginal costs of land. While the marginal cost of land was
given by its rental rate, the marginal revenue per hectare
of land equalled yield multiplied by a value parameter,
computed via Eq. (9), which depicts the difference between
the weighted price of an agricultural or forestry commodity
and its production costs. We assumed that this value did not
differ within a country. Finally, we used Eq. (10) to compute
HRU specific land rents by multiplying HRU specific yields
by the value parameter.

In the Habitat model, HRU specific land rents in euro per
hectare (Appendix 1, Table S2, see supplementary material at
Journals.cambridge.org/ENC) were projected to all planning
units. Since the Habitat model did not distinguish different
HRU within a planning unit, the land rents in each planning
unit were area weighted averages over all contained HRU.
The data fed into the model as parameter rc,p, which denotes
the annual land rent per hectare in country c and planning
unit p (the spatially explicit data on European land rents are
accessible via URL http://www.wetlandresearch.de).

Costs of the fine-scale datasets

The fine-scale datasets were generated from the integration
of existing and freely available geographical, biophysical
and economic data. The rather complex methodology for
acquiring the wetland habitat data was originally developed
by Schleupner (2009) and adjusted to the specific needs of
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this study. In contrast, the methodology for the estimation
of spatially explicit land rent data was exclusively developed
for this study. Altogether, the costs of obtaining the new
data mainly involved personnel. In particular, the generation
of each dataset took approximately one person month.
The monthly personnel costs for employing a researcher
were c. € 3500 (according to German tariffs for civil
service employees TV level 13; see http://oeffentlicher-
dienst.info/tv-l/). Thus, the total costs of obtaining the two
datasets were estimated at€ 7000. We used this information to
compare costs and benefits of using EO data for conservation
planning.

RESULTS

Costs of habitat protection and area requirements

Annual costs for renting the land needed for habitat protection
differed substantially between scenarios (Fig. 2a). The
implementation of detailed wetland habitat data in the habitat-
data scenario incurred a mean increase of 29.8 % in costs
of habitat protection compared to the baseline non-GEOSS
scenario. Conversely, integrating detailed land rent data in
the cost-data scenario led to an average cost reduction of
5.9 %, because heterogeneous land rents within countries
provided opportunities to select regions with below-average
rents and avoid regions with above-average rents. Considering
both factors simultaneously in the GEOSS scenario, total land
costs for habitat protection were on average 38.1 % higher than
those of the non-GEOSS scenario.

Fine-scale land rent data in the cost-data scenario did
not notably influence the extent of conservation areas
compared to the baseline non-GEOSS scenario (Fig. 2b).
However, the implementation of fine-scale wetland data
shown in the habitat-data scenario implied higher overall
area requirements. The reserve areas of the habitat-data
and the GEOSS scenarios were on average approximately
one-third higher than the baseline scenario, due to the
habitat type specifications that restricted reserve allocation to
given endowments. With detailed wetland habitat area data,
the model could not exploit habitat synergies (one habitat
simultaneously protecting multiple species) as successfully as
the coarse datasets.

Initially, it may seem as if better resolved land cover
and land rent data (for example in the GEOSS scenario)
led to higher costs of habitat protection and higher overall
area requirements for achieving the same conservation target
(Fig. 2). Thus, an investment in EO data may seem
counterproductive. However, closer examination revealed
that the displayed costs and area shares could not be compared
directly. In all scenarios with coarse-scale datasets, the Habitat
model only had limited information on habitat locations
and/or land rents due to the coarse input data. These
shortcomings led to severe underestimations in conservation
costs and area requirements.
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Figure 2 Costs of habitat protection and reserve area requirements
for conserving 72 European wetland species. A conservation target
stands for the protection of the corresponding number of viable
populations of all species. (a) Annual land costs for acquiring
reserve areas. (b) Required reserve areas.

Shortcomings of coarse-scale data

The cost estimates (Fig. 2a) for scenarios with coarse-
scale data were biased and did not represent the true
total costs of habitat protection because incorrect data on
habitat endowments and/or incorrect land rents were used.
In addition, coarse-data solutions resulted in inefficient
land allocations because the conservation planning model
could place habitats in unsuitable or expensive locations.
The analytical bias in coarse-scale data was obvious when
we corrected the results estimated under the non-GEOSS
scenario to account for the two different types of fine-scale data
(Figs 3 and 4). Technically, we used the sizes and locations
of the conservation areas determined under the setup with
coarse-scale data. We then recalculated conservation costs and
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Figure 3 Shortcomings of coarse-scale land rent data: errors in
estimating conservation budgets. Shown are cost errors of the
non-GEOSS scenario in relation to the cost-data scenario.

target achievement using the fine-scale data models (cost-data
and habitat-data scenarios) to quantify the shortcomings of
the coarse datasets.

In the case of land rent data, shortcomings of coarse-scale
data implied errors in the estimation of conservation budgets
(Fig. 3). There were two types of errors in the estimations
based on coarse data and the cost errors were partly opposed
(Fig. 3). First, misspecification of conservation costs in the
non-GEOSS scenario due to incorrect land rents ranged from
–11.9 to +1.8 % (Fig. 3), depicting the relative differences
between the habitat costs of the non-GEOSS and the cost-
data scenarios (Fig. 2a). For eight out of 10 conservation
targets, the cost error was negative. Thus, the costs of habitat
protection in the non-GEOSS scenario were overestimated
by up to 11.9 % because the coarse land rent data masked
the heterogeneity of land costs within countries. Second, cost
errors due to land allocation inefficiencies ranged from +0.3
to +3.4 % (Fig. 3). Thus, the costs of habitat protection were
continuously underestimated in the non-GEOSS scenario due
to land allocation inefficiencies. With the coarse data on land
rents, the model could place reserves in expensive regions of
a country.

For habitat data, shortcomings of coarse-scale data in
the non-GEOSS scenario implied losses in species coverage
(Fig. 4). Analysing sizes and locations of reserves from the
non-GEOSS scenario with the help of the fine-scale wetland
data revealed that several species were not able to meet the
respective conservation targets. The species losses due to
incorrect habitat data were substantial. In the non-GEOSS
scenario, only 43–53 species out of 72 were covered according
to the respective conservation target. Several species (3–19)
were not covered at all throughout the targets, the reason
being that with coarse-scale habitat data, the model exploited

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 s

pe
ci

es
 c

ov
er

ed

Conservation target

Habitat-data scenario

Non-GEOSS scenario: results corrected
to account for fine-scale habitat data

Species losses due to
land allocation inefficiencies

Figure 4 Shortcomings of coarse-scale habitat data: losses of
species coverage. The upper line shows the number of species
(n = 72) that should be covered under all scenarios. The middle
dashed line shows species actually covered under the non-GEOSS
scenario when analysed with the fine-scale habitat data. The lower
dashed line shows species that are covered for each conservation
target in the non-GEOSS scenario.

more habitat synergies (one habitat simultaneously protecting
multiple species) than were actually possible.

Regional allocation of conservation areas

Application of fine-scale data also affected regional reserve
allocation between European countries. For example, for
conservation target 5, five viable populations of each of the 72
wetland species were protected (Fig. 5). The required wetland
area was largely distributed between 4–8 countries out of 37
in all four scenarios. In the non-GEOSS scenario, with coarse
data on both wetland habitats and land rents, reserves were
allocated mainly to Serbia and the Baltic states of Estonia,
Latvia and Lithuania. These countries are rich in wetland-
dependent species and provide comparably low land rents.
The more realistic fine-scale wetland data in the habitat-data
scenario implied a spreading of the total required area across
more countries. Three countries, namely Norway, Sweden
and Romania, were allocated more species reserves than in the
non-GEOSS scenario. The application of spatially explicit
data on land rents in the cost-data scenario did not have such
a notable impact on the country scope but led to changes in
reserve shares between regions. For instance, in Poland, more
wetland reserves were established than before.

DISCUSSION

This study corroborates that the value of conservation
planning tools (Margules & Pressey 2000; Possingham et al.
2000) depends on the availability and spatial resolution of
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Figure 5 Allocation of habitat area to European countries using
conservation target 5 as an example. (a) Non-GEOSS scenario. (b)
Habitat-data scenario. (c) Cost-data scenario. (d) GEOSS scenario.

required data. Coarse or incomplete data on biodiversity and
socioeconomic aspects may hinder the effective allocation of
conservation resources (Grand et al. 2007; Bode et al. 2008;
Reside et al. 2011).

However, the benefits of improved data come at the costs of
acquiring them. The real question of importance is whether
the benefits from improved conservation plans outweigh the
expenditure on better data. For instance, the costs of habitat
protection for conserving only one viable population of each of
the 72 included wetland species is estimated at€ 45 million per
year for the non-GEOSS scenario with coarse-scale datasets
(Fig. 2a). The analysis of this solution with the fine-scale
data reveals that 19 species were erroneously omitted from
the proposed reserve system (Fig. 4) and that costs and

habitat area requirement were inaccurately estimated (Fig. 3).
Conversely, the cost of acquiring the fine-scale data on land
rent and wetland habitats was € 7000. While the land rent
has to be paid yearly, the investment on better data is made
only once. Taking into consideration the magnitude of errors
related to the coarse-scale data (Fig. 3) and the shortcomings
of target achievement (Fig. 4), the benefits to conservation do
essentially exceed the costs of acquiring better data. Trapp
et al. (2012) showed that the financial benefits achieved by
using EO data from a range of studies were on average four
times larger than the costs.

A specific aspect of the Habitat model in this context
is the endogenous representation of reserve sizes (see also
Jantke et al. 2011). Common reserve selection tools apply
the basic formulation of the set-covering problem from
operations research, where planning units are only selectable
in their entirety as priority areas for conservation (see Early &
Thomas 2007; Tognelli et al. 2008; Nhancale & Smith 2011).
However, there is a considerable gap between the resolution
of European-wide species occurrence data and the land area
available for conservation purposes in Europe. Therefore,
the Habitat model selects only those fractions of a planning
unit which are necessary to fulfil the respective conservation
target and are theoretically available for reservation under
the given land-use pattern. If species’ area requirements
cannot be fulfilled within a single planning unit, further
habitat is selected in adjacent planning units. Marianov et al.
(2008) proposed a method to select reserves for species with
differential habitat size needs exceeding planning units’ areas.
Our approach goes beyond that by also considering the
fact that species’ area requirements may be smaller than
a planning unit’s area. The total area selected as priority
area for conservation in a planning unit considers MVP
sizes of all species protected in it. This procedure allows
easy implementation of planning units with varying sizes.
Thus, the Habitat model does not only address persistence
criterions directly, but also does this regardless of the planning
unit’s size. When better resolved species distribution data are
available for Europe, the analyses could easily be refined.

There were both advances and limitations in the data
generated. The empirical distribution model of wetland
ecosystems at the European scale (SWEDI) distinguishes
several wetland types. For the determination of existing
wetland locations, several spatial datasets were jointly
analysed. Potential wetland restoration sites were evaluated
through geographic data analysis using rule-based statements
(Schleupner 2010). The orientation towards physical
parameters and the allowance of overlapping wetland types
within the suitable restoration areas characterizes the SWEDI
model. However, the accuracy of SWEDI model results
is strongly restricted by the availability and quality of
geographical data. Soil information is generally poor and often
misleading with regard to wetland functionality. Another
uncertainty involves the current state of existing wetland
ecosystems. SWEDI is unable to assess the naturalness of
the site. Nevertheless, validation with independent datasets
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of wetland biotopes, such as RAMSAR sites, corroborated
the high accuracy of the existing wetland sites in SWEDI (see
Schleupner 2009).

The second dataset generated for this study included land
rents at a 5′ resolution based on HRUs, which arranged
heterogeneous land attributes into discrete classes. Each
combination of altitude, soil and slope class was considered
to be unique. However, within a certain class element, the
response was considered to be homogenous. Thus, depending
on the number of classes for each attribute, HRUs involved
more or less approximation error. For example, the first
altitude class of our classification scheme ranged from the
lowest level to 300 m above sea level. All locations within this
range were represented through the same weighted average
altitude value. Furthermore, we used weighted, productivity-
based, marginal value differences as proxies for differences
in land rental values between HRUs. In reality, other factors
related to markets and local policies may influence local land
rental values. Thus, our approach must be interpreted as a first
approximation until comprehensive land rent data for Europe
are available. To foster the further development of such data
by the scientific community, we publish the applied fine-scale
datasets together with this study.

Another limitation in our analysis was that species
occurrence data were used with only one resolution in our
model, the reason being that comprehensive data with a
resolution higher than UTM 50 were not available for Europe.
An option to overcome this constraint in future studies would
be to predict species distributions at finer spatial scales (see
Araujo et al. 2005; McPherson et al. 2006; Barbosa et al. 2010).

Several simplifications of the Habitat model should
also be noted (see also Jantke & Schneider 2010 for
a detailed description). First, we included only land
opportunity costs from acquiring land for conservation,
whereas there are important additional costs, such as
costs of reserve establishment and maintenance (Naidoo
et al. 2006). As we included sites suitable for wetland
restoration in our analysis, further costs are related to the
rehabilitation of wetland habitats. Second, we did not account
for spatial reserve design criterions like connectivity or
compactness and did not consider spatio-temporal aspects of
persistence.

CONCLUSIONS

The costs of habitat protection may be severely
underestimated when conservation planning relies on coarse-
scale data. Benefits of EO data for conservation planning
encompass more accurate estimations of area requirements for
conservation and of habitat protection costs. Fine-scale habitat
data ensure better coverage of the species of conservation
concern in the conservation plan. Heterogeneous land rents
within countries provide opportunities to select regions with
below average rents and avoid regions with above average
rents. In our study, we found that the conservation benefits

achieved far outweighed the costs of acquiring fine-scale
data.
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