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Dissimilar turbulent heat transfer enhancement
by Kelvin–Helmholtz rollers over
high-aspect-ratio longitudinal ribs
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Passive heat transfer enhancement by spanwise rollers associated with the Kelvin–
Helmholtz instability was studied through direct numerical simulations of high-aspect-
ratio longitudinal ribs at the friction Reynolds number 300. The temperature was treated
as a passive scalar with Prandtl number unity to discuss the similarity between the heat
and momentum transfer. The results reveal that the high-aspect-ratio longitudinal ribs lead
to a favourable breakdown of the Reynolds analogy, that is, the enhancement of the heat
transfer rate surpasses that of the frictional resistance. The favourable breakdown of the
Reynolds analogy can be attributed to the enhanced turbulent heat flux compared with the
Reynolds shear stress, whereas the rib-induced secondary flow plays a role in reducing the
favourable breakdown of the Reynolds analogy. The conditional average statistics reveal
that the high-pressure region accompanied by the spanwise rollers suppresses the spanwise
roller-induced sweep and ejection motions, leading to smaller Reynolds shear stress than
for the turbulent heat flux.

Key words: turbulence simulation, turbulent convection, mixing enhancement

1. Introduction

Heat transfer enhancement by passive or active control is a critical research topic.
For passive control, adding wall roughness to heat transfer surfaces, such as
transverse/longitudinal ribs (Liou, Hwang & Chen 1993; Murata & Mochizuki 2001)
and dimples/protrusions (Mahmood, Sabbagh & Ligrani 2001; Hwang et al. 2008), is
a simple and widely used control technique. It is well known that there is a similarity
between the momentum and heat transfer because the governing equations for scalar and
flow fields are similar, with the exception of the pressure term. When the diffusivities for
flow and scalar fields are identical, the ratio of the Stanton number St to the skin friction
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coefficient Cf , which is referred to as the Reynolds analogy factor, RA = 2St/Cf , is close
to unity for a smooth wall-bounded flow. However, the wall roughness generally breaks
the similarity between the momentum and heat transfer unfavourably, i.e. augmentation
of Cf is larger than that of St for rough surfaces. This phenomenon is supported by
many experimental data (Dipprey & Sabersky 1963; Kays & Crawford 1993; Bons 2002),
theoretical analysis (Katoh, Choi & Azuma 2000) and direct numerical simulations (DNS)
data (Forooghi, Stripf & Frohnapfel 2018; MacDonald, Hutchins & Chung 2019; Peeters
& Sandham 2019; Kuwata 2021). The key factor that causes an unfavourable breakdown
of the Reynolds analogy is an increased pressure drag acting on roughness elements. The
pressure drag directly increases Cf but not St because no corresponding mechanisms exists
for an increase in the heat transfer rate (Katoh et al. 2000; MacDonald et al. 2019; Kuwata
2021). Therefore, the breakdown of the Reynolds analogy can be circumvented to some
degree by the use of the roughness that does not offer the pressure drag – for example,
obstacles aligned with the flow directions (Stalio & Nobile 2003; Jin & Herwig 2014;
Stroh et al. 2020). Recent theoretical studies by Alben (2017) and Motoki, Kawahara
& Shimizu (2018) demonstrated the possibility of an optimized shear flow with a much
higher heat transfer rate than skin friction, i.e. enabling the favourable breakdown of the
Reynolds analogy. Although the optimized shear flows in those studies were driven by an
arbitrary body force, it was demonstrated that a heat transfer rate higher than skin friction
can be realized by Coriolis force for shear flows subjected to system rotation (Brethouwer
2021) and buoyancy force for mixed convection with unstable stratification (Pirozzoli et al.
2017). Nevertheless, to the best of the author’s knowledge, there is no report on the passive
control technique with a roughness obstacle that yields significant favourable breakdown
of the Reynolds analogy.

In contrast to the passive control, several active control techniques successfully achieve
favourable breakdown of the Reynolds analogy. Specifically, travelling-wave-like local
blowing/suction from the wall is one of the most outstanding techniques to achieve
favourable dissimilar heat transfer enhancement (Hasegawa & Kasagi 2011; Yamamoto,
Hasegawa & Kasagi 2013; Kaithakkal, Kametani & Hasegawa 2020). Notably, the
turbulent structure near the wall with travelling-wave-like local blowing/suction is visually
similar to the turbulent structure modulated by the spanwise rollers associated with
the Kelvin–Helmholtz (K–H) instability, which we encounter commonly in porous wall
turbulence (Breugem, Boersma & Uittenbogaard 2006; Suga et al. 2010; Kuwata & Suga
2016a, 2017). This serves as a motivation to exploit the spanwise rollers for the heat transfer
control. The aim of the present DNS study is to open the way for the favourable breakdown
of the Reynolds analogy by the spanwise rollers. The high-aspect-ratio longitudinal ribs
aligned with the flow directions, which can induce the spanwise rollers associated with
the K–H instability, were considered in the study. We performed DNS of turbulent heat
transfer over high-aspect-ratio longitudinal ribs with Prandtl number unity, and discussed
the possibility of the favourable breakdown of the Reynolds analogy by the spanwise
rollers in a passive manner.

2. DNS methodology

Figure 1 illustrates a schematic of a turbulent open-channel flow over rib roughness in
which the streamwise-aligned longitudinal ribs were mounted regularly at the bottom wall.
The computational box was Lx = 6.0H and Lz = 3.3H, with H being the clear channel
height. The flow was periodic in the streamwise (x) and spanwise (z) directions, and
simulations were run at a constant streamwise pressure difference. The friction Reynolds

952 A21-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

91
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.915


Dissimilar heat transfer enhancement by K–H rollers

Front view

H

h

Lz
Lx

y
x

y

h

w
y = 0

S
z

z

Figure 1. Configuration of a turbulent open-channel flow over longitudinal ribs.

number for the clear flow region (0 < y < H) was fixed at Reτ = uτ H/ν = 300, where uτ

is the average friction velocity at the position of the rib crest (y = 0), and ν is the kinematic
viscosity. An incompressible fluid was considered, and the fluid Prandtl number Pr was
assumed to be unity. Constant wall temperature Tw was specified at the surfaces of the ribs
and bottom wall, whereas slip and adiabatic boundary conditions were imposed for the top
boundary face. The heat transfer is driven by volumetric heat generation qv . In this set of
heat transfer and fluid flow conditions, the time-averaged momentum and heat transport
equations in non-dimensional form were similar (Kasagi et al. 2010; Hasegawa & Kasagi
2011). Specifically, the normalized heat generation in the energy equation corresponds
to the normalized mean pressure gradient in the momentum equation. We considered
high-aspect-ratio longitudinal ribs with various distances between the neighbouring ribs.
The height and width of the rib were h = 0.67H and w = 0.05h, respectively, which
resulted in aspect ratio h/w = 20. The separation between the ribs was varied: s/h = 0.05,
0.075, 0.2, 0.45 and 1.2. For reference, we additionally performed smooth-wall simulation
with the box of 6.0 H(x) × H( y) × 3.3 H(z).

For the numerical method, in following earlier works (Suga, Chikasue & Kuwata 2017;
Kuwata, Tsuda & Suga 2020; Nishiyama, Kuwata & Suga 2020; Kuwata 2021), the
three-dimensional 27-velocity multiple-relaxation-time lattice Boltzmann method (LBM)
for the flow field was used, whereas the scalar field was simulated by the three-dimensional
19-velocity regularized LBM. The number of grid points was determined as 1080(x) ×
301( y) × 600(z), which yields Δ+ = 1.67 in all directions, with Δ+ being the grid
spacing normalized by wall unit ν/uτ . This resolution is comparable to those used in
previous DNS (Kuwata & Suga 2016a, 2019; Kuwata & Kawaguchi 2019; Kuwata &
Nagura 2020; Kuwata et al. 2020). To validate the independence of grid resolution and box
size, we performed grid and domain size sensitivity tests for the case s/h = 0.2 in which St
is the largest among the simulation cases. A comparison of the results for Δ+ = 1.67 and
2.5 confirmed that the differences in St and Cf were within 0.7 % and 1.4 %, respectively.
Regarding the domain size, we performed DNS with a domain size enlarged by a factor
1.5 in wall-parallel directions, and found that the difference in the maximum peak values
of the Reynolds stresses and turbulent heat fluxes was 1.4 % at most. We also confirmed
that the enlargement of the domain size yielded a change of less than 0.7 % in St and Cf .

To discuss the profiles of the turbulence statistics near rib roughness from a macroscopic
perspective, we considered a variable averaged over the x–z plane and time in the following
discussion. Superficial and intrinsic averaging operators for a variable φ(x, y, z) are
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introduced as

〈φ〉( y, t) = 1
A

∫
x

∫
z
φ(x, y, z, t) dx dz, 〈φ〉 f ( y, t) = 1

Af

∫
x

∫
z
φ(x, y, z, t) dx dz,

(2.1a,b)

where A = LxLz is the area of the x–z plane, and Af is the area occupied by the fluid
in the x–z plane. Therefore, a relationship exists between the superficial and intrinsic
plane-averaged values as 〈φ〉 = ϕ〈φ〉 f , with the volume fraction of the fluid phase,
ϕ = s/(s + w), below the roughness crest (y < 0), while ϕ = 1 in the clear flow region
(y > 0) for the geometry presented herein. The deviation from the intrinsic averaged value
φ̃(x, y, z, t), which is referred to as the dispersion, is

φ̃(x, y, z, t) = φ(x, y, z, t) − 〈φ〉 f ( y, t). (2.2)

We additionally considered the Reynolds decomposition that decomposes a variable into
a time-averaged value φ̄(x, y, z) and its fluctuation φ′(x, y, z, t) as φ(x, y, z, t) = φ̄(x, y, z)
+φ′(x, y, z, t). After a flow had reached a fully developed state, statistical properties were
assembled over a period 50H/uτ .

All the quantities in plus units (·)+ are scaled with the average friction velocity uτ or
average friction temperature θτ . The friction velocity uτ was based on the average wall
shear stress at the rib crest position, τw = ρu2

τ , with ρ denoting the fluid density. The
average wall shear stress was calculated using the pressure gradient via the momentum
balance in the clear flow region as in Kuwata & Suga (2016a, 2017):

τwA =
∫ Lz

0

∫ H

0

∫ Lx

0

(
−∂ p̄

∂x

)
dx dy dz, (2.3)

where A = LxLz is the x–z plane area. Analogous to the friction velocity, the friction
temperature θτ was based on the average wall heat flux evaluated at the rib crest position
qw = ρcuτ θτ , with c denoting the specific heat. The average wall heat flux was calculated
by a heat source for volumetric heating, qv , via the energy balance in the clear flow region,

qwA =
∫ Lz

0

∫ H

0

∫ Lx

0
qv dx dy dz, (2.4)

where the volumetric heat source qv has a non-zero constant value in the fluid phase but
value zero in the solid phase.

3. Results and discussion

To discuss briefly augmentations of heat and momentum transfer by the rib roughness,
we investigate the skin friction coefficient Cf and Stanton number St, which are given as
Cf = 2/(U+

b )2 and St = 1/(U+
b Θ+

a ), respectively. Here, Ub and Θa are the bulk mean
velocity and arithmetic mean temperature in the clear flow region ( y > 0), which are
defined as

Ub = 1
H

∫ H

0
〈ū〉 dy, Θa = 1

H

∫ H

0
〈θ̄〉 dy, (3.1a,b)

Note that for the present definition, the identical inner-scaled mean velocity and
temperature profiles give Cf = 2St. Augmentations of St and Cf from the corresponding
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Figure 2. (a) Stanton number St/St0 against the skin friction coefficient Cf /Cf 0, and (b) Reynolds analogy
factor RA against the rib separation s/h. The DNS data for random cone roughness (Forooghi et al. 2018),
three-dimensional irregular rough surfaces (Kuwata 2021), two-dimensional transverse bar roughness (Nagano
et al. 2004) and porous walls (Nishiyama et al. 2020), and experimental data for turbine roughness (Bons
2002), are included. The thin line in (a) indicates St/St0 = Cf /Cf 0, and that in (b) indicates RA = 1.007 for a
smooth wall.

smooth wall values St0 and Cf 0 are displayed in figure 2(a) along with the DNS data for
random cone roughness (Forooghi et al. 2018), three-dimensional irregular rough surfaces
(Kuwata 2021), two-dimensional transverse bar roughness (Nagano, Hattori & Houra
2004), porous walls (Nishiyama et al. 2020), and experimental data for turbine roughness
(Bons 2002). Additionally, figure 2(b) displays the Reynolds analogy factor RA = 2St/Cf ,
which quantifies the similarity between the heat and momentum transfer. For the present
definition, the RA value is exactly unity when the Reynolds analogy holds because the
identical inner-scaled mean velocity and temperature profiles give Cf = 2St.

In figure 2(a), all the reference data are below a line St/St0 = Cf /Cf 0, which is an
expected result that indicates the unfavourable breakdown of the Reynolds analogy by the
passive controls. By contrast, the present results are all above the line St/St0 = Cf /Cf 0,
which indicate that the augmentation of St from the smooth wall value is larger than that
of Cf . This favourable breakdown of the Reynolds analogy is quantified by the RA value
in figure 2(b), which reveals that the RA value is close to unity for the smooth wall case,
whereas the RA value exceeds unity for the rib cases. It is found that the RA value attains
the maximum peak value RA = 1.45 for s/h = 0.2, where the favourable breakdown of
the Reynolds analogy is the most pronounced. Note that for the present study, global
quantities such as Reτ , Cf , St and RA were calculated based on the assumption that the
rib crest position was an origin of the y-coordinate. However, there are other possible
choices for the origin, and alternative candidates include the rib bottom and level at the
zero plane displacement (Pokrajac et al. 2006). Accordingly, global quantities are affected
significantly by the choice of the origin. However, it was confirmed that the RA value,
which quantifies the similarity between the heat and momentum transfer, was unaffected
by the choice of the origin, ensuring the occurrence of the favourable breakdown of
the Reynolds analogy. For example, when we consider the rib bottom as the origin for
s/h = 0.2, Cf is increased by a factor 3.8, but a change of 2.7 % is observed in RA.

To identify the heat flow changes occurring due to the presence of the high-aspect-ratio
longitudinal ribs, the time–mean velocity and temperature averaged over the x–z plane
are shown in figure 3. For the smooth wall case, mean velocity U+ and temperature
Θ+ are almost indistinguishable, whereas a significant deviation can be observed for the
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Figure 3. Comparison of mean velocity and temperature profiles for (a) s/h = 0.075, (b) s/h = 0.2, and
(c) s/h = 0.45. Insets show the difference in the mean velocity and temperature.

rib cases. Additionally, for rib cases, owing to the increased heat and momentum transfer,
the profiles of U+ and Θ+ are lower than the corresponding smooth wall results. Notably,
the decreases in the Θ+ profiles with respect to the smooth wall results are larger than
those in the U+ profiles, suggesting the occurrence of the breakdown of the Reynolds
analogy. Another observation from the insets is that the detachment between the Θ+ and
U+ profiles occurs mainly near the rib crest, suggesting that the flow modification near the
rib crest is the root cause of the favourable breakdown of the Reynolds analogy.

To obtain a physical understanding of the favourable breakdown of the Reynolds
analogy, the momentum and energy budgets were considered. Applying the x–z plane
and time averaging to the momentum and energy equations for an incompressible fluid,
the double-averaged equations non-dimensionalized with uτ and θτ can be derived for the
present flow system as (Kuwata 2021)

Cu − 1
H

∫ y

−h
ϕ dy = ∂〈ū〉+

∂y+ − 〈u′v′〉+−〈˜̄u ˜̄v〉++
∫ 0

y+
f +
x dy+, (3.2)

Cθ − 1
H

∫ y

−h
ϕ dy = ∂〈θ̄〉+

∂y+ − 〈v′θ ′〉+−〈 ˜̄v ˜̄θ〉++
∫ 0

y+
s+

w dy+, (3.3)

where the constants of integration on the left-hand sides of (3.2) and (3.3) are obtained
from the boundary conditions (zero shear stress and zero heat flux) at y = H as

Cu = Cθ = h
H

s
s + w

+ 1. (3.4)

In (3.2) and (3.3), the turbulent fluxes of R12 = 〈u′v′〉 and H2 = 〈v′θ ′〉 are the
plane-averaged Reynolds stress and turbulent heat flux, respectively. The spatial averaging
produces the dispersive fluxes, namely the dispersive covariance T12 = 〈˜̄u ˜̄v〉 and the
dispersion heat flux H2 = 〈 ˜̄v ˜̄θ〉. Additionally, the spatial averaging produces contribution
terms by the viscous drag term fx and wall heat transfer term sw, which are given as

fx = ν

A

∫
L

(
−nk

∂ ū
∂xk

)
d�, (3.5)

sw = α

A

∫
L

(
−nk

∂θ̄

∂xk

)
d�, (3.6)

where α is the thermal diffusivity, L represents the obstacle perimeter within an averaging
x–z plane, � represents circumferential length of obstacle, and nk is the unit normal vector
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Figure 4. Comparison of the wall-integration terms fx/(U2
b/h) and sw/(UbΘa/h) for (a) s/h = 0.075,

(b) s/h = 0.2, and (c) s/h = 0.45. Insets display enlarged profiles below the rib crest. The closed symbols
represent the wall-integration terms at the top of the ribs.

pointing outwards from the fluid to the solid phase. Note that the wall-integration terms
represent contributions by the wall shear stress or the wall heat flux at the rib and bottom
wall surfaces, whereas the first terms on the right-hand sides of (3.2) and (3.3) account for
the molecular diffusion effects driven by the gradients of the x–z-plane-averaged velocity
and temperature, respectively. Hence the wall-integration terms are zero in the clear flow
region, whereas they play an important role in the momentum and heat transfer below the
rib crest.

Figure 4 compares the wall-integration terms fx/(U2
b/h) and sw/(UbΘa/h), which

represent the x–z-plane-averaged skin friction coefficient and Stanton number,
respectively. It is observed that the wall-integration terms are significant at the rib top
and decrease in magnitude towards the bottom wall. Although the results are not shown
here, the wall-integration terms are considerably small near the bottom of the ribs,
suggesting that most of the heat and momentum transfers take place near the top of the ribs.
Consistent with an inequality for the global skin friction coefficient and Stanton number
(St > Cf ), the relation sw/(UbΘa/h) > fx/(U2

b/h) is retained below the rib crest. Notably,
significant disparity between sw/(UbΘa/h) and fx/(U2

b/h) can be found at the top of the
ribs, and the heat transfer considerably outweighs the momentum transfer at the rib top.
Interestingly, the wall-integration terms in y/H < 0.02 do not monotonically increase with
rib separation s/h, owing to a result of two competing effects. An increase in s/h enables
the fluid to flow easily below the rib crest, resulting in increased local wall shear stress and
local wall heat flux. In contrast, an increase in s/h decreases the total surface area of the
ribs, resulting in decreases in total wall shear stress and total wall heat flux. Given that the
integrations of fx/(U2

b/h) and sw/(UbΘa/h) over the rib region (−h < y < 0) correspond
to Cf and St, respectively, the maximum values of Cf and St attained for s/h = 0.2 are
considered to be a result of those competing effects.

Figure 5 compares the turbulent and dispersion fluxes for three rib separation cases,
s/h = 0.075, 0.2 and 0.45. The turbulent fluxes of R+

12 and H+
2 are displayed in

figures 5(a–c), whereas the dispersive fluxes of T +
12 and H+

2 are shown in figures 5(d–f ).
The dispersive fluxes for the smooth wall case are not shown because they become zero
in the absence of the ribs. In figures 5(a–c), the profiles of −R+

12 and −H+
2 for the

smooth wall case are overlapped perfectly, whereas for the rib cases, −H+
2 outweighs

−R+
12 near the ribs, which contributes to the favourable breakdown of the Reynolds

analogy. Regarding the dispersion fluxes in figures 5(d–f ), T +
12 and H+

2 are generated
by the secondary mean flow between the ribs as shown in figure 6. The counter-rotating
two vortex pairs, which is induced by the spanwise inhomogeneity of the turbulent stress
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12 and H+

2 , and
(d–f ) compare dispersion fluxes of T +

12 and H+
2 .
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Figure 6. Secondary flow intensity along with the cross-sectional velocity vectors for the case with
s/h = 0.45.

distribution (Hinze 1973), induce the upward and downward mean flows, convecting the
low- and high-momentum (temperature) fluids, respectively. Figure 5(d–f ) confirms that
−H+

2 is generally smaller than −T +
12 , which diminishes the favourable breakdown of the

Reynolds analogy. Therefore, the decrease in the RA value with s/h for s/h > 0.2, as

952 A21-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

91
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.915


Dissimilar heat transfer enhancement by K–H rollers

30

(a) (b) (c)

αT
+ – νT

+

αD
+ – νD

+

Rib crest Rib crest Rib crest

20

10

0

–10

30

20

10

0

–10

30

20

10

0

–10
–0.6 –0.4 –0.2

y/H
0 0.2 0.4 –0.6 –0.4 –0.2

y/H
0 0.2 0.4 –0.6 –0.4 –0.2

y/H
0 0.2 0.4

Figure 7. Differences in the turbulent eddy diffusivities α+
T − ν+

T and the effective diffusivities due to the
secondary flows α+

D − ν+
D for (a) s/h = 0.075, (b) s/h = 0.2, and (c) s/h = 0.45.

shown in figure 2(b), can be attributed partly to the smaller dispersion heat flux compared
with the dispersive covariance.

The turbulent and dispersion fluxes occupy a large fraction of the total shear stress
and heat flux, and have considerable impacts on mean velocity and temperature profiles.
However, one needs to keep in mind that the mean velocity and temperature also affect the
turbulent and dispersion fluxes themselves. To better understand the heat and momentum
transfer due to turbulence and dispersion, we see the effective diffusivities, which are
calculated based on the concept of the gradient diffusion hypothesis. The turbulent
momentum and thermal diffusivities are defined using the linear eddy viscosity model
as

νT = −R12

(
∂〈ū〉
∂y

)−1

, αT = −H2

(
∂〈θ̄〉
∂y

)−1

. (3.7a,b)

Similarly, the dispersion momentum and thermal diffusivities may be defined as
(Nakayama, Kuwahara & Kodama 2006; Suga et al. 2017)

νD = −T12

(
∂〈ū〉
∂y

)−1

, αD = −H2

(
∂〈θ̄〉
∂y

)−1

. (3.8a,b)

To clarify the roles of turbulence and dispersion (secondary mean flow) in the breakdown
of the Reynolds analogy, figure 7 displays differences in the turbulent and dispersion
diffusivities, i.e. α+

T − ν+
T and α+

D − ν+
D , respectively. The figure confirms that the

turbulent thermal diffusivity α+
T is generally larger than the turbulent viscosity ν+

T ,
i.e. α+

T − ν+
T > 0, suggesting that turbulence enhances heat transfer more efficiently than

momentum transfer. This trend is more pronounced for s/h = 0.2 in figure 7(b), wherein
the RA value attains the maximum value. Another observation is that the region where
the turbulent diffusivity outweighs the dispersion diffusivity extends further away from
the ribs. This implies that relatively large-scale turbulent motions that cause α+

T − ν+
T > 0

dominate the flows, which will be discussed later. Similar to the turbulent diffusivities, the
difference in the dispersion diffusivities, α+

D − ν+
D , exhibits a positive value below the rib

crest. Nevertheless, the positive value of α+
D − ν+

D is much smaller than that of α+
T − ν+

T .
Additionally, the considerably smaller Θ+ in comparison with U+, as shown in figure 3,
yields a smaller temperature gradient compared with the mean velocity gradient, resulting
in a smaller −H+

2 value than the −T +
2 value, as observed in figure 5. Therefore, it can be

interpreted that the secondary flow itself does not bring an unfavourable breakdown of the
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Figure 8. Streamwise one-dimensional pre-multiplied cospectra of the turbulent heat flux and Reynolds
shear stress at y+ � 10 for (a) the smooth wall case, (b) s/h = 0.05, (c) s/h = 0.075, (d) s/h = 0.2, and
(e) s/h = 0.45.

Reynolds analogy but merely acts to restore the dissimilar heat and momentum transfer
caused by turbulent motions.

For a better understanding of the cause of the turbulent heat flux outweighing the
Reynolds shear stress, figure 8 presents streamwise one-dimensional cospectra for −R12
and −H2 at y+ � 10. The spectra of −R12 and −H2 for the smooth wall case in figure 8(a)
are observed to be very close to each other, whereas the spectra for −H2 generally
outweigh those for −R12 for the rib case, as shown in figures 8(b–e). Additionally,
the spectra of −H2 and −R12 for the rib cases exhibit a pronounced peak in the
long-wavelength region λx/H > 1, and considerable detachment between the energy
spectra for −H2 and −R12 is observed near the maximum peak location. This implies
that the favourable breakdown of the Reynolds analogy is responsible for the turbulent
motions that correspond to the maximum spectral peak. Apparently, the maximum peak
location tends to shift to a longer-wavelength region with increasing s/h, and reaches an
asymptotic value λx/H � 3. Notably, the asymptotic wavelength λx/H � 3 corresponds
roughly to the characteristic wavelength of the spanwise rollers associated with the K–H
instability; see Kuwata & Suga (2017, 2019) Suga et al. (2018). They reported that the
characteristic wavelength of the spanwise rollers is approximately 2–5.5 times as large as
the boundary layer thickness.

Evidence of the spanwise rollers associated with the K–H instability can be found in the
two-dimensional cospectra shown in figure 9, where the pre-multiplied two-dimensional
cospectra for −R12 at y+ � 10 are shown. The spectra for s/h = 0.05 in figure 9(b) show
stronger coherence in the spanwise direction compared with the smooth wall result in
figure 9(a). An enhancement in the larger spanwise wavelength region is more pronounced
with increasing s/h from 0.075 to 0.2 in figures 9(c,d), whereas the further increase in s/h
from 0.2 to 0.45 attenuates the spectra at larger spanwise wavelengths in figures 9(d,e).
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Figure 9. Two-dimensional pre-multiplied cospectra of the Reynolds shear stress at y+ � 10 for (a) the
smooth wall case, (b) s/h = 0.05, (c) s/h = 0.075, (d) s/h = 0.2, and (e) s/h = 0.45.

Notably, the spectral map for s/h = 0.05 in figure 9(b) is similar to that for turbulent
flows over drag-increasing riblets where the frictional resistance is increased due to the
presence of spanwise rollers (Garcia-Mayoral & Jiménez 2012; Endrikat et al. 2021);
however, the corresponding streamwise wavelength range for s/h = 0.05 (300 < λ+x <

600) is somewhat larger than the reported range of the spanwise rollers (65 < λ+x < 290)
for the riblet flows (Garcia-Mayoral & Jiménez 2012). A possible explanation for the
discrepancy is the difference in the rib geometry. Indeed, Endrikat et al. (2021) showed
that the streamwise wavelengths that were affected by the spanwise rollers increased
with increasing riblet size. We can assume that the reported range 2 < λx/H < 5.5 for
a porous-walled turbulent channel (Kuwata & Suga 2017, 2019; Suga et al. 2018) may
be the maximum possible size of the spanwise rollers confined by the channel walls,
and the smaller spanwise rollers may develop immaturely in slightly drag-increasing
flows over rib roughness. The one- and two-dimensional cospectra suggest that spanwise
rollers associated with the K–H instability develop for all rib cases; the weak and
immature spanwise rollers develop for s/h = 0.05 and 0.075, and the fully developed
spanwise rollers are sustained at s/h = 0.2 where the RA value attains the maximum
peak value. The spanwise rollers are less organized for s/h = 0.45, probably resulting
from increased flow disturbance near the rib crest. Given that the difference in −R+

12
and −H+

2 , which is the primary source of the favourable breakdown of the Reynolds
analogy, arises in the spectral space that is enhanced by the spanwise rollers, the favourable
breakdown of the Reynolds analogy is connected closely to the presence of spanwise
rollers.

The dissimilar temperature and velocity fluctuations induced by the spanwise rollers can
be observed from the visualization of the streamwise velocity and temperature fluctuations

952 A21-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

91
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.915


Y. Kuwata

z

Lz

Lx
u′+

θ′+

u′+ –5

(a)

(c) (d ) (e)

(b)

50
u′+

–5 50
θ′+

θ′+

u′+

θ′+

u′+

θ′+

u′+

θ′+

x

Figure 10. Snapshots of fluctuating velocity and temperature at y+ � 10 for (a) the smooth wall case,
(b) s/h = 0.05, (c) s/h = 0.075, (d) s/h = 0.2, and (e) s/h = 0.45.

displayed in figure 10. The streamwise-elongated high- and low-speed streaks develop
near the smooth wall, as shown in figure 10(a), whereas the streamwise-alternating
high- and low-speed regions, which have strong spanwise coherence, are found for
the rib cases in figures 10(b–e). For the rib cases, the wavelength of the streamwise
perturbation increases with the s/h value, and turbulence is dominated eventually by
relatively large spanwise rollers for s/h = 0.2 in figure 10(c). These observations are
consistent with the energy spectra in figures 8 and 9. It is worth noting that the
turbulence structure for s/h = 0.2 is visually similar to the active-controlled near-wall
flow by travelling-wave-like blowing/suction from the wall, which achieved substantial
favourable breakdown of the Reynolds analogy (Hasegawa & Kasagi 2011; Yamamoto
et al. 2013; Kaithakkal et al. 2020). An inspection of the temperature fluctuations
confirms that the high (low)-temperature regions are found preferentially in the
high-speed (low-speed) region, and the interfaces between the high- and low-temperature
regions are visually sharper. More noticeable is that the streamwise-alternating
patterns are more distinct for temperature fluctuations than velocity fluctuations,
suggesting that the spanwise rollers affect temperature fluctuations more than velocity
fluctuations.

Note that the origin of the spanwise rollers is the inflection point of the mean velocity
just above the rib top; however, the effects of the spanwise rollers are not confined near
the rib top. For turbulent flows over porous walls, it was reported that the spanwise
rollers dominate the boundary layer and even affect the turbulence in the logarithmic
region (Kuwata & Suga 2019; Kuwata 2022). Moreover, Kuwata & Suga (2016a) reported
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Figure 11. Contour maps of conditional average statistics along with the cross-sectional velocity vector
for s/h = 0.2: (a,c) results with the reference point (x, y, z) = (Lx/2, 10ν/uτ , Lz/2); (b,d) results with
the reference point (Lx/2, −0.2H, Lz/2). Panels (a,b) show the pressure fluctuations, and (c,d) show the
temperature fluctuations. The reference point is denoted by an open circle.

that the large-scale perturbations associated with the spanwise rollers do not decay deep
inside the porous wall even where the small-scale turbulent fluctuations are dissipated.
Similarly, for the present flows, the effects of the spanwise rollers, i.e. breakdown of
the analogy between the heat and momentum transfer, are not confined near the top
of the ribs. Indeed, −H+

2 outweighs −R+
12 even near the bottom of the ribs, as shown

figure 5, and α+
T outweighs ν+

T further away above the top of the ribs, as can be seen in
figure 7.

To provide a physical explanation for the reason why the spanwise rollers lead to
the favourable breakdown of the Reynolds analogy, we analyse the conditional average
statistics. The study focuses on the flow structures that affect directly the favourable
breakdown of the Reynolds analogy. Thus the ensemble average is obtained for the
snapshots that include the local favourable dissimilarity of the turbulent fluxes at the
reference point. Specifically, we accumulate the snapshots that satisfy the inequality
−(v′θ ′)+ > −(u′v′)+ at the reference point and apply ensemble average for those
accumulated snapshots. We select the following two reference points: one point is just
above the rib crest at (x, y, z) = (Lx/2, 10ν/uτ , Lz/2), and the other point is below the
rib crest at (Lx/2, −0.2H, Lz/2). Figure 11 presents the conditional average pressure and
temperature distributions in a centre x–y plane along with the cross-sectional conditional
average velocity vectors. Here, [p′]+ and [θ ′]+ in the figure are the conditional average
pressure and temperature fluctuations, respectively. The first notable observation is that
the events of −(v′θ ′)+ > −(u′v′)+ are accompanied by a recirculating flow whose
vortex core locates just above the rib crest. Since almost identical recirculating flow
patterns are retained for both reference point cases, a single recirculating flow motion
is responsible for the local favourable breakdown at two reference points. Moreover,
this recirculating flow pattern is retained in the other x–y plane at various z locations
(the results are not shown here). Thus the recirculating flow has two-dimensional
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roller structure, which indicates that the recirculating flow can be considered as the
footprint of the spanwise rollers. The inspection of the velocity vectors reveals that the
events −(v′θ ′)+ > −(u′v′)+ at the reference point of y+ � 10 in figure 11(a) could
be attributed to the spanwise-rollers-induced ejection, whereas those at y = −0.2H in
figure 11(b) could be attributed to the spanwise-rollers-induced sweep. As shown in
figures 11(c,d), the spanwise-rollers-induced ejection and sweep motions convect the low-
and high-temperature fluid, respectively, which generates a positive −H+

2 value. Similarly,
those motions generate a positive −R+

12; however, near the reference points, the pressure
gradient along the sweep and ejection motions is generally positive, which reveals that
the ejection and sweep motions are suppressed by pressure. That is, generation of a
positive −R+

12 tends to be inhibited by the pressure gradient term, which appears in the
momentum equation but not in the energy equation. This is the reason why the spanwise
rollers lead to the local favourable breakdown of the Reynolds analogy. Spanwise rollers
lead to a substantial enhancement of the pressure perturbation (Kuwata & Suga 2016b).
The maximum peak value of the root-mean-square of the pressure fluctuations p+

rms for
s/h = 0.2 is p+

rms = 5.3, which is increased by a factor 2.4 from the smooth wall case. This
result may be another implication that the pressure fluctuations play a crucial role in the
momentum transfer for porous wall turbulence. Finally, it should be noted that the present
results do not imply that the favourable breakdown of the Reynolds analogy can always
be achieved for porous wall turbulence because porous media typically offer substantial
pressure drag. Thus the Reynolds analogy is usually broken in the unfavourable manner
for turbulent heat transfer over porous media, as presented from the data by Nishiyama
et al. (2020) in figure 2.

4. Conclusions

To study the favourable breakdown of the Reynolds analogy by the spanwise rollers
associated with the K–H instability, we performed DNS of turbulent heat transfer over
high-aspect-ratio streamwise-aligned longitudinal ribs at the friction Reynolds number
300. The temperature was assumed as a passive scalar with Prandtl number unity to
discuss the similarity between the heat and momentum transfer. The high-aspect-ratio
longitudinal ribs lead to the favourable breakdown of the Reynolds analogy, that is, the
Reynolds analogy factor exceeds unity. The maximum Reynolds analogy factor RA = 1.45
is attained when the separation between the neighbouring ribs is 0.2 times as large as the
rib height. The favourable breakdown of the Reynolds analogy is dominantly attributed
to the enhanced turbulent heat flux compared with the Reynolds shear stress, whereas the
rib-induced secondary mean flow plays a role in diminishing the favourable breakdown
of the Reynolds analogy. The conditional average statistics reveals that the high-pressure
region, which is accompanied by the spanwise rollers, suppresses the sweep and ejection
motions, which results in the smaller Reynolds shear stress than the turbulent heat flux.

In this study, only flows with a single Prandtl number at a single Reynolds number were
considered, and the solid rib ideally has a constant wall temperature with the assumption
of the infinite conductivity. However, considering that the spanwise rollers associated with
K–H instability, which primarily cause the favourable breakdown of the Reynolds analogy,
develop over various types of porous walls at various Reynolds numbers, the passive flow
control by spanwise rollers may be used in numerous practical applications. In addition,
there is probably room for improvement of the heat transfer performance in the geometric
configuration of the ribs, which will be the focus of our future work.

952 A21-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

91
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.915


Dissimilar heat transfer enhancement by K–H rollers

Funding. The author expresses their gratitude to their colleagues PhD K. Suga and Dr M. Kaneda for
their support. A part of this study was supported financially by JSPS Japan (no. 21H01266). The numerical
calculations were carried out on the TSUBAME3.0 supercomputer in the Tokyo Institute of Technology.

Declaration of interests. The author reports no conflict of interest.

Author ORCIDs.
Y. Kuwata https://orcid.org/0000-0002-9489-2788.

REFERENCES

ALBEN, S. 2017 Improved convection cooling in steady channel flows. Phys. Rev. Fluids 2 (10), 104501.
BONS, J.P. 2002 St and cf augmentation for real turbine roughness with elevated freestream turbulence. In

ASME Turbo Expo 2002: Power for Land, Sea, and Air, pp. 349–363. American Society of Mechanical
Engineers.

BRETHOUWER, G. 2021 Much faster heat/mass than momentum transport in rotating Couette flows. J. Fluid
Mech. 912, A31.

BREUGEM, W.P., BOERSMA, B.J. & UITTENBOGAARD, R.E. 2006 The influence of wall permeability on
turbulent channel flow. J. Fluid Mech. 562, 35–72.

DIPPREY, D.F. & SABERSKY, R.H. 1963 Heat and momentum transfer in smooth and rough tubes at various
Prandtl numbers. Intl J. Heat Mass Transfer 6 (5), 329–353.

ENDRIKAT, S., MODESTI, D., GARCÍA-MAYORAL, R., HUTCHINS, N. & CHUNG, D. 2021 Influence of
riblet shapes on the occurrence of Kelvin–Helmholtz rollers. J. Fluid Mech. 913, A37.

FOROOGHI, P., STRIPF, M. & FROHNAPFEL, B. 2018 A systematic study of turbulent heat transfer over rough
walls. Intl J. Heat Mass Transfer 127, 1157–1168.

GARCIA-MAYORAL, R. & JIMÉNEZ, J. 2012 Scaling of turbulent structures in riblet channels up to Reτ �
550. Phys. Fluids 24 (10), 105101.

HASEGAWA, Y. & KASAGI, N. 2011 Dissimilar control of momentum and heat transfer in a fully developed
turbulent channel flow. J. Fluid Mech. 683, 57–93.

HINZE, J.O. 1973 Experimental investigation on secondary currents in the turbulent flow through a straight
conduit. Appl. Sci. Res. 28 (1), 453–465.

HWANG, S., DONG, K., HYUN, G. & CHO, H.H. 2008 Heat transfer with dimple/protrusion arrays in a
rectangular duct with a low Reynolds number range. Intl J. Heat Fluid Flow 29 (4), 916–926.

JIN, Y. & HERWIG, H. 2014 Turbulent flow and heat transfer in channels with shark skin surfaces: entropy
generation and its physical significance. Intl J. Heat Mass Transfer 70, 10–22.

KAITHAKKAL, A.J., KAMETANI, Y. & HASEGAWA, Y. 2020 Dissimilarity between turbulent heat and
momentum transfer induced by a streamwise travelling wave of wall blowing and suction. J. Fluid Mech.
886, A29.

KASAGI, N., HASEGAWA, Y., FUKAGATA, K. & IWAMOTO, K. 2010 Control of turbulent transport: less
friction and more heat transfer. In International Heat Transfer Conference, vol. 49439, pp. 309–324.

KATOH, K., CHOI, K.-S. & AZUMA, T. 2000 Heat-transfer enhancement and pressure loss by surface
roughness in turbulent channel flows. Intl J. Heat Mass Transfer 43 (21), 4009–4017.

KAYS, W.M. & CRAWFORD, M.E. 1993 Convective Heat and Mass Transfer, 3rd edn. McGraw-Hill.
KUWATA, Y. 2021 Direct numerical simulation of turbulent heat transfer on the Reynolds analogy over

irregular rough surfaces. Intl J. Heat Fluid Flow 92, 108859.
KUWATA, Y. 2022 Role of spanwise rollers by Kelvin–Helmholtz instability in turbulence over a permeable

porous wall. Phys. Rev. Fluids 7 (8), 084606.
KUWATA, Y. & KAWAGUCHI, Y. 2019 Direct numerical simulation of turbulence over systematically varied

irregular rough surfaces. J. Fluid Mech. 862, 781–815.
KUWATA, Y. & NAGURA, R. 2020 Direct numerical simulation on the effects of surface slope and skewness

on rough-wall turbulence. Phys. Fluids 32 (10), 105113.
KUWATA, Y. & SUGA, K. 2016a Lattice Boltzmann direct numerical simulation of interface turbulence over

porous and rough walls. Intl J. Heat Fluid Flow 61, 145–157.
KUWATA, Y. & SUGA, K. 2016b Transport mechanism of interface turbulence over porous and rough walls.

Flow Turbul. Combust. 97 (4), 1071–1093.
KUWATA, Y. & SUGA, K. 2017 Direct numerical simulation of turbulence over anisotropic porous media.

J. Fluid Mech. 831, 41–71.
KUWATA, Y. & SUGA, K. 2019 Extensive investigation of the influence of wall permeability on turbulence.

Intl J. Heat Fluid Flow 80, 108465.

952 A21-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

91
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-9489-2788
https://orcid.org/0000-0002-9489-2788
https://doi.org/10.1017/jfm.2022.915


Y. Kuwata

KUWATA, Y., TSUDA, K. & SUGA, K. 2020 Direct numerical simulation of turbulent conjugate heat transfer
in a porous-walled duct flow. J. Fluid Mech. 904, A9.

LIOU, T.-M., HWANG, J.-J. & CHEN, S.-H. 1993 Simulation and measurement of enhanced turbulent heat
transfer in a channel with periodic ribs on one principal wall. Intl J. Heat Mass Transfer 36 (2), 507–517.

MACDONALD, M., HUTCHINS, N. & CHUNG, D. 2019 Roughness effects in turbulent forced convection.
J. Fluid Mech. 861, 138–162.

MAHMOOD, G.I, SABBAGH, M.Z. & LIGRANI, P.M. 2001 Heat transfer in a channel with dimples and
protrusions on opposite walls. J. Thermophys. Heat Transfer 15 (3), 275–283.

MOTOKI, S., KAWAHARA, G. & SHIMIZU, M. 2018 Optimal heat transfer enhancement in plane Couette flow.
J. Fluid Mech. 835, 1157–1198.

MURATA, A. & MOCHIZUKI, S. 2001 Comparison between laminar and turbulent heat transfer in a stationary
square duct with transverse or angled rib turbulators. Intl J. Heat Mass Transfer 44 (6), 1127–1141.

NAGANO, Y., HATTORI, H. & HOURA, T. 2004 DNS of velocity and thermal fields in turbulent channel flow
with transverse-rib roughness. Intl J. Heat Fluid Flow 25 (3), 393–403.

NAKAYAMA, A., KUWAHARA, F. & KODAMA, Y. 2006 An equation for thermal dispersion flux transport and
its mathematical modelling for heat and fluid flow in a porous medium. J. Fluid Mech. 563, 81–96.

NISHIYAMA, Y., KUWATA, Y. & SUGA, K. 2020 Direct numerical simulation of turbulent heat transfer over
fully resolved anisotropic porous structures. Intl J. Heat Fluid Flow 81, 108515.

PEETERS, J.W.R. & SANDHAM, N.D. 2019 Turbulent heat transfer in channels with irregular roughness. Intl
J. Heat Mass Transfer 138, 454–467.

PIROZZOLI, S., BERNARDINI, M., VERZICCO, R. & ORLANDI, P. 2017 Mixed convection in turbulent
channels with unstable stratification. J. Fluid Mech. 821, 482–516.

POKRAJAC, D., FINNIGAN, J.J., MANES, C., MCEWAN, I. & NIKORA, V. 2006 On the definition of the
shear velocity in rough bed open channel flows. In Proceedings of the International Conference on Fluvial
Hydraulics, 6–8 September 2006, Lisbon, Portugal (ed. R.M.L. Ferreira, E.C.T.L. Alves, J.G.A.B. Leal &
A.H. Cardoso), vol. 1, pp. 89–98.

STALIO, E. & NOBILE, E. 2003 Direct numerical simulation of heat transfer over riblets. Intl J. Heat Fluid
Flow 24 (3), 356–371.

STROH, A., SCHÄFER, K., FOROOGHI, P. & FROHNAPFEL, B. 2020 Secondary flow and heat transfer in
turbulent flow over streamwise ridges. Intl J. Heat Fluid Flow 81, 108518.

SUGA, K., CHIKASUE, R. & KUWATA, Y. 2017 Modelling turbulent and dispersion heat fluxes in turbulent
porous medium flows using the resolved LES data. Intl J. Heat Fluid Flow 68, 225–236.

SUGA, K., MATSUMURA, Y., ASHITAKA, Y., TOMINAGA, S. & KANEDA, M. 2010 Effects of wall
permeability on turbulence. Intl J. Heat Fluid Flow 31, 974–984.

SUGA, K., OKAZAKI, Y., HO, U. & KUWATA, Y. 2018 Anisotropic wall permeability effects on turbulent
channel flows. J. Fluid Mech. 855, 983–1016.

YAMAMOTO, A., HASEGAWA, Y. & KASAGI, N. 2013 Optimal control of dissimilar heat and momentum
transfer in a fully developed turbulent channel flow. J. Fluid Mech. 733, 189–220.

952 A21-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

91
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.915

	1 Introduction
	2 DNS methodology
	3 Results and discussion
	4 Conclusions
	References

