
Math. Struct. in Comp. Science (2016), vol. 26, pp. 868–906. c© Cambridge University Press 2014

doi:10.1017/S0960129514000413 First published online 10 November 2014

Relating reasoning methodologies in linear logic and

process algebra

YUXIN DENG†, ROBERT J. S IMMONS‡ and IL IANO CERVESATO§

†Department of Computer Science and Engineering, Shanghai Jiao Tong University,

800 Dongchuan Road, Shanghai 200240, China

Email: yuxindeng@sjtu.edu.cn
‡School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

Email: rjsimmon@cs.cmu.edu
§Carnegie Mellon University, Qatar campus, Qatar

Email: iliano@cmu.edu

Received 26 April 2013; revised 3 July 2014

We show that the proof-theoretic notion of logical preorder coincides with the

process-theoretic notion of barbed preorder for a CCS-like process calculus obtained from

the formula-as-process interpretation of a fragment of linear logic. The argument makes use

of other standard notions in process algebra, namely simulation and labelled transition

systems. This result establishes a connection between an approach to reason about process

specifications, the barbed preorder, and a method to reason about logic specifications, the

logical preorder.

1. Introduction

By now, execution-preserving relationships between (fragments of) linear logic and

(fragments of) process algebras are well established (see Cervesato and Scedrov (2009) for

an overview). Abramsky observed early on that linear cut elimination resembles reduction

in CCS and the π-calculus (Milner 1989), thereby identifying processes with (some)

linear proofs and establishing the process-as-term interpretation (Abramsky 1994). The

alternative process-as-formula encoding, pioneered by Miller around the same time (Miller

1992), maps process constructors to logical connectives and quantifiers, with the effect

of relating reductions in process algebra with proof steps, in the same way that logic

programming achieves computation via proof search. Specifically, it describes the state

of an evolving concurrent system as a linear logic context. Transitions between such

process states are therefore modelled as transitions between linear logic contexts. As a

member of a context, a formula stands for an individual process in the process state. On

the right-hand side of an intuitionistic derivability judgment, it is a specification that a

process state can satisfy. The process-as-formula interpretation has been used extensively

in a multitude of domains, in particular in the fields of programming languages (Cervesato

et al. 2002; Cervesato and Scedrov 2009; Miller 1992) and security (Cervesato et al. 2000).

For example, Cervesato and Scedrov (2009) developed it into a logically-based rewriting

formalism that subsumes and integrates both process-based (e.g. the π-calculus) and

transition-based languages (e.g. Petri nets) for specifying concurrent systems. In Ehrhard

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Relating reasoning methodologies in linear 869

and Laurent (2010), a finitary π-calculus has been translated into a version of differential

interaction nets. In Dam (1994), positive linear and relevant logics are used to provide

logical accounts of static process structures by interpreting formulas on process terms

in Milner’s synchronous CCS. Recent work by Caires et al. Caires and Pfenning (2010),

Caires et al. (2012) provides a concurrent computational interpretation of intuitionistic

linear logic. Propositions are interpreted as session types, sequent proofs as processes

in the π-calculus, cut reductions as process reductions, and vice versa. Wadler (2012)

formalized a tight connection between a standard presentation of session types and linear

logic.

Not as well established is the relationship between the rich set of notions and techniques

used to reason about process specifications and the equally rich set of techniques used to

reason about (linear) logic. Indeed, a majority of investigations have attempted to reduce

some of the behavioural notions that are commonplace in process algebra to derivability

within logic. For example, Miller identified a fragment of linear logic that could be used

to observe traces in his logical encoding of the π-calculus, thereby obtaining a language

that corresponds to the Hennessy–Milner modal logic, which characterizes observational

equivalence (Miller 1992). A similar characterization was made in Lincoln and Saraswat

(1991), where a sequent Γ � Δ in a classical logic augmented with constraints was seen

as process state Γ passing test Δ. Extensions of linear logic were shown to better capture

other behavioural relations: for example, adding definitions allows expressing simulation

as the derivability of a linear implication (McDowell et al. 2003), but falls short of

bisimulation. Bisimulation was captured in FOλΔ∇, a further extension of linear logic (Tiu

and Miller 2004). Interestingly, the nominal aspect of this logic was critical in encoding

late bisimulation, while universal quantification sufficed for its open variant.

This body of work embeds approaches for reasoning about process specifications (e.g.

bisimulation or various forms of testing) into methods for reasoning with logic (mainly

derivability). Little investigation has targeted notions used to reason about logic (e.g.

proof-theoretic definitions of equivalence). More generally, techniques and tools developed

for each formalism rarely cross over – and may very well be rediscovered in due time.

Tellingly, process-based definitions and proofs are often coinductive in nature, while

techniques based on proof-theory are generally inductive.

This paper outlines one such relationship – between the inductive methods used to

reason about logic and the coinductive methods used to reason about process calculi.

On the linear logic side, we focus on the inductively-defined notion of logical preorder

(obtained by forsaking symmetry from derivability-based logical equivalence). On the

process-algebraic side, we consider an extensional behavioural relation adapted from

the standard coinductive notion of barbed preorder. We prove that, for two fragments

of linear logic and matching process calculi, these notions coincide. Our proofs rely

on other standard process algebraic notions as stepping stones, namely simulation and

labelled transition systems. The fragments of linear logic, when equipped with our labelled

transition systems, are to some extent analogous to fragments of asynchronous CCS.

Therefore, the simulation relation is tailored for asynchronous communicating processes.

The rest of the paper is organized as follows. In Section 2, we briefly review the general

fragment of linear logic we are focusing on and define the logical preorder. Then, in

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Y. Deng, R. J. Simmons and I. Cervesato 870

Section 3, we recall the standard process-as-formula interpretation for a sublanguage

without exponentials and define the notion of barbed preorder. In Section 4, we prove

their equivalence through the intermediary of a simulation preorder defined on the basis

of a labelled transition system. In Section 5, we extend our results and proof techniques to

accommodate exponentials. We conclude in Section 6 by anticipating future developments

enabled by this work.

2. First-order intuitionistic linear logic

The starting point for our investigation will be intuitionistic linear logic (Girard 1987)

sans disjunction A ⊕ B and its unit 0. The formulas of this fragment of propositional

intuitionistic linear logic are defined by the following grammar (a is an atomic formula):

A,B, C ::= a | 1 | A⊗B | A�B | � | A&B | !A.

Intuitionistic derivability for this fragment is expressed by means of sequents of the form

Γ; Δ � A

where the unrestricted context Γ and the linear context Δ are multisets of formulas. We

define contexts by means of the following grammar:

Γ,Δ ::= · | Δ, A

where ‘·’ represents the empty context, and ‘,’ denotes the context extension operation:

Δ, A is the context obtained by adding the formula A to the context Δ. As usual, we will

tacitly treat ‘,’ as an associative and commutative context union operator ‘Δ1,Δ2’ with the

unit ‘·’, which indeed allows us to think of contexts as multisets.

Derivability in intuitionistic linear logic is defined by the inference rules in Figure 1,

which follow a standard presentation of propositional intuitionistic linear logic, called

dual intuitionistic linear logic (or DILL) (Barber 1996; Cervesato and Scedrov 2009). A

sequent Γ; Δ � A is derivable if there is a valid derivation with Γ; Δ � A as its root. A

DILL sequent Γ; Δ � A corresponds to !Γ,Δ � A in Girard’s original presentation (Girard

1987). In the first part of this paper, we will be working with the sublanguage of linear

logic where the unrestricted context Γ is empty and there are no occurrences of the

formula !A. We will then abbreviate the purely linear sequent ·; Δ � A as Δ � A.

The remainder of the section is as follows: in Section 2.1 we discuss the fundamental

metatheoretical results for DILL – the core of the ‘proof theorist’s toolkit’. In Section 2.2,

we introduce the logical preorder, a natural semantic relationship between contexts that

will be our connection to the exploration of the ‘process calculist’s toolkit’ in future

sections. In Section 2.3, we reveal the nice connection between these two approaches. In

Section 2.4, we give a purely inductive characterization of the logical preorder.

2.1. Metatheory of linear logic

DILL enjoys the same metatheoretical properties as traditional logic. In particular, it

supports inlining lemmas (which is formalized as a property called the ‘admissibility of

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Relating reasoning methodologies in linear 871

Γ; a a
init

Γ, A; Δ, A C

Γ, A; Δ C
clone

Γ; 1
1R

Γ; Δ C

Γ; Δ,1 C
1L

Γ; Δ1 A Γ; Δ2 B

Γ;Δ1, Δ2 A⊗B
⊗R

Γ; Δ, A, B C

Γ; Δ, A ⊗ B C
⊗L

Γ; Δ, A B

Γ; Δ A B
R

Γ; Δ1 A Γ; Δ2, B C

Γ;Δ1, Δ2, A B C
L

Γ; Δ
R (no rule L)

Γ; Δ A Γ; Δ B

Γ; Δ A & B
&R

Γ;Δ, Ai C

Γ; Δ, A1 & A2 C
&Li

Γ; A

Γ; !A
!R

Γ, A; Δ C

Γ; Δ, !A C
!L

Fig. 1. Dual intuitionistic linear logic.

cut’) and proving any formula on the basis of its own assumption (this ‘identity’ lemma

generalizes rule init to arbitrary formulas). These properties are proved using Gentzen’s

methodology, the aforementioned standard toolkit of a working proof theorist (Gentzen

1935; Pfenning 2000). The relevant theorems are these:

Proposition 2.1 (weakening). If Γ; Δ � A, then Γ,Γ′; Δ � A for any Γ′.

Proof. By induction on the structure of the given derivation.

Proposition 2.2 (identity). Γ;A � A for all formulas A and unrestricted contexts Γ.

Proof. By induction on the structure of the formula A.

This proposition entails that the following ‘identity’ rule is admissible:

Γ;A � A
id .

Proposition 2.3 (cut admissibility). If Γ; Δ � A and Γ′; Δ′, A � C , then we have Γ′,Γ; Δ′,Δ �
C .

Proof. We generalize the induction hypothesis by proving the statement of the theorem

together with the statement ‘if Γ; · � A and Γ′, A; Δ′ � C , then Γ′,Γ; Δ′ � C .’ Then the

proof proceeds by mutual, lexicographic induction, first on the structure of the formula A,

and second by induction on the structure of the two given derivations (Pfenning 2000).

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Y. Deng, R. J. Simmons and I. Cervesato 872

Proposition 2.3 is called the ‘cut admissibility’ theorem because the proof indicates that

these two ‘cut’ rules are admissible:

Γ; Δ � A Γ′; Δ′, A � C

Γ′,Γ; Δ′,Δ � C
cut

Γ; · � A Γ′, A; Δ′ � C

Γ′,Γ; Δ′ � C
cut!

From the proof theory perspective, Propositions 2.2 and 2.3 are canonical and establish

fundamental properties of the logic; any system of rules not validating the identity and

cut admissibility theorems can hardly be called a logic. One relevant point about the

proofs of Propositions 2.2 and 2.3 is that they are quite modular with respect to various

sublanguages of linear logic. Essentially any syntactic restriction of the language of

formulas, and certainly every restriction considered in this paper, preserves the validity

of the identity and cut properties. They also hold for larger fragments of linear logic, for

example with additive disjunction or quantifiers (the latter case requires upgrading the

derivability judgment with a context Σ of first-order variables and therefore the statements

of the last two propositions above).

2.2. The logical preorder

Girard’s seminal paper on linear logic (Girard 1987) already hinted at a relationship

between the then-new formalism and concurrency. This intuition was later fleshed out

into several interpretations of process algebras into linear logic (Abramsky 1994; Miller

1992). In this paper, we will follow the process-as-formula approach (Miller 1992), which

understand each process constructor as one of the connectives or quantifiers of linear

logic. A process is therefore mapped to a linear logic formula and a system of processes

to the context Γ; Δ of a sequent Γ; Δ � A. The formula A on the right-hand side of this

sequent is viewed as an observation or property about these processes. We will formalize

and further discuss these notions in Section 3.

The study of process calculi is primarily concerned with the relationships between

different processes, but the only judgment that we have so far for linear logic is derivability,

Γ; Δ � A, which expresses that the process state (Γ; Δ) satisfies the formula or specification

A.

In the formulation of logics for process calculi, a central judgment is P |= φ, which

states that the process P satisfies some formula φ. This leads to a natural definition of a

logical preorder, where P 	l Q if P |= φ implies Q |= φ for all φ; in other words, if the set

of formulas satisfied by the former is included in the set of formulas satisfied by the latter.

See e.g. Hennessy and Milner (1985) for an example in classical process algebra and Deng

and Du (2011) and Deng et al. (2007) in probabilistic process algebra. Our goal is to give

a definition of P 	l Q where P and Q are process states in their incarnation as linear

logic formulas.

If we choose to look at the derivability judgment Γ; Δ � A as analogous to the judgment

P |= φ, then it gives us an obvious way of relating process states: a specific process state

(Γspecific; Δspecific) is generalized by a general process state (Γgeneral ; Δgeneral) if all formulas

A satisfied by the specific process are also satisfied by the general process. In other words,

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Relating reasoning methodologies in linear 873

we can define a preorder (Γspecific; Δspecific) 	l (Γgeneral ; Δgeneral), which we will also call the

logical preorder, which holds if Γspecific; Δspecific � C implies Γgeneral ; Δgeneral � C for all C .

This is an intuitively reasonable definition, but, as we explain below, that definition

requires us to assume some specific properties of the logic. By giving a slightly more

general (but ultimately equivalent) definition of the logical preorder, we can avoid making

a priori assumptions about the relationship between logical derivability and the logical

preorder.

Definition 2.4 (logical preorder). The logical preorder is the smallest relation 	l on states

such that (Γ1; Δ1) 	l (Γ2; Δ2) if, for all Γ′, Δ′, and C , we have Γ′,Γ1; Δ′,Δ1 � C implies

Γ′,Γ2; Δ′,Δ2 � C .

The only difference between our informal motivation and Definition 2.4 is that, in the

latter, the specific and general process states must both satisfy the same formula C after

being extended with the same unrestricted context Γ′ and linear context Δ′.

Because the �R and !L rules are invertible (for each rule, the conclusion implies the

premise), this definition is equivalent to the definition that does not use extended contexts.

This is because, if Γ′ = A1, . . . , An and Δ′ = B1, . . . , Bm, then the judgment Γ′,Γ; Δ′,Δ � C

can be derived if and only if the judgment

Γ; Δ � !A1 � · · ·�!An� B1 � · · ·� Bm� C

can be derived. However, the proof of invertibility relies on the metatheory of linear

logic as presented in the previous section. The more ‘contextual’ version in Definition 2.4

allows us to talk about the relationship between the derivability judgment and the logical

preorder without baking in any assumptions about invertibility.

Altogether, we are taking the view, common in practice, that the context part of the

sequent (Γ; Δ) represents the state of some system component and that the consequent A

corresponds to some property satisfied by this system. Then, the logical preorder compares

specifications on the basis of the properties they satisfy, possibly after the components

they describe are plugged into a larger system.

As a sanity check, we can verify that the relation 	l is indeed a preorder. Note that this

is independent of the actual rules defining derivability. It follows only from the definition

of the relation and the fact that informal implication is itself reflexive and transitive. This

means that 	l is a preorder for any fragment of linear logic we may care to study.

Theorem 2.5. The logical preorder 	l is a preorder.

Proof. We need to show that 	l is reflexive and transitive.

Reflexivity: Expanding the definition, the reflexivity statement, (Γ; Δ) 	l (Γ; Δ) for all A

assumes the form ‘for all Γ′, Δ′ and A if Γ,Γ′; Δ,Δ′ � A, then Γ,Γ′; Δ,Δ′ � A’. This

holds trivially.

Transitivity: We want to prove that if (Δ1; Γ1) 	l (Δ2; Γ2) and (Δ2; Γ2) 	l (Δ3; Γ3) then

(Δ1; Γ1) 	l (Δ3; Γ3). By the definition of 	l , we know that for any Γ′, Δ′ and A′,

if Γ1,Γ
′; Δ1,Δ

′ � A′ then Γ2,Γ
′; Δ2,Δ

′ � A′. Similarly, for any Γ′′, Δ′′ and A′′, if

Γ2,Γ
′′; Δ2,Δ

′′ � A′′ then Γ3,Γ
′′; Δ3,Δ

′′ � A′′. If we choose Γ′′, Δ′′ and A′′ to be precisely

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Y. Deng, R. J. Simmons and I. Cervesato 874

Γ′, Δ′ and A′ respectively, we can chain these two implications, obtaining that for any

Γ′, Δ′ and A′, if Γ1,Γ
′; Δ1,Δ

′ � A′ then Γ3,Γ
′; Δ3,Δ

′ � A′. This is however exactly the

definition of logical preorder: therefore (Δ1; Γ1) 	l (Δ3; Γ3).

Therefore 	l is indeed a preorder.

2.3. Relating cut, identity, and the logical preorder

We have now defined two judgments. The derivability judgment of linear logic, written

as Γ; Δ � A, declares that the process state (Γ; Δ) meets the specification set by A. The

logical preorder (Γ1; Δ1) 	l (Γ2; Δ2) says that the process state (Γ1; Δ1) can act as a specific

instance of the more general process state (Γ2; Δ2). Recall from the introduction that linear

logic formulas have two natures: they are both (1) the specifications that a process state

can satisfy and (2) the atomic constituents of a process state. By the convention that (·; Δ)

can be written as Δ, we can also think of the formula A as synonymous with the singleton

process state (·;A).

The derivability judgment Γ; Δ � A says that A is one specification that the process

state (Γ; Δ) satisfies; of course it may satisfy many other specifications as well – interpreted

as a specification, the formula A is specific, and the process state (Γ; Δ) is general. We

relate a specific and general process states with the logical preorder: (Γspecific; Δspecific) 	l

(Γgeneral ; Δgeneral). This suggests that, if the two natures of a formula are in harmony, we

can expect that Γ; Δ � A exactly when (·;A) 	l (Γ; Δ), a suggestion that is captured by

the following proposition:

Proposition 2.6 (harmony for the logical preorder). Γ; Δ � A if and only if A 	l (Γ; Δ).

Proof. This will be a simple corollary of Theorem 2.7 below – read on.

Proposition 2.6 should be seen as a sort of sanity check that the logical preorder’s notion

of ‘more specific’ and ‘more general’ makes sense relative to the derivability judgment’s

notion. A result that initially surprised us is that this sanity check is exactly equivalent to

the classic sanity checks of the proof theorists: identity and cut admissibility.

Theorem 2.7. Proposition 2.6 holds if and only if Propositions 2.2 and 2.3 hold.

Proof. This theorem establishes the equivalence between two propositions; both direc-

tions can be established independently.

Assuming harmony, prove identity and cut. For the identity theorem, we must show A � A

for some arbitrary formula A. By harmony, it suffices to show A 	l A, and 	l is reflexive

(Theorem 2.5).

For the cut admissibility theorem, we are given Γ; Δ � A and Γ′; Δ′, A � C and must

prove Γ′,Γ; Δ′,Δ � C . By harmony and the first given derivation, we have A 	l (Γ; Δ).

Expanding Definition 2.4, this means that, for all Γ′, Δ′, and C , we have Γ′; Δ′, A � C

implies Γ′,Γ; Δ′,Δ � C . So by letting Γ′ = Γ′, Δ′ = Δ′, and C = C and applying the

second given derivation Γ′; Δ′, A � C , we get Γ′,Γ; Δ′,Δ � C , which was what we needed

to prove.

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Relating reasoning methodologies in linear 875

Assuming identity and cut, prove harmony. For the forward implication, we are given

Γ; Δ � A and we need to prove A 	l (Γ; Δ). Expanding Definition 2.4, this means that, for

an arbitrary Γ′, Δ′ and C , we are given Γ′; Δ′, A � C and need to prove Γ′,Γ; Δ′,Δ � C .

The statement of cut admissibility, Proposition 2.3, is that if Γ; Δ � A and Γ′; Δ′, A � C ,

then Γ′,Γ; Δ′,Δ � C . We have the two premises, and the conclusion is what we needed to

prove.

For the reverse implication, we are given A 	l (Γ; Δ) and we need to prove Γ; Δ � A.

Expanding Definition 2.4, this means that, for all Γ′, Δ′, and C , we have that Γ′; Δ′, A � C

implies Γ′,Γ; Δ′,Δ � C . So by letting Γ′ = ·, Δ′ = ·, and C = A, we have that A � A

implies Γ; Δ � A. The conclusion is what we needed to show, and the premise is exactly

the statement of identity, Proposition 2.2, so we are done.

It is critical to note that Theorem 2.7 holds entirely independently of the actual definition

of the derivability judgment Γ; Δ � A. This means, in particular, that it holds independently

of the actual validity of Propositions 2.2 and 2.3 as they were presented here, and

that it holds for any alternative definition of the derivability judgment that we might

present. Furthermore, because Propositions 2.2 and 2.3 do, of course, hold for DILL,

Proposition 2.6 holds as a simple corollary of Theorem 2.7.

The proof theorist’s sanity checks are motivated by arguments that are somewhat

philosophical. In Girard’s Proofs and Types, cut and identity are motivated by an obser-

vation that hypotheses and conclusions should have equivalent epistemic strength Girard

et al. (1989). Martin-Löf’s judgmental methodology gives a weaker sanity check, local

soundness Martin-Löf (1996), which was augmented by Pfenning and Davies with a

sanity check of local completeness (Pfenning and Davies 2001). Local soundness and

completeness take the verificationist viewpoint that the meaning of a logical connective is

given by its introduction rules in a natural deduction presentation of the logic. This means

that the elimination rules must be justified as neither too strong (soundness) nor too weak

(completeness) relative to the introduction rules. The surprising (at least, initially, to us)

equivalence of Proposition 2.6 to the critical sanity checks of sequent calculi suggests that

the process state interpretation of linear logic can actually be treated as fundamental, that

is, as a philosophical organizing principle for sequent calculus presentations of logic. This

connection between the logical preorder and the core reasoning methodologies for linear

logic grounds our subsequent exploration, which will rely more heavily on the reasoning

methodologies used in the study of process algebra.

2.4. Re-characterizing the logical preorder

In the previous section, we have argued for the canonicity of the logical preorder by

motivating harmony and showing that harmony is equivalent to the canonical properties

of cut and identity. However, it is not obvious, given our discussion so far that it is easy

or even possible to prove interesting properties of the logical preorder. In this section, we

show that there is an alternate characterization of the logical preorder for DILL directly

in terms of the existing derivability judgment Γ; Δ � A. This re-characterization makes it

more obvious that the logical preorder is a fundamentally inductive concept. However, it

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Y. Deng, R. J. Simmons and I. Cervesato 876

relies on the provability rules for a specific logic, here DILL, while our original definition

is fully general.

This re-characterization depends on the auxiliary concepts of the tensorial product of a

linear context Δ, written
⊗

Δ, and exponential linearization of an unrestricted context Γ,

written !Γ, which are defined as follows:{⊗
(·) = 1⊗
(Δ, A) = (

⊗
Δ) ⊗A

{
!(·) = ·
!(Γ, A) = (!Γ), !A

The main result of this section is given by the following theorem.

Theorem 2.8. (Γ1; Δ1) 	l (Γ2; Δ2) iff Γ2; Δ2 �
⊗

Δ1 ⊗
⊗

!Γ1.

Proof. (⇒) Assume that (Γ1; Δ1) 	l (Γ2; Δ2). Then, by definition, for every Γ, Δ and A

such that Γ1,Γ; Δ1,Δ � A is derivable, there is a derivation of Γ2,Γ; Δ2,Δ � A. Take Γ =

Δ = · and A =
⊗

Δ1 ⊗
⊗

!Γ1. If we can produce a derivation of Γ1; Δ1 �
⊗

Δ1 ⊗
⊗

!Γ1,

then our desired result follows. Here is a schematic derivation of this sequent:

Γ1; Δ1 �
⊗

Δ1

⊗R, 1R, id

· · ·

Γ1;Ci � Ci

id

Γ1; · � Ci

clone

Γ1; · � !Ci

!R

Γ1; · �
⊗

!Γ1

⊗R, 1R

Γ1; Δ1 �
⊗

Δ1 ⊗
⊗

!Γ1

⊗R.

Here, we assume that Γ1 expands to C1, . . . , Ci, . . . , Cn for an appropriate n � 0.

(⇐) Assume now that Γ2; Δ2 �
⊗

Δ1 ⊗
⊗

!Γ1 with derivation D. To show that (Γ1; Δ1) 	l

(Γ2; Δ2), we need to show that, given Γ, Δ, A and a derivation D1 of Γ1,Γ; Δ1,Δ � A, we

can construct a derivation of Γ2,Γ; Δ2,Δ � A.

To do so, we start by weakening D with Γ and D1 with Γ2 by means of Proposi-

tion 2.1. Let D′ and D′
1 be the resulting derivations of Γ2,Γ; Δ2 �

⊗
Δ1 ⊗

⊗
!Γ1 and

Γ2,Γ1,Γ; Δ1,Δ � A respectively. We then build the desired derivation schematically as

follows:

D′

Γ2,Γ; Δ2 �
⊗

Δ1 ⊗
⊗

!Γ1

D′
1

Γ2,Γ1,Γ; Δ1,Δ � A

Γ2,Γ; Δ1, !Γ1,Δ � A
!L

Γ2,Γ;
⊗

Δ1 ⊗
⊗

!Γ1,Δ � A
⊗L, 1L

Γ2,Γ; Δ2,Δ � A
cut .

This replaces an extensional test that considers arbitrary contexts and goal formulas

with an existential test that only requires exhibiting a single derivation. This makes it

evident that the logical preorder is a semi-decidable relation. It is interesting to specialize

this result to the fragment of our language without exponentials nor permanent contexts.

We obtain:

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Relating reasoning methodologies in linear 877

Corollary 2.9. Δ1 	l Δ2 iff Δ2 �
⊗

Δ1.

For this language fragment, it is decidable whether Δ � A has a derivation. Therefore,

the logical preorder relation is decidable too: given Δ1 and Δ2, it is decidable whether

Δ1 	l Δ2.

3. Process interpretation and the barbed preorder

The remainder of this paper will explore the relationship between the logical preorder

just introduced and a second relation, the barbed preorder, that emerges from trying to

directly understand transitions on linear logic process states. We will do so gradually.

Indeed, this section and the next will concentrate on a fragment of intuitionistic linear

logic as presented in Section 2. This language is given by the following grammar:

Formulas A,B, C ::= a | 1 | A⊗B | a�B | � | A&B.

This fragment is purely linear (there is no exponential !A) and the antecedents of linear

implications are required to be atomic. Our derivability judgment will always have an

empty unrestricted context. Therefore, we will write it simply Δ � A. As a consequence,

the definition of logical preorder simplifies to ‘Δ1 	l Δ2 iff, for all Δ and A, if Δ1,Δ � A

then Δ2,Δ � A’.

This section is written from a process calculus perspective; we will forget, for now, that

we presented a sequent calculus in Figure 1 that assigns meaning to the propositions of

this fragment of linear logic. In that story, the meaning of propositions is given by the

definition of derivability Δ � A which treats A as a specification that the process state Δ

satisfies. In this story, we will try to understand propositions directly by describing their

behaviour as constituents of a process state directly. The result is somewhat analogous to

a fragment of CCS (Milner 1989) with CSP-style internal choice (Hoare 1985):

a atomic process that sends a

1 null process

A⊗B process that forks into processes A and B

a�B process that receives a and continues as B

� stuck process

A&B process that can behave either as A or as B

According to this interpretation, a process state Δ is a system of interacting processes

represented by formulas. Then, the empty context ‘·’ is interpreted as a null process while

the context constructor ‘,’ is a top-level parallel composition. This structure, which makes

contexts commutative monoids, is interpreted as imposing a structural equivalence among

the corresponding systems of processes. We write this equivalence as ≡ when stressing

this interpretation. It is the least relation satisfying the following equations:

Δ, · ≡ Δ,

Δ1,Δ2 ≡ Δ2,Δ1,

Δ1, (Δ2,Δ3) ≡ (Δ1,Δ2),Δ3.

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Y. Deng, R. J. Simmons and I. Cervesato 878

(Δ,1) Δ (1)

(Δ, A⊗B) (Δ, A, B) (⊗)

(Δ, A & B) (Δ, A) (&1)

(Δ, A & B) (Δ, B) (&2)

(Δ, a, a B) (Δ, B) ()

(No rule for)

Fig. 2. The transition formulation of a fragment of linear logic.

We will always consider contexts modulo this structural equality, and therefore treat

equivalent contexts as syntactically identical.

The analogy with CCS above motivates the reduction relation between process states

defined in Figure 2. A formula A⊗B (parallel composition) transitions to the two formulas

A and B in parallel (rule�⊗), for instance, and a formula A&B (choice) either transitions

to A or to B (rules �&1 and �&2). The rule corresponding to implication is also worth

noting: a formula a� B can interact with an atomic formula a to produce the formula

B; we think of the atomic formula a as sending a message asynchronously and a� B as

receiving that message.

3.1. Proof theory interlude

A proof theorist will recognize the strong relationship between the rules in Figure 2 and

the left rules from the sequent calculus presentation in Figure 1. This relationship has

been studied in details in Cervesato and Scedrov (2009). It is made explicit in the current

setting by the following proposition:

Proposition 3.1. If Δ� Δ′ and Δ′ � C , then Δ � C .

Proof. This proof proceeds by case analysis on the reduction Δ� Δ′. Most of the cases

are straightforward, we give two. If we have a reduction by �&2, then we have Δ, A � C

and must prove Δ, A&B � C , which we can do by rule &L2. Alternatively, if we have a

reduction by ��, then we have Δ � B and must prove Δ, a, a�B � C . We can prove

a � a by init, and therefore the result follows by �L.

This theorem can also be understood as demonstrating the admissibility of the following

rule:

Δ� Δ′ Δ′ � A

Δ � A
transition .

This single rule essentially replaces all the left rules in Figure 1. This includes rule �L

in the instance studied here (and larger fragment), a derivation of whose left premise can

always be inlined so the context Δ1 degenerates to just a. A detailed study, inclusive of

all proofs, can be found in Cervesato and Scedrov (2009).

Let �∗ be the reflexive and transitive closure of �. Then an easy induction proves a

variant of Proposition 3.1 that strengthens � to �∗. It yields the following admissible

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Relating reasoning methodologies in linear 879

rule.

Δ�∗ Δ′ Δ′ � A

Δ � A
transition∗

Another statement that we can prove is that given the transition rule or the transition∗ rule,

all the left rules of the sequent calculus are admissible. Such a proof is straightforward;

the only interesting case is proving �L admissible. However, we will not discuss this

property any further in this paper. (This concludes our proof theory interlude.)

We will now define the barbed preorder in Section 3.2 and explore some of its properties

in Section 3.3.

3.2. The barbed preorder

As we once again forget that we know anything about the proof-theoretic notion of

derivability, we turn to the following question: what does it mean for one process state

to behave like another process state?† Any relation R that declares Δ1 R Δ2 when Δ1’s

behaviour can be imitated by Δ2 will be called a behavioural preorder,‡ and we will

describe a set of desiderata for what makes a good behavioural preorder.

The most fundamental thing a process can do is to be observed; observations are called

‘barbs’ in the language of the process calculists. We start with the idea that we can observe

only the presence of an atomic proposition in a context. Therefore, if we want to claim

(Δ1, a) is imitated by Δ2 (that is, if (Δ1, a) R Δ2 for some behavioural preorder R), then

we should be able to observe the presence of a in Δ2. But it is not quite right to require

that Δ2 ≡ (Δ′
2, a); we need to give the process state Δ2 some time to compute before it is

forced to cough up an observation. For this reason we introduce the auxiliary notation

Δ ⇓a, which says that Δ �∗ (Δ′, a) for some Δ′. This auxiliary notion lets us define our

first desideratum: behavioural preorders should be barb-preserving. That is, if we say that

(Δ1, a) can be imitated by Δ2, then it had better be the case that Δ2 ⇓a.

The next two desiderata do not require any auxiliary concepts. If a process Δ1 is

imitated by Δ2, and Δ1 � Δ′
1, then we should expect Δ2 to be able to similarly evolve to

a state that imitates Δ′
1. In other words, behavioural preorders should be reduction-closed.

The third desideratum has to do with surrounding contexts. If Δ1 is imitated by Δ2, then

if we put both Δ1 and Δ2 in parallel with some other process state Δ′, then (Δ2,Δ
′) should

still imitate (Δ1,Δ
′). In other words, behavioural preorders should be compositional.

These three desiderata – barb-preservation, reduction-closure, and compositionality –

are standard ideas in what we have been calling the ‘process calculist’s toolkit,’ and

it would be possible to define behavioural preorders entirely in terms of these three

† The following discussion is intended to be a gentle introduction to some core ideas in process calculus.

We want to stress that, with the exception of partition-preservation, this section discusses standard and

elementary concepts in the process calculus literature.
‡ This is a convenient misnomer: while the largest behavioural preorder (which we will name the barbed

preorder) will turn out to be a true preorder, we will not stipulate that every behavioural preorder is a proper

preorder, and indeed many of them are not reflexive – the empty relation will satisfy all of our desiderata

for being a behavioural ‘preorder.’

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Y. Deng, R. J. Simmons and I. Cervesato 880

desiderata. To foreshadow the developments of the next section, we will eventually

want to show that the logical preorder Δ1 	l Δ2 is sound – that it is a behavioural

preorder according to these desiderata. This would be provable: the logical preorder is

barb-preserving, reduction-closed, and compositional. However, the logical preorder is

incomplete with respect to these three desiderata. Here is a sketch of the reason why: there

is a barb-preserving, reduction-closed, and compositional behavioural preorder which

says that the process state (a� 1, b� 1) is imitated by the process state (a� b� 1).†

However, (a� 1, b� 1) �	l (a� b� 1) because a� 1, b� 1 � (a� 1) ⊗ (b� 1) but

a� b� 1 �� (a� 1) ⊗ (b� 1).

The logical preorder is, to a degree, fixed and canonical due to its relationship with

the standard metatheory of the sequent calculus, so if we want the logical preorder

to be complete with respect to our desiderata, we have to add additional desideratum.

The culprit for incompleteness, as we identified it, was the derivation rule for A ⊗ B,

which requires us to partition a process state into two parts and observe those parts

independently. The nullary version of this is 1, the unit of ⊗, which requires us to split

a process state into zero pieces; that is only possible if the process state’s linear context

is empty. Motivated by this possibility, we add a fourth desideratum, that behavioural

preorders should be partition-preserving. In the binary case, this means that, if (Δ1a,Δ1b) is

imitated by Δ2, then it must be the case that Δ2 �∗ (Δ2a,Δ2b) where Δ1a is imitated by

Δ2a and Δ1b is imitated by Δ2b. In the nullary case, this means that, if · is imitated by Δ,

then it must be the case that Δ2 �∗ ·.‡
Formally, these desiderata are captured by the following definition. In this definition,

we use the more traditional notation from process calculus and say that Δ ↓a if Δ = (Δ′, a)

for some Δ′.

Definition 3.2. Let R be a binary relation over states. We say that R is

— barb-preserving if, whenever Δ1 R Δ2 and Δ1 ↓a for any atomic proposition a, we have

that Δ2 ⇓a.

— reduction-closed if Δ1 R Δ2 implies that whenever Δ1 � Δ′
1, there exists Δ′

2 such that

Δ2 �∗ Δ′
2 and Δ′

1 R Δ′
2.

— compositional if Δ1 R Δ2 implies (Δ′,Δ1) R (Δ′,Δ2) for all Δ′.

— partition-preserving if Δ1 R Δ2 implies that

1. if Δ1 ≡ ·, then Δ2 �∗ ·,

† The proof that there is a barb-preserving, reduction-closed, and compositional relation R such that

(a� 1, b� 1) R (a� b� 1) is complex. The simplest way we know how to establish this is to define

a labelled transition system which is equivalent to the largest barb-preserving, reduction-closed, and

compositional relation. We can then show that, according to this labelled transition system, (a� 1, b� 1) is

related to (a� b� 1) in a simulation for asynchronous communicating processes. This is essentially the same

development we will perform in Section 4 for 	b, the largest barb-preserving, reduction-closed, compositional,

and partition-preserving relation, that we are about to define.
‡ A concept reminiscent of this notion of partition-preservation has been given in probabilistic process

algebras (Deng and Hennessy 2011); the similar concept goes by the name Markov bisimulation in that

setting. The idea is that, in order to compare two distributions, we decompose them into an equal number of

point distributions on states and then compare states pointwise. In the literature there are also formalisms

with locality-aware semantics, such as the synchronous CCS and spatial logic (Caires and Cardelli 2003).

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Relating reasoning methodologies in linear 881

2. for all Δ1a and Δ1b, if Δ1 ≡ (Δ1a,Δ1b) then there exist Δ2a and Δ2b such that

Δ2 �∗ (Δ2a,Δ2b) and furthermore Δ1a R Δ2a and Δ1b R Δ2b.

These desiderata are useful in letting us conclude that one process does not imitate

another. Barb-preservation lets us conclude that a is not imitated by (b, b, b), and reduction-

closure furthermore lets us conclude that (b, b� a) is not imitated by (b, b, b). Partition-

preservation lets us conclude that (a� b, a� c) is not imitated by a� a�(b⊗ c).

Compositionality lets us conclude that (a� b, b� c) is not imitated by (a� c), because

if we put both process states in parallel with the process state b, then we would be able

to step, in the former case, to (a� b, c) and then observe that (a� b, c) ↓c; the process

(a� c, b) is unable to keep up.

Concluding that (a� 1, b� 1) is not imitated by (a� b� 1) – as is required by

our goal of completeness relative to the logical preorder – requires compositionality

and partition-preservation. If (a� 1, b� 1) is imitated by (a� b� 1), then by partition

preservation (and the fact that (a� b� 1) can make no transitions), we must be able

to split (a� b� 1) into two parts, Δ and Δ′ so that a� 1 is imitated by Δ and b� 1

is imitated by Δ′. That necessarily means that Δ = · and Δ′ = (a� b� 1) or vice versa.

Because of compositionality, if (a� 1) were imitated by · then (a, a� 1) would be imitated

by a, but (a, a� 1)�∗ · and a ��∗ ·. Therefore, (a� 1) cannot be imitated by ·, and by a

similar argument (b� 1) cannot be imitated by ·. This furthermore refutes the proposition

that (a� 1, b� 1) is imitated by (a� b� 1), as we had hoped. Partition-preservation is

discussed further in Remark 4.17.

Our desiderata allow us to define the most generous behavioural preorder by coin-

duction; we call this relation the barbed preorder. The definition has an innocent-until-

proven-guilty flavour: unless there is some reason, arising from the desiderata, that one

process cannot imitate another, then the barbed preorder declares the two process states

to be in relation. This coinductive definition is standard from process algebra (modulo

our additional requirement of partition-preservation).

Definition 3.3 (barbed preorder). The barbed preorder, denoted by 	b, is the largest

relation over process states which is barb-preserving, reduction-closed, compositional and

partition-preserving.

Barbed equivalence, which is the symmetric closure of the barbed preorder, has been

widely studied in concurrency theory, though its appearance in linear logic seems to be

new. It is also known as reduction barbed congruence and used in a variety of process

calculi (Honda and Yoshida 1995; Rathke and Sobocinski 2008; Fournet and Gonthier

2005; Deng and Hennessy 2011).

3.3. Properties of the barbed preorder

Having defined the barbed preorder as the largest barb-preserving, reduction-closed,

compositional, and partition-preserving binary relation over process states, we will close

out this section by proving a few technical lemmas.

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Y. Deng, R. J. Simmons and I. Cervesato 882

We start with three small ‘multistep’ lemmas: the first lets us act as if reduction closure

was defined exclusively in terms of �∗, the second lets us act as if barb-preservation

was defined exclusively in terms of ⇓a, and the third lets us do something similar for

partition preservation. These will be used later on, and also help us prove that 	b is

actually a preorder. Theorem 3.7 establishes that 	b is indeed a preorder. Differently from

the common phrase ‘behavioural preorders’ discusses above, which are not necessarily

preorders, our barbed preorder is a genuine preorder. Finally, Lemma 3.9 is a technical

lemma about observations that we need later on in the proof of Theorem 4.12, and the

atom renaming lemma (Lemma 3.8) is needed to prove this technical lemma.

Lemma 3.4 (multistep reduction closure). Suppose Δ1 	b Δ2. If Δ1 �∗ Δ′
1, then there

exists a Δ′
2 such that Δ2 �∗ Δ′

2 and Δ′
1 	b Δ′

2.

Proof. We proceed by induction on the number of steps in Δ1 �∗ Δ′
1.

— Suppose Δ1 �∗ Δ′
1 in zero steps (that is, Δ1 ≡ Δ′

1). Then Δ2 �∗ Δ2 in zero steps and

Δ′
1 	b Δ2 by assumption.

— Suppose Δ1 � Δ′′
1 �

∗ Δ′
1. Since Δ1 	b Δ2, there exists some Δ′′

2 such that Δ2 �∗ Δ′′
2

and Δ′′
1 	b Δ′′

2. The induction hypothesis then implies the existence of some Δ′
2 such

that Δ′′
2 �

∗ Δ′
2 and Δ′

1 	b Δ′
2. Since the relation �∗ is transitive, we have Δ2 �∗ Δ′

2 as

required.

Lemma 3.5 (multistep barb-preservation). Suppose Δ1 	b Δ2. If Δ1 ⇓a then Δ2 ⇓a.

Proof. If Δ1 ⇓a, then there exists Δ′
1 with Δ1 �∗ Δ′

1 and Δ′
1 ↓a. By multistep reduction

closure (Lemma 3.4), there exists Δ′
2 such that Δ2 �∗ Δ′

2 and Δ′
1 	b Δ′

2. The latter and

Δ′
1 ↓a together imply Δ′

2 ⇓a, i.e. there exists some Δ′′
2 such that Δ′

2 �
∗ Δ′′

2 and Δ′′
2 ↓a. The

transitivity of �∗ then yields Δ2 �∗ Δ′′
2. It follows that Δ2 ⇓a.

Lemma 3.6 (multistep partition-preservation). Suppose Δ1 	b Δ2. If Δ1 �∗ ·, then Δ2 �∗ ·,
and if Δ1 �∗ (Δ1a,Δ1b), then there exist Δ2a and Δ2b such that Δ2 �∗ (Δ2a,Δ2b), Δ1a 	b Δ2a,

and Δ1b 	b Δ2b.

Proof. In the first case, we assume Δ1 �∗ · and have by multistep reduction closure

(Lemma 3.4) that Δ2 �∗ Δ′
2 such that · 	b Δ′

2. Then, by partition-preservation, we have

that Δ′
2 �

∗ ·. The result then follows by the transitivity of �∗.

In the second case, we assume Δ1 �∗ (Δ1a,Δ1b) and have by multistep reduction closure

(Lemma 3.4) that Δ2 �∗ Δ′
2 such that (Δ1a,Δ1b) 	b Δ′

2. Then, by partition-preservation, we

have that Δ′
2 �

∗ (Δ2a,Δ2b) such that Δ1a 	b Δ2a and Δ1b 	b Δ2b. The result then follows

by the transitivity of �∗.

The following three proofs, of Theorem 3.7, Lemma 3.8, and Lemma 3.9, proceed by

coinduction. We prove a property P of the barbed preorder 	b by defining some relation

R in such a way that it is barb-preserving, reduction-closed, compositional, and partition-

preserving, which establishes that R ⊆ 	b. Below we only provide a detailed proof for

Lemma 3.9.

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Relating reasoning methodologies in linear 883

Theorem 3.7. 	b is a preorder.

Proof. A preorder is a reflexive and transitive relation. It is straightforward to show

that the identity relation, Rid such that Δ Rid Δ for all Δ, is barb-preserving, reduction-

closed, compositional, and partition-preserving. Since 	b is the largest relation with these

properties, we have that Rid ⊆ 	b and therefore 	b is reflexive.

For transitivity we can define the relation

R := {(Δ1,Δ3) | there is some Δ2 with Δ1 	b Δ2 and Δ2 	b Δ3}

and show that R ⊆ 	b.

Lemma 3.8 (atom renaming). If ρ is a bijective function substituting atomic propositions

for atomic propositions, then ρΔ1 	b ρΔ2 implies Δ1 	b Δ2.

Proof. Two extra lemmas are needed to prove this property. The first, the transition

renaming property, is that Δ � Δ′ iff ρΔ � ρΔ′. This is shown by case analysis on the

given reduction. The second, the multistep transition renaming property, is that Δ�∗ Δ′ iff

ρΔ �∗ ρΔ′. This is shown by induction on the structure of the given reduction and the

transition renaming property. Then we define the relation R := {(Δ1,Δ2) | ρΔ1 	b ρΔ2}
and show that R ⊆ 	b.

Lemma 3.9 (fresh atom removal). If (Δ1, a) 	b (Δ2, a), where a occurs neither in Δ1 nor

in Δ2, then Δ1 	b Δ2.

Proof. Consider the relation

R := {(Δ1,Δ2) | there exists a �∈ (Δ1 ∪ Δ2) with (Δ1, a) 	b (Δ2, a)}.

It will suffice to show that R ⊆ 	b, because in that case, given (Δ1, a) 	b (Δ2, a) for some

a that occurs neither in Δ1 or Δ2, we will know that Δ1 R Δ2, which will in turn imply

Δ1 	b Δ2. We can show that R is barb-preserving, reduction-closed, compositional and

partition-preserving. Suppose Δ1 R Δ2, that is that (Δ1, a) 	b (Δ2, a) for some arbitrary a

such that a �∈ Δ1 and a �∈ Δ2.

Barb-preserving. We assume Δ1 ↓b for some arbitrary b and must show that Δ2 ⇓b. It

cannot be the case that Δ1 ↓a, so we have a �= b. Pick another fresh atomic proposition

c �∈ (Δ1 ∪ Δ2). By the definition of ↓b and the assumption Δ1 ↓b, we know that

Δ1 ≡ Δ′
1, b. By the compositionality on (Δ1, a) 	b (Δ2, a) we get (b� a� c,Δ1, a) 	b

(b� a� c,Δ2, a). Using rule �� we infer that

(b� a� c,Δ1, a)� (a� c,Δ′
1, a)� (Δ′

1, c),

which means (b� a� c,Δ1, a) ⇓c. Then we have (b� a� c,Δ2, a) ⇓c by multistep

barb-preservation (Lemma 3.5). That is, (b� a� c,Δ2, a) �∗ (Δ′, c). By induction

on the structure of (8), b� a� c must be consumed to produce c, meaning that

Δ2 �∗ (Δ′
2, b) and, consequently, Δ2 ⇓b.

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Y. Deng, R. J. Simmons and I. Cervesato 884

Reduction-closed. We assume Δ1 � Δ′
1 for some arbitrary Δ′

1. Clearly, we have (Δ1, a)�
(Δ′

1, a). By the definition of reduction-closure on (Δ1, a) 	b (Δ2, a), we obtain (Δ2, a)�∗

Δ∗ and (Δ′
1, a) 	b Δ∗. Moreover, the former implies Δ∗ ≡ (Δ′

2, a) with a �∈ Δ′
2 for

some Δ′
2, by induction on the multistep reduction. So we can rewrite the latter as

(Δ′
1, a) 	b (Δ′

2, a), which means that Δ′
1 R Δ′

2.

Compositional. We must show (Δ,Δ1) R (Δ,Δ2) for arbitrary Δ. Pick another fresh atomic

proposition b �∈ (Δ1 ∪ Δ2 ∪ Δ). By atom renaming (Lemma 3.8) on (Δ1, a) 	b (Δ2, a)

we get (Δ1, b) 	b (Δ2, b). Then (Δ,Δ1, b) 	b (Δ,Δ2, b) for any Δ by compositionality. It

follows that (Δ,Δ1) R (Δ,Δ2).

Partition-preserving. We first assume Δ1 ≡ ·. Since (Δ1, a) 	b (Δ2, a) we have a 	b (Δ2, a).

Then (a, a� 1) 	b (Δ2, a, a� 1) by compositionality. By rule ��, rule �1, and the

transitivity of �∗, we see that (a, a� 1) �∗ ·. Then (Δ2, a, a� 1) �∗ · by multistep

partition-preservation. By structural induction on Δ2, we obtain that Δ2 �∗ ·.
We next assume Δ1 ≡ (Δ1a,Δ1b) and must show that Δ2 �∗ (Δ2a,Δ2b) such that

Δ1a R Δ2a and Δ1b R Δ2b. Pick another fresh atomic proposition b �∈ (Δ1 ∪ Δ2). By

the compositionality on (Δ1, a) 	b (Δ2, a), we have (Δ1a,Δ1b, a, b) 	b (Δ2, a, b). By the

definition of partition-preserving, we get (Δ2, a, b) �∗ (Δ′
2a,Δ

′
2b) with (Δ1a, a) 	b Δ′

2a

and (Δ1b, b) 	b Δ′
2b. By barb-preserving we have Δ′

2a ⇓a, which means Δ′
2a ≡ (Δ2a, a) for

some Δ2a with a �∈ Δ2a by induction on the reduction steps. It follows that Δ1a R Δ2a.

Similarly, we can obtain Δ′
2b ≡ (Δ2b, b) for some Δ2b with Δ1b R Δ2b.

This suffices to show that R ⊆ 	b, which concludes the proof.

Note that Lemma 3.9 is invalid if a is not fresh with respect to Δ1 and Δ2. For example,

we have

a 	b (a� a, a) but (·) �	b (a� a).

This will be easy to check when using the results in Section 4.5.

4. Labelled transitions and the simulation preorder

We will now show that, for the restricted fragment of linear logic given in Section 3, the

logical preorder and the barbed preorder coincide. Observe that it is hard to directly use

the barbed preorder to show that one process actually imitates another. For example, in

order to check the compositionality of a relation, all possible surrounding contexts need

to be considered due to the presence of a universal quantifier. To overcome the problem,

the key idea here is to coinductively define a third preorder, which is a labelled simulation

relation based on labelled transition systems, so as to act as a stepping stone between the

logical and barbed preorders.

The overall structure of the relevant proofs up to and including this section is shown

in Figure 3. In Sections 4.1–4.3, we will present our stepping stones: a labelled transition

system and the simulation preorder, and in Section 4.4 we will prove some properties of

this preorder. Then, in Section 4.5 we show that the simulation and barbed preorders

coincide, and in Section 4.6 we show that the simulation and logical preorders coincide;

it is an obvious corollary that the logical and barbed preorders coincide.

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Relating reasoning methodologies in linear 885

Δ′ �s Δ

Δ′ �l Δ

Δ′ �c Δ

Barbed

Preorder

A �s Δ

Simulation Preorder

Δ � A

Derivability

A �l Δ

Logical Preorder

Th. 4.16
Th. 4.14

Cut

(Th. 2.7)
Identity

(Th. 2.7)

Th. 4.18

(↑ by Th. 4.14)

(↓ by Th. 4.16)

Th. 4.12

Th. 4.13

Fig. 3. Visual summary of equivalence proofs in Sections 3 and 4.

4.1. Labelled transitions

We will characterize the barbed preorder as a coinductively defined relation. For that

purpose, we give a labelled transition semantics for states. Labels, or actions, are defined

by the following grammar:

Non-receive actions α ::= τ | !a

Generic actions β ::= α | ?a

We distinguish ‘non-receive’ labels, denoted α, as either the silent action τ or a label !a

representing a send action. Generic labels β extend them with receive actions ?a.

The labelled transition semantics for our states, written using the judgment Δ
β

−→ Δ′,

is defined by the rules in Figure 4. Since � is a process that is stuck, it has no action

to perform. We write
τ

=⇒ for the reflexive transitive closure of
τ−→, and Δ

β
=⇒ Δ′ for

Δ
τ

=⇒
β

−→ τ
=⇒ Δ′, if β �= τ. Note that τ transitions correspond to reductions, as expressed

by Lemma 4.1:

Lemma 4.1. Δ1
τ−→ Δ2 if and only if Δ1 � Δ2, and Δ1

τ
=⇒ Δ2 if and only if Δ1 �∗ Δ2.

Proof. The proof of the first statement is by case analysis on the τ transition rules in

Figure 4 in one direction and by case analysis on the reduction rules in Figure 2 in the

other.

The second statement follows from the first by induction on the number of steps taken.

Now we can use the labelled transition system to define a simulation relation; simulation

is defined by coinduction and echoes the definition of the barbed preorder in many ways.

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Y. Deng, R. J. Simmons and I. Cervesato 886

(Δ, a)
!a−→ Δ

lts−atom
(Δ, a B)

?a−→ (Δ, B)
lts

(Δ,1)
τ−→ Δ

lts1
(Δ, A⊗B)

τ−→ (Δ, A, B)
lts⊗

(Δ, A & B)
τ−→ (Δ, A)

lts &1
(Δ, A & B)

τ−→ (Δ, B)
lts &2

(No rule for)
Δ1

!a−→ Δ1 Δ2
?a−→ Δ2

(Δ1, Δ2)
τ−→ (Δ1, Δ2)

lts−com

Fig. 4. Labelled transition system.

However, it critically lacks the compositionality requirement that appears in the definition

of the barbed preorder.

Definition 4.2 (simulation). A relation R between two processes represented as Δ1 and Δ2

is a simulation if Δ1 R Δ2 implies

1. if Δ1 ≡ ·, then Δ2
τ

=⇒ ·;
2. if Δ1 ≡ (Δ′

1,Δ
′′
1), then Δ2

τ
=⇒ (Δ′

2,Δ
′′
2) for some Δ′

2,Δ
′′
2 such that Δ′

1 R Δ′
2 and Δ′′

1 R Δ′′
2;

3. whenever Δ1
α−→ Δ′

1, there exists Δ′
2 such that Δ2

α
=⇒ Δ′

2 and Δ′
1 R Δ′

2;

4. whenever Δ1
?a−→ Δ′

1, there exists Δ′
2 such that (Δ2, a)

τ
=⇒ Δ′

2 and Δ′
1 R Δ′

2;

We write Δ1 	s Δ2 if there is some simulation R such that Δ1 R Δ2.

The last clause in the above definition is inspired by relevant notions of bisimulation

for asynchronous process calculi e.g. Amadio et al. (1998). The ‘natural’ answer for Δ2 to

perform the action ?a is not compulsory. If Δ2
?a

=⇒ Δ′
2, then we can also obtain Δ′

2 by

the transition (Δ2, a)
τ

=⇒ Δ′
2. In the asynchronous setting, the sender of a message does

not know when the message will be consumed by a receiver because an asynchronous

observer cannot directly detect the receive actions of the observed process.

4.2. Examples

The barbed preorder was good at showing that one process was not imitated by another,

but the simulation preorder is useful for showing that a process state is simulated by

another. We will give a few examples, most of which implicitly utilize the following

property:

Remark 4.3. Given a formula A and a context Δ, to check if A 	s Δ holds, there is no

need to consider clause (2) in Definition 4.2 because it holds vacuously.

Proof. We are given that A ≡ (Δ′
1,Δ

′′
1) and we have to pick a Δ′

2 and a Δ′′
2 such that

Δ2
τ

=⇒ (Δ′
2,Δ

′′
2), Δ′

1 	s Δ′
2, and Δ′′

1 	s Δ′′
2. Without loss of generality we can say that

Δ′
1 ≡ A and Δ′′

1 ≡ · – the other case, where Δ′
1 ≡ · and Δ′′

1 ≡ A, is symmetric. We pick Δ′
2

to be Δ2, pick Δ′′
2 to be ·, and we must show

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Relating reasoning methodologies in linear 887

— Δ2
τ

=⇒ (Δ2, ·) – this is immediate from the reflexivity of
τ

=⇒ and the definition of

barbed equivalence.

— A 	s Δ1 – this is what we initially set out to prove, so it follows immediately from the

coinduction hypothesis.

— · 	s · – this follows from condition 1, none of the other conditions are applicable.

Given the remark above, we can show that � 	s Δ for any Δ, because � is neither empty

nor able to perform any actions. Therefore, conditions 1, 3, and 4 are met vacuously.

However, 1 �	s �, because � cannot be reduced to · and 1 can (condition 1).

As another example, we have that (a� a) 	s (·). Ignoring condition 2 as before, the

only possible transition for (a � a) is (a � a)
?a−→ a. We match this action, according

to condition 4, by letting a
τ

=⇒ a; we then must show a 	s a, which again follows

by reflexivity (Lemma 4.8, which we will be proving momentarily). This example is

reminiscent of the law a.a = 0 in the asynchronous π-calculus (Amadio et al. 1998). If

a process receives a message and then sends it out, it does not exhibit any visible action

to an observer who communicates asynchronously with the process. Here we also notice

that simulation is incomparable with trace inclusion relation, with the usual definition of

traces on labelled transition systems. On one hand, the process (a� a) has the trace ?a!a

while (·) does not. On the other hand, the process (a� 1) ⊗(b� 1) is not simulated by

(a� b� 1)&(b� a� 1) but the traces of the former also appear in the latter.

Finally, we show that (a� b� A) 	s (b� a� A). The only transition possible for

the (purportedly) simulated process state is (a� b� A)
?a−→ (b�A), which means that

we can proceed by showing that (b� a� A, a)
τ

=⇒ (b� a� A, a) (immediate from the

reflexivity of
τ

=⇒) and that (b� A) 	s (b� a� A, a). To prove this, we observe that the

only transition possible for the (purportedly) simulated process is (b� A)
?b−→ A, which

means that we can proceed by showing that (b� a� A, a, b)
τ

=⇒ A (which can be done

in two steps) and that A 	s A, which again follows from reflexivity (Lemma 4.8 again).

Another way of looking at this last example is that, in the case where A is 1, we have

proved that the binary relation

{(a� b� 1, b� a� 1), (b� 1, (b� a� 1, a)), (1, 1), (·, ·)}

is a simulation. The simulation also works in the other direction – (b� a� A) 	s (a�
b� A). Again in the case where A is 1, this is the same as proving that the binary relation

{(b� a� 1, a� b� 1), (a� 1, (a� b� 1, b)), (1, 1), (·, ·)}

is a simulation.

However, the two process states are not bisimilar according to the usual definition of

bisimilarity: there is no single relation that simultaneously establishes that b� a� 1 is

simulated by a� b� 1 and, if we flip the relation around, establishes that a� b� 1

is simulated by b� a� 1. To see why, consider the pair (b� 1, (b� a� 1, a)) in the

first of the two simulation relations above. The two process states in the pair are not

similar in both directions: b� 1 	s (b� a� 1, a) but (b� a� 1, a) �	s b� 1, because

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Y. Deng, R. J. Simmons and I. Cervesato 888

(b� a� 1, a)
!a−→ b� a� 1 while b� 1 � !a=⇒ (Condition 3). Thus, there is no way to

construct a bisimulation.

4.3. Properties of labelled transitions

Towards the ultimate end of proving that the largest simulation, 	s, is actually a preorder,

we will need a few facts about labelled transitions.

Lemma 4.4 (compositionality of labelled transitions).

1. If Δ1

β
−→ Δ2, then (Δ,Δ1)

β
−→ (Δ,Δ2).

2. If Δ1

β
=⇒ Δ2, then (Δ,Δ1)

β
=⇒ (Δ,Δ2).

Proof. To prove the first statement, we proceed by induction on the derivation of

Δ1

β
−→ Δ2. There are 7 cases according to Figure 4. All of them are immediate, except the

case of lts−com, which we expand. Suppose Δ1 ≡ (Δ′
1,Δ

′′
1), Δ2 ≡ (Δ′

2,Δ
′′
2), Δ′

1

!a−→ Δ′
2 and

Δ′′
1

?a−→ Δ′′
2. By induction, we have (Δ,Δ′

1)
!a−→ (Δ,Δ′

2) for any Δ. Using rule lts−com on

this derivation and Δ′′
1

?a−→ Δ′′
2, we obtain (Δ,Δ′

1,Δ
′′
1)

τ−→ (Δ,Δ′
2,Δ

′′
2), i.e. (Δ,Δ1)

τ−→ (Δ,Δ2).

The second statement follows from the first by induction on the number of steps taken.

Lemma 4.5 (partitioning). If (Δ1,Δ2)
β

−→ Δ∗ then we must be in one of the following four

cases:

1. Δ1

β
−→ Δ′

1 and Δ∗ ≡ (Δ′
1,Δ2);

2. Δ2

β
−→ Δ′

2 and Δ∗ ≡ (Δ1,Δ
′
2);

3. Δ1
?a−→ Δ′

1 and Δ2
!a−→ Δ′

2 for some a, such that β is τ and Δ∗ ≡ (Δ′
1,Δ

′
2);

4. Δ1
!a−→ Δ′

1 and Δ2
?a−→ Δ′

2 for some a, such that β is τ and Δ∗ ≡ (Δ′
1,Δ

′
2).

Proof. There are three possibilities, depending on the forms of β.

— β ≡ !a for some a. Then the last rule used to derive the transition (Δ1,Δ2)
β

−→ Δ∗

must be lts−atom in Figure 4. So a is a member either in Δ1 or in Δ2. Correspondingly,

we are in case 1 or 2.

— β ≡ ?a for some a. Then the last rule used to derive the transition (Δ1,Δ2)
β

−→ Δ∗

must be lts�. So a�B is a member either in Δ1 or in Δ2. Correspondingly, we are

in case 1 or 2.

— β ≡ τ. If the last rule used to derive the transition (Δ1,Δ2)
β

−→ Δ∗ is not lts−com,

then the transition is given rise by a particular formula, and we are in case 1 or 2. If

lts−com is the last rule used, there is an input action and an output action happening

at the same time. Either both of them come from Δ1, or both of them come from Δ2,

or one action from Δ1 and the other from Δ2. Consequently we are in one of the four

cases above.

In the next lemma, we write
τ⇐= for the reciprocal of

τ
=⇒.

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Relating reasoning methodologies in linear 889

Lemma 4.6.
τ⇐= is a simulation (and, consequently, Δ1

τ
=⇒ Δ2 implies Δ2 	s Δ1).

Proof. We will show that the four conditions in Definition 4.2 are satisfied by
τ⇐=,

which proves that the relation is a simulation; the corollary follows immediately by virtue

of 	s being the largest simulation. Suppose Δ2
τ

=⇒ Δ1.

1. If Δ2 ≡ ·, then obviously Δ1
τ

=⇒ Δ2 ≡ ·.
2. If Δ2 ≡ Δ′

2,Δ
′′
2, then Δ1

τ
=⇒ (Δ′

2,Δ
′′
2). Taking zero steps we have Δ′

2

τ⇐= Δ′
2 and

Δ′′
2

τ⇐= Δ′′
2 as required.

3. If Δ2
α−→ Δ′

2, then Δ1
τ

=⇒ Δ2
α−→ Δ′

2 and therefore Δ2
α

=⇒ Δ′
2. Taking zero steps we

have Δ′
2

τ⇐= Δ′
2 as required.

4. Now suppose Δ2
?a−→ Δ′

2. Then there are Δ′′
2 and A such that Δ2 ≡ (Δ′′

2 , a�A) and

Δ′
2 ≡ (Δ′′

2 , A). From (Δ1, a) we have the following matching transition:

(Δ1, a)
τ

=⇒ (Δ2, a) by compositionality (Lemma 4.4)

≡ (Δ′′
2 , a�A, a)

τ−→ (Δ′′
2 , A) by rule lts−com in Figure 4

≡ Δ′
2

Taking zero steps, we have Δ′
2

τ⇐= Δ′
2 as required.

4.4. Properties of the simulation preorder

It was relatively simple to prove that the barbed preorder was, in fact, a preorder. It is a

bit more difficult to do so for the simulation preorder; our goal in this section is to prove

Theorem 4.11, that the simulation preorder 	s is a proper preorder.

The structure of this section mirrors the structure of Section 3.3 (Properties of the

barbed preorder). First we will prove a technical lemma that lets us act as if simulation

was defined exclusively in terms of
β

=⇒ rather than
β

−→, and then we prove that simulation

is reflexive (Lemma 4.8), compositional (Lemma 4.9), and transitive (Lemma 4.10), from

which Theorem 4.11 is an immediate result.

Lemma 4.7. If Δ1 	s Δ2 then

1. whenever Δ1
τ

=⇒ ·, then Δ2
τ

=⇒ ·;
2. whenever Δ1

τ
=⇒ (Δ′

1,Δ
′′
1), there exist Δ′

2 and Δ′′
2 such that Δ2

τ
=⇒ (Δ′

2,Δ
′′
2) and Δ′

1 	s Δ′
2

and furthermore Δ′′
1 	s Δ′′

2;

3. whenever Δ1
α

=⇒ Δ′
1, there exists Δ′

2 such that Δ2
α

=⇒ Δ′
2 and Δ′

1 	s Δ′
2.

Proof. We first prove a particular case of the third statement:

If Δ1
τ

=⇒ Δ′
1 then there exists some Δ′

2 such that Δ2
τ

=⇒ Δ′
2 and Δ′

1 	s Δ′
2. (1)

We proceed by induction on the length of the transition Δ1
τ

=⇒ Δ′
1.

— If Δ1 ≡ Δ′
1, then Δ2

τ
=⇒ Δ2 by the reflexivity of

τ
=⇒, and Δ1 	s Δ2 by assumption.

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Y. Deng, R. J. Simmons and I. Cervesato 890

— Suppose Δ1
τ

=⇒ Δ′′
1

τ−→ Δ′
1 for some Δ′′

1. Since Δ1 	s Δ2, by the induction hypothesis

there exists Δ′′
2 such that Δ2

τ
=⇒ Δ′′

2 and Δ′′
1 	s Δ′′

2. The latter implies the existence

of some Δ′
2 such that Δ′′

2

τ
=⇒ Δ′

2 and Δ′
1 	s Δ′

2. The transitivity of
τ

=⇒ entails that

Δ2
τ

=⇒ Δ′
2.

We are now ready to prove the lemma.

1. Suppose Δ1 	s Δ2 and Δ1
τ

=⇒ ·. By (1), there exists Δ′
2 such that Δ2

τ
=⇒ Δ′

2 and

· 	s Δ′
2. By Definition 4.2, we have Δ′

2

τ
=⇒ ·. The transitivity of

τ
=⇒ entails Δ2

τ
=⇒ ·.

2. Suppose Δ1 	s Δ2 and Δ1
τ

=⇒ (Δ′
1,Δ

′′
1). By (1), there exists Δ′′′

2 such that Δ2
τ

=⇒ Δ′′′
2

and (Δ′
1,Δ

′′
1) 	s Δ′′′

2 . By Definition 4.2, there exist Δ′
2 and Δ′′

2 such that Δ′′′
2

τ
=⇒ (Δ′

2,Δ
′′
2),

Δ′
1 	s Δ′

2 and Δ′′
1 	s Δ′′

2. By the transitivity of
τ

=⇒, we have Δ2
τ

=⇒ (Δ′
2,Δ

′′
2).

3. Suppose Δ1
α

=⇒ Δ′
1 where α �= τ. Then there are Δ11 and Δ12 with Δ1

τ
=⇒ Δ11

α−→
Δ12

τ
=⇒ Δ′

1. By (1), there is some Δ21 such that Δ2
τ

=⇒ Δ21 and Δ11 	s Δ21. By

Definition 4.2, there is Δ22 such that Δ21
α

=⇒ Δ22 and Δ12 	s Δ22. By (1) again, there

is Δ′
2 with Δ22

τ
=⇒ Δ′

2 with Δ′
1 	s Δ′

2. Note that we also have Δ2
α

=⇒ Δ′
2.

Lemma 4.8 (reflexivity of 	s). For all contexts Δ, we have Δ 	s Δ.

Proof. Consider the identity relation Rid, which is the set of all pairs (Δ,Δ). It will

suffice to show that Rid ⊆ 	s, because Δ Rid Δ always holds, which will in turn imply

Δ 	s Δ. We can show that Rid meets the four criteria for simulation. Let us pick up any

pair (Δ,Δ) from Rid.

1. Assume that Δ ≡ ·. Then, in particular, Δ
τ

=⇒ ·.
2. Assume that Δ ≡ (Δ′,Δ′′). Then, in particular, Δ

τ
=⇒ (Δ′,Δ′′), and we also have

Δ′ Rid Δ′ and Δ′′ Rid Δ′′.

3. Assume that Δ
α−→ Δ′. Then, in particular, Δ

α
=⇒ Δ′ and we have Δ′ Rid Δ′.

4. Assume that Δ
?a−→ Δ′, which entails that Δ ≡ (a�B,Δ′′) and Δ′ ≡ (B,Δ′′). Because

Δ′ Rid Δ′ (it is the identity relation!), it is sufficient to show that (Δ, a)
τ

=⇒ Δ′, i.e. that

(a, a�B,Δ′′)
τ

=⇒ (B,Δ′′). However, we know that a
!a−→ · and (a�B,Δ′′)

?a−→ (B,Δ′′)

by the rules lts−atom and lts� in Figure 4, respectively. We can now combine them

using rule lts − com in the desired reduction to obtain (a, a�B,Δ′′)
τ−→ (B,Δ′′).

Proposition 4.9 (compositionality of 	s). If Δ1 	s Δ2, then (Δ,Δ1) 	s (Δ,Δ2).

Proof. Consider the relation

R := {((Δ,Δ1), (Δ,Δ2)) | Δ1 	s Δ2}.

It will suffice to show that R ⊆	s, because in that case, given Δ1 	s Δ2, we have that

(Δ,Δ1) R (Δ,Δ2) for any Δ, which will in turn imply (Δ,Δ1) 	s (Δ,Δ2). We can show that

R meets the four criteria for simulation. Suppose (Δ,Δ1) R (Δ,Δ2), which means that we

also have Δ1 	s Δ2.

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Relating reasoning methodologies in linear 891

1. Let us show that if (Δ,Δ1) R (Δ,Δ2) with (Δ,Δ1) ≡ ·, then (Δ,Δ2)
τ

=⇒ ·.
If (Δ,Δ1) ≡ ·, then Δ ≡ ·. Moreover, by the definition of R, we have that · 	s Δ2. Now,

because 	s is a simulation, we have that Δ2
τ

=⇒ ·. Since (Δ,Δ2) ≡ Δ2, we conclude

that (Δ,Δ2)
τ

=⇒ ·, as desired.

2. Let us prove that if (Δ,Δ1) ≡ (Δ′
1,Δ

′′
1), then (Δ,Δ2)

τ
=⇒ (Δ′

2,Δ
′′
2) such that Δ′

1 R Δ′
2 and

Δ′′
1 R Δ′′

2.

If (Δ,Δ1) can be decomposed into (Δ′
1,Δ

′′
1) for some Δ′

1 and Δ′′
1, we need to find some

Δ′
2 and Δ′′

2 such that (Δ,Δ2)
τ

=⇒ (Δ′
2,Δ

′′
2) with Δ′

1 R Δ′
2 and Δ′′

1 R Δ′′
2. Without loss

of generality, assume that we have the decomposition of (Δ,Δ1) with Δ = (Δa,Δb)

and Δ1 = (Δa
1,Δ

b
1) such that Δ′

1 = (Δa,Δa
1) and Δ′′

1 = (Δb,Δb
1). Since Δ1 	s Δ2, there

exists some transition Δ2
τ

=⇒ (Δa
2,Δ

b
2) such that Δa

1 	s Δa
2 and Δb

1 	s Δb
2. It follows by

compositionality (Lemma 4.4) that

(Δ,Δ2)
τ

=⇒ (Δa,Δb,Δa
2,Δ

b
2) ≡ (Δa,Δa

2,Δ
b,Δb

2)

Let Δ′
2 = (Δa,Δa

2) and Δ′′
2 = (Δb,Δb

2). We observe that Δ′
1 R Δ′

2 and Δ′′
1 R Δ′′

2, as

required.

3. Let us show that if (Δ,Δ1)
α−→ Δ′

1 then there is Δ′
2 such that (Δ,Δ2)

α
=⇒ Δ′

2 and

Δ′
1 R Δ′

2, and if (Δ,Δ1)
?a−→ Δ′

1 then there is Δ′
2 such that (Δ,Δ2, a)

τ
=⇒ Δ′

2 and

Δ′
1 R Δ′

2. It is convenient to prove both these parts of Definition 4.2 together.

Assume that (Δ,Δ1)
β

−→ Δ∗. There are four cases, according to Lemma 4.5.

a. (Δ,Δ1)
β

−→ (Δ′,Δ1) because of the transition Δ
β

−→ Δ′. If β = α, then by Lemma 4.4

(1) we also have (Δ,Δ2)
α−→ (Δ′,Δ2) and clearly (Δ′,Δ1) R (Δ′,Δ2). If β =?a, then

(Δ, a)
τ−→ Δ′ and thus (Δ,Δ2, a)

τ−→ (Δ′,Δ2). Again, we have (Δ′,Δ1) R (Δ′,Δ2).

b. If (Δ,Δ1)
β

−→ (Δ,Δ′
1) because of the transition Δ1

β
−→ Δ′

1, since Δ1 	s Δ2 there

are two possibilities. If β = α , then there is a matching transition Δ2
α

=⇒ Δ′
2 and

Δ′
1 	s Δ′

2. It follows that (Δ,Δ′
1)

α
=⇒ (Δ,Δ′

2) by Lemma 4.4 (2) and (Δ,Δ′
1) R (Δ,Δ′

2).

If β =?a, then Δ2, a
τ

=⇒ Δ′
2 for some Δ′

2 with Δ′
1 	s Δ′

2. We also have (Δ,Δ2, a)
τ

=⇒
(Δ,Δ′

2) by Lemma 4.4 (2) and (Δ,Δ′
1) R (Δ,Δ′

2).

c. If (Δ,Δ1)
τ−→ (Δ′,Δ′

1) because of the transitions Δ
?a−→ Δ′ and Δ1

!a−→ Δ′
1, since

Δ1 	s Δ2 there is a transition Δ2
!a

=⇒ Δ′
2 with Δ′

1 	s Δ′
2. It follows that (Δ,Δ2)

τ
=⇒

(Δ′,Δ′
2) and we have (Δ′,Δ′

1) R (Δ′,Δ′
2).

d. If (Δ,Δ1)
τ−→ (Δ′,Δ′

1) because of the transitions Δ
!a−→ Δ′ and Δ1

?a−→ Δ′
1, then this

can be simulated by a transition from (Δ,Δ2). The reason is as follows. In order

for Δ to enable the transition Δ
!a−→ Δ′, it must be the case that Δ ≡ Δ′, a. Since

Δ1 	s Δ2 we know that (Δ2, a)
τ

=⇒ Δ′
2 for some Δ′

2 with Δ′
1 	s Δ′

2. Therefore, we

obtain that (Δ,Δ2) ≡ (Δ′, a,Δ2)
τ

=⇒ (Δ′,Δ′
2) and (Δ′,Δ′

1) R (Δ′,Δ′
2).

In summary, we have verified that R is a simulation.

Lemma 4.10 (transitivity of 	s). If Δ1 	s Δ2 and Δ2 	s Δ3, then Δ1 	s Δ3.

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Y. Deng, R. J. Simmons and I. Cervesato 892

Proof. Consider the relation

R := {(Δ1,Δ3) | there exists Δ2 with Δ1 	s Δ2 and Δ2 	s Δ3}

It will suffice to show that R ⊆ 	s, because in that case, given Δ1 	s Δ2 and Δ2 	s Δ3, we

will know that Δ1 R Δ3, which will in turn imply Δ1 	s Δ3. We can show that R meets

the four criteria for simulation. Suppose Δ1 R Δ3, that is Δ1 	s Δ2 and Δ2 	s Δ3 for some

Δ2.

1. If Δ1 ≡ ·, then Δ2
τ

=⇒ ·. By Lemma 4.7, we have Δ3
τ

=⇒ ·.
2. If Δ1 ≡ (Δ′

1,Δ
′′
1), then Δ2

τ
=⇒ (Δ′

2,Δ
′′
2) for some Δ′

2 and Δ′′
2 such that Δ′

1 	s Δ′
2 and

Δ′′
1 	s Δ′′

2. By Lemma 4.7, there exist Δ′
3 and Δ′′

3 such that Δ3
τ

=⇒ (Δ′
3,Δ

′′
3), Δ′

2 	s Δ′
3

and Δ′′
2 	s Δ′′

3. Therefore, Δ′
1 R Δ′

3 and Δ′′
1 R Δ′′

3.

3. If Δ1
α−→ Δ′

1, there exists Δ′
2 such that Δ2

α
=⇒ Δ′

2 and Δ′
1 	s Δ′

2. By Lemma 4.7, there

exists Δ′
3 such that Δ3

α
=⇒ Δ′

3 and Δ′
2 	s Δ′

3, thus Δ′
1 R Δ′

3.

4. If Δ1
?a−→ Δ′

1, there exists Δ′
2 such that (Δ2, a)

τ
=⇒ Δ′

2 and Δ′
1 	s Δ′

2. By Proposition 4.9

we have (Δ2, a) 	s (Δ3, a). By Lemma 4.7, there exists Δ′
3 with (Δ3, a)

τ
=⇒ Δ′

3 and

Δ′
2 	s Δ′

3. It follows that Δ′
1 R Δ′

3.

Theorem 4.11. 	s is a preorder.

Proof. 	s is reflexive (Lemma 4.8) and transitive (Lemma 4.10).

4.5. Equivalence of the barbed and simulation preorders

We are now in a position to fill in the rightmost portion of the proof map (Figure 4)

from the beginning of this section. In this section, we show the equivalence of the largest

simulation 	s and the barbed preorder. With the compositionality of 	s (Lemma 4.9) at

hand, the soundness proof is straightforward. For the completeness proof, we crucially

rely on fresh atom removal (Lemma 3.9).

Theorem 4.12 (soundness). If Δ1 	s Δ2, then Δ1 	b Δ2.

Proof. We show that all aspects of the definition of the barbed preorder are satisfied.

Barb-preserving. We show that 	s is barb-preserving. Suppose Δ1 	s Δ2 and Δ1 ↓a. Then

Δ1 ≡ (Δ′
1, a) for some Δ′

1, thus Δ1
!a−→ Δ′

1. Since Δ1 	s Δ2 there exists Δ′
2 such that

Δ2
!a

=⇒ Δ′
2, i.e. Δ2

τ
=⇒ Δ′′

2

!a−→ Δ′
2. Note that Δ′′

2 must be the form (Δ′′′
2 , a) for some Δ′′′

2 .

It follows that Δ2 ⇓a.

Compositional. By Lemma 4.9 	s is compositional.

Reduction-closed. If Δ1 � Δ′
1, then Δ1

τ−→ Δ′
1 by Lemma 4.1. By the third condition of

Definition 4.2 there exists Δ′
2 such that Δ2

τ
=⇒ Δ′

2 and Δ′
1 	s Δ′

2. By Lemma 4.1 again,

we have Δ2 �∗ Δ′
2.

Partition-preserving. If Δ1 ≡ ·, by the first condition of Definition 4.2 we see that Δ2
τ

=⇒ ·.
By Lemma 4.1 this means Δ2 �∗ ·.

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Relating reasoning methodologies in linear 893

If Δ1 ≡ (Δ′
1,Δ

′′
1), by the second condition of Definition 4.2 there are Δ′

2 and Δ′′
2 with

Δ2
τ

=⇒ (Δ′
2,Δ

′′
2), Δ′

1 	s Δ′
2 and Δ′′

1 	s Δ′′
2. By Lemma 4.1 this means Δ2 �∗ (Δ′

2,Δ
′′
2).

Theorem 4.13 (completeness). If Δ1 	b Δ2 then Δ1 	s Δ2.

Proof. We need to show that 	b is a simulation. By Definition 4.2, this decomposes

into four parts.

1. Let us show that if Δ1 	b Δ2 and Δ1 ≡ · then Δ2
τ

=⇒ ·. Suppose Δ1 	b Δ2 and Δ1 ≡ ·,
then Δ2 �∗ · as 	b is reduction closed. By Lemma 4.1 we have Δ2

τ
=⇒ ·.

2. Let us show that if Δ1 	b Δ2 and Δ1 ≡ (Δ′
1,Δ

′
2) then Δ2

τ
=⇒ (Δ′

2,Δ
′′
2) for some Δ′

2 and

Δ′′
2 such that Δ′

1 	b Δ′
2 and Δ′′

1 	b Δ′′
2.

Suppose Δ1 	b Δ2 and Δ1 ≡ (Δ′
1,Δ

′′
1), then Δ2 �∗ (Δ′

2,Δ
′′
2) such that Δ′

1 	b Δ′
2 and

Δ′′
1 	b Δ′′

2 as 	b is reduction-closed. By Lemma 4.1 we have Δ2
τ

=⇒ (Δ′
2,Δ

′′
2).

3. Let us show that if Δ1 	b Δ2 and Δ1
α−→ Δ′

1 then there exists Δ′
2 such that Δ2

α
=⇒ Δ′

2

and Δ′
1 	b Δ′

2. Suppose Δ1 	b Δ2 and Δ1
α−→ Δ′

1.

— α ≡ τ. By Lemma 4.1 this means Δ1 � Δ′
1. Since 	b is reduction-closed, there exists

Δ′
2 such that Δ2 �∗ Δ′

2 and Δ′
1 	b Δ′

2. By Lemma 4.1 again, we have Δ2
τ

=⇒ Δ′
2.

— α ≡ !a for some a. Note that Δ1 must be in the form (Δ′
1, a). Since 	b is partition-

preserving, there exist Δ′
2 and Δa such that

Δ2 �
∗ (Δ′

2,Δa) (2)

with Δ′
1 	b Δ′

2 and a 	b Δa. Then (a� 1, a) 	b (a� 1,Δa) by the compositionality

of 	b. Since (a� 1, a) �∗ ·, by Lemma 3.6 we have (a� 1,Δa) �∗ ·. Then there

exists some Δ′
a such that Δa �∗ (Δ′

a, a) and Δ′
a �

∗ ·, thus

Δa �
∗ a (3)

by transitivity. It follows from (2) and (3) that Δ2 �∗ (Δ′
2, a). By Lemma 4.1 this

means Δ2
!a

=⇒ Δ′
2, which is the desired transition.

4. Let us show that if Δ1 	b Δ2 and Δ1
?a−→ Δ′

1 then there exists Δ′
2 such that (Δ2, a)

τ
=⇒ Δ′

2

and Δ′
1 	b Δ′

2.

Suppose Δ1 	b Δ2 and Δ1
?a−→ Δ′

1. Then (Δ1, a)
τ−→ Δ′

1, and thus (Δ1, a) � Δ′
1 by

Lemma 4.1. Since Δ1 	b Δ2 we know (Δ1, a) 	b (Δ2, a) by the compositionality of 	b.

So there exists some Δ′
2 such that (Δ2, a)�∗ Δ′

2 and Δ′
1 	b Δ′

2. By Lemma 4.1 we also

have (Δ2, a)
τ

=⇒ Δ′
2.

4.6. Equivalence of the logical and simulation preorders

We will now start to fill in the remaining portions of the proof map (Figure 4) from the

beginning of this section. First, we prove the soundness and completeness of derivability

relative to simulation, and then we use this to prove the soundness and completeness of

the barbed preorder relative to the logical preorder.

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Y. Deng, R. J. Simmons and I. Cervesato 894

Theorem 4.14. If Δ � A, then A 	s Δ.

Proof. We proceed by rule induction, where the rules are given in Figure 1.

— (rule �R). If Δ � � then we have � 	s Δ vacuously, as � is a nonempty process

state that can make no transitions.

— (rule 1R). If · � 1 then it is trivial to see that 1 	s ·.
— (rule init). If a � a then a 	s a follows from the reflexivity of 	s.

— (rule�R). Suppose Δ � a�A is derived from Δ, a � A. By induction, we have

A 	s (Δ, a). (4)

The only transition from a�A is (a�A)
?a−→ A. It is matched by the trivial transition

(Δ, a)
τ

=⇒ (Δ, a) in view of (4).

— (rule �L). Suppose (Δ1,Δ2, a�A) � B is derived from Δ1 � a and (Δ2, A) � B. By

induction, we have

a 	s Δ1 and B 	s (Δ2, A). (5)

By the first part of (5) we know that there is some Δ′
1 such that Δ1

!a
=⇒ Δ′

1 and · 	s Δ′
1.

It is easy to see that Δ1
τ

=⇒ (Δ′
1, a) and Δ′

1

τ
=⇒ ·. Then

(Δ1,Δ2, a�A)
τ

=⇒ (Δ′
1, a,Δ2, a�A)

τ−→ (Δ′
1,Δ2, A)

τ
=⇒ (Δ2, A).

In other words, we have (Δ1,Δ2, a�A)
τ

=⇒ (Δ2, A). By Lemma 4.6 it follows that

(Δ2, A) 	s (Δ1,Δ2, a�A). By transitivity (s is a preorder, Theorem 4.11), we can

combine this with the second part of (5), yielding

B 	s (Δ1,Δ2, a�A).

— (rule ⊗R). Suppose (Δ1,Δ2) � A⊗B is derived from Δ1 � A and Δ2 � B. By induction,

we have

A 	s Δ1 and B 	s Δ2. (6)

Now, the only transition from A⊗B is A⊗B
τ−→ (A,B). It can be matched by the

trivial transition (Δ1,Δ2)
τ

=⇒ (Δ1,Δ2) because by compositionality of 	s (Lemma 4.9

and (6) we know that

(A,B) 	s (Δ1, B) 	s (Δ1,Δ2).

Now it is immediate that (A,B) 	s (Δ1,Δ2) by transitivity (s is a preorder, The-

orem 4.11).

— (rule ⊗L). Suppose (Δ, A⊗B) � C is derived from (Δ, A, B) � C . By induction we

have

C 	s (Δ, A, B). (7)

Since (Δ, A⊗B)
τ−→ (Δ, A, B), we apply Lemma 4.6 and obtain

(Δ, A, B) 	s (Δ, A⊗B). (8)

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Relating reasoning methodologies in linear 895

By (7), (8) and the transitivity of 	s, we have C 	s (Δ, A⊗B).

— (rules 1L, &L1 and &L2). Similar.

— (rule &R). Suppose Δ � (A&B) is derived from Δ � A and Δ � B. By induction we

have

A 	s Δ and B 	s Δ. (9)

The only transitions from A&B are (A&B)
τ−→ A and (A&B)

τ−→ B. Both of them

can be matched by the trivial transition Δ
τ

=⇒ Δ in view of (9).

Proposition 4.15. If Δ1
τ

=⇒ Δ2 and Δ2 � A, then Δ1 � A.

Proof. Immediate by Proposition 3.1 and Lemma 4.1.

Theorem 4.16. If A 	s Δ, then Δ � A.

Proof. We proceed by induction on the structure of A.

— A ≡ �. By rule �R we have Δ � �.

— A ≡ 1. Then we also have A ≡ ·. Since A 	s Δ, it must be the case that Δ
τ

=⇒ ·. By

rule 1R, we have · � 1. By Proposition 4.15 it follows that Δ � 1.

— A ≡ a. Since A 	s Δ and A
!a−→ ·, there is Δ′ such that

Δ
!a

=⇒ Δ′ and · 	s Δ′. (10)

From the first part of (10), we obtain Δ
τ

=⇒ (Δ′′, a) for some Δ′′ with Δ′′ τ
=⇒ Δ′. From

the second part, we have Δ′ τ
=⇒ ·. Combining them together yields Δ

τ
=⇒ a. By rule

init we can infer a � a. Then it follows from Proposition 4.15 that Δ � a.

— A ≡ a�A′. Since A 	s Δ and A
?a−→ A′, there is Δ′ such that (Δ, a)

τ
=⇒ Δ′ and

A′ 	s Δ′. By induction, we know that Δ′ � A′. By Proposition 4.15 it follows that

(Δ, a) � A′. Now use rule�R we obtain Δ � (a�A′).

— A ≡ A1 &A2. Since A 	s Δ and A
τ−→ A1, there is Δ1 such that Δ

τ
=⇒ Δ1 and A1 	s Δ1.

By induction, we have Δ1 � A1. By Proposition 4.15 it follows that Δ � A1. By a similar

argument, we see that Δ � A2. Hence, it follows from rule &R that Δ � (A1 &A2).

— A ≡ A1 ⊗A2. Since A 	s Δ and A
τ−→ (A1, A2), we apply Lemma 4.7 and derive some

transition Δ
τ

=⇒ (Δ1,Δ2) such that A1 	s Δ1 and A2 	s Δ2. By induction, we obtain

Δ1 � A1 and Δ2 � A2. It follows from rule ⊗R that Δ1,Δ2 � A1 ⊗A2, that is Δ � A.

Remark 4.17. Note that Theorem 4.16 would fail if we used the standard barbed preorder

on processes, without adding the condition partition-preservation in Definition 3.2. In

that case, the process state (a� 1) ⊗(b� 1) would be related to a� b� 1 by barbed

preorder but

a� b� 1 �� (a� 1) ⊗(b� 1).

The next property is obtained mostly by applying Theorems 4.14 and 4.16.

Theorem 4.18. Δ1 	l Δ2 if and only if Δ1 	s Δ2.

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Y. Deng, R. J. Simmons and I. Cervesato 896

Proof.

(⇒) Suppose Δ1 	l Δ2. It is trivial to see that Δ1 �
⊗

Δ1. By the definition of logical

preorder, it follows that Δ2 �
⊗

Δ1. By Theorem 4.14 we have⊗
Δ1 	s Δ2. (11)

Considering the formula
⊗

Δ1 as a context, we have
⊗

Δ1
τ

=⇒ Δ1 according to our

reduction semantics. By Lemma 4.6, it follows that

Δ1 	s

⊗
Δ1. (12)

By combining (11) and (12), we obtain that Δ1 	s Δ2 because 	s is transitive by

Theorem 4.11.

(⇐) Suppose that Δ1 	s Δ2. For any Δ and A, assume that (Δ,Δ1) � A. By Theorem 4.14

we have

A 	s (Δ,Δ1). (13)

Since Δ1 	s Δ2 and 	s is compositional (Lemma 4.9), we obtain

(Δ,Δ1) 	s (Δ,Δ2). (14)

By (13), (14) and the transitivity of 	s, we see that A 	s (Δ,Δ2). Then, Theorem 4.16

yields (Δ,Δ2) � A. Therefore, we have shown that Δ1 	l Δ2.

This concludes the proof of this result.

Finally, we arrive at the main result of the section.

Corollary 4.19 (soundness and completeness). Δ1 	l Δ2 if and only if Δ1 	b Δ2.

Proof. By Theorems 4.12 and 4.13 we know that 	b coincides with 	s. Theorem 4.18

tells us that 	s coincides with 	l . Hence, the required result follows.

5. Exponentials

In this section, we extend the investigation by adding the exponential modality ‘!’ from

intuitionistic linear logic, which will closely correspond to the replication operator of the

π-calculus. Our extension refers to the propositional linear language seen in Sections 3–4.

Specifically, the language we will be working on is:

Formulas A,B, C ::= a | 1 | A⊗B | a�B | � | A&B | !A.

Observe that this language still limits the antecedent of linear implications to be an atomic

proposition – this is a common restriction when investigating fragments of linear logic

that correspond to CCS-like process algebras (Cervesato et al. 2000, 2002; Cervesato and

Scedrov 2009)

The structure of this section is similar to our development for the language without

exponentials: we first present the extended language and a notion of states in our process

interpretation in Section 5.1, then we connect barbed preorder with logical preorder by

making use of simulation in Section 5.2.

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Relating reasoning methodologies in linear 897

5.1. Process interpretation and barbed preorder

The π-calculus reading of the language with exponentials is extended by interpreting the

exponential ! as the replication operator !.

· · · · · ·
!Aany number of copies of process A.

The structural equivalences seen in Section 3 are updated by adding an inert unrestricted

context Γ and the following rules:

(Γ, ·; Δ) ≡ (Γ; Δ),

(Γ1,Γ2; Δ) ≡ (Γ2,Γ1; Δ),

(Γ1, (Γ2,Γ3); Δ) ≡ ((Γ1,Γ2),Γ3; Δ),

(Γ, A, A; Δ) ≡ (Γ, A; Δ).

These rule entail that the unrestricted context behaves like a set.

The reductions in Figure 2 are upgraded with an inert context Γ, and the following two

reductions are added:

(Γ, A; Δ)� (Γ, A; Δ, A) (� clone)

(Γ; Δ, !A)� (Γ, A; Δ) (�!)

The two rules are intended to reflect the derivations entailed by rules clone and !L in

Figure 1. Instead of introducing the two reduction rules, we could turn them into two

equations and add to the structural equivalence ≡ defined above. But we prefer to mimic

one step of derivation in linear logic by one step of reduction in our process interpretation

of the logic.

The composition of two states (Γ1; Δ1) and (Γ2; Δ2), written ((Γ1; Δ1), (Γ2; Δ2)), is defined

as the state ((Γ1,Γ2); (Δ1,Δ2)). Recall that unrestricted contexts are set so that Γ1,Γ2 may

collapse identical formulas occurring in both Γ1 and Γ2 (while linear contexts can contain

duplicates).

A partition of a state (Γ; Δ) is any pair of states (Γ1; Δ1) and (Γ2; Δ2) such that

(Γ; Δ) = ((Γ1; Δ1), (Γ2; Δ2)).

We write (Γ; Δ) ↓a whenever a ∈ Δ, and Δ ⇓a whenever (Γ; Δ) �∗ (Γ′; Δ′) for some

(Γ′; Δ′) with (Γ′; Δ′) ↓a. The definition of barbed preorder given in Definition 3.3 now

takes the following form.

Definition 5.1 (barbed preorder). Let R be a binary relation over states. We say that R is

— barb-preserving if, whenever (Γ1; Δ1) R (Γ2; Δ2) and (Γ1; Δ1) ↓a, we have that (Γ2; Δ2) ⇓a

for any a.

— reduction-closed if (Γ1; Δ1) R (Γ2; Δ2) and (Γ1; Δ1) � (Γ′
1; Δ′

1) implies (Γ2; Δ2) �∗

(Γ′
2; Δ′

2) and (Γ′
1; Δ′

1) R (Γ′
2; Δ′

2) for some (Γ′
2; Δ′

2).

— compositional if (Γ1; Δ1) R (Γ2; Δ2) implies ((Γ1; Δ1), (Γ; Δ)) R ((Γ2; Δ2), (Γ; Δ)) for all

(Γ; Δ).

— partition-preserving if (Γ1; Δ1) R (Γ2; Δ2) implies that

1. if Δ1 = ·, then (Γ2; Δ2)�∗ (Γ′
2; ·) and (Γ1; ·) R (Γ′

2; ·),

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Y. Deng, R. J. Simmons and I. Cervesato 898

(Γ; Δ, a)
!a−→ (Γ; Δ)

lts−atom
(Γ; Δ, a B)

?a−→ (Γ; Δ, B)
lts

(Γ; Δ,1)
τ−→ (Γ; Δ)

lts1
(Γ; Δ, A⊗B)

τ−→ (Γ; Δ, A, B)
lts⊗

(Γ; Δ, A & B)
τ−→ (Γ; Δ, A)

lts &1
(Γ; Δ, A & B)

τ−→ (Γ; Δ, B)
lts &2

(Γ; Δ, !A)
τ−→ (Γ, A; Δ)

lts!A (No rule for)

(Γ, A; Δ)
τ−→ (Γ, A; Δ, A)

ltsClone

(Γ1; Δ1)
!a−→ (Γ1; Δ1) (Γ2; Δ2)

?a−→ (Γ2; Δ2)

(Γ1, Γ2; Δ1, Δ2)
τ−→ (Γ1, Γ2; Δ1, Δ2)

lts−com

Fig. 5. Labelled transition system with exponentials.

2. for all (Γ′
1; Δ′

1) and (Γ′′
1; Δ′′

1), if (Γ1; Δ1) = ((Γ′
1; Δ′

1), (Γ
′′
1; Δ′′

1)) then there exists

(Γ′
2; Δ′

2) and (Γ′′
2; Δ′′

2) such that (Γ2; Δ2) �∗ ((Γ′
2; Δ′

2), (Γ
′′
2; Δ′′

2)) and furthermore

(Γ′
1; Δ′

1) R (Γ′
2; Δ′

2) and (Γ′′
1; Δ′′

1) R (Γ′′
2; Δ′′

2).

The barbed preorder, denoted by 	b, is the largest relation over processes which is

barb-preserving, reduction-closed, compositional and partition-preserving.

Observe that this definition is structurally identical to our original notion of barbed

preorder (Definitions 3.2 and 3.3). Indeed, we have simply expressed the notions of

composing and partitioning states as explicit operations while our original definition

relied on context composition, which is what these notion specialize to when we only have

linear contexts. The present definition appears to be quite robust and we have used it in

extensions of this work to larger languages.

5.2. Logical preorder and barbed preorder

The labelled transition semantics for our language with replicated formulas is given in

Figure 5. The following is an updated version of Lemma 4.1.

Lemma 5.2. (Γ1,Δ1)
τ

=⇒ (Γ2,Δ2) if and only if (Γ1,Δ1)�∗ (Γ2,Δ2).

In the new semantics, our definition of simulation is in the following form.

Definition 5.3 (simulation). A relation R between two processes represented as (Γ1; Δ1)

and (Γ2; Δ2) is a simulation if (Γ1; Δ1) R (Γ2; Δ2) implies

1. if (Γ1; Δ1) ≡ (Γ′
1; ·) then (Γ2; Δ2)

τ
=⇒ (Γ′

2; ·) and (Γ′
1; ·) R (Γ′

2; ·);
2. if (Γ1; Δ1) ≡ ((Γ′

1; Δ′
1), (Γ

′′
1; Δ′′

1)) then (Γ2; Δ2)
τ

=⇒ ((Γ′
2; Δ′

2), (Γ
′′
2; Δ′′

2)) for some (Γ′
2; Δ′

2)

and (Γ′′
2; Δ′′

2) such that (Γ′
1; Δ′

1) R (Γ′
2; Δ′

2) and (Γ′′
1; Δ′′

1) R (Γ′′
2; Δ′′

2);

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Relating reasoning methodologies in linear 899

3. whenever (Γ1; Δ1)
α−→ (Γ′

1; Δ′
1), there exists (Γ′

2; Δ′
2) such that (Γ2; Δ2)

α
=⇒ (Γ′

2; Δ′
2)

and (Γ′
1; Δ′

1) R (Γ′
2; Δ′

2);

4. whenever (Γ1; Δ1)
?a−→ (Γ′

1; Δ′
1), there exists (Γ′

2; Δ′
2) such that (Γ2; Δ2, a)

τ
=⇒ (Γ′

2; Δ′
2)

and (Γ′
1; Δ′

1) R (Γ′
2; Δ′

2).

We write (Γ1; Δ1) 	s (Γ2; Δ2) if there is some simulation R with (Γ1; Δ1) R (Γ2; Δ2).

Example 5.4. We have mentioned before that !A intuitively represents any number of

copies of A. Then it is natural to identify !!A and !A, as in some presentations of the

π-calculus. For instance, we have that

(·; !!a) 	s (·; !a) and (·; !a) 	s (·; !!a). (15)

To prove the first inequality, consider the two sets

S1 = {(·; !!a)} ∪ {(!a; (!a)n) | n � 0} ∪ {(!a, a; (!a)n, am) | n � 0, m � 0}
S2 = {(·; !a)} ∪ {a; an) | n � 0}

where we write A0 for ‘·’ and An for n copies of A where n > 0. Let R be S1 × S2, the

Cartesian product of S1 and S2. It can be checked that R is a simulation relation. In the

same way, one can see that S2 × S1 is also a simulation relation, which implies the second

inequality in (15).

By adapting the proof of Proposition 4.9 to the case with exponentials, we have the

compositionality of 	s.

Proposition 5.5. If (Γ1; Δ1) 	s (Γ2,Δ2) then (Γ1,Γ; Δ1,Δ) 	s (Γ2,Γ; Δ2,Δ) for any process

state (Γ,Δ).

Similar to Theorems 4.12 and 4.13, it can be shown that the following coincidence result

holds.

Theorem 5.6. (Γ1; Δ1) 	b (Γ2; Δ2) if and only if (Γ1; Δ1) 	s (Γ2; Δ2).

The rest of this subsection is devoted to showing the coincidence of 	l and 	s, by

following the schema in Section 4.6. We first need two technical lemmas whose proofs are

simple and thus omitted.

Lemma 5.7 (weakening). (Γ; Δ) 	s ((Γ,Γ′); Δ) for any Γ′.

Lemma 5.8. If (Γ1; Δ1)
τ

=⇒ (Γ2; Δ2) then (Γ2; Δ2) 	s (Γ1; Δ1).

We are now in a position to connect simulation with provability. First, we state a result

akin to Theorem 4.14. If Γ; Δ � A, then the process (Γ;A) can be simulated by the process

(Γ; Δ). Note that the same Γ is used in both processes, which makes it easy to verify the

soundness of the rule !R with respect to simulation relation.

Theorem 5.9. If Γ; Δ � A then (Γ;A) 	s (Γ; Δ).

Proof. As in Theorem 4.14, we proceed by rule induction. Here we consider the three

new rules.

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Y. Deng, R. J. Simmons and I. Cervesato 900

— (rule clone). Suppose Γ, B; Δ � A is derived from Γ, B; Δ, B � A. By induction, we have

(Γ, B; A) 	s (Γ, B; Δ, B). (16)

From (Γ, B; Δ) we have the transition (Γ, B; Δ)
τ−→ (Γ, B; Δ, B). By Lemma 5.8, we

know that

(Γ, B; Δ, B) 	s (Γ, B; Δ). (17)

Combining (16), (17) and the transitivity of similarity, we obtain (Γ, B; A) 	s (Γ, B; Δ).

— (rule !L). Suppose Γ; Δ, !B � A is derived from Γ, B; Δ � A. By induction, we have

(Γ, B; A) 	s (Γ, B; Δ). (18)

From (Γ; Δ, !B) we have the transition (Γ; Δ, !B)
τ−→ (Γ, B; Δ). By Lemma 5.8, we

know that

(Γ, B; Δ) 	s (Γ; Δ, !B). (19)

By Lemma 5.7 we have

(Γ; A) 	s (Γ, B; A). (20)

Combining (18)–(20), and the transitivity of similarity, we obtain (Γ; A) 	s (Γ; Δ, !B).

— (rule !R) Suppose Γ; · � !A is derived from Γ; · � A. By induction we have

(Γ;A) 	s (Γ; ·). (21)

We now construct a relation R based on (21).

R= {((Γ; Δ, !A), (Γ; Δ)) | for any Δ}
∪{((Γ, A; Δ), (Γ′; Δ′)) | for any Δ,Δ′ and Γ′with (Γ; Δ) 	s (Γ′; Δ′)}
∪ 	s

The relation is composed of three sets. The pairs in the first set come directly from

(21) extended by some linear contexts Δ. After performing some matching transitions,

the pairs in the first set may evolve into those in the second or the third set. So the

last two sets are included to make R a closed set with respect to simulation relation.

Below we show that R is indeed a simulation, thus R⊆	s. Since (Γ; !A) R (Γ; ·), it

follows that (Γ; !A) 	s (Γ; ·).
Let us pick any pair of states from R. It suffices to consider the elements from the

first two subsets of R:

– The two states are (Γ; Δ, !A) and (Γ; Δ) respectively. Let us consider any transition

from the first state.

• The transition is (Γ; Δ, !A)
τ−→ (Γ, A; Δ). This is matched by the trivial transition

(Γ; Δ)
τ

=⇒ (Γ; Δ) because (Γ; Δ) 	s (Γ; Δ) and thus we have (Γ, A; Δ) R (Γ; Δ).

• The transition is (Γ; Δ, !A)
α−→ (Γ′; Δ′, !A) because of (Γ; Δ)

α−→ (Γ′; Δ′). Then

the latter transition can match the former because (Γ′; Δ′, !A) R (Γ′; Δ′).

• The transition is (Γ; Δ, !A)
?a−→ (Γ; Δ′, !A) because of (Γ; Δ)

?a−→ (Γ; Δ′). Then

we have (Γ; Δ, a)
τ−→ (Γ; Δ′), which is a matching transition because we have

(Γ; Δ′, !A) R (Γ; Δ′).

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Relating reasoning methodologies in linear 901

• If (Γ; Δ, !A) can be split as ((Γ1; Δ1), (Γ2; Δ2)), then !A occurs in either Δ1 or

Δ2. Without loss of generality, we assume that !A occurs in Δ1. That is, there is

some Δ′
1 such that Δ1 ≡ Δ′

1, !A. Then (Γ; Δ) ≡ ((Γ1; Δ′
1), (Γ2; Δ2)). It is easy to

see that (Γ1; Δ1) R (Γ1; Δ′
1) and (Γ2; Δ2) R (Γ2; Δ2).

– The two states are (Γ, A; Δ) and (Γ′; Δ′) respectively with

(Γ; Δ) 	s (Γ′; Δ′). (22)

Let us consider any transition from the first state.

• If Δ ≡ ·, then (Γ; ·) 	s (Γ′; Δ′). So there exists some Γ′′ such that (Γ′; Δ′)
τ

=⇒
(Γ′′; ·) and (Γ; ·) 	s (Γ′′; ·). It follows that (Γ, A; ·) R (Γ′′; ·) as required.

• The transition is (Γ, A; Δ)
τ−→ (Γ, A; Δ, A). We argue that it is matched by the

trivial transition (Γ′; Δ′)
τ

=⇒ (Γ′; Δ′). By (21) and the compositionality of 	s,

we obtain

(Γ; Δ, A) 	s (Γ; Δ). (23)

By (22) and (23), together with the transitivity of similarity, it can be seen that

(Γ; Δ, A) 	s (Γ′; Δ′), which implies (Γ, A; Δ, A) R (Γ′; Δ′).

• The transition is (Γ, A; Δ)
α−→ (Γ, A; Δ′′) because of (Γ; Δ)

α−→ (Γ; Δ′′). By (22)

there exist some Γ′′′,Δ′′′ such that (Γ′; Δ′)
α

=⇒ (Γ′′′; Δ′′′) and (Γ; Δ′′) 	s (Γ′′′; Δ′′′).

Therefore, (Γ, A; Δ′′) R (Γ′′′; Δ′′′) and we have found the matching transition

from (Γ′; Δ′).

• The transition is (Γ, A; Δ)
?a−→ (Γ, A; Δ′′) because of (Γ; Δ)

?a−→ (Γ; Δ′′). By

(22) there exist some Γ′′′,Δ′′′ such that (Γ′; Δ′, a)
α

=⇒ (Γ′′′; Δ′′′) and (Γ; Δ′′) 	s

(Γ′′′; Δ′′′). Therefore, (Γ, A; Δ′′) R (Γ′′′; Δ′′′) and we have found the matching

transition from (Γ′; Δ′, a).

• If (Γ, A; Δ) can be split as ((Γ1; Δ1), (Γ2; Δ2)), then A occurs in either Γ1 or

Γ2. Without loss of generality, we assume that A occurs in Γ1. That is, there

is some Γ′
1 such that Γ1 ≡ Γ′

1, A. Then (Γ; Δ) ≡ ((Γ′
1; Δ1), (Γ2; Δ2)). By (22)

we have the transition (Γ′; Δ′)
τ

=⇒ ((Γ3; Δ3), (Γ4; Δ4)) for some (Γ3; Δ3) and

(Γ4; Δ4) such that (Γ′
1; Δ1) 	s (Γ3; Δ3) and (Γ2; Δ2) 	s (Γ4; Δ4). It follows that

(Γ1; Δ1) R (Γ3; Δ3) and (Γ2; Δ2) R (Γ4; Δ4).

Corollary 5.10. If Γ; Δ � A, then (·;A) 	s (Γ; Δ).

Proof. By Lemma 5.7, Theorem 5.9 and the transitivity of 	s.

Proposition 5.11. If (Γ1; Δ1)
τ

=⇒ (Γ2; Δ2) and Γ2; Δ2 � A then Γ1; Δ1 � A.

Proof. Similar to the proof of Proposition 4.15. We now have two more cases:

— (rule lts!A). Suppose (Γ; Δ, !A)
τ−→ (Γ, A; Δ) and Γ, A; Δ � B. By rule !L, we infer that

Γ; Δ, !A � B.

— (rule ltsClone). Suppose (Γ, A; Δ)
τ−→ (Γ, A; Δ, A) and Γ, A; Δ, A � B. By rule clone, we

infer that Γ, A; Δ � B.

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Y. Deng, R. J. Simmons and I. Cervesato 902

Our next goal is to prove Theorem 5.16, the coincidence of logical preorder with

simulation. For that purpose, a series of intermediate results are in order.

Theorem 5.12. If (Γ1;A) 	s (Γ2; Δ) then Γ2; Δ � A.

Proof. As in Theorem 4.16, the proof is by induction on the structure of A. We now

have one more case.

— A ≡ !A′. By rule lts!A we have the transition (Γ1;A)
τ−→ (Γ1, A

′; ·). Since (Γ1;A) 	s

(Γ2; Δ) there is some Γ′
2 such that (Γ2; Δ)

τ
=⇒ (Γ′

2; ·) and

(Γ1, A
′; ·) 	s (Γ′

2; ·). (24)

From (Γ1, A
′; ·) we have the transition (Γ1, A

′; ·) τ−→ (Γ1, A
′;A′) by rule ltsClone. By

Lemma 5.8 we have

(Γ1, A
′;A′) 	s (Γ1, A

′; ·). (25)

It follows from (24), (25), and the transitivity of similarity that

(Γ1, A
′;A′) 	s (Γ′

2; ·). (26)

Now by induction hypothesis, we obtain Γ′
2; · � A′ because A′ has a smaller structure

than A. By rule !R we infer that Γ′
2; · � A. Using Proposition 5.11 we conclude that

Γ2; Δ � A.

We now have the counterpart of Theorem 4.18.

Theorem 5.13. (Γ; Δ1) 	l (Γ; Δ2) if and only if (Γ; Δ1) 	s (Γ; Δ2).

Proof.

(⇒) Suppose (Γ; Δ1) 	l (Γ; Δ2). It is trivial to see that Γ; Δ1 �
⊗

Δ1. By the definition of

logical preorder, it follows that Γ; Δ2 �
⊗

Δ1. By Theorem 5.9 we have

(Γ;
⊗

Δ1) 	s (Γ; Δ2). (27)

According to our reduction semantics, we have (Γ;
⊗

Δ1)
τ

=⇒ (Γ; Δ1). By Lemma 5.8,

it follows that

(Γ; Δ1) 	s (Γ;
⊗

Δ1). (28)

By combining (27) and (28), we obtain that (Γ; Δ1) 	s (Γ; Δ2) because 	s is transitive.

(⇐) Suppose that (Γ; Δ1) 	s (Γ; Δ2). If (Γ′,Γ; Δ,Δ1) � A for some Γ′, Δ and A, then by

Theorem 5.9 we have

(Γ′,Γ;A) 	s (Γ′,Γ; Δ,Δ1). (29)

Since (Γ; Δ1) 	s (Γ; Δ2) and 	s is compositional, we obtain

(Γ′,Γ; Δ,Δ1) 	s (Γ′,Γ; Δ,Δ2). (30)

By (29), (30) and the transitivity of 	s, we see that (Γ′,Γ;A) 	s (Γ′,Γ; Δ,Δ2). Then,

Theorem 5.12 yields Γ′,Γ; Δ,Δ2 � A. Therefore, we have shown that (Γ; Δ1) 	l (Γ; Δ2).

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Relating reasoning methodologies in linear 903

In Theorem 5.13 we compare two states with exactly the same unrestricted resource

Γ. The theorem can be relaxed so that the two states can have different unrestricted

resources. In order to prove that result, we first need two lemmas.

Lemma 5.14. (Γ; Δ) 	l (·; !Γ,Δ) and (·; !Γ; Δ) 	l (Γ; Δ).

Proof. For any Γ′ and Δ′, if Γ′,Γ; Δ′,Δ � A then Γ′; Δ′, !Γ,Δ � A, for any formula A,

by using rule !L. In other words, (Γ; Δ) 	l (·; !Γ,Δ).

Suppose Γ′; Δ′, !Γ,Δ � A for any Γ′,Δ′ and A. By rule induction on the derivation of

Γ′; Δ′, !Γ,Δ � A it can be shown that Γ′,Γ; Δ′,Δ � A, thus (·; !Γ,Δ) 	l (Γ; Δ).

Lemma 5.15. (Γ; Δ) 	s (·; !Γ,Δ) and (·; !Γ,Δ) 	s (Γ; Δ).

Proof. Since (·; !Γ,Δ)
τ

=⇒ (Γ; Δ), we apply Lemma 5.8 and conclude that (Γ,Δ) 	s

(·; !Γ,Δ).

To show that (·; !Γ,Δ) 	s (Γ; Δ), we let R be the relation that relates any state

(Γ; !A1, . . . , !An,Δ) with the state (Γ, A1, . . . , An; Δ). The relation R is a simulation. Consider

any transition from (Γ; !A1, . . . , !An,Δ).

— If (Γ; !A1, . . . , !An,Δ)
α−→ (Γ′; !A1, . . . , !An,Δ

′) because of (Γ; Δ)
α−→ (Γ′; Δ′), the trans-

ition can be matched by (Γ, A1, . . . , An; Δ)
α−→ (Γ′, A1, . . . , An; Δ′).

— If (Γ; !A1, . . . , !An; Δ)
τ−→ (Γ, A1; !A2, . . . , !An,Δ) then the transition can be matched by

the trivial transition (Γ, A1, . . . , An; Δ)
τ

=⇒ (Γ, A1, . . . , An; Δ).

— If (Γ; !A1, . . . , !An,Δ) performs an input action, it must be given by an input action

from Δ. Obviously, this can be mimicked by (Γ, A1, . . . , An; Δ).

— It is easy to see that for any splitting of (Γ; !A1, . . . , !An,Δ) there is a corresponding

splitting of (Γ, A1, . . . , An; Δ).

We have shown that R is a simulation. Therefore, (Γ; !A1, . . . , !An,Δ) 	s (Γ, A1, . . . , An; Δ),

and as a special case (·; !Γ,Δ) 	s (Γ; Δ).

Theorem 5.16. (Γ1; Δ1) 	l (Γ2; Δ2) if and only if (Γ1; Δ1) 	s (Γ2; Δ2).

Proof. Suppose (Γ1; Δ1) 	l (Γ2; Δ2). By Lemma 5.14 we infer that

(·; !Γ1,Δ1) 	l (Γ1; Δ1) 	l (Γ2; Δ2) 	l (·; !Γ2,Δ2).

Since 	l is a preorder, its transitivity gives (·; !Γ1,Δ1) 	l (·; !Γ2,Δ2). By Theorem 5.13, we

have (·; !Γ1,Δ1) 	s (·; !Γ2,Δ2). Then by Lemma 5.15 we infer that

(Γ1; Δ1) 	s (·; !Γ1,Δ1) 	s (·; !Γ2,Δ2) 	s (Γ2; Δ2).

By the transitivity of 	s, we obtain that (Γ1; Δ1) 	s (Γ2; Δ2).

In a similar manner, we can show that (Γ1; Δ1) 	s (Γ2; Δ2) implies (Γ1; Δ1) 	l (Γ2; Δ2).

With Theorem 5.16 we can slightly generalize Theorem 5.12.

Corollary 5.17. If (Γ1;A) 	s (Γ2; Δ) then Γ2; Δ � A ⊗
⊗

!Γ1.

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Y. Deng, R. J. Simmons and I. Cervesato 904

Proof. Suppose (Γ1;A) 	s (Γ2; Δ). By Theorem 5.16 this means that

(Γ1;A) 	l (Γ2; Δ). (31)

By Theorem 2.8, we have that Γ1;A � A ⊗
⊗

!Γ1. Now, by applying the definition of

logical equivalence, (31) yields Γ2; Δ � A ⊗
⊗

!Γ1.

From Theorems 5.6 and 5.16, we obtain the main result of this subsection.

Corollary 5.18. (Γ1; Δ1) 	l (Γ2; Δ2) if and only if (Γ1; Δ1) 	b (Γ2; Δ2).

6. Concluding remarks

In this paper, we have shown that the proof-theoretic notion of logical preorder coincides

with an extensional behavioural relation adapted from the process-theoretic notion of

barbed preorder (Deng and Hennessy 2011). The former is defined exclusively in terms

of traditional derivability, and the latter is defined in terms of a CCS-like process algebra

inspired by the formula-as-process interpretation of a fragment of linear logic. In order to

establish the connection, a key ingredient is to introduce a coinductively defined simulation

as a stepping stone. It is interesting to see that coinduction, a central proof technique

in process algebras, is playing an important role in this study of linear logic. This topic

definitely deserves further investigation so that useful ideas developed in one field can

benefit the other, and vice versa.

In the current work, we have interpreted a fragment of linear logic into asynchronous

CCS. It is not fully clear how to satisfactorily represent synchronous process algebras in

linear logic. In addition, while the & connective can be naturally translated into internal

choice in process algebra, the ⊕ connective does not seem to match external choice very

well. We hope to tackle these problems in future work.

We have started expanding the results in this paper by examining general implication

(i.e. formulas of the form A�B rather than a�B) and the usual quantifiers. While

special cases are naturally interpreted into constructs found in the join calculus (Fournet

and Gonthier 2000) and the π-calculus (Milner 1989; Sangiorgi and Walker 2001), the

resulting language appears to extend well beyond them. If successful, this effort may lead

to more expressive process algebras. We are also interested in understanding better the

interplay of the proof techniques used in the present work. This may develop into an

approach to employ coinduction effectively in logical frameworks so as to facilitate formal

reasoning and verification of concurrent systems.

Acknowledgment

We thank the anonymous referees for their insightful comments which helped us to

improve the current work. Support for this research was provided by the Qatar National

Research Fund under NPRP grant 09-1107-1-168, by the Fundação para a Ciência e a

Tecnologia (Portuguese Foundation for Science and Technology) through the Carnegie

Mellon Portugal Program under Grant NGN-44, and by an X10 Innovation Award from

IBM. Yuxin Deng would also like to acknowledge the support of the Natural Science

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Relating reasoning methodologies in linear 905

Foundation of China (61173033, 61033002, 61261130589) and ANR 12IS02001 ‘PACE”.

The statements made herein are solely the responsibility of the authors.

References

Abramsky, S. (1994) Proofs as processes. Theoretical Computer Science 135 5–9.

Amadio, R., Castellani, I. and Sangiorgi, D. (1998). On bisimulation for the asynchronous pi-calculus.

Theoretical Computer Science 195 (2) 291–324.

Barber, A. (1996) Dual intuitionistic linear logic. Technical Report ECS-LFCS-96-347, Laboratory

for Foundations of Computer Sciences, University of Edinburgh.

Caires, L. and Cardelli, L. (2003) A spatial logic for concurrency (part I). Information and

Computation 186 (2) 194–235.

Caires, L. and Pfenning, F. (2010) Session types as intuitionistic linear propositions. In: Proceedings

of the 21st International Conference on Concurrency Theory. Springer Lecture Notes in Computer

Science 6269 222–236.

Caires, L., Pfenning, F. and Toninho, B. (2012) Towards concurrent type theory. In: Proceedings of

the Seventh ACM SIGPLAN Workshop on Types in Languages Design and Implementation, ACM

1–12.

Cervesato, I., Durgin, N., Kanovich, M. I. and Scedrov, A. (2000) Interpreting strands in linear

logic. In: Veith, H., Heintze, N. and Clark, E. (eds.) Workshop on Formal Methods and Computer

Security – FMCS’00, Chicago, IL.

Cervesato, I., Pfenning, F., Walker, D. and Watkins, K. (2002) A concurrent logical framework

II: Examples and applications. Technical Report CMU-CS-2002-002, Department of Computer

Science, Carnegie Mellon University. Revised May 2003.

Cervesato, I. and Scedrov, A. (2009) Relating state-based and process-based concurrency through

linear logic. Information and Computation 207 1044–1077.

Dam, M. (1994) Process-algebraic interpretations of positive linear and relevant logics. Journal of

Logic and Computation 4 (6) 939–973.

Deng, Y. and Du, W. (2011) Logical, metric, and algorithmic characterisations of probabilistic

bisimulation. Technical Report CMU-CS-11-110, Carnegie Mellon University.

Deng, Y. and Hennessy, M. (2011) On the semantics of markov automata. In: Proceedings of the

38th International Colloquium on Automata, Languages and Programming (ICALP’11) Springer

Lecture Notes in Computer Science 6756 307–318.

Deng, Y., van Glabbeek, R., Hennessy, M., Morgan, C. and Zhang, C. (2007) Characterising testing

preorders for finite probabilistic processes. In: Proceedings of the 22nd Annual IEEE Symposium

on Logic in Computer Science, IEEE Computer Society 313–325.

Ehrhard, T. and Laurent, O. (2010) Interpreting a finitary pi-calculus in differential interaction nets.

Information and Computation 208 (6) 606–633.

Fournet, C. and Gonthier, G. (2000) The join calculus: A language for distributed mobile

programming. Applied Semantics Summer School – APPSEM’00, Caminha. Available at

http://research.microsoft.com/ fournet.

Fournet, C. and Gonthier, G. (2005) A hierarchy of equivalences for asynchronous calculi. Journal

of Logic and Algebraic Programming 63 (1) 131–173.

Gentzen, G. (1935) Untersuchungen über das logische schließen. I. Mathematische Zeitschrift 39 (1)

176–210.

Girard, J.-Y. (1987) Linear logic. Theoretical Computer Science 50 1–102.

Girard, J.-Y., Taylor, P. and Lafont, Y. (1989) Proofs and Types, Cambridge University Press.

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

Y. Deng, R. J. Simmons and I. Cervesato 906

Hennessy, M. and Milner, R. (1985) Algebraic laws for nondeterminism and concurrency. Journal

of the ACM 32 (1) 137–161.

Hoare, C. (1985) Communicating Sequential Processes, Prentice Hall.

Honda, K. and Yoshida, N. (1995) On reduction-based process semantics. Theoretical Computer

Science 151 (2) 437–486.

Lincoln, P. and Saraswat, V. (1991) Proofs as concurrent processes: A logical interpretation for

concurrent constraint programming. Technical report, Systems Sciences Laboratory, Xerox PARC.

Martin-Löf, P. (1996) On the meanings of the logical constants and the justifications of the logical

laws. Nordic Journal of Philosophical Logic 1 (1) 11–60.

McDowell, R., Miller, D. and Palamidessi, C. (2003) Encoding transition systems in sequent calculus.

Theoretical Computer Science 294 (3) 411–437.

Miller, D. (1992) The π-calculus as a theory in linear logic: Preliminary results. In: Lamma, E. and

P. Mello (eds.) Proceedings of the Workshop on Extensions to Logic Programming – ELP’92.

Springer-Verlag Lecture Notes in Computer Science 660 242–265.

Milner, R. (1989) Communication and Concurrency, Prentice Hall.

Pfenning, F. (2000) Structural cut elimination I. Intuitionistic and classical logic. Information and

Computation 157 (1/2) 84–141.

Pfenning, F. and Davies, R. (2001) A judgmental reconstruction of modal logic. Mathematical

Structures in Computer Science 11 (4) 511–540. Notes to an invited talk at the Workshop on

Intuitionistic Modal Logics and Applications (IMLA’99), Trento, Italy, July 1999.

Rathke, J. and Sobocinski, P. (2008) Deriving structural labelled transitions for mobile ambients.

In: Proceedings of the 19th International Conference on Concurrency Theory. Springer Lecture

Notes in Computer Science 5201 462–476.

Sangiorgi, D. and Walker, D. (2001) The π-Calculus: A Theory of Mobile Processes, Cambridge

University Press.

Tiu, A. and Miller, D. (2004) A proof search specification of the π-calculus. In: 3rd Workshop

on the Foundations of Global Ubiquitous Computing. Electronic Notes in Theoretical Computer

Science 138 79–101.

Wadler, P. (2012) Propositions as sessions. In: Proceedings of the 17th ACM SIGPLAN International

Conference on Functional Programming, ACM 273–286.

https://doi.org/10.1017/S0960129514000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000413

