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Abstract. For any odd prime p, we construct an infinite family of imaginary
quadratic fields whose class numbers are divisible by p. We give a corollary that settles
Iizuka’s conjecture for the case n = 1 and p > 2.
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1. Introduction. Let K be a number field. The ideal class group ClK is defined to
be the quotient group JK/PK, where JK is the group of fractional ideals of K and PK is
the group of principal fractional ideals of K. It is well known that ClK is finite. The class
number hK of a number field K is the order of ClK . The ideal class group is one of the
most basic and mysterious objects in algebraic number theory. The class group has drawn
the attention of several authors. The divisibility properties of the class number of number
fields play a significant role in understanding the structure of the ideal class groups of
number fields. Cohen–Lenstra heuristics are a set of conjectures about this structure. In
general, given a positive integer n, there is no characterization to find all quadratic fields
whose class numbers are divisible by n. For n = 3, these fields were characterized in [12].
For a given integer n > 1, the Cohen–Lenstra heuristic [4] predicts that the proportion of
imaginary quadratic fields with class number divisible by n should be positive. It has been
proved by several authors that for every n > 1, there exist infinitely many quadratic fields
whose class number is divisible by n ([2, 5, 7, 10, 11, 14]).

B. H. Gross and D. E. Rohrlich proved that for any odd integer n > 3, there are
infinitely many imaginary quadratic fields (Q

(√
1 − 4Un

)
, U > 1 ) whose class numbers

are divisible by n. Furthermore, Stéphane Louboutin [14] proved the same result by sim-
plifying the Gross and Rohrlich’s proof and proved the following result on divisibility of
class number of Q(

√
1 − 4Uk) for U > 2.

THEOREM 1. If k ∈ Z+ be odd number, then for any integer U ≥ 2 the ideal class
groups of the imaginary quadratic fields Q(

√
1 − 4Uk) contain an element of order k.

Murty [15] proved that the class number of Q
(√

1 − Un
)

is divisible by n if 1 − Un is
square-free. We study the divisibility of class number of families Q(

√
1 − 2mp) by all odd

primes p.

The following result on the 3-divisibility of the class number is proved by K.
Chakraborty and A. Hoque (Theorem 3.2, [8]).

THEOREM 2. The class number of Q(
√

1 − 2m3) is divisible by 3 for any odd
integer m > 1.
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We study the family Q(
√

1 − 2mp) for all odd primes p and prime power m = qr,

r ∈ N. In the following theorem, we prove the p-divisibility of class numbers for this family
by using the results of Yann Bugeaud and T. N. Shorey [1].

THEOREM 3. For prime numbers p, q ≥ 3 and m = qr, r ∈ N such that
Q(

√
1 − 2mp) �= Q(

√−1), the class number of Q(
√

1 − 2mp) is divisible by p.

The condition Q(
√

1 − 2mp) �= Q(
√−1), means that 2mp − 1 is not a square. Siegel’s

theorem (Lemma 9) asserts that there are only finitely many m ∈ Z such that 2mp − 1 is a
square.

The Birch Swinnerton-Dyer conjecture is an elliptic curve analogue of the analytic
class number formula. For any elliptic curve defined over Q of rank zero and square-free
conductor N, if p | |E(Q)|, under certain conditions on the Shafarevich–Tate group XD,

the first author [13] showed that p | |XD| if and only if p | hK, where K = Q(
√−D).

2. Iizuka’s conjecture. Y.Iizuka recently proves the following result on divisibility
of the class numbers of imaginary quadratic fields in [9].

THEOREM 4. There is an infinite family of pairs of imaginary quadratic fields
Q(

√
d) and Q(

√
d + 1) with d ∈ Z whose class numbers are both divisible by 3.

Based on the above theorem, Iizuka conjectured the following.

CONJECTURE 5. (Iizuka) For any prime p and any positive integer n, there is an
infinite family of n + 1 successive real (or imaginary) quadratic fields

Q(
√

D), Q(
√

D + 1), · · · , Q(
√

D + n)

with D ∈ Z whose class numbers are divisible by p.

As a consequence of Theorems 1 and 3, we get a generalization of Theorem 4 for all
odd prime numbers p and prove the following corollary.

COROLLARY 6. For every odd prime number, there is an infinite family of pairs of
imaginary quadratic fields Q(

√
d) and Q(

√
d + 1) with d ∈ Z whose class numbers are

both divisible by p.

Proof of the Corollary 6. Fix an odd prime p. Consider the set

S0 =
{

m ∈ Z+| the class number of Q
(√

1 − 2mp
)

is divisible by p
}
.

By Lemma 9, the equation 1 − 2xp = −y2 has finitely many solutions (x, y) ∈ Z × Z. Hence
it follows from Theorem 3 that S0 contains infinitely many odd prime powers, which
implies that S0 is an infinite set. For m ∈ S0, the prime p divides the class number of

Q(
√

4(1 − 2mp)p) = Q(
√

1 − 2mp).

Let U = 2mp − 1. Then U ≥ 2. Furthermore, Theorem 1 implies that p divides the class
number of Q(

√
1 − 4Up). Now look at

Q(
√

1 − 4Up) = Q
(√

1 − 4(2qp − 1)p
)

= Q
(√

4(1 − 2qp)p + 1
)

.

Let d = 4(1 − 2mp)p. The prime p divides class numbers of Q(
√

d), Q(
√

d + 1).

https://doi.org/10.1017/S001708952100015X Published online by Cambridge University Press

https://doi.org/10.1017/S001708952100015X


354 SRILAKSHMI KRISHNAMOORTHY AND SUNIL KUMAR PASUPULATI

Now to conclude the corollary, we need to prove the set A=
{

Q
(√

1 − 2mp
) |m ∈ S0

}
is an infinite set. For every square-free integer d0 �= 0, let f (x) = 1−2xp

d0
. The polynomial f (x)

has distinct roots in Q. Thus by Lemma 9, the equation y2 = f (x) has finitely many integral
solutions. Hence the infiniteness of A follows from that of S0.

REMARK 7. The above corollary settles Iizuka’s conjecture (5) for the case n = 1 and
p > 2. We found a similar result for a different families of imaginary quadratic fields
in [17]. J. Chattopadhyay and S. Muthukrishnan [3] answer a weaker version of Iizuka’s
conjecture for p = 3.

3. Preliminaries. We recall some known results and prove some lemmas that are
necessary for proving our main theorem.

DEFINITION 8. Let K be a number field and let S be a finite set of valuations on K,
containing all the archimedean valuations. Then

RS = {α ∈ K | ν(α) ≥ 0 for all ν �∈ S}
is called the set of S-integers.

LEMMA 9. (Siegel’s theorem, [16], Chapter IX, Theorem 4.3) Let K be a number field
and S be a finite set of valuations on K, containing all the archimedean valuations. Let
f (X ) ∈ K[X ] be a polynomial of degree d ≥ 3 with distinct roots in the algebraic closure K
of K. Then the equation y2 = f (x) has only finitely many solutions in S-integers x, y ∈ RS.

We recall some results of Yann Bugeaud and T. N. Shorey [1] on solutions of
Diophantine equation D1x2 + D2 = λ2ky, where D1 and D2 are coprime positive integers,
k ≥ 2 is an integer coprime with D1D2 and λ = √

2, 2 such that λ = 2 if k is even.
Let us denote Fi to be the Fibonacci sequence defined by F0 = 0, F1 = 1, and Fi =

Fi−1 + Fi−2 for all i ≥ 2. Let Li be the Lucas sequence defined by L0 = 2, L1 = 1 and
satisfying Li = Li−1 + Li−2 for all i ≥ 2. Define the subsets F , G,H of N × N × N by

F :={
(Fi−2ε, Li+ε, Fi) | i ≥ 2, ε ∈ {±1}},

G :={
(1, 4kr − 1, k) | k ≥ 2, r ≥ 1

}
,

H :={
(D1, D2, k) | there exist positive integers r and s such that

D1s2 + D2 = λ2kr and 3D1s2 − D2 = ±λ2
}
.

Define N (λ, D1, D2, p) to be the number of (x, y) ∈ Z+ × Z+ of the Diophantine
equation D1x2 + D2 = λ2py.

THEOREM 10. ([1], Theorem 1) Let p be a prime number. Then we have
N (λ, D1, D2, p) ≤ 1 expect for N (2, 13, 3, 2) =N (

√
2, 7, 11, 3) =N (1, 2, 1, 3) =

N (2, 7, 1, 2) =N (
√

2, 1, 1, 5) =N (
√

2, 1, 1, 13) =N (2, 1, 3, 7) = 2 and when (D1,

D2, p) belongs to one of the infinite families F , G and H.

LEMMA 11. For any odd prime q and any integer D > 3, the equation Dx2 + 1 = 2qy

has at most one solution (x, y) ∈ Z+ × Z+.

Proof. Let D1 = D and D2 = 1 and λ = √
2. We first note that (λ, D1, D2, q) �∈

{(2, 13, 3, 2), (
√

2, 7, 11, 3), (1, 2, 1, 3), (2, 7, 1, 2), (
√

2, 1, 1, 5), (
√

2, 1, 1, 13), (2, 1,
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3, 7)}. By Theorem 10, it is enough to show that (D1, D2, q) �∈F . If (Fi−ε, Li+ε, Fi) =
(D1, D2, p), then i = 2, ε = −1. Hence D = 2. This is not possible because D > 3.

Therefore (D1, D2, q) �∈F . If (1, 4kr − 1, k) = (D1, D2, q), then D = D1 = 1. This is
not possible. Therefore (D1, D2, q) �∈ G. If D1x2 + 1 = 2qy, then 3D1x2 − 1 ≥ D1x2 − 1 ≥
2qy − 2 ≥ 4. Hence (D1, D2, q) �∈H.

PROPOSITION 12. For prime numbers p, q ≥ 3 and m = qr, r ∈ N, let α = 1 +√
1 − 2mp, then ±2

p−1
2 α is not a pth power of an algebraic integer in Q(

√
1 − 2mp).

Proof. Let d be the square-free part of
√

1 − 2mp with signature. Let K = Q(
√

d) and
OK be the ring of integers of K. Note that −2

p−1
2 α is a pth power in OK if and only if 2

p−1
2 α

is a pth power in OK . It is enough to show 2
p−1

2 α is not a pth power. Suppose that,

2
p−1

2 α = βp for some β = a + b
√

d ∈OK . (3.1)

Then ,

2
p−1

2

(
1 + √

1 − 2mp
)

=
p−1

2∑
j=0

(
p

2j

)
ap−2jb2jdj + γ

√
d for some γ ∈ Z. (3.2)

By comparing constant terms on both sides, we have

2
p−1

2 =
p−1

2∑
j=0

(
p

2j

)
ap−2jb2jdj. (3.3)

This implies that

2
p−1

2 = a

⎛
⎝

p−1
2∑

j=0

(
p

2j

)
ap−2j−1b2jdj

⎞
⎠ .

Hence a divides 2
p−1

2 .

Case 1 : a is even.
We look at (3.1)

2
p−1

2 α =
(

a + b
√

d
)p

, (3.4)

applying the norm map on the both sides

(2m)p = (
a2 − b2d

)p
.

Hence we have

2m = a2 − b2d.

Since 2 | a, we obtain 2 | b2d. We deduce that 2 | b since d is odd. Taking divisibility of
a2, b2 by 4 into consideration, we conclude that 4 | 2m but m is odd, which contradicts the
assumption that a is even.

Case 2 : a is odd.
Suppose that a is odd. Since a | 2

p−1
2 , this implies that a = ±1. Putting in equation (3.1)

we have

https://doi.org/10.1017/S001708952100015X Published online by Cambridge University Press

https://doi.org/10.1017/S001708952100015X


356 SRILAKSHMI KRISHNAMOORTHY AND SUNIL KUMAR PASUPULATI

2
p−1

2 (1 + √
1 − 2mp) =

(
±1 + b

√
d
)p

,

applying the norm map on both sides we get

(2m)p = (
1 − b2d

)p
.

Rewriting the above equation using D = −d and m = qr, we get

1 + Db2 = 2qr. (3.5)

We observe that 1 − 2mp = 1 − 2(qr)p = b′2d for some b′ ∈ Z. Rephrasing this equation
we have

1 + b′2D = 2qrp. (3.6)

Thus, from equations (3.5) and (3.6), we get (b, r), (b′, rp) are solutions of the equation
Dx2 + 1 = qy, which is a contradiction to Lemma 11. Hence ±2

p−1
2 α is not a pth power

in OK .

4. Proof of the theorem. We now prove the main theorem of this article.

Proof of Theorem 3. Let d be the square-free part of 1 − 2mp with signature then
d ≡ 3 (mod 4) and K = Q(

√
d). Put α := 1 + √

1 − 2mp, then NK/Q(α) = 2mp. Since d ≡
3 (mod 4), the ideal (2) is ramified, there exists a prime ideal P such that (2) =P2. Since
the norm of α is 2mp = 2qrp, the prime decomposition of (α) is given by (α) =PQt, for
some positive integer t, where Q is a prime that lies above q. Then NK/Q((α)) = 2qt, where

N(Q) = q (since q splits in Q(
√

d) as
(

d
q

)
= 1). Hence t = rp.

Consider the ideal I :=PQ t
p , of K. Observe that

Ip =PpQt = (2)
p−1

2 PQt = (2)
p−1

2 (α) = (2
p−1

2 α).

We claim that the order of the ideal I in ideal class group is p. Suppose not, let (β) = I for
some β in OK . Then

(βp) = (β)p = Ip = (2
p−1

2 α).

Since the only units of OK are {1, −1}, this implies that I is a principal ideal if and only
if ±2

p−1
2 α is a power of p in OK . From Proposition 12, we know that ±2

p−1
2 α is not a pth

power in OK . Hence the class group of Q(
√

1 − 2mp) has an element I of order p. �
We prove a corollary of Theorem 3.

COROLLARY 13. For every odd prime p, there exist infinitely many imaginary
biquadratic fields whose class number is divisible by p.

Proof. Fix an odd prime p. Consider the set

S1 = {m ∈ Z+| m is not a square, m ≡ 1 (mod 4) and

the class number of Q(
√

1 − 2mp) is divisible by p}.
By Lemma 9, the equation 1 − 2xp = y2 has only finitely many solutions (x, y) ∈

Z × Z. Hence, it follows from Theorem 3 and Dirichlet’s theorem on arithmetic
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progression that S1 contains infinitely many primes q with q ≡ 1 (mod 4), which implies
that S1 is an infinite set.

For m ∈ S1, consider the imaginary biquadratic field Km = Q(
√

1 − 2mp,
√

m). Denote
L1

m := Q(
√

1 − 2mp), L2
m := Q(

√
m) and L3

m := Q
(√

1 − 2mp
√

m
)
. Since m is not a

square, L2
m is actually a quadratic field. We observe that L1

m �= L2
m because 1 − 2mp ≡ 3

(mod 4). Thus L1
m, L2

m and L3
m are the three quadratic subfields of Km. Let hm, h1

m, h2
m and

h3
m be the class numbers of Km, L1

m, L2
m and L3

m respectively. Then by Lemma 2 in [6], we

have hm = h1
mh2

mh3
m

2i where i = 0, 1. Since m ∈ S1, the prime p divides h1
m. Since p is odd, p

divides hm. The infiniteness of the set {Km|m ∈ S1} follows from that of the set S1.
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