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Minimizing movements are investigated for an energy which is the superposition of a
convex functional and fast small oscillations. Thus a minimizing movement scheme
involves a temporal parameter τ and a spatial parameter ε, with τ describing the
time step and the frequency of the oscillations being proportional to 1/ε. The
extreme cases of fast time scales τ � ε and slow time scales ε � τ have been
investigated in [4]. In this paper, the intermediate (critical) case of finite ratio
ε/τ > 0 is studied. It is shown that a pinning threshold exists, with initial data
below the threshold being a fixed point of the dynamics. A characterization of the
pinning threshold is given. For initial data above the pinning threshold, the equation
and velocity describing the homogenized motion are determined.
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1. Introduction

In this paper, we analyse a minimizing-movement approach for gradient flows with
wiggly energies,

x′(t) = −μ∂Eε(x(t))
∂x

. (1)

A prototypical model of the energy is an oscillating perturbation of a quadratic
energy,

Eε(x) = 1
2x

2 − ε cos
(

x
ε

)
. (2)

This mathematical problem can be motivated by the analysis of interface motion in
materials science. There is a range of problems where interfaces form in a specimen
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and propagate so that a material particle crossing the interface changes its stability,
by transforming from an unstable or metastable state to a more stable one; see, for
example, [2]. Often this evolution is load-driven, in the sense that an applied load
enables a particle to explore states of lower energy. Let us consider an interface, say
between twin boundaries or phase boundaries, macroscopically propagating with
some velocity v. However, microscopically the interface typically does not move
homogeneously. Instead, the interface tends to propagate forward as a whole by a
series of incremental steps. To illustrate this, let us picture an interface consisting of
a straight horizontal line segment, then a step up, followed by another horizontal line
segment, moving up towards a more stable state. Then it is normally advantageous
for the interface to propagate the step sideways, that is, move upward the particle
next to the step, and then move the remaining particles consecutively. This leads to
a multi-welled energy landscape, with local minima spaced periodically with high
frequency. One model for the propagation of an interface in this manner is the
Frenkel–Kontorova chain with forcing, where the motion of atom n is [2]

mu′′n(t) = k(un+1(t) − 2un(t) + un−1(t)) −W ′(un(t)) + f(n, t),

or the continuum version

mu′′(x, t) = kuxx(x, t) −W ′(u(x, t)) + f(x, t).

The model considered here can be interpreted as an unforced (f = 0) case, where
the kinetics is replaced by a simpler (gradient flow) dynamics.

We remark that the same equation appears in a related but different context in
Materials Science, again originating from transition layers. Martensitic materials
can form needles of phases with pronounced tips (see, e.g., photographs in [1]).
During creep tests, it is observed that the volume fraction of the phase fractions
involved changes rather abruptly, and it is shown that this sudden change can be
attributed to a sudden split of a tip into two tips [1]. One can picture this as a
lenticular domain of one variant trying to grow; this growth then occurs where the
tip of the lens meets a boundary between twins, and fattening of the phase happens
via splitting of the tip in two and more tips. The splitting of a needle can then be
attributed to a metastable transition, moving from one local minimum to another
one. This suggests a small-scale landscape with many minima, and the energy
studied by Abeyaratne, Chu and James [1] is a macroscopic energy augmented
by small-scale oscillations aε cos(x/ε), as studied here. In addition, the kinetic law
in [1] is taken to be a gradient flow. Specifically, there it is shown that the solution
xε to the evolution equation (1) converges uniformly in time to the solution of

x(t) = −μ∂Ē(x(t))
∂x

, with x(0) = x0,

with an explicitly computed driving force ∂Ē/∂x. This latter system is then inves-
tigated numerically. The variational analysis carried out here can be interpreted in
this light. We consider time discretizations, as numerical algorithms would employ,
but on the level of the original (not homogenized) energy Eε, rather than Ē. This
leads to two parameters, the time discretization τ and oscillation scale ε. The
different scaling regimes that follow naturally are analysed in this paper.
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We make the trivial but important remark that the limit of a sequence of gradient
flows associated with a family Eε is in general not the gradient flow of the limit of
the energy. For example, on one hand for the energy (2), the associated gradient
flow is (μ = 1)

x′ε(t) = −xε(t) − sin
(
xε(t)
ε

)
,

for initial datum x0. If x0 ∈ (−1, 1), then such solutions are trapped between sta-
tionary solutions, and they converge to the trivial constant state x0 (pinning), while
if |x0| � 1 they can be shown to converge to a solution x of the gradient flow

x′(t) = −signx(t)
√
x2(t) − 1.

Conversely, Eε converge uniformly to the quadratic energy, whose gradient flow is
trivially

x′(t) = −x(t).
These behaviours can be obtained as limit cases of minimizing movements along

the sequence of energies Eε at different time scales. Minimizing movements are
defined as follows: with fixed ε (the spatial scale) and τ (the time scale), we set
xε,τ

0 = x0 and choose recursively xε,τ
k as a minimizer of

x �→ Eε(x) + 1
2τ |x− xε,τ

k−1|2.
This process gives the piecewise-constant trajectories

xε,τ (t) = xε,τ
�t/τ�.

With fixed τ = τ(ε), a minimizing movement x(t) along the sequence of energies
Eε at time scale τ is defined as any limit of subsequences of xε,τ (t). Simple examples
show that the limit may indeed depend on the subsequence and on the choice of τ . If
Eε is independent of ε this notion coincides with the one given by De Giorgi [6] and
at the basis of modern notions of gradient flows (see the monograph by Ambrosio,
Gigli and Savaré [3]). Examples of problems related to varying Eε are analysed
in [4], where in particular it is shown that for the energies above and for τ � ε (fast
time scale), the minimizing movement x coincides with the limit of the solutions xε

of the gradient flows at fixed ε, while for ε� τ (slow time scale) it coincides with the
gradient flow of the limit quadratic energy. That observation highlights the existence
of a critical time scaling when τ ∼ ε, for which the minimizing movements are not
trivially described by the limit of gradient flows or the gradient flow of the limit.
The behaviour at those scales is the object of this paper. A rather different very
interesting line of investigation has been taken by Menon [10], and independently in
parallel by Smyshlyaev. In [10], averaging techniques are developed in the context
of the time-continuous dynamical system (1). The homogenization of first-order
ordinary differential equations, including error estimates, is studied further in [8].
We remark that the model we consider is deterministic, where the two parameters
come from spatial oscillations and a time discretization. For stochastic models, it is
also natural to consider the effective behaviour in different scaling regimes of space
and noise; we refer the reader to [7].
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Plan of the paper. A summary of the results of the paper is as follows. We consider
functions Eε : R → R given by

Eε(x) = h(x) + εW
(x
ε

)
, (3)

where h is a strictly convex function bounded from below and W is a one-periodic
even Lipschitz function. We consider a time scale τ = τ(ε) such that ε/τ converges
to γ > 0. Therefore, the present analysis complements the recent one of [4] (see
also [5]), where the cases γ ∈ {0,+∞} are investigated. In terms of the mechanical
problem of interface propagation discussed above, we show that pinning will occur
for small initial data, while large data lead to a gradient flow evolution for which
the averaged velocity can be computed. More precisely, we prove that in that case
the unique minimizing movement xγ with initial datum x0 > 0 (the case x0 < 0 is
analogous by symmetry) is described as follows:

(1) Pinning threshold: There exists Tγ such that xγ(t) = x0 for all t if |x0| � Tγ .
The pinning threshold is characterized in proposition 5.4.

(2) Homogenized equation: If x0 > Tγ then xγ(t) is characterized as the non-
increasing function satisfying

d
dt
xγ(t) = −γ fγ(h′(xγ(t)))

at almost all t > 0. The homogenized velocity fγ(z) is the average veloc-
ity (suitably defined) of any discrete orbit {yk} defined recursively by
minimization of the linearity problem

y �→ zy +W (y) + γ
2 (y − yk−1)2,

which can be shown not to depend on the initial condition y0.

Mathematically, our analysis is confined to one space dimension, as it strongly relies
on monotonicity properties developed in § 3. A central argument is a comparison of
a solution to the nonlinear energy as in (3), and one where h, the non-oscillating
part, is suitably linearized. This argument is developed in § 4.

2. Minimizing movement along a sequence

We recall the general definition of minimizing movements for a sequence of
functionals defined on a Hilbert space.

Definition 2.1. Let X be a separable Hilbert space, Eε : X → [0,+∞) equicoer-
cive and lower semicontinuous and xε

0 → x0 with Eε(xε
0) � C < +∞ and τε > 0
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converging to 0 as ε→ 0. For fixed ε > 0, we define recursively xε
i as a minimizer

of the problem

min
{
Eε(x) +

1
τε
‖x− xε

i−1‖2

}
, (4)

and the piecewise-constant trajectory

xε(t) := xε
i = xε

�t/τε� , t ∈ [iτε, (i+ 1)τε) . (5)

A minimizing movement for Eε at time scale τ from xε
0 is the limit of a subsequence

xεj ,

x(t) = lim
j→+∞

xεj (t) ,

with respect to the uniform convergence on compact sets of [0,+∞).

This definition is justified by the following compactness result [4, proposition 7.1].

Proposition 2.2. For every Eε and xε
0 as above, there exist minimizing movements

for Eε, from xε
0, with x(t) ∈ C1/2([0,+∞);X).

For a comprehensive study of minimizing movements for a fixed E = Eε we refer
to [3], while a detailed analysis of some of its applications can be found in [4].

3. Monotone behaviour of minimizing movements

In the sequel we will study minimizing movements for the functions Eε : R → R

given by (3), where h is a strictly convex function bounded from below. It is not
restrictive to suppose that h � 0, and that h attains its global minimum in x = 0.
Furthermore, we assume that W is a one-periodic even Lipschitz function with
‖W ′‖∞ = 1, and that the average of W is 0. The two latter assumptions serve as
normalization only and are not restrictive.

We observe the following simple monotonicity property.

Proposition 3.1. Given any functions φ : R → R and ψ : R → R, and β > 0, for
any x, x′ ∈ R, let y, y′ ∈ R be minimizers of

t �→ φ(t) + β(t− x)2 , t �→ ψ(t) + β(t− x′)2,

respectively. Then

φ(y) − φ(y′) + ψ(y′) − ψ(y) � 2β(x− x′)(y − y′) . (6)

In particular, if ψ = φ and x � x′ then y � y′.
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Proof. By assumption

φ(y) + β(y − x)2 � φ(y′) + β(y′ − x)2, ψ(y′) + β(y′ − x′)2 � ψ(y) + β(y − x′)2.

Summing up the two inequalities and simplifying the terms on both sides we
obtain (6). Moreover, if ψ = φ, then

(x− x′)(y − y′) � 0,

which yields the desired inequality. �

Before analysing the case of fixed ratio ε/τ , we make some general remarks.
According to definition 2.1, we define iteratively the global minimizer xε

i+1 to

Fε(x, xε
i ) = h(x) + εW

(x
ε

)
+

1
2τε

(x− xε
i )

2 . (7)

First of all, we observe that the sequence of minimizers (xε
i )i is monotone.

Proposition 3.2 (Monotone behaviour of xε
i ). Let xε

i+1 be a minimizer to (7).
Then the following holds.

(1) If xε
i+1 � xε

i , then xε
i+2 � xε

i+1 .

(2) If xε
i+1 � xε

i , then xε
i+2 � xε

i+1 .

In particular, t �→ xε(t) and t �→ x(t) are monotone functions.

Proof. (1) and (2) are straightforward consequences of proposition 3.1 with φ(t) =
ψ(t) = h(t) + εW (t/ε) and β = 1/(2τε).

By definition 2.1, xε(t) is monotone in t, and since it converges uniformly to
x(t) ∈ C1/2([0,+∞)), on compact sets of [0,+∞), we may conclude that x(t) is
also a monotone function. �

4. Linearized energy

In order to characterize the velocity x′(t0) of the minimizing movement scheme (4),
we study the average velocity given by

xε
i − xε

0

iτε
. (8)

We assume, without loss of generality, that t0 = 0 and x(0) = xε
0. We consider a

(partial) linearization of the problem given by

FT
ε (x, xε,T

i ) = Tx+ εW
(x
ε

)
+

1
2τε

(x− xε,T
i )2 , (9)

where xε,T
0 := xε

0. The term Tx represents the ‘linear approximation’ of the poten-
tial h around the point h(xε

0) up to translation by a constant that does not depend
on T and i. We recall that h is a strictly convex function, hence h′ is a monotone
increasing function.
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Proposition 4.1 (Monotone behaviour of xε,T
i with respect to xε

i ). Let δ > 0 be
such that h′(x0 ± δ) exists.

(1) Let xε,T
i be the minimizer to (9). Then

• if xε,T
i+1 � xε,T

i , then xε,T
i+2 � xε,T

i+1

• if xε,T
i+1 � xε,T

i , then xε,T
i+2 � xε,T

i+1 .

(2) Let T = T δ+
:= h′(x0 + δ), and xε

i minimizer of (7). Then if xε,T δ+

i � xε
i ,

then xε,T δ+

i+1 � xε
i+1.

(3) Let T = T δ−
:= h′(x0 − δ); then if xε

i � xε,T δ−

i , then xε
i+1 � xε,T δ−

i+1 .

Proof. The proof of (1) is a straightforward consequence of proposition 3.1 with
φ(t) = ψ(t) = Tt+ εW (t/ε) and β = 1/(2τε).

To prove (2), we apply again proposition 3.1 with φ(t) = h(t) + εW (t/ε) and
ψ(t) = Tt+ εW (t/ε) with T = T δ+

:= h′(x0 + δ) and β = 1/(2τε). By (6), it holds
that

φ(xε
i+1) − φ(xε,T δ+

i+1 ) + ψ(xε,T δ+

i+1 ) − ψ(xε
i+1) � 2β(xε,T δ+

i − xε
i )(x

ε,T δ+

i+1 − xε
i+1) .

Therefore,

h(xε
i+1) − h(xε,T δ+

i+1 ) + h′(x0 + δ)(xε,T δ+

i+1 − xε
i+1) � 2β(xε,T δ+

i − xε
i )(x

ε,T δ+

i+1 − xε
i+1) ,

which implies

⎛
⎝h′(x0 + δ) − h(xε

i+1) − h(xε,T δ+

i+1 )

xε
i+1 − xε,T δ+

i+1

⎞
⎠ (xε,T δ+

i+1 − xε
i+1)

� 2β(xε,T δ+

i − xε
i )(x

ε,T δ+

i+1 − xε
i+1) .

Since xε,T δ+

i , xε
i < x0 + δ and h is a convex function, we get that

h′(x0 + δ) − h(xε
i+1) − h(xε,T δ+

i+1 )

xε
i+1 − xε,T δ+

i+1

� 0 ,

which gives the monotone behaviour xε,T δ+

i+1 � xε
i+1. �
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4.1. Minimizing movement for fixed ratio ε/τ

We consider a time scale τ = τε such that ε/τ converges to γ > 0. It is not
restrictive to suppose that the ratio between ε and τ is fixed,

τε =
1
γ
ε.

We study the linearized energies in (9) and rescale by 1/ε, that is,

FT
ε (x, xε,T

i )
ε

= T
(x
ε

)
+W

(x
ε

)
+

ε

2τε

(
x− xε,T

i

ε

)2

.

We denote

FT
γ (y, yT

i ) := Ty +W (y) + γ
2 (y − yT

i )2, (10)

where y := x/ε and yT
i := xε,T

i /ε for every i ∈ N, i � 1. Note that the minimizers yT
i

depend also on γ. However, we omit this dependence in the notation for simplicity.

Proposition 4.2. Let y0, z0 and T, S be fixed with T � S. Let yT
0 = y0, zS

0 = z0.
Let yT

i and zS
i be minimizers to FT

γ (y, yT
i−1) and FS

γ (y, zS
i−1), respectively, for every

i ∈ N with i � 1. If z0 � y0 then zS
i � yT

i for every i.

Proof. By proposition 3.1, with φ(t) = St+W (t), ψ(t) = Tt+W (t), x = z0,
x′ = y0, and β = γ/2, it follows that

(S − T )(zS
1 − yT

1 ) � γ(zS
1 − yT

1 )(z0 − y0) .

Therefore, if T � S and z0 � y0, this yields zS
1 � yT

1 . Similarly, we can prove that
the inequality zS

i � yT
i is satisfied for any i � 2. �

Theorem 4.3. For every T , the limit

fγ(T ) := lim
i→∞

y0 − yT
i

i
(11)

exists and it is independent of y0. Moreover, the function T �→ fγ(T ) is monotone
increasing.

Proof. The existence of the limit is a straightforward consequence of the subaddi-
tivity of the sequence (yT

i ). More precisely, let h ∈ Z be such that 0 � yT
k + h � 1.
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Since (yT
k + h)T

i = yT
k+i + h, by proposition 4.2, with S ≡ T ,

yT
i � yT

k+i + h � yT
i + 1 . (12)

Therefore, if we sum up the last inequality in (12) with

−1 � −(yT
k + h) � 0 ,

we obtain

yT
i + yT

k − 1 � yT
k+i � yT

i + yT
k + 1,

which implies the almost subadditivity of (yT
i ). We now prove that the limit

lim
i→∞

(
yT

i

i

)
= inf

i∈N

(yT
i

i

)
(13)

exists. Let i = km+ n. Then

yT
i

i
=

yT
km+n

km+ n
� yT

km + yT
n + 1

km+ n

� kyT
m + yT

n + k

km+ n
=

kyT
m

km+ n
+

yT
n

km+ n
+

k

km+ n
.

If we fix m and pass to the limit k tends to ∞, we obtain

lim
i→∞

yT
i

i
� yT

m

m
+

1
m
.

Therefore

inf
i∈N

yT
i

i
� lim

i→∞
yT

i

i
� inf

m∈N

yT
m

m
,

which proves (13) and the existence of the limit in (11).
We now prove that the function T �→ fγ(T ) is independent of y0. In fact, we can

always rewrite for k < i

y0 − yT
i

i
=
y0 − yT

k + yT
k − yT

i

i
=
y0 − yT

k

i
+
yT

k − yT
i

i− k

i− k

i
.

Hence,

lim
i→∞

y0 − yT
i

i
= lim

i→∞
yT

k − yT
i

i− k
.

Finally, we remark that the function T �→ fγ(T ) is monotone increasing; that is, if
T � S then fγ(T ) � fγ(S). By definition (11),

fγ(T ) = lim
i→∞

y0 − yT
i

i
, fγ(S) = lim

i→∞
y0 − yS

i

i
;

the monotonicity follows since −yT
i � −yS

i by proposition 4.2. �
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4.2. Characterization of periodic orbits for the linearized problem

The definition of fγ(T ) reminds that of Poincaré rotation number in the theory
of Dynamical Systems (see, e.g., [9, Chapter 11]), which, in our notation, concerns
the properties of the orbits of the multifunction

AT
γ (y) = argmin

{
Tz +W (z) +

1
2
γ(z − y)2

}
.

Note that for T > 1 this set is a singleton, but for T � 1, in general, it is not.
We can nevertheless adapt some arguments borrowed from Dynamical Systems to
prove a characterization of the values of T for which we have periodic orbits. By
definition in this case fγ(T ) is rational. The converse also holds true as follows.

Proposition 4.4 (Periodic orbits). Let T > 0, and let {yT
i } be defined as in propo-

sition 4.2. There exists an initial datum y0 = yT
0 and integers p, q with q 
= 0 such

that

yT
kq+i = yT

i + kp (14)

if and only if fγ(T ) = p/q.

Proof. We only have to prove the existence of {yT
i } satisfying (14) assuming that

fγ(T ) = p/q.
We remark that A = AT

γ satisfies

• A is monotonically increasing: if y � y′ then A(y) � A(y′); that is, we have
z � z′ for all z ∈ A(y) and z′ ∈ A(y′) (proposition 3.1);

• y �→ A(y) is (upper) semicontinuous: if yn → y, zn ∈ A(yn) and zn → z then
z ∈ A(y);

• y �→ A(y + 1) − y is 1-periodic. This last property follows from the 1-periodicity
of W , since

A(y + 1) = argmin
{
Tz +W (z) +

1
2
γ(z − y − 1)2

}

= 1 + argmin
{
T (z − 1) +W (z − 1) +

1
2
γ(z − y)2

}

= 1 + argmin
{
Tz +W (z) +

1
2
γ(z − y)2

}

= 1 +A(y).

Note that the recursive construction of yT
i translates in yT

i ∈ A(yT
i−1), and by

assumption, we have

lim
n

yT
nq − y0

n
= qfγ(T ) = p.
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Hence, we will examine the properties of yT
nq, interpreted as the n-th iteration

of the multifunction Aq (the q-fold composition of A) applied to y0. Note that
the multifunction Aq is still increasing and semicontinuous, and y �→ Aq(y) − y is
1-periodic.

We have to prove that there exists y0 such that

y0 + p ∈ Aq(y0),

from which we obtain (14). Note that we can assume that such p and q are the
same as those defining fγ(T ) since this will automatically follow from (14).

By the monotonicity of Aq, we deduce that Aq(y) is a singleton except for a
countable number of y. We may then suppose that Aq(0) is a singleton. We denote
by k0 the integer part of the unique element of Aq(0), and consider the multifunction

G(y) := Aq(y) − k0.

Note that G inherits the properties of Aq and that the unique element of G(0)
belongs to (0, 1).

We have to show that there exists y such that (G(y) − y) ∩ Z 
= ∅. We reason by
contradiction. Note that the graph of G can be extended to a maximal monotone
graph G on R, and that if we denote by G(y) the corresponding set such that
(y, ȳ) ∈ G if and only if ȳ ∈ G(y), then G(y) is a segment (degenerate for almost all y)
whose endpoints belong to G(y) by semicontinuity. This implies that the graph of
G(y) − y cannot intersect the horizontal lines ȳ ∈ Z. Indeed, suppose otherwise there
exists y such that 0 ∈ G(y) − y; if ỹ is the minimum of such points in (0, 1) (which
exists since the graph of G(y) − y is a continuous curve and 0 
∈ G(0)), then either
G(ỹ) is a singleton, or the segment G(ỹ) − ỹ has 0 as the lower endpoint. In either
case, we have 0 ∈ G(ỹ) − ỹ, which contradicts our hypothesis. Similarly, we may
show that there is no y such that 1 ∈ G(y) − y. Hence, we have G(y) − y ⊂ (0, 1)
for all y.

By the continuity and periodicity of the graph of G(y) − y, there exist δ > 0 such
that

δ � G(y) − y � 1 − δ for all y.

Let y0 = 0 and yi ∈ G(yi−1). For all n, from

δ � yi+1 − yi � 1 − δ for all i ∈ {0, . . . , n− 1}
we deduce that

nδ � G(yn) = Anq(0) − nk0 � n(1 − δ);

that is,

k0 + δ � Anq(0)
n

� k0 + 1 − δ .

Passing to the limit, we finally get

k0 + δ � qfγ(T ) � k0 + 1 − δ,

which contradicts the assumption qfγ(T ) ∈ Z. �
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5. The limit equation

In this section, we show that the limit trajectory x satisfies

x′(t) = −γ fγ(h′(x(t))) (15)

for almost all t > 0, with fγ defined in (11). This equation fully characterizes x
given the initial datum x0.

Theorem 5.1. Let γ ∈ (0,+∞). Let t0 be such that x′(t0) exists. Then

γ fγ(h′(x(t0)−)) � −x′(t0) � γ fγ(h′(x(t0)+)) .

Proof. By translating the time variable if necessary, we can suppose t0 = 0 and
x0 = x(0). Let δ > 0 be such that h′(x0 ± δ) exists. By proposition 4.1 (2) and (3),

xε,T δ+

i − x0

iτε
� xε

i − x0

iτε
� xε,T δ−

i − x0

iτε
.

The averaged velocity, as in (8), is given by

xε,T
i − x0

iτε
= γ

yT
i − y0
i

;

with definition (11) it follows that

−γ fγ(h′(x0 + δ)) = lim
i→∞

xε,T δ+

i − x0

iτε
, −γ fγ(h′(x0 − δ)) = lim

i→∞
xε,T δ−

i − x0

iτε
.

Therefore, we conclude that

γ fγ(h′(x−0 )) � −x′(0) � γ fγ(h′(x+
0 ))

as desired. �

The previous result proves that equation (15) fully characterizes x when t �→ x(t)
is strictly monotone, so that the set of t such that

γ fγ(h′(x(t)−)) 
= γ fγ(h′(x(t)+))

is of zero (Lebesgue) measure. By the monotonicity of fγ , if x is not strictly
monotone then it is constant, so again (15) is satisfied.

We now characterize the pinning set, that is, the set of initial data for which
x(t) = x0 for all t > 0.

Definition 5.2 (Pinning threshold). For fixed γ > 0, we define the pinning
threshold at scale γ as Tγ := sup{T : fγ(T ) = 0}.

Remark 5.3. Note that fγ is monotonically increasing, and thus fγ = 0 on [0, Tγ ].
Hence, for all x0 with |x0| � Tγ the motion is pinned; that is, x(t) = x0 for all t.
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The following proposition gives a criterion for the computation of the pinning
threshold if Ty +W (y) has (at most) a unique local minimizer in the period. Then
it suffices to examine the case where the iteration from that point is trivial. Note
that if T � 1 the function y �→ Ty +W (y) is strictly increasing, so that T > Tγ .

Proposition 5.4 (Characterization of the pinning threshold). Assume that W ′ has
a unique local maximum in (0, 1/2). Let 0 < T < 1 and denote by yT ∈ (−1/2, 0)
the unique local minimizer of y �→ Ty +W (y) in [−1/2, 1/2]. Then for every fixed
γ > 0, we have T < Tγ if and only if the function

ϕT (y) := Ty +W (y) + γ
2 (y − yT )2

has a unique global minimum in yT .

Proof. Suppose that yT is the unique global minimizer of ϕT . Then we can choose
an initial datum y0 = yT in the computation of the velocity in theorem 4.3, and
obtain the trivial orbit yk = yT . Hence the velocity is 0 and consequently, T � Tγ .
Actually, noting that local minimizers of ϕT are a finite set defined by the identity
T +W ′(y) + γ(y − yT ) = 0, we have T < Tγ by the continuous dependence of these
quantities in T .

Conversely, suppose that yT is not the unique global minimizer of ϕT . By
definition of Tγ in order to show that Tγ � T it suffices to prove that the motion is
not pinned for all T + δ for δ > 0. Then, up to taking such T + δ in the place of T ,
we may directly suppose that yT is not a global minimizer of ϕT , which is instead
a value y1 ∈ [yT − n1, yM − n1], where yM is the unique (local) maximum point of
W ′ in (0, 1/2) and n1 is some positive integer. Now, define the set

I =
{
y ∈

(
−1

2
,
1
2

)
: there exists a unique minimizer y < −1

2
of

w �→ Tw +W (w) +
γ

2
(w − y)2

}
,

which is the set of initial data for which the first iteration moves to ‘another well’.
By continuity, there exists δ > 0 such that [yT − δ, yT + δ] ⊂ I. Then yN ∈ I − k1

after a finite number of iterations N independent of y1 (for a finer estimate of N
in the piecewise-quadratic case, we refer to § 6), and we can proceed by induction.
This gives the positiveness of the velocity and T � Tγ . �

Remark 5.5 (Asymptotic behaviour at the pinning threshold). If the hypotheses
of proposition 5.4 are satisfied and W is C2 at local minimizers of Ty +W (y) with
strictly positive second derivative then for all γ > 0

fγ(T ) ∼ 1
log(T − Tγ)

as T → T+
γ . This will be shown for piecewise quadratic energies W in detail in the

next section.
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Proposition 5.6 (Extreme minimizing movements). We have

lim
γ→0

γfγ(z) = z, lim
γ→+∞ γfγ(z) = g∞(z), (16)

where g∞ is given by

g∞(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∫ 1

0

1
z +W (s)

ds
)−1

if
1

z +W (s)
is integrable,

0 otherwise.

(17)

Moreover,

lim
γ→+∞Tγ = sup

γ
Tγ = T∞, (18)

where [−T∞, T∞] = {T ∈ R : g∞(T ) = 0}.

Proof. Assume that h and W are C2-functions. The convergence as γ → 0 follows
from the observation that the orbit xε

k satisfies

xε
k − xε

k−1

τ
= −h′(xε

k) +O
( ε
τ

)
= −xε

k + o(1)

as γ → 0. Conversely, the convergence as γ → +∞ follows by noting that as γ →
+∞ the orbits xε(t), defined as in (5), are close to the corresponding solution of
the gradient flow

x′ε = −h′(xε) −W ′
(xε

ε

)
,

whose limit satisfies x′ = −g∞(h′(x)). �

Remark 5.7. By theorem 8.1 in [4], the equations

x′ = −h′(x) and x′ = −g∞(h′(x))

describe the minimizing movements in the cases ε� τ and τ � ε, respectively.
The previous proposition shows that the same extreme minimizing movements are
obtained by keeping the ratio γ = ε/τ fixed and then let it tend to 0 and +∞,
respectively.

6. An example: the piecewise-quadratic case

In this section, we provide an example of oscillating potential and calculate explic-
itly the corresponding pinning threshold Tγ . More precisely, we consider the
piecewise quadratic energy

W (y) := min
k∈Z

(y − k)2 .

Besides giving an illustrative example, we deduce the asymptotic behaviour at
the pinning threshold, which depends only on the non-degeneracy of the second
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derivative at local minima. In this way we deduce the asymptotic behaviour in the
general case as in remark 5.5.

For this choice of W , for T∞ as in proposition 5.6, it holds that

T∞ = 1,

and (17) becomes

g∞(z) =
1

log((z − 1)/z)
for z > 1.

The function W is 1-periodic and piecewise quadratic with ‖W ′‖∞ = 1. For sim-
plicity, we fix also h(x) = x2/2. Let T ∈ (0, 1) and y0 ∈ [0, 1/2). The minimum of
the function FT

γ (y, y0) = Ty +W (y) + γ/2(y − y0)2, given in (10), on the inter-
val [−1/2 + k, 1/2 + k] can be attained at the boundary or at the interior of this
interval; it is given by

y1,k =
−T + 2k

2 + γ
+

γ

2 + γ
y0 (19)

(y1,k also depends on T but we suppress this in the notation).
The global minimizer yT

1 to FT
γ (y, y0) can get stuck in the same well of y0, that

is, yT
1 = y1,0. Otherwise, it can move into the next well, corresponding to k = −1,

that is, yT
1 = y1,−1.

Any single well of W (y) is denoted by W (y; k) := (y − k)2 for every y ∈ [−1/2 +
k, 1/2 + k] with k ∈ Z. We define

ψ(y) :=
(
Ty1,−1 +W (y1,−1;−1) +

γ

2
(y1,−1 − y)2

)
−
(
Ty1,0 +W (y1,0; 0) +

γ

2
(y1,0 − y)2

)
. (20)

To establish if yT
1 gets stuck or moves, we have to study the sign of ψ(y0), since

it is the difference between the minimum value of the two wells. Therefore, if
ψ(y0) < 0, then the minimizer satisfies yT

1 = y1,−1; ψ(y0) � 0 implies that yT
1 = y1,0.

In particular, from the sign of ψ(y0) we expect to derive the pinning threshold Tγ .

Proposition 6.1. Let γ ∈ (0,+∞) and let T ∈ (0, 1). Then there exist

Tγ :=
γ

(2 + γ)
and δT :=

(
2 + γ

2γ

)
(T − Tγ),

such that the following holds.

(1) For every T > Tγ we have that, the following possibilities exist.
(i) If y0 ∈ [0, (−T/2) + δT ) then yT

1 = y1,−1, where the latter is defined
in (19). Moreover, if

yT
1 +

T

2
+ 1 =

γ

1 + γ

(
y0 +

T

2
+ 1
)
< −T

2
+ δT ,

then the successive minimizer is given by yT
2 = y2,−2 and so on.
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(ii) If y0 ∈ [(−T/2) + δT , 1/2) then there exists h ∈ N given by

h =

⌊
log (((2 + γ)/γ)((T − Tγ)/(T + 1)))

log(γ/2 + γ)

⌋
+ 1 (21)

such that yT
1 = y1,0, . . . , y

T
h = yh−1,0 � (−T/2) + δT , yh,0 < (−T/2) + δT

and yT
h+1 = yh+1,−1. Similarly, if k ∈ N exists such that for some p ∈ N

yT
k +

T

2
+ p � −T

2
+ δT ,

then there exists h as in (21) such that if we take as initial data
z0 := yT

k + (T/2) + p then we get a new sequence of minimizers such
that zT

1 = z1,0 , . . . , z
T
h−1 = zh−1,0 � −T + δT , zT

h = zh,0 < (−T/2) + δT
and zT

h+1 = zh+1,−1.

(2) For every

T � Tγ and y0 � 0

the motion is pinned.

Proof. We first derive Tγ using the criterion given in proposition 5.4. More precisely,
since the unique local minimizer of y �→ Ty +W (y) in [−1/2, 1/2] is yT = −T/2,
by (19) and (20), with y0 = yT , we have that

y1,−1 = −T
2
− 2

2 + γ
, y1,0 = −T

2
.

and

ψ(yT ) =
2

2 + γ

(
−T +

γ

2
+ γyT

)
= −T +

γ

2 + γ
.

Therefore, we find

Tγ =
γ

2 + γ
.

Moreover, for fixed y0 = (−T/2) + δ, one has

ψ

(
−T

2
+ δ

)
� 0 if and only if δ � 2 + γ

2γ

(
T − γ

2 + γ

)
.

Therefore, if we define

δT :=
2 + γ

2γ
(T − Tγ) (22)

we are ready to prove the statements (1) (i) and (1) (ii) of the proposition.
We now give the proof of (1) (i). For every T > Tγ there exists δT > 0, given

by (22), such that for every y0 ∈ [0, (−T/2) + δT ) we have that ψ(y0) < 0, that is,
yT
1 = y1,−1.
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Reasoning as above, we observe that if y1,−1 + (T/2) + 1 < (−T/2) + δT , then
yT
2 = y2,−2 and we can iterate until this condition is satisfied. The case y1,−1 +

(T/2) + 1 � (−T/2) + δT is addressed in point (1) (ii).
Next, we give the proof of claim (1) (ii). If y0 ∈ [(−T/2) + δT , 1/2) then ψ(y0) � 0

and the minimizers can be calculated recursively, by (19), in the following way.

yT
1 = y1,0 =

γ

2 + γ
y0 − T

2 + γ
,

yT
2 = y2,0 =

γ

2 + γ
yT
1 − T

2 + γ

=
(

γ

2 + γ

)2

y0 − T

2 + γ

(
1 +

γ

2 + γ

)
,

yT
h = yh,0 =

(
γ

2 + γ

)h

y0 − T

2 + γ

h−1∑
n=0

(
γ

2 + γ

)n

.

Therefore, we may rewrite

yT
h =

(
γ

2 + γ

)h(
y0 +

T

2

)
− T

2
. (23)

Since (y0 + (T/2)) < 1/2 + (T/2), then we may assume that

(
γ

2 + γ

)h(
y0 +

T

2

)
− T

2
<

(
γ

2 + γ

)h(
T + 1

2

)
− T

2
< −T

2
+ δT .

Therefore,

(
γ

2 + γ

)h

<
2δT
T + 1

;

that is,

h >
log((2δT )/(T + 1))

log(γ/(2 + γ))
=

log (((2 + γ)/γ)((T − Tγ)/(T + 1)))
log(γ/(2 + γ))

.

Similarly, if yT
1 + (T/2) + 1 � −(T/2) + δT then we may reason as above, by tak-

ing as initial datum z0 := yT
1 + (T/2) + 1. Therefore, we get a new sequence of

minimizers given by

zT
1 = z1,0 =

γ

2 + γ
z0 − T

2 + γ
,

zT
2 = z2,0 =

γ

2 + γ
z1 − T

2 + γ
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=
(

γ

2 + γ

)2

z0 − T

1 + γ

(
1 +

γ

2 + γ

)
,

· · ·

zT
h = zh,0 =

(
γ

2 + γ

)h(
z0 +

T

2

)
− T

2
,

such that zT
1 = z1,0 , . . . , z

T
h−1 = zh−1,0 � (−T/2) + δT , zT

h = zh,0 < (−T/2) + δT
and zT

h+1 = zh+1,−1. More generally, if k ∈ N exists such that, for some p ∈ N, yT
k +

(T/2) + p � (−T/2) + δT , then we may repeat the procedure above by assuming
z0 := yT

k + (T/2) + p.
We now turn to the case (2) and give the proof. If T � Tγ , since y0 � 0, then

ψ(y0) > 0, that is, yT
1 = y1,0. Moreover, by (23), we have that

yT
h =

(
γ

2 + γ

)h(
y0 +

T

2

)
− T

2
> −T

2
+ δT

for every h ∈ N. Therefore, limh→∞ yT
h = (−T/2), that is, for every T � Tγ the

motion is pinned. �

Remark 6.2 (Behaviour at the pinning threshold). From proposition 6.1, case (1)
(ii), we deduce that

fγ(T ) ∼ log(γ/(2 + γ))
log((2 + γ)/γ)((T − Tγ)/(T + 1))

;

that is, for γ > 0 fixed,

fγ(T ) ∼ 1
| log(T − Tγ)|

as T → T+
γ . Note in particular that fγ is not Lipschitz for T → T+

γ .
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