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New Difficulties for the Past Hypothesis
Sean Gryb*y

I argue that explanations for time asymmetry in terms of a ‘Past Hypothesis’ face serious
new difficulties. First I strengthen grounds for existing criticism by outlining three cate-
gories of criticism that put into question essential requirements of the proposal. Then I
provide a new argument showing that any time-independent measure on the space of mod-
els of the universe must break a gauge symmetry. The Past Hypothesis then faces a new
dilemma: reject a gauge symmetry and introduce a distinction without difference or reject
the time independence of the measure and lose explanatory power.
1. Introduction. Everyday processes occur in such a way as to suggest an
obvious intuitive difference between the past and the future. One of the great
mysteries of physics and, in particular, the metaphysics of time is to explain
the existence of this time asymmetry despite the symmetry of the known
microscopic theories of physics under an appropriate time-reversal operation.
Ludwig Boltzmann provided a proposal for such an explanation that seems to
work for everyday processes (see Uffink 2017). This proposal placed the bur-
den of explanation not on the nature of the fundamental laws but on the nature
of the initial state. The time symmetry of the laws is then broken by the asym-
metrical restriction to possible models that have highly atypical initial (but
not final) states. In this way, Boltzmann attempted to explain why one might
readily expect a cup of coffee to fall and shatter onto the ground but would not
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expect a mess of coffee and shards of cup to reassemble themselves. Because
the cup of coffee is a highly unusual state in the space of possible ways that the
constituents of the cup and coffee could be arranged, it is more typical to see
the pieces scatter haphazardly than to see then reassemble as a cup of coffee.

While this kind of explanation works reasonably well for simple thermo-
dynamic systems, complications arise when attempting to apply this strategy
to the universe as a whole. Evidence from modern cosmology that the ear-
liest known states of the universe appear to have extremely low entropy seems
to have improved the situation. Positing an unimaginably atypical past state
for the entire universe, a so-called Past Hypothesis (PH; Albert 2009), might
then be used to iteratively provide an explanation for why nested subsystems
of the universe—such as a coffee cup in a room in a city on a planet, and so
on—should individually be expected to start off in atypical states. Early ver-
sions of the PH date back to Boltzmann himself (2012), and comprehensive
improvements making use of modern lessons from cosmology have been
advanced mostly notably by Penrose (1979, 1994), Lebowitz (1993), Price
(1997, 2002, 2004), Goldstein (2001), and Goldstein and Lebowitz (2004).
A well-known formulation has been advocated in Albert (2009), where the
phrase ‘Past Hypothesis’ was coined after an initial proposal by Feynman
and Wilczek (2017, 116).

The status of the PH remains controversial: it is not difficult to find both
glowing appraisals and scathing criticism. Loewer (2012) rates the problem
of time asymmetry as “among the most important questions in the metaphys-
ics of science” (115) and the PH as “themost promising approach to reductive
accounts of time’s arrows” (121). Price rates the discovery of the low-entropy
past “one of the most important [achievements] in the entire history of
physics” (2004, 219). Despite these grand claims, criticism abounds. Earman
(2006, 400) puts it bluntly: “This dogma, I contend, is ill-motivated and ill-
defined, and its implementation consists mainly in furious hand waving and
wishful thinking. In short, it is (to borrow a phrase fromPauli) not even false.”
Schiffrin and Wald (2012, 2) deliver a scathing critique of the basic technical
premises of the idea identifying “a number of serious difficulties in” attempt-
ing to formulate concrete implementations of the proposal.

The purpose of this article is to asses and extend existing criticism and
introduce a particularly troubling dilemma in order to argue that the PH faces
disturbing new difficulties. First we will provide a comprehensive analysis
of existing criticism of the PH for the purpose of assessing its status. Three
broad categories of criticism are identified and listed at the beginning of sec-
tion 3. These categories provide a formal scheme for describing and evalu-
ating different criticisms of the PH that have been advanced in the literature.
To add precision to this process, we will start in section 2 by giving a modern
presentation of the arguments motivating the PH and identify a list of im-
portant conditions (in sec. 2.3) that underlie these arguments. We will then
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analyze several examples of criticism, taken as exemplars, in each category
by identifying the specific conditions that each criticism puts into question.
While this list of criticisms is not meant to be exhaustive and no single form
of criticism should be seen as providing grounds to reject the entire proposal,
when taken together these objections are sufficient to raise serious concerns
regarding the PH. The resulting analysis already paints a rather grim picture
for the prospects of formulating a PH in an unambiguous way using sound
mathematical and physical principles.

One common response to such objections is that they amount merely to
an unreasonable insistence on technical rigor given the immense mathemat-
ical difficulties associated with defining measures in general relativity. In re-
sponse to such objections, we show in section 4 that the PH encounters a
troubling dilemma that persists even if all such technical concerns are re-
moved. This dilemma is an uncomfortable choice between a loss of explan-
atory power (the first horn; see sec. 4.2) and the breaking of a gauge symme-
try (the second horn; see sec. 4.3).

To establish this dilemma, we begin by using the analysis of sections 2
and 3 to describe the first horn. In section 2 we show that it is essential to
the arguments of the PH to provide a justification for the measure used in
the required typicality argument. Then in sections 3 and 4.2 we argue that the
existence of a unique time-independent measure on the cosmological state space
is essential to the explanatory claims of the PH. In section 4.1we show that the
unique time-independent measure is not invariant under a particular cosmo-
logical symmetry called dynamical similarity. Using this, we establish the sec-
ond horn of the dilemma in section 4.3 by arguing that a failure of themeasure
to be invariant under this symmetry introduces a distinctionwithout difference
by overcounting empirically indistinguishable states. This leads to the follow-
ing dilemma: either reject a time-independent measure and undermine the ex-
planatory basis for the PH (horn 1) or introduce a distinction without differ-
ence by breaking dynamical similarity (horn 2).

2. The Past Hypothesis. In this section we first provide a modern outline
of Boltzmann-style explanations of time asymmetry (sec. 2.1) and then use
this framework to illustrate the basic logic of the PH (sec. 2.2). We compile a
list (sec. 2.3) of conditions necessary for the arguments of the PH collected
from section 2.2.

2.1. Boltzmannian Explanations of Time Asymmetry. In the Boltzman-
nian reasoning, the ultimate goal is to explain within a given system the
time asymmetry of some macroscopic processes from the fundamentally
time-symmetric microscopic processes that underlie it. The main formal in-
gredients of this procedure therefore involve a specification of the macro-
and microstates of the system, a particular reductive map between them,
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and a way to describe their behavior. This is usually achieved in the context
of the Hamiltonian formalism. In this formalism, the microstates of the sys-
tems in question are given in terms of representations of the configurations
of the microscopic constituents of the system and their states of motion.
These are expressed as generalized position and momentum variables for-
mally represented by a symplectic manifold, G, that specifies the phase space
of the system. A phase space of this kind has a number of interesting
mathematical properties. Of central importance is the existence of a privi-
leged measure, called the Liouville measure mL(Σ), that can be used to assign
weights to arbitrary regions Σ ∈ G. The Liouville measure is singled out by
its rather remarkable symmetry properties that will be discussed in detail
below. Concretely, the Liouville measure is the integral over the nth power
of the symplectic form, where n is half the dimension of G. In Darboux co-
ordinates (qi, pi) where fqi, pjg 5 dij, we have mL(Σ) 5 ∫Σ

Qn
i51dpidqi (i.e.,

mL is the Lebesgue measure on G in these coordinates). For systems with
infinite degrees of freedom or where the range of positions and momenta
is infinite, there may be mathematical difficulties in precisely formulating
this measure. The first set of relevant conditions for applying the Boltzman-
nian logic is therefore that there exists some way of writing a mathemati-
cally precise (condition A1) and empirically unambiguous (condition A2) mea-
sure m onG. (Note that this does not necessarily have to be the Liouvillemeasure.)

With a suitable measure in hand one can assign weights to arbitrary re-
gions in phase space. These weights can be taken to define different notions
of typicality for these regions. For example, one can say that a particular re-
gion A is typical on phase space if its weight as determined by m is sufficiently
large with respect to the weight of phase space itself:

m(G) 2 m(A)

m(G)
≪ 1: (1)

In general, a set S is said to be typical with respect to some property P and
measure m if its weight according to m is large as compared with all other sets
that possess the property P (Frigg 2009). Clearly, any notion of typicality re-
quires some interpretation for the weights provided by m in order to have any
meaning. For the purposes of Boltzmann’s argument, we will see below that it
will be necessary to interpret the weight m(Σ) as the relative likelihood of find-
ing the system in a particular region Σ (as opposed to somewhere else in G) at
any given time. We identify this as an additional requirement (condition B) of
the formalism.

The next formal step is to define themacrostates of a system. Physically these
correspond tomacroscopic states of the system, such as temperature, volume,
pressure, and so on. Formally they are represented by some macrostate space
M that must have a (much) smaller dimension than G. Because Boltzmann
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was usually considering closed systemswhere the total energyE is preserved,
it is customary to consider states restricted to constant energy surfaces GE 5
GjE5constant (i.e., the microcanonical ensemble). In general many microscopic
states will be indistinguishable from one another at the macroscopic level.
This indistinguishability is modeled as a projection from GE toM. The micro-
states identified under this projection define a partitioning of GE into the par-
titions Gm, where m ∈ M ranges over all macrostates in M. These partitions
represent equivalence classes of macroscopically indistinguishable micro-
states. In order for these to be meaningful physically, there must exist some
epistemologically motivated coarse-graining procedure that realizes this
projection. For example, if the macroscopic variable in question is the tem-
perature, then the temperature must be a well-defined quantity. We identify
this requirement with a further condition (condition C).With these ingredients
in hand, it is now possible to define the Boltzmann entropy (from now on
called the ‘entropy’ unless otherwise stated) of a particular macrostate M
as the logarithm of the Liouville weight of the partition Gm:

SB 5 kB log½mL(Gm)�, (2)

where kB fixes the units of SB.
The last formal ingredient describes the behavior of the system. Consider

representing a single history of the system by a curve g in G as in figure 1. The
dynamics of an entire region can then be understood in terms of a collection
of curves, or a flow where each point in the region is mapped to another
neighboring point onG. For systemswhere the energy is conserved, this flow
can be expressed mathematically in terms of a single phase space function,
H, called the Hamiltonian of the system. A theorem of primary importance
due to Liouville (1838) shows that the flow generated by any choice of Ham-
iltonian function is guaranteed to preserve the Liouville measure. An imme-
diate caveat of this theorem is that, up to a constant, the Liouville measure
is the unique (smooth) measure preserved by any choice of Hamiltonian.1

It is this property that mathematically privileges the Liouvillemeasure. Liou-
ville’s theorem is therefore doubly important for Boltzmann’s reasoning. It
provides at the same time a possible justification, via uniqueness, for the
choice of typicality measure m and a consistency requirement, via the in-
variance property under evolution, for being able to use the same measure
at different times. The latter point arises as a consequence of a stronger
requirement, which we identify as condition A3, that the typicality measure
1. Proof.—Formally, Liouville’s theorem implies LxH
m 5 0, 8 H : G↦R, where m 5

qn and q is the symplectic 2-form on G and the vector field xH is determined via
dH 5 ixH

q. Writing an arbitrary smooth volume form as v 5 f m, where f is some arbi-
trary smooth positive function f : G↦R1, then Liouville’s theorem and the condition
LxH

v 5 0 immediately lead to f 5 constant.
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be invariant under all gauge symmetries of the system (in this case time-
translational and, crucially, time-reversal invariance). In this context and
for the remainder of the article, we will understand a ‘gauge symmetry’ to
be a transformation of the representations of a system that relates physically
indistinguishable states.

We are now equipped to give a modern synthesis of Boltzmann’s reason-
ing. First one must show that for the system in question there exists an ex-
ceptionally large macrostate Geq that takes up most of the phase space vol-
ume of the system. We take this to represent a further requirement that Geq

be a typical state in GE (condition D). The relevance of condition D can be
seen by the interpretation given to the weights of m given condition B. If
m(Geq) gives the relative likelihood of finding the system in m(Geq), then
for all practical purposes Geq is a steady or equilibrium state of the system
because the system will almost always be found there. More significantly, if
an equilibrium state exists, then a system that starts in a small macrostate will
typically spend most of its future time in Geq. The basic picture is depicted in
figure 1. This picture is plausible because the counting suggested by the re-
quired interpretation of m immediately suggests that a system starting outside
of Geq has little option but to quickly wander into Geq, where it will remain for
a very long time. But now there is a puzzle. Applying the same reasoning
backward in time suggests that a state finding itself in a small macrostate will
Figure 1. Small, atypical initial state will typically spend most of its future in a
large equilibrium state Geq.
9 Published online by Cambridge University Press

https://doi.org/10.1086/712879


DIFFICULTIES FOR THE PAST HYPOTHESIS 517

https://doi.org/10.10
also typically spend of all its past in equilibrium. Because this apparently vi-
olates our knowledge that the past entropy of the universe was low, we are
faced with the so-called second problem of Boltzmann (see Brown and
Uffink 2001). To solve this problem, one can posit an extremely atypical
condition on the earliest relevant state of the system. Under this condition,
the system will typically find that it will approach the equilibrium state in
the future. Note the temporal significance of the measure (condition B) and
its central role in grounding the explanation of time asymmetry.

2.2. The Past Hypothesis. The main idea behind the PH is to evoke the
Boltzmann-style reasoning of the previous section to explain time asym-
metry in the universe. The system in question is then taken to be the entire
universe, and the PH itself translates into a special condition on the earliest
relevant state of the universe. All of the mathematical quantities discussed
above (phase spaces, measures, macrostates, etc.) are then taken to repre-
sent aspects of the universe as a whole. The proposed explanation is given
in terms of a typicality argument: universes that obey the appropriate PH, it
is claimed, will typically evolve toward an equilibrium state in the future.
Time asymmetry arises by asymmetrically applying the special condition
to past, rather than future, states. That the Boltzmann reasoning, whose em-
pirical success is traditionally realized in closed subsystems of the universe,
can provide explanatory leverage when applied to the universe as a whole is
then taken as a further condition (condition E) for the PH. Empirical support
for the extreme atypicality of the initial state of our universe is taken to be
implied by abundant cosmological evidence for a low-entropy early universe
(e.g., the near thermality of the cosmic microwave background [CMB] power
spectrum). We take this to be a final condition (condition F) for the viability
of the PH.

2.3. Requirements of the Past Hypothesis. We will now state all con-
ditions identified in section 2.1 (this list of conditions is not intended to be
sufficient for the PH).

(A) There exists a measure, muniverse, on the phase space of the universe,
Guniverse, that is simultaneously:
86/71287
(A1) mathematically precise,
(A2) empirically unambiguous, and
(A3) invariant under all gauge symmetries.
(B) It is justifiable to interpret the weights given by the chosen measure
in terms of the relative likelihood of the system being in a given re-
gion at a given time.
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(C) There is an epistemologically meaningful and mathematically well-
defined projection from the microscopic phase space of the uni-
verse, Guniverse, to a macroscopic phase space, Muniverse.

(D) There exists a unique and exceptionally large state, defined to be the
equilibrium state Geq, that is a typical macrostate on the phase space
of the universe at any given energy E:

muniverse½GE,universe� 2 muniverse½Geq�
muniverse½GE,universe� ≪ 1:

(E) Typicality arguments have explanatory power when applied to the
universe.

(F) There is cosmological evidence for the PH being true.
3. Criticisms of the PH. In this section we will set the stage for the argu-
ments motivating the considerations of section 4. We identify and describe
three categories of criticisms of the PH:

(I) Mathematical precision.—These criticisms question whether the
formal quantities necessary for stating the PH can be given precise,
unambiguous mathematical definitions.

(II) Dynamical considerations.—These criticisms grant I but question
whether the resulting formal quantities have the physical character-
istics required for a Boltzmannian explanation—especially when grav-
itational interactions are taken into account.

(III) Justification and explanation.—These criticisms grant both I and II
but question the explanatory power and physical justification of the
typicality arguments used when applied to the universe as a whole.

Division of criticism into the above categories emphasizes the reliance of the
latter forms of criticism on being able to provide adequate responses to the
former. If, for example, one cannot meet the standards of category I, then
the framework must be rejected and the considerations of categories II and
III become irrelevant.Wewill see below that there are already significant wor-
ries raised at the level of categories I and II even though a significant amount
of philosophical literature is focused on evaluating criticism falling into cate-
gory III.We now discuss several examples, taken to be exemplars, of criticism
to illustrate each of the above categories. This analysis will help illustrate the
importance of the distinct properties of the Liouville measure that provided
the basis for the dilemma presented in section 4.3.

3.1. Category I:Mathematical Precision. In this section we will primar-
ily be concerned with issues arising from conditions A due to infinite phase
blished online by Cambridge University Press
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spaces. Such phase spaces entail serious mathematical problems for measure-
theoretic approaches to explanation. These problems stem from two distinct
sources. The first arises because measures evaluated on an infinite interval
can only be defined according to a limiting procedure that typically leads
to physically significant regularization ambiguities. These problems are com-
pounded in field theories because of a second source of ambiguity due to the
phase space itself being infinite dimensional. In this case, it is a theorem that
no Borel measure exists (Curiel 2015), so that the system must be truncated
to a finite phase space in order to accommodate any measure. Ambiguities
of these two kinds lead to a tension between mathematical precision (condi-
tion A1) and empirical uniqueness (condition A2). To make matters worse,
the purelymathematical problem of defining anymeasure on the phase space
of general relativity invariant under all space-time symmetries is far from be-
ing solved. This open technical problem is in fact one of the main formal ob-
structions to obtaining a canonical formulation of quantum gravity.With this
in mind, it is advisable to explore various approximations to general relativ-
ity that render the computations of measures more tractable. But even in this
simplified setting, one encounters immediate and troubling difficulties that
are emblematic of the more general case.

Pioneering work in Gibbons, Hawking, and Stewart (1987) that was elab-
orated on by several authors in both the physics (Hawking and Page 1988;
Hollands and Wald 2002; Ashtekar and Sloan 2011; Corichi and Karami
2011; Schiffrin and Wald 2012) and philosophy literature (Earman 2006;
Frigg 2009; Curiel 2015) shows that the natural measure on homogeneous
and isotropic cosmologies has infinite phase space volume. In the references
listed, different schemes are provided for handling these divergences, and
these schemes introduce ambiguities. A particular illustration of this will be
outlined in detail in section 4.1. To resolve these mathematical ambiguities
(of the first kind discussed above), new inputs, which are often physical in
nature, must be introduced. It is thus paramount that the extra inputs needed
to resolve these ambiguities neither conflict with other symmetry principles, in
accordance with condition A3, nor implicitly assume what is trying to be ex-
plained, that is, the time asymmetry of local thermodynamic processes. Other-
wise, the explanatory power of the PH is undermined.

To illustrate the extent to which these ambiguities are problematic, con-
sider the concrete results of different authors with different intuitions per-
forming computations of the relative likelihood of cosmic inflation. Advocates
for inflation (Kofman, Linde, and Mukhanov 2002; Carroll and Tam 2010)
proposed a measure according to which the probability of inflation was found
to be infinitesimally close to 1. Inflation skeptics (Gibbons and Turok 2008)
proposed an alternativemeasure inwhich the probability of inflationwas found
to be 1 part in 1085. This remarkably huge discrepancy reflects the extent to
which individual beliefs can affect cosmologist’s determinations of the
86/712879 Published online by Cambridge University Press
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appropriate physical principles used to justify their measure and the difficul-
ties of resolving the tensions between conditions A1 andA2. Any conclusions
drawn on the basis of a typicality argument must be assessed in light of such
remarkable disagreement between cosmologists.

Ambiguities of this kind are not improved when more realistic models in-
cluding cosmological inhomogeneities are considered. Any preliminary hopes,
such as those alluded to in Callender (2010), that adding an infinite number
of degrees of freedomwould help resolve these ambiguities can be seen to be
in vain when explicit models are considered. This has been done, for exam-
ple, in Schiffrin andWald (2012).What was found therewas that the additional
degrees of freedom introduce corresponding regularization ambiguities of the
second kind discussed above. It is therefore necessary to introduce new phys-
ical principles in order to resolve these ambiguities. Given the daunting nature
of a full general relativistic treatment, these considerations raises serious doubts
regarding the possibility of being able to attribute any meaningful notion of
typicality to the universe.

3.2. Category II:DynamicalConsiderations. In this section we will con-
sider the unique properties of gravitational dynamics that complicate our en-
tropic intuitions for the universe, assuming that a well-defined truncation of
the phase space exists on which a Liouville measure can be defined. Consider
the equilibrium state of a free gas. It is smooth, homogeneous, and nothing
like the current state of the universe, which is characteristically clumpy and
uneven. Those clumps comprise, among other things, star systems—one ofwhich
supports the far-from-equilibrium biological system we find ourselves in.
Yet, analysis of CMB temperature fluctuations reveals only a small 1025

deviation from homogeneity. How can these observations be compatible with
a low-entropy past state? The standard response to this is that the gravitational
contribution to the entropy should dominate at late times because of the un-
usual thermodynamic character of the gravitational interactions. This contri-
bution is so great that it more than compensates for the decrease in entropy
observed through the clumping of matter. Intuition for this comes from en-
tropic considerations in Newtonian N-body self-gravitating systems, which
have been used to model, for example, the dynamics of dust and stars in galaxies
and galaxy clusters. But even in this simplified and well-tested setting there
are difficulties that are emblematic of the considerations of section 3.1.

Because Liouville volume is a volume on phase space, the inverse square
potential due to gravity and the large momenta it can generate flip expec-
tations for what constitutes a high- and low-entropy state. The steep gravi-
tational potential well taps a vast reservoir of entropy allowing for the kind
of sizable low-entropy fluctuations we see in biological systems on earth.
These features as well as the difficulties they entail are reviewed nicely by
Padmanabhan (1990, 2008), who gives detailed proofs ofmany of the results
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referenced below. This flipping of expectations is argued to occur not only
for N-body systems but also in a full-fledged general relativistic treatment of
entropy. Thus, advocates of the PH (e.g., Goldstein and Lebowitz 2004; Al-
bert 2009) emphasize the N-body intuition pump as providing an explana-
tion for why the early homogeneous state of the CMB should be thought
of as having low entropy and the current clumped state, which contains
steadily accumulating stable records, as having high entropy. Moreover, this
intuition was a primary motivation for early attempts at formulating an ex-
plicit PH such as Penrose’s Weyl Curvature Hypothesis (1979).

The N-body intuition pump, however, also raises potential concerns. First,
if we follow the past state far enough into the early universe, a full general
relativistic treatment becomes unavoidable. But as we have already seen in
section 3.1, such a treatment suffers from troubling ambiguities, and it is not
clear that the simple Newtonian intuition will remain valid. Another signifi-
cant worry is the definition of equilibrium itself. The notion of equilibrium
in gravitational systems is complicated by two sources of divergence (for de-
tails, see Padmanabhan 2008): (i) the infinite forces particles exert on one an-
other when they collide and (ii) the infinite distances particles can obtainwhen
ejected from a system. To cure these divergences, it is necessary to render the
entropy finite by imposing additional constraints. This involves closing the sys-
tem at some maximum size, so that particles are not allowed to escape, and
forbidding two particles from being able to collide. This requires extra as-
sumptions that must be grounded in physically acceptable principles. It is
therefore paramount that these physical idealizations be well motivated. But
the fact that these idealizations break down under specified conditions implies
difficulties in defining stable equilibrium for the system. Indeed, N-body sys-
tems are known to only have local—but no global—maxima (Padmanabhan
2008). Thus, gravitating systems do not have genuine equilibrium states, and
condition D cannot be strictly satisfied. In the absence of an equilibrium state,
thermodynamic quantities such as macrostates and their entropy cannot be
defined, and condition C is strictly violated. While this is not problematic for
local meta-stable systems like a galaxy, it can certainly be problematic for
globally defined systems like the entire universe.Moreover, even when local
equilibria exist, there is still no guarantee that gravitational dynamics will
actually steer the system toward these local equilibria in order to satisfy con-
dition B. The crucial role of dynamics in the Boltzmannian argument has
been emphasized in Brown and Uffink (2001) and Frigg (2009).

3.3. Category III: Justification and Explanation. This section will first
be concerned with the essential need to satisfy condition B by finding a valid
justification for using Liouville volume as a typicality measure, assuming
all concerns of categories I and II have been resolved. In conventional sta-
tistical mechanical systems, this justification proceeds along two traditional
86/712879 Published online by Cambridge University Press
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routes. The first and oldest route relies on a theorem by Birkhoff (1931),
which states that for ergodic systems the average time spent in a particular
phase space region becomes roughly proportional to its Liouville volume if
the timescales in question are much longer than the Poincaré recurrence time.
Unfortunately, for almost all systems—and certainly for the universe—the
Poincaré recurrence time is significantly longer than the estimated time since
the Big Bang. The second route, usually favored for its practicality, is to argue
that the system undergoes a process called mixing. Roughly speaking, a sys-
tem ismixedwhen the long-run evolution of themeasure of a system becomes
approximately homogeneous and therefore Liouvillian.Many systems exhibit
this property, and the relevant mixing timescales can be computed explicitly.
Unfortunately, Schiffrin and Wald (2012) argue that the observed expansion
of the universe is too rapid to allow the large scale structures of the universe
to interact often enough for mixing to occur on these scales. This suggests that
it is unreasonable to expect the universe as a whole to undergo mixing. It
would seem that in terms of conventional justification schemes for the Liou-
ville measure condition B cannot be made compatible with the observational
requirements of condition F.

It is possible to look for justification schemes satisfying condition B that
do not originate from conventional statistical mechanical considerations.
One proposal made by Penrose (1979, 1994) and later advocated (either im-
plicitly or explicitly) byLebowitz (1993), Goldstein (2001), andAlbert (2009)
is a version of the Principle of Insufficient Reason (PIR) as formalized by
Laplace. In Penrose’s version, a blind creator must choose initial conditions
for the universe among the space of all possibilities. Being indifferent to
which conditions to choose, the creator assigns equal likelihood to each pos-
sibility according to the Liouville measure. Given the failure of standard jus-
tifications schemes, Schiffrin andWald (2012) point to Penrose’s proposal as
the only available alternative. Unfortunately, the PIR has a troubled history in
the philosophy of science and suffers from several well-known difficulties. At
least four prominent criticisms are identified in Uffink (1995). While some of
these are addressed implicitly throughout this text, one line of criticism dating
back to Bernoulli is noteworthy because it also directly puts into question the
validity of condition C. In this line of criticism one derives paradoxes that
originate in an incompatibility between the measures obtained when apply-
ing the PIR to different choices of partition for the microstates of a system.
These paradoxes occur when the partitions correspond to disjunct coarse
grainings or refinements of one another (Norton 2008). There is nothing in
the PIR that tells you which partitioning of the microstates is the “correct”
one, precisely because this would require some nontrivial knowledge about
how these partitions may have been gerrymandered. Without direct knowl-
edge of the “correct” partitioning of microstates, the PIR loses all explana-
tory power.
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The only remaining justification for the Liouville measure is a uniqueness
argument under time symmetry. If one requires a time-symmetric measure,
then the uniqueness of the Liouville measure under the requirement of being
preserved by arbitrary Hamiltonian evolution does single it out. However, as
we will see in section 4, very general symmetry considerations will put into
doubt any motivations for using the Liouville measure to establish a notion
of typicality for models in the universe.

We end this section by mentioning a prominent dialectic between Price
(2002, 2004) and Callender (2004a, 2004b) on the explanatory power of the
PH that questions the validity of condition E. In this dialectic Price argues
that the PH itself should require explanation in pain of applying a “temporal
double standard” to a past state when an atypical future state would plainly
require explanation. Callender responds by stating that contingencies rarely
(or never) require explanation, and an initial condition such as a PH is a con-
tingency of this kind.

4. A Dilemma for the Past Hypothesis

4.1. Preliminaries: Dynamical Similarity as a Gauge Symmetry of the
Universe. Before establishing the horns of the dilemma, it will be conve-
nient to state some results that will be central to the analysis. We will need
to give the definition of a particular symmetry of the universe and list some
of its core properties. The symmetry that will be central to our argument is
called dynamical similarity. The three aspects of dynamical similarity that
will be needed for our analysis are, first, that dynamical similarity is a gauge
symmetry of any general relativistic formulation of the laws of the universe;
second, that the Liouville measure is not invariant under dynamical similar-
ity; and third, that in known theories of the universe dynamically similar
measures are badly time asymmetric. To illustrate our first point, we must
show that dynamical similarity relates empirically indistinguishable descrip-
tions of a general relativistic system. We will do this first by making a gen-
eral argument and then by showing that this general argument is consistent
with the treatment of particular cosmological theories.

We begin by giving a definition of dynamical similarity.2 Consider any
system whose dynamical possibilities are specified by Hamilton’s principle.
For such systems, an action functional S[g] is given such that the dynami-
cally possible models (DPMs), gDPM, of the system are stationary points of
S:

dS½g�jgDPM
5 0: (3)
2. For an excellent account of dynamical similarity and its role in defining measures in
cosmology, see Sloan (2018).
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Then any transformation on the state space of such a system that rescales
the action functional,

S→ cS, (4)

is defined to be a dynamical similarity. For any system of this kind, a dynam-
ical similarity will map a DPM to another DPM and is therefore a symmetry.
This follows straightforwardly from the fact that the stationarity condition (3)
is invariant under (4). Dynamical similarities are therefore symmetries of any
general relativistic description of the universe because general relativity can
be formulated in terms of Hamilton’s principle.

This notion of symmetry, namely, a transformation that maps DPMs to
DPMs, is not yet enough for our argument. We will further need to show that
dynamically similar DPMs are empirically indistinguishable. To see that this
is true, observe that the constant in the transformation (4) can always be set
to 1 by a suitable choice of units for the action. Since the unit of action is the
unit of angular momentum, we find that dynamical similarities mapDPMs to
DPMs with different choices of units of angular momentum. Only if these
choices can be compared with an external reference scale for angular mo-
mentum can the DPMs in question be empirically distinguished. If instead
the units of angular momentum are referenced from within the system, then
an arbitrary choice of units can have no empirical consequences. Because we
are interested in a general relativistic description of the entire universe, there
can be no external reference unit to distinguish between dynamically similar
descriptions of the system. Thus, dynamical similarities are symmetries of a
general relativistic description of the universe that relate empirically indis-
tinguishable models; that is, they are gauge symmetries.

This point is well appreciated by cosmologists. In writing down the equa-
tions of cosmological systems, one starts with a general relativistic formula-
tion and then imposes spatial homogeneity and isotropy. The simplest mod-
els of inflation can thus be described by a single geometric variable v(t)
representing the volume of a comoving patch of the universe and a single
massive scale field f(t). The Hamiltonian for this system can be written as

H 5 2H 2 1
p2

f

v2
1 ~m2f2

� �
, (5)

where H is Hubble red-shift parameter conjugate of v, pf is the momentum
of the scalar field, and ~m is a dimensionless mass.3
3. To obtain this expression, we have absorbed all units of angular momentum into the
variables v, pf, and t. Thus, H and f are dimensionless. We have also used a time pa-
rameter t 5 vt, where t is the proper time along a homogeneous slice.
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This theory inherits a dynamical similarity from its underlying general
relativistic description. If we remember that S 5 ∫ dt( _vH 1 _fpf 2 H),
then the transformation

v→ cv f→ f

H →H pf → cpf,
(6)

is a dynamical similarity when t→ ct. The physical significance of the dy-
namical similarity (6) is straightforward to understand. It represents the
freedom to arbitrarily choose the initial volume of a fixed fiducial cell while
keeping the red shift fixed. In cosmology, dynamical similarity therefore re-
flects the well-known property that the scale factor is an unobservable degree
of freedom even though its momentum, the Hubble parameter, is observable.
This achieves our first objective.

Our second objective is to show that the Liouville measure is not invariant
under dynamical similarity. This together with the previous result will be
essential for establishing the second horn of the dilemma: the breaking of
gauge invariance by the Liouville measure. This can be achieved by expand-
ing on the mismatch between the transformation properties of the volume v
and its conjugate momentum H. The Liouville measure is a homogeneous
measure on phase space. This means that it gives the same weight to a con-
figuration variable as it does to the corresponding momentum. It is thus im-
possible for any measure of this kind to be invariant under a symmetry that
acts in an unbalanced way on the phase space variables.We can illustrate this
explicitly for the cosmological theory given above. A set of canonically con-
jugate variables for this theory is {v, H, f, pf}, and therefore the Liouville
measure is

mL(R) 5

ð
R

dvdHdfdpf: (7)

This measure is explicitly not invariant under the symmetry (6). While illus-
trative and physically relevant, the noninvariance of the Liouville measure
in this example is not just a special feature of this particular cosmological
theory but a general property of the Liouville measure. In order for a dynam-
ical similarity to rescale the action as in (4) it must rescale the symplectic po-
tential v 5 pdq→ cv. But since the Liouville measure is just a power of the
exterior derivative of the symplectic potential, mL(R) 5 ∫R(dv)n, the Liouville
measure itself will necessarily rescale under a dynamical similarity. Thus, the
Liouville measure in general cannot be invariant under dynamical similarity.

The last objective of this section is to show that the lack of invariance of
the Liouville measure results in a significant numerical time asymmetry in its
projection onto the dynamically similar state space relevant to cosmological
theories. This result will be useful in strengthening the case for the loss of
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explanatory power that leads to the first horn of the dilemma (see sec. 4.2 for
details). To achieve the last objective, we will recall the results of well-known
derivations.4 The measure that is relevant to our considerations is a measure
not on the space of states but on the space of models. This can be achieved
by projecting the Liouville measure onto some initial data surface on phase
space. Because the Liouville measure is time independent, the choice of initial
data surface is arbitrary. For the cosmological theory presented in this section,
a convenient choice of initial data surface that is also empirically meaningful
is that of a surface of constant red shift: H 5 H*. This choice leads to the
Gibbons-Hawking-Stewart measure (Gibbons et al. 1987):

mGHS(r) 5

ð
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(H*)2 2 ~m2f2

q
dv df, (8)

where r is a region on the surface H 5 H* that is compact in f but not in v.
This measure is not regarded to be physical in part because of its noncompact
domain in terms of v but, more importantly, because of the arbitrariness of
the value of v in terms of a choice of initial fiducial cell. More recently, Sloan
(2019) has established a direct link between this arbitrariness and dynamical
similarity.5 To obtain a physically significantmeasure,Hawking andPage (1988)
defined a regularization procedure that takes advantage of the homogeneity
of (8) in v to integrate over all possible values of v. The resulting measure

Prob(rf) 5 lim
vmax →∞

ðvmax

0

dvðvmax

0

dv

ð
rf

df
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(H *)2 2 ~m2f2

p
ð
rfmax

df
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(H *)2 2 ~m2f2

p → finite (9)

is finite. The result depends only on the ratio of the integrals over the region
rf, which can be used to define inflation, and the finite region rfmax, which is
given in terms of the dynamical constraints of the theory. From the perspec-
tive of dynamical similarity, the integration over v is motivated by requiring
that the physical measure be invariant under symmetries that relate physi-
cally indistinguishable models. The integral over v is an integration over the
action of the dynamical similarity (6). The physical measure (9) is therefore
invariant under (6), while the unphysical measure (8) is not.

The integration over v creates a new problem. The physical measure (9)
depends explicitly on the choice of the initial data surface as determined by
the choice of initial red-shift factorH*. This dependence onH* is significant.
As was shown explicitly in Schiffrin and Wald (2012), the different choices
of H* used by inflation skeptics (Gibbons and Turok 2008) compared with
4. For a summary of the results used here, see Schiffrin and Wald (2012).

5. The connection was first noticed in the context of Loop Quantum Cosmology by
Ashtekar and Sloan (2011) and Corichi and Karami (2011).
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inflation advocates (Kofman et al. 2002; Carroll and Tam 2010) leads to a
colossal 85 order of magnitude difference between the estimates of the like-
lihood of inflation. Because a choice ofH* corresponds to a choice of initial
time, this huge numerical imbalance leads to a significant temporal asymme-
try: choosing a more recent value of H* gives a dramatically smaller value
for the weight of the same region rf.

This result is not just a special feature of the particular cosmological
theory developed in this section. The Liouville measure is the unique time-
independent measure on phase space. But, as we have shown, the Liouville
measure is in general not invariant under dynamical similarity. There is there-
fore no (smooth) time-independent measure invariant under dynamical sim-
ilarity. This means, in general, that a dynamically similar measure on the
space of models will necessarily depend on the choice of the initial data sur-
face (e.g., it will depend on H*). Moreover, the temporal asymmetry intro-
duced by this is significant. For the theory introduced in this section, it leads
to an 85 order of magnitude difference between different choices ofH*. There
are good reasons to believe that this numerical imbalance will persist in any
general relativistic description of the universe. The interpretation of dynami-
cal similarity in terms of an arbitrary choice of volume will persist in general
relativity. In this context, the red-shift factor H is still the variable conjugate
to v. The temporal asymmetry will then always depend on the initial choice
of H*, and this varies wildly between now and the empirically accessible
past in a monotonic way. The huge monotonic variation of the Hubble pa-
rameter over the known history of the universe therefore introduces a signif-
icant time asymmetry into the definition of a dynamically similar measure.

4.2. The First Horn: Loss of Explanatory Power. The analysis of sec-
tion 3 has established that there are many concerns regarding the justification
of the choice of typicality measure used to formulate a PH. In section 3.2 it
was argued that self-gravitating systems have unusual thermodynamic prop-
erties, and in section 3.3 these arguments where combined with known facts
about the universe to suggest that conventional statistical mechanical justifi-
cations fail when applied to the universe. Justifications that rely on indifference
principleswere also criticized on epistemological grounds. The analysis of sec-
tion 3 therefore leads to the conclusion that the only tenable justification for
choosing the Liouville measure is an argument from time independence. The
Liouville measure is indeed singled out as being the unique measure on phase
space that is preserved by an arbitrary choice of dynamics. At first sight this
uniqueness appears to be particularly convenient because a time-independent
measure is very natural in the context of a PH. But time independence in the
measure is more than a question of convenience in the context of a PH. In fact,
it is an essential ingredient for the PH independent of any other justificatory
considerations.
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Following Price (2002), the logic of the PH presented in section 2.1 con-
stitutes a contrastive explanation of the form: if A then B rather than C. The
explanans A (i.e., the PH itself ) is taken to explain the explanandum B (i.e.,
the fact that typical processes are seen to overwhelmingly occur in a time-
asymmetric way). The outcomeC is then a typical member of a contrast class
of outcomes that would be likely if not for A. The explanatory power of A
comes from increasing the likelihood of B relative to C. In the case of a PH,
the contrast class is the set of worlds where typical processes overwhelmingly
occur in a time-symmetric way. According to this logic, in order for the PH
to be a good explanation of time asymmetry, it must be the only significant
source of time asymmetry. Clearly this is consistent with the apparent time
symmetry of the form of the fundamental laws. This consistency however is
not sufficient. When a time-asymmetric measure is introduced into the for-
malism, the time asymmetry of the measure could itself provide an explana-
tion for the time asymmetry of typical processes. This is especially true if the
time asymmetry of the measure introduces a significant numerical temporal
gradient as was shown in the previous section for the case of cosmological
models. Moreover, the time dependence of the measure introduces an ambi-
guity in terms of which instant should be used in order to obtain a measure
on the space ofmodels. Such an ambiguity can only be resolved by including
some additional principle to the PH—thus undermining much of its explan-
atory appeal. It is therefore essential to the logic of the PH that the measure
employed be time independent, and it is especially important that the mea-
sure not be badly time asymmetric. Otherwise we would have no reason
to believe that processes would not occur in a time-asymmetric way even
if the PH were not true. Note that these considerations hold regardless of
any other justificatory considerations regarding the measure. This establishes
the first horn of the dilemma.

4.3. The Second Horn: Violation of a Gauge Symmetry. In the prelim-
inary section 4.1 we saw that the projection of the Liouville measure onto the
space of models, while time independent, is nevertheless considered by cos-
mologists to be unphysical. Contrastingly, the measure that is considered by
cosmologists to be physical was found to be invariant under dynamical sim-
ilarity. We will now argue that this result is to be expected in any general rel-
ativistic description of the universe. To do this, we will show that a measure
that is not invariant under symmetries that relate physically indistinguish-
able descriptions of a system (condition A3) introduces two distinct problems:
first, it introduces a distinction without difference, and second, it runs against
standard practice in particle and statistic physics.

Consider a region R that lives in the domain D(m) of some measure m
and a transformation T :D(m)→D(m) that maps this domain onto itself.
Our assumptions demand that T map states of a system to empirically
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indistinguishable states. The set of states in the region R is therefore empiri-
cally indistinguishable from the set of states in the transformed region R0 5
T (R). In general, the noninvariance of m under T implies that the weight of the
transformed region is not necessarily equal to the weight of the original:
m(R) ≠ m(R0). But if this is true then the weights m(R) and m(R0) provide a dis-
tinction at the representational level between the regions R and R0. Given
our original assumptions, this distinction cannot represent any empirical dif-
ference. In this sense, the measure m therefore introduces a representational
distinction that cannot be captured by the empirical properties of the world.
It is therefore not a valid measure for describing empirical phenomena.

This argument is reinforced by standard practice in particle and statistical
physics that requires that physical measures be invariant under all the gauge
symmetries of a system. In the standard model of particle physics, the gauge
invariance of the path-integral measure is a central foundational principle of
the theory. More generally, the Faddeev-Popov determinant, which enforces
the gauge invariance of the path-integral measure, is considered a necessary
ingredient in gauge theory (see Weinberg [2013, chap. 15], for an overview
and defense of this standard practice). Similarly in statistical physics, Jaynes
(1973) has argued influentially that measures should be invariant under trans-
formations that relate indistinguishable states of a system. We therefore con-
clude that there are strong epistemological and methodological motivations
for requiring condition A3.

We are now in a position to state the second horn of our dilemma. As we
have shown in the previous section, dynamical similarity is a symmetry that
maps states of any general relativistic description of the universe to indistin-
guishable states. Given the argument above, anymeasure not invariant under
such a symmetry must violate a gauge symmetry and introduce a distinction
without difference. Therefore, a measure on the state space of a generally rel-
ativistic description of the universe that is not dynamically similar will run
into the symmetry-violating horn. But as was shown in section 4.1, the Liou-
ville measure is not dynamically similar. It follows that use of the Liouville
measure therefore violates a gauge symmetry of the theory. This is the sec-
ond horn.

We now recall the first horn of the dilemma. The formulation of the PH
must make use of the unique time-independent Liouville measure in order
to retain its explanatory power. But the Liouville measure is not dynamically
similar and therefore introduces a distinction without difference. An advo-
cate of the PH must therefore face the dilemma stated in the introduction:
either lose explanatory power or introduce a distinction without difference.

5. Discussion/Conclusion. We have seen that Boltzmann-style explana-
tions of time asymmetry that make use of a PH depend on a series of very
restrictive conditions. Our analysis in section 3 has uncovered several good
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reasons to question whether these conditions can ever be simultaneously sat-
isfied. Broadly speaking we found that the nature of the phase space, dynam-
ics, and symmetries of general relativity provide reasons for pessimism re-
garding the prospects for providing and justifying a satisfactory notion of
typicality for models of the universe. A common response against critiques
of this kind is to observe that strict insistence onmathematical rigor has often
been unreasonable in the development of theoretical physics. Controversy
over difficult technical problems such as defining a measure on the solution
space of general relativity should not, it is argued, halt progress altogether. It
should still be reasonable to advance conjectures regarding the plausible fea-
tures of measures that may one day become available.

While such a strategy—effective or not—is available in response to much
of the analysis of section 3, it is no longer available in response to the di-
lemma of section 4. This is because the dilemma is the result of a simple sym-
metry argument applied to a very general way of formulating the laws of the
universe. To reject dynamical similarity is to reject a description of the phys-
ics of the universe in terms of Hamilton’s principle. To reject the uniqueness
arguments for the time symmetry of Liouville’s measure is to reject a de-
scription of the universe in terms of a phase space. To not require the gauge
invariance of the measure is to introduce a distinction without difference and
to reject standard practice in particle and statistical physics. None of these
escape routes is particularly appealing. Even if one grants all the technical
assumptions required by the PH, the dilemma persists. Yet, a rejection of the
PH as an explanation for time asymmetry avoids the dilemma completely.
But how then is one to explain the time asymmetry of macroscopic processes
given the apparent time symmetry of the fundamental laws? In other words,
how is one to solve the original problem of the arrow of time?

One possibility would be to embrace the necessary time dependence of
the measure implied by dynamical similarity. While the equations of motion
of general relativity, and in particular the cosmological models discussed in
section 4.1, are formally invariant under time reversal, they also contain re-
dundancy under dynamical similarity. The construction of a time-asymmetric
measure invariant under dynamical similarity can be constructed for a very
general class of systems (Sloan 2018) in a way that mirrors the derivation of
the physical measure (9). The resulting time asymmetry of the measure can
be shown to result from the nonconservative, time-irreversible structure of
the reducedHamiltonian for the system. Perhaps then the apparent time sym-
metry of general relativity is simply an artifact of a representational redun-
dancy. But if time asymmetry really is built into the character of the empir-
ically relevant formulation of the law, then this could provide a new basis for
providing an explanation for the arrow of time. Such a strategy would par-
allel and further develop the approach suggested in Barbour, Koslowski,
and Mercati (2014), which also makes use of dynamical similarity. An
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important aspect of this approach is an account of the low-entropy past state as
a generic, rather than highly atypical, feature of the theory. Such a scenario
would therefore not require any PH. What remains is to extend a program of
this kind to general relativity and to show that the time asymmetry of the re-
duced system is indeed sufficient for explaining the observed time asymmetry
of macroscopic processes. This possibility opens up new and exciting direc-
tions for future investigations.
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