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The recent development of the adaptive-anisotropic wavelet-collocation method, which
incorporates the use of coordinate transforms, opens new horizons for wavelet-based
simulations of wall-bounded turbulent flows. The new wavelet-based adaptive unsteady
Reynolds-averaged Navier–Stokes approach for computational modelling of turbulent
flows is presented. The proposed methodology that is integrated with anisotropic
wavelet-based mesh refinement is demonstrated for a two-equation eddy-viscosity
turbulence model. The performance of the method is assessed by conducting numerical
simulations of the turbulent flow past a circular cylinder at subcritical Reynolds
number. The present study demonstrates both the feasibility and the effectiveness
of the new wavelet-based adaptive unsteady Reynolds-averaged turbulence modelling
procedure for external flows.
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1. Introduction
Wavelet-based numerical methodologies have long been developed and successfully

used in computational fluid dynamics (Schneider & Vasilyev 2010), demonstrating
the convenience of spatio-temporal mesh adaptation for numerical simulations of
turbulent flows. These methods take advantage of the multiscale character, the
self-organization into coherent structures and the spatio-temporal intermittency that are
fundamental properties of turbulence (De Stefano, Goldstein & Vasilyev 2005). Based
on the ability of wavelet multi-resolution analysis to identify and track dynamically
dominant flow structures, a hierarchical framework for simulating turbulent flows
has been constructed, which can be referred to as an eddy-capturing approach, e.g.
De Stefano & Vasilyev 2012. Wavelet-based direct numerical simulation, coherent
vortex simulation (Farge, Schneider & Kevlahan 1999) and wavelet-based adaptive
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large-eddy simulation (Goldstein & Vasilyev 2004) represent the different fidelity
methods in this hierarchy, where numerics and physics-based modelling are tightly
integrated.

For turbulent external flows, the wavelet-based eddy-capturing approach has been
successfully used in conjunction with the volume-penalization method (Angot,
Bruneau & Fabrie 1999; Vasilyev & Kevlahan 2002). The hybrid computational
modelling combines the adaptive wavelet-collocation (AWC) procedure with the
Brinkman penalization technique, with the former guaranteeing the efficient resolution
of the flow on a dynamically adaptive computational grid and the latter being
responsible for imposing the flow geometry, e.g. Brown-Dymkoski, Kasimov &
Vasilyev (2014). However, the use of a penalization approach has some major
drawbacks. Particularly, the existence of a thin boundary layer inside the obstacle
region, which has to be accurately resolved, represents a strong constraint on
realizability. The fact that the non-dimensional thickness of this layer decreases with
increasing Reynolds number, combined with the isotropic refinement strategy required
by wavelet-based adaptation, results in substantially augmenting the computational
cost of the simulation.

The recent development of the adaptive-anisotropic wavelet-collocation method
(A-AWCM) (Brown-Dymkoski & Vasilyev 2017), which incorporates the use of
coordinate transforms for the solution of partial differential equations, opens new
horizons for wavelet-based numerical simulation of wall-bounded turbulent flows.
First, the constraint of using rectangular domains is totally removed and body-fitted
curvilinear meshes can be suitably constructed, thus avoiding the reliance on
penalization techniques. Furthermore, by addressing the major shortcoming of existing
methods based on isotropic mesh refinement, namely, the dramatic overresolution of
sheet- and filament-like structures in the flow field, the newly developed approach
allows for a more efficient use of the available computational resources. It is important
to note that the A-AWCM retains both the essential features of the traditional
wavelet-based adaptation procedure, that is, error control of the numerical solution
and fully automated mesh refinement.

In this study, a new wavelet-based adaptive unsteady Reynolds-averaged Navier–
Stokes (URANS) modelling approach for the simulation of wall-bounded turbulent
flows is proposed. The present computational modelling based on the integration
of compressible URANS equations and A-AWCM is referred to as W-URANS.
The approach is general and can be used in combination with the majority of
existing URANS models. Here, the W-URANS framework is demonstrated using
a two-equation eddy-viscosity turbulence model, namely, the k–ω model of Wilcox
(1988), which relies on transport equations for the turbulence kinetic energy and
the specific dissipation rate to close the governing equations. This model has the
significant advantage that it does not require the use of damping functions in the
viscous sublayer and Dirichlet boundary conditions can be imposed for the turbulence
variables at the fluid–body interface. The adoption of the anisotropic refinement
strategy proposed in this work allows for the exploitation of adaptive numerical
meshes with mesh elements that are properly stretched in both the wall and the wake
regions. This way, a much better scaling with the flow Reynolds number is achieved,
as necessitated by the need to resolve high gradients in these flow regions. In fact, the
resolution requirement of wall-resolved URANS simulations for external flows, where
the small eddies need to be resolved, is satisfied by using numerical meshes that are
much finer than those required to resolve mean flow in steady RANS. The use of
a wavelet-based spatio-temporally adaptive computational model makes it possible to
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Wavelet-based adaptive unsteady RANS modelling of external flows 767

construct an efficient URANS method by taking full advantage of the characteristic
turbulent flow intermittency.

In order to present and demonstrate the new wavelet-based adaptive URANS
modelling approach, some numerical experiments are conducted for the turbulent
flow over a circular cylinder. Despite the very simple geometry, the latter represents
a physically complex model for turbulent external flows. Depending on the flow
Reynolds number, very different flow regimes occur, which makes URANS simulations
of this flow a challenging task. A comprehensive review of the vortex dynamics in
the circular cylinder wake can be found in Williamson (1996). In this work, the
subcritical flow regime, where the boundary layer exhibits laminar separation and the
transition to turbulence occurs in the shear layers developing on the cylinder side,
is considered. Specifically, the numerical simulation of vortex shedding flow past a
circular cylinder at Re = 3900 is conducted, because this configuration is very well
documented in the scientific literature, both experimentally and numerically.

The remainder of this paper is organized as follows. In § 2, the two-equation
eddy-viscosity modelling approach for compressible turbulence is described, with a
particular focus on external flows. The new wavelet-based adaptive URANS method
with anisotropic mesh refinement for wall-bounded turbulence is introduced in § 3.
The settings of the wavelet-based simulation of circular cylinder flow are given in § 4,
while the results of the numerical experiments are presented and critically discussed
in § 5. Finally, some concluding remarks are made in § 6.

2. Wavelet-based URANS modelling

In this study, as is common practice for simulating compressible turbulent flows,
the governing equations are written in terms of Favre mass-averaged quantities. For a
generic flow quantity f , noted with a bar for the Reynolds-averaging (mean) operation,
the associated Favre-averaged variable is defined as f̃ = ρf /ρ̄, where ρ̄ is the mean
mass density. For instance, ũi = ρui/ρ̄ stands for the Favre-averaged velocity vector.

2.1. Mean flow governing equations
The general W-URANS equations governing the evolution of the resolved mean flow
quantities are represented by the following Favre-averaged mass, momentum and
energy equations (Wilcox 2008):

∂ρ̄

∂t
+

∂

∂xi
(ρ̄ũi)= 0, (2.1)

∂

∂t
(ρ̄ũi)+

∂

∂xj
(ρ̄ũiũj)=−

∂ p̄
∂xi
+

∂

∂xj
(t̄ij + ρ̄τij), (2.2)

∂

∂t

[
ρ̄

(
ẽ+

ũiũi

2
+ k
)]
+

∂

∂xj

[
ρ̄ũj

(
h̃+

ũiũi

2
+ k
)]

=
∂

∂xj

[
ũi(t̄ij + ρ̄τij)− qj + (µ+ σ

∗µt)
∂k
∂xj

]
, (2.3)

where mean viscous stresses are represented by t̄ij = 2µ(S̃ij − (1/3)S̃kkδij), with
S̃ij = (1/2)((∂ ũi/∂xj)+ (∂ ũj/∂xi)) being the resolved strain-rate tensor. The unknown
Reynolds stresses ρ̄τij = ρ̄(ũiuj − ũiũj) need to be modelled to close the equations. In
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this work, the W-URANS framework is illustrated using the Boussinesq eddy-viscosity
assumption

ρ̄τij = 2µt
(
S̃ij −

1
3 S̃kkδij

)
−

2
3 ρ̄kδij, (2.4)

where µt stands for the turbulent eddy viscosity and k = −τii/2 represents the
kinetic energy (per unit mass) associated with the turbulent fluctuations, which
is the primary turbulence variable to be modelled. Note that in this work the
turbulence kinetic energy k is included in the definition of the total energy, namely,
Ẽ = ẽ + ũiũi/2 + k, where ẽ stands for the specific internal energy of the fluid.
The term qj = −((µ/Pr) + (µt/Prt))(∂ h̃/∂xj) represents the heat flux vector, with
h̃= ẽ+ p̄/ρ̄ the specific enthalpy of the fluid. It is worth noting that both molecular
and turbulent diffusion of k are properly considered in the energy equation (2.3). In
this study, the following thermodynamic relationships for a calorically perfect gas are
assumed:

p̄= ρ̄RT̃, (2.5)

ẽ= cvT̃ =
1

γ − 1
p̄
ρ̄
, (2.6)

h̃= cpT̃ =
γ

γ − 1
p̄
ρ̄
, (2.7)

where R is the gas constant, while cv and cp are the specific heats at constant volume
and pressure, respectively. As to the specific heat ratio γ = cp/cv, the value of 1.4
for diatomic gases is prescribed. Also, the Sutherland’s law is used to compute the
dynamic viscosity µ as a function of the absolute temperature T̃ . Finally, for the
numerical experiments presented in the following, the molecular and the turbulent
Prandtl numbers appearing in the heat flux definition are assumed as Pr = 0.72 and
Prt = 0.9, respectively.

2.2. k–ω model equations
Following a two-equation modelling approach, the unknown turbulent eddy viscosity
µt can be modelled as a function of the turbulence kinetic energy k and the specific
dissipation rate ω (also referred to as the turbulence frequency) as follows:

µt =
ρ̄k
ω
. (2.8)

Since its inception, due to Kolmogorov (1942) and Saffman (1970), independently,
the k–ω model has been constantly revised and improved, becoming one of the most
commonly used RANS modelling procedures for separated flows. In this work, the
k–ω model version proposed by Wilcox (1988) is employed. The modelled evolution
equations for the turbulence kinetic energy and the specific turbulence dissipation rate
can be written as

∂

∂t
(ρ̄k)+

∂

∂xj
(ρ̄kũj)=Π − β

∗ρ̄kω+
∂

∂xj

[
(µ+ σ ∗µt)

∂k
∂xj

]
(2.9)

and
∂

∂t
(ρ̄ω)+

∂

∂xj
(ρ̄ωũj)= α

ω

k
Π − βρ̄ω2

+
∂

∂xj

[
(µ+ σµt)

∂ω

∂xj

]
, (2.10)
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respectively. The term Π = ρ̄τij(∂ ũi/∂xj) represents the production of turbulence
kinetic energy, that is, the rate at which kinetic energy is transferred from resolved
mean flow to unresolved turbulence. Due to the eddy-viscosity model (2.4), the
turbulence production is approximated as Π ∼= µtS̃2, where S̃ stands for the resolved
strain-rate magnitude, that is, S̃= (2S̃ijS̃ij)

1/2.
The present turbulence model has a major shortcoming as the simulation results

strongly depend on the free-stream value of the turbulence frequency that is specified
outside the shear layer, e.g. Wilcox (2008). In order to reduce the sensitivity of
the model to free-stream boundary conditions, a number of different variants of the
original formulation have been proposed. Here, following a well established procedure,
the so-called cross-diffusion term is added to the right-hand side of (2.10), specifically,
C = σd(ρ̄/ω)(∂k/∂xj)(∂ω/∂xj), where σd is a coefficient of order unity (Wilcox 1993).
Because this additional term must be suppressed close to solid boundaries as it
undermines the viscous sublayer prediction, practically, it is included only where it
is positive, which leads to the following practical definition:

C = σd0

ρ̄

ω
max

(
0,
∂k
∂xj

∂ω

∂xj

)
. (2.11)

This way, cross-diffusion does not affect the solution close to the wall, where k and
ω have gradients of opposite sign, since the turbulence kinetic energy vanishes while
the turbulence frequency theoretically tends to infinity. The coefficient σd0 has to be
prescribed along with the turbulent diffusion coefficients σ ∗ and σ (Kok 2000).

Furthermore, for external aerodynamic flows, the model equations (2.9) and (2.10)
would actually lead to a non-physical decay of turbulence in the free-stream flow
region (Spalart & Rumsey 2007). Therefore, in order to sustain the turbulence level
away from the body, additional source terms on the right-hand side of the above
equations are suitably considered. By also including the cross-diffusion term (2.11),
the coupled evolution equations for k and ω being actually solved are

∂

∂t
(ρ̄k)+

∂

∂xj
(ρ̄kũj)=Π − β

∗ρ̄kω+
∂

∂xj

[
(µ+ σ ∗µt)

∂k
∂xj

]
+ β∗ρ̄koωo (2.12)

and

∂

∂t
(ρ̄ω)+

∂

∂xj
(ρ̄ωũj)= α

ω

k
Π − βρ̄ω2

+
∂

∂xj

[
(µ+ σµt)

∂ω

∂xj

]
+ βρ̄ω2

o + C, (2.13)

where the ambient values ko and ωo are assumed to be known.
The six closure coefficients appearing in the above model equations are prescribed

as follows. For the turbulence kinetic energy equation (2.12), β∗ = 9/100, while
for the specific dissipation rate (2.13), α = 1/2 and β = 3/40 are assumed (Wilcox
2008). As to the diffusion coefficients, the set of values suggested by Kok (2000) for
turbulent/non-turbulent interfaces is used, namely, σ ∗ = 2/3, σ = 1/2 and σd0 = 1/2.
This set of constants was demonstrated to resolve the free-stream dependency, being
valid throughout the boundary layer region.

3. Wavelet-based computational modelling
The two-equation eddy-viscosity model described in the previous section is

implemented in the parallel adaptive wavelet-collocation solver (Nejadmalayeri et al.
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2015). The mean flow equations (2.1), (2.2) and (2.3), and the k–ω model equations,
(2.12) and (2.13), are considered as one set of equations in the flow variables ρ̄, ρ̄ũi,
ρ̄Ẽ, ρ̄k and ρ̄ω. The URANS governing equations are evaluated at collocation points,
which are adapted in space and time to dynamically resolve all the features of the
numerical solution.

3.1. Adaptive wavelet collocation
The proposed computational modelling employs the AWC method that uses wavelet
multi-resolution analysis to dynamically adapt the local numerical resolution, e.g.
Vasilyev & Bowman (2000), Vasilyev (2003). By constructing time-dependent spatial
grids that are suitable for the time-accurate solution of the governing equations, the
efficient resolution of the flow variables on an adaptive optimal mesh is guaranteed.
The wavelet decomposition of a spatially dependent field, say u(x), using a set of
dyadic nested wavelet-collocation grids, can be formally written as

u(x)=
∑
l∈L1

c1
l φ

1
l (x)+

J∑
j=1

2n
−1∑

µ=1

∑
k∈Kµ,j

dµ,jk ψ
µ,j
k (x), (3.1)

where bold subscripts denote n-dimensional indexes, while L1 and Kµ,j are
n-dimensional index sets associated with scaling functions φ1

l and wavelets ψ
µ,j
k ,

respectively, with n the number of spatial dimensions. Each level of resolution
1 6 j 6 J, with J being the maximum level present in the approximation (associated
with the finest grid), consists of multi-dimensional second generation wavelets
belonging to a given family (indexed by µ) and characterized by the same scale.
The families are directly specified by the discrete location on the grid, being aligned
with the rectilinear axes in the computational space.

In the framework of the eddy-capturing approach, the separation between resolved
flow structures and unresolved residual motions is obtained through a nonlinear
wavelet thresholding filter. Namely, the filtering operation is performed by applying
the wavelet transform to the original field u(x), zeroing the wavelet coefficients
below a given threshold, and transforming back to the physical space. The resulting
approximated field, say u>(x), which corresponds to a subset of the original wavelets
consisting of the dominant modes, can be written as

u>(x)=
∑
l∈L1

c1
l φ

1
l (x)+

J∑
j=1

2n
−1∑

µ=1

∑
k∈Kµ,j

|dµ,jk |>ε‖u(x)‖

dµ,jk ψ
µ,j
k (x), (3.2)

where ε stands for the non-dimensional thresholding level.
The above wavelet decomposition is used for both grid adaptation and interpolation,

while a hierarchical finite difference scheme, which takes advantage of the wavelet
multilevel decomposition, is used for numerical differentiation. The multilevel
structure of the wavelet approximation provides a natural way to obtain the solution on
a near optimal grid. Due to the one-to-one correspondence between wavelets and grid
points, the latter are omitted from the computational mesh if the associated wavelets
are omitted from the representation (3.2), which occurs when the corresponding
coefficients are below the thresholding level that is prescribed. This way, the method
allows the numerical mesh to be dynamically adapted to the evolution of the main
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flow structures, both in location and scale, while higher resolution computations are
carried out where (and only where) steep gradients in the resolved flow field occur.

Depending on the choice of the non-dimensional parameter ε, only a small fraction
of the available wavelets is actually used in evolving the solution, which results
in the characteristic high grid compression of the AWC method, e.g. Schneider
& Vasilyev (2010). The wavelet thresholding level can be either kept constant or
dynamically adjusted following a Lagrangian spatio-temporally varying thresholding
strategy (Nejadmalayeri et al. 2014). It should be mentioned that, during the grid
adaptation process, once the wavelet mask is created for the collocation points
associated with wavelets with significant coefficients, the mask is extended by adding
the adjacent wavelets, in both location and scale, whose coefficients can potentially
become significant at the next iteration or time step. This operation is performed in
each spatial direction, and is unable to take into account the possible local anisotropy
in the flow. The use of the additional collocation points associated with adjacent
wavelets causes a partial loss of grid compression. Nevertheless, the latter remains
very high and the number of degrees-of-freedom is strongly reduced compared to
non-adaptive computations.

The AWC approach is particularly effective in the simulation of turbulent external
flows that are inherently intermittent, because it has the ability to unambiguously
identify and isolate localized dynamically dominant flow structures and to track them.
Differently from the classical zonal approach, where the numerical mesh is a priori
designed to resolve the wall and the wake regions, regardless of the instantaneous
vorticity distribution, the wavelet-based adaptation allows the computational grid
to be continuously modified in time in order to automatically follow the local
flow intermittency, e.g. De Stefano & Vasilyev (2014). Also, one of the main
strengths of the present method lies in the rigorous control of the accuracy of
the numerical solution through the choice of the thresholding level ε in the wavelet
decomposition (3.2). Fundamentally, this parameter determines the relative dominance
of the eddies that are resolved and, therefore, controls the significance of the residual
field associated with the wavelets that are discarded. For accurate solution of the
W-URANS governing equations, a very low value for the parameter ε has to be
prescribed so that all the important features of the numerical solution are resolved
accurately.

It is worth stressing that the mechanism used by the AWC methodology to analyse
and refine the mesh is inherently isotropic. The existence of high gradients in a single
direction automatically leads to a local refinement that however involves all the spatial
directions. In practice, the method is unable to distinguish highly correlated directions
in the flow field, where the solution is changing less rapidly, and the existence of
well-oriented structures cannot be exploited in the grid adaptation process. Therefore,
filament- and sheet-like structures in the flow field are indeed overresolved, which
undermines the benefits of the dynamic adaptivity. This represents an issue for external
turbulent flows where, on the contrary, the use of an anisotropic mesh refinement
strategy would permit the efficient simulation of the boundary layer and the shear
layer regions, by using a coarser discretization in some suitable directions.

In addition, the AWC approach is based on second generation tensorial wavelets,
which require the use of a rectilinear computational grid. To overcome the resultant
difficulty in dealing with complex flows, volume-penalization methods have been
employed, where additional forcing terms are considered in the governing equations in
order to mimic the presence of solid bodies (Angot et al. 1999; Kevlahan & Vasilyev
2005). For example, the shedding flow past a square cylinder has been successfully
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simulated with the coupled wavelet-collocation/volume-penalization approach in
(De Stefano, Nejadmalayeri & Vasilyev 2016). However, the hybrid method has
some drawbacks such as the approximation with which the wall boundary conditions
are imposed and the need for higher spatial resolution in the direction normal to
the boundary. As a consequence, the numerical resolution that is appropriate in the
wall-normal direction results in very excessive refinement in the tangential directions,
ultimately leading to inefficient use of computational resources.

3.2. Adaptive-anisotropic curvilinear mesh refinement
Despite the above mentioned shortcomings, tensorial lifted-interpolated wavelets
remain highly valuable for the numerical solution of fluid dynamics equations,
owing to their simplicity and computational efficiency, e.g. Schneider & Vasilyev
(2010). With the recent development of the adaptive-anisotropic wavelet-collocation
method (Brown-Dymkoski & Vasilyev 2017), the issue has been addressed by
keeping the computational space separate from the physical one, while introducing
a mapping between them. This way, a suitable numerical mesh can be utilized in
the physical space, somewhat independently from the rectilinear grid that exists
in the computational space. The introduction of a function that maps the physical
domain, say x∈Ωp, to the computational domain, say ξ ∈Ωc, allows for the necessary
flexibility of the mesh geometry when dealing with flows around obstacles. In physical
space, a more optimal spatial distribution of mesh points can be realized, based on
the particular flow being simulated, where both the aspect ratio and the orientation of
the cells can be properly varied. Furthermore, body-fitted meshes can be constructed,
which enables the accurate resolution of the boundary layer and wake regions. At
the same time, the structured rectilinear assembly of collocation points defining the
discrete topology in the computational space stands unaltered, which permits efficient
discrete wavelet transform and derivative approximations.

Practically, local anisotropic refinement and stretching of the numerical mesh
can be introduced by adjusting the location and distribution of points by means
of the definition of the appropriate coordinate mapping x(ξ). Given the rule of
correspondence between the two domains, the key role is played by the Jacobian
matrix

J ij =
∂xi

∂ξj
, (3.3)

which is readily computed using the integrated finite difference framework of the
AWC solver. For the calculation of the different terms in the W-URANS governing
equations, which are naturally evaluated in the physical space, computational
derivative approximations are computed by means of

∂

∂xj
= J−1

ji
∂

∂ξi
, (3.4)

where J−1
ij is the inverse Jacobian matrix. Particular care must be taken to avoid cells

with high skewness, degenerate Jacobian matrix (det(J)→ 0) and non-smooth mesh
lines, which would cause a degradation of the transform operations that cannot be
compensated for by the automated wavelet grid refinement.

For simple geometry flows, like the one presented in the next section, with an
a priori knowledge of the flow behaviour, explicit algebraic mapping functions can
be imposed in order to achieve increased mesh resolution in particular flow regions.
In addition, the adoption of body-fitting meshes prevents the use of penalty terms.
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Curvilinear structured meshes based on analytical continuous curvilinear mapping
can be resorted to with great advantage. The wavelet-based adaptation implemented
in Ωc leads to the adjustment of the local mesh density in Ωp, while preserving
the geometry and the local aspect ratio of the mesh elements. Also, by properly
constructing the curvilinear mapping, highly correlated gradients in physical space
can become normalized once transformed to computational space, which results
in more efficient grid refining or coarsening, while optimally using the available
computational resources. To maintain the accuracy of the transform operations, the
wavelet-based adaptation can also occur upon the mapping fields themselves, which
guarantees the desired high quality of the mesh.

It is worth noting that the use of curvilinear meshes, which adds flexibility and
robustness to classical wavelet-based methods, would also enhance the efficiency of
hybrid volume-penalization/wavelet-collocation methods, which have been successfully
used for external turbulent flows (De Stefano & Vasilyev 2014; De Stefano et al.
2016). In fact, the integration of the volume-penalization technique with adaptive
mesh refinement with isotropic mesh elements, typical of traditional approaches, still
does not allow us to perform high Reynolds number flow simulations. This is due to
the high computational overhead related to the use of isotropic mesh elements that
results from the overresolution in the directions tangential to the obstacle surface.
The coupling of volume penalization and anisotropic adaptive mesh refinement would
definitely improve the computational performance of the hybrid approach. This
further development, being out of the scope of the present study, which is devoted to
body-fitted meshes, is the subject of our future research.

4. Circular cylinder flow simulation
In order to demonstrate the wavelet-based adaptive unsteady Reynolds-averaged

Navier–Stokes approach, the W-URANS method, supplied with the k–ω model
described in § 2, is applied to the simulation of the turbulent flow around a stationary
circular cylinder immersed in a uniform fluid stream. An analytic curvilinear mapping
is introduced between the computational space and the physical one, where a
curvilinear structured body-fitted mesh is defined. The continuous mapping function is
suitably defined so to have an O-type mesh in the cross-section plane of the cylinder.

In this work, the azimuthal and the radial distributions of points proposed by
Beaudan & Moin (1994), based on the so-called wake envelope, are utilized in the
physical space. This way, a more detailed estimation of the wake region becomes
possible, which ensures more efficient resolution of the shedding vortex street and
numerical mesh elements with better anisotropy in the boundary layer.

4.1. Case settings
For the present experiments, the free-stream Mach number is set at a low subsonic
value, that is Ma = U/co = 0.2, where U stands for the velocity of the oncoming
flow and co =

√
γ po/ρo is the ambient (far-field) speed of sound. The mean flow

Reynolds number is fixed as Re = ρoUD/µo = 3900, where D corresponds to the
cylinder diameter and µo stands for the far-field dynamic viscosity. As expected
for this subcritical Reynolds number, the separating shear layers on the side of the
cylinder are observed to become unstable and the complete transition to turbulent
flow occurs (Williamson 1996).

The flow around the two-dimensional section of the obstacle is described in a
Cartesian coordinate system (x, y), where the x-axis corresponds to the inlet flow
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FIGURE 1. (Colour online) Time history of the drag coefficient for different wavelet
resolutions.

direction. In polar coordinates (r, θ) the corresponding annular physical domain is
defined by 0.5< r/D< 20, 06 θ < 2π. In terms of spatial resolution, on the finest grid
( j= J), the first point is placed at a radial distance 1r ≈ 0.0032D from the surface.
Also, the cells adjacent to the body surface have an aspect ratio of approximately
5 : 2.

The W-URANS solution is attained by employing the fourth-order AWC method,
supplied with the linearized Crank–Nicolson split-step time integration method with
adaptive time stepping, and the parallel version of the AWC solver (Nejadmalayeri
et al. 2015). The discretization of the computational domain is accomplished by
making use of eight nested wavelet-collocation grids for the wavelet decomposition
(3.2), where J = 8. In order to achieve an accurate solution of the W-URANS
governing equations a constant wavelet threshold of ε = 10−4 is used. Naturally, the
numerical mesh is adapted based on the momentum and the total energy fields. In
addition, for the present case of wall-bounded flow, the mesh is also adapted on the
velocity gradient represented by the vorticity and the magnitude of the strain-rate
tensor.

In order to demonstrate the convergence of the solution of the W-URANS equations,
in terms of both the level of resolution J and the wavelet threshold ε, starting from
a given initial fully developed field, a number of different calculations with different
values of J and ε have been conducted. The additional computations have been carried
out for a time interval corresponding to about four vortex shedding periods. From
inspection of figure 1, where the different time histories of the drag coefficient are
reported, the convergence of the W-URANS solution for decreasing wavelet thresholds
is apparent. The thresholding level that is practically needed for an accurate solution
depends on the choice of the maximum level of resolution. Namely, the higher is J,
and thus the finer is the spatial resolution, the lower must be the threshold ε that is
employed. This is mainly due to the required accuracy with which the approximate
boundary condition for the specific dissipation rate must be imposed at the obstacle
surface, as discussed in detail in the following section. It is worth noting that for
very low threshold values, say, ε = 10−4, adding a further level of resolution (by
increasing J) does not substantially improve the solution.

The above qualitative discussion is provided for illustration purposes only. For a
quantitative analysis of the convergence of the A-AWCM solution the interested reader
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is referred to the work by Brown-Dymkoski & Vasilyev (2017), where the convergence
of the integral flow parameters with the wavelet threshold was demonstrated for
the wavelet-based direct numerical simulation of the circular cylinder flow at low
Reynolds number.

4.2. Initial and boundary conditions
As to the mean flow variables, the far-field conditions that correspond to the known
thermo-fluid dynamic state of the oncoming flow are assumed as initial conditions,
throughout the physical domain. No-slip wall boundary conditions are imposed at the
body surface, where the temperature is assumed constant.

The far-field boundary conditions for the turbulence model variables k and ω are
set as follows. The ambient value for the turbulence kinetic energy k0 is derived
from imposing a certain turbulence intensity for the oncoming flow, namely, I = 4 %,
which leads us to prescribe ko = 2.4× 10−3 U2. As regards the turbulence frequency,
the ambient value ωo is assumed to depend on the characteristic length scale
that is associated with the aerodynamic body under consideration, which is the
cylinder diameter in the present case. In practice, ωo = 10 U/D is assumed, which
approximately corresponds to a unitary value for the turbulent eddy viscosity to
molecular viscosity ratio in the free stream. The above far-field values are used
as initial conditions for the evolution equations (2.12) and (2.13), throughout the
physical domain. As to boundary conditions at the inner boundary (r/D = 0.5), the
turbulence kinetic energy and the specific dissipation rate are assumed to take known
values at the body surface, say kwall and ωwall. Differently from kwall, which is zero by
definition, the determination of ωwall is not trivial. Indeed, the turbulence frequency
theoretically tends to infinity, scaling as ω = 6ν/(βy2), for vanishing distance y
from the wall (Wilcox 1988), with ν being the fluid kinematic viscosity. In practice,
turbulence models based on the solution of equation (2.13) provide accurate results
when sufficiently large values for ωwall are prescribed. In this study, following a
common practice in the k–ω model research, the following approximate condition is
imposed, namely, ωwall = 6ν/(βδ2)= 80ν/δ2, where δ represents the normal distance
to the next resolved point away from the wall.

Finally, for all the resolved variables, non-reflective boundary conditions in the far
field are simulated by considering a characteristic-based buffer region (Freund 1997),
where the convective forcing is aligned with the radial direction for computational
efficiency.

5. Results and discussion

In order to calculate the mean flow statistics, the resolved variables for the
developed flow around the cylinder are averaged in time over a suitable number
of shedding periods. In this study, a novel time averaging approach for adaptive
W-URANS computations is developed. Briefly, in addition to wavelet adaptation on
instantaneous solution variables, the numerical mesh is also adapted on time-averaged
quantities, which allows for the accumulation of statistics on the time-varying adaptive
computational mesh. This way, statistical variables are evaluated on the fly, during
the simulation, without needing to interpolate the instantaneous solution onto the
non-adaptive computational mesh and then averaging it. In the following, mean
quantities are indicated by angular brackets.
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FIGURE 2. (Colour online) Contour maps of mean streamwise velocity (a) and mean
pressure coefficient (b) in the near wake of the cylinder for 2D W-URANS simulations.

5.1. Two-dimensional simulation
The contour maps of the mean streamwise velocity 〈u〉/U and the mean pressure
coefficient, defined as CP= (〈p〉− po)/(ρoU2/2), for two-dimensional (2D) W-URANS
simulations are drawn in figure 2. The pressure coefficient tends to take a unitary
value in the stagnation region, which bears out the correct lateral extension of the
present physical domain. The accelerating flow region at the frontward side is well
reproduced, whereas the 2D approach fails in predicting the mean flow at the rearward
side of the cylinder, where the pressure recovery is underestimated. This is confirmed
by inspection of figure 3, where the pressure distribution on the body surface is
shown. The present adaptive solution is reported together with the non-adaptive 2D
URANS results in Young & Ooi (2007) (circle symbols), at the same Reynolds
number, compared to the experimental data of Norberg at Re= 4020, as reported in
Kravchenko & Moin (2000) (diamond symbols). The current 2D W-URANS solution
is in very good agreement with the reference numerical simulation, while a severe
discrepancy exists with experimental findings. Evidently, the suction peak and the
base pressure coefficient are overestimated, which leads to excessive values for the
unsteady aerodynamic loads on the cylinder.

The time histories of the lift and drag force coefficients are reported in figure 4.
After the initial transient phase of flow development, these parameters show the
typical oscillating behaviour of vortex shedding flows. In table 1, the global flow
parameters provided by the present simulation are compared with reference data from
both URANS calculations and experiments. The mean drag coefficient CD, the mean
base pressure coefficient −CPb , the Strouhal number St = fD/U (with f the vortex
shedding frequency), the root-mean-square value of the lift coefficient C′L and the
mean separation angle θ sep are presented. The additional reference numerical data at
the same Reynolds number of 3900 are given in Palkin, Mullyadzhanov & Hanjalić
(2014) and Palkin et al. (2016). The experimental findings are those reported in
Kravchenko & Moin (2000), as provided by a number of experimental studies at
the same or slightly different Reynolds number. The 2D W-URANS results are in
good agreement with reference 2D URANS data. On the contrary, when making a
comparison with experimental data, two-dimensional simulations appear poor, while
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FIGURE 3. (Colour online) Pressure coefficient on the circular cylinder: W-URANS
solutions (solid and dash-dot-dot lines) compared to URANS results in Young & Ooi
(2007) (circles and triangles) and experiment (diamonds).
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FIGURE 4. (Colour online) Time histories of drag (dash-dot-dot line) and lift (solid line)
force coefficients.

overestimating all the above flow parameters. As expected, three-dimensional effects
are indeed important at this subcritical Reynolds number and 3D simulations are
needed for a better prediction of the mean flow statistics, e.g. Mittal & Balachandar
(1995). The inadequate representation of the very near wake of the cylinder is also
apparent in figure 5, where the profile of mean streamwise velocity 〈u〉/U along
the centreline (y/D = 0) is drawn, compared to the non-adaptive 2D URANS of
Young & Ooi (2007) and experimental findings of Lourenco and Shih reported in
Kravchenko & Moin (2000). Again, the 2D W-URANS solution matches with the
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FIGURE 5. (Colour online) Profile of mean streamwise velocity along the centreline
(y/D= 0) in the near wake of the cylinder: W-URANS solutions (solid and dash-dot-dot
lines) compared to URANS results in Young & Ooi (2007) (circles and triangles) and
experiment of Lourenco and Shih reported in Kravchenko & Moin (2000) (diamonds).

Case CD −CPb St C′L θ sep (deg.)

2D W-URANS 1.51 1.95 0.24 1.1 90
2D URANS (Travin et al. 1999) 1.8 2.23 0.22 1.47 90
2D URANS (Young & Ooi 2007) 1.59 1.96 0.235 1.17 —
2D URANS (Palkin et al. 2014) 1.33 1.6 0.21 — 89
3D W-URANS 0.95 0.74 0.21 0.2 86
3D URANS (Young & Ooi 2007) 1.32 1.42 0.223 0.70 —
3D URANS (Palkin et al. 2016) 1.13 1.284 0.209 — 92.5
Experiments 0.99 0.88 0.215 — 86

TABLE 1. Integral flow parameters: present W-URANS compared to URANS results and
experimental findings reported in Kravchenko & Moin (2000).

reference 2D numerical data, while the experimental value is captured only farther
from the obstacle.

As to turbulence model variables, the contour maps of the mean turbulence
kinetic energy 〈k〉/U2 and the specific dissipation rate 〈ω〉/(U/D) for 2D W-URANS
simulations are reported in figure 6. For the sake of clarity, given the almost singular
behaviour of the turbulence frequency in the wall region, an exponential distribution
of contour levels is adopted for this variable. The turbulence, which is generated from
the separated shear layers on the side of the cylinder, due to time averaging, appear
concentrated in the very near wake of the obstacle. The underlying tessellation that
is apparent in the above pictures corresponds to the instantaneous numerical mesh at
a the final time instant of averaging.

In order to illustrate the high adaptivity of the proposed W-URANS method, in
figure 7, the instantaneous numerical mesh (a) for 2D W-URANS simulations is
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FIGURE 6. (Colour online) Contour maps of mean turbulence kinetic energy (a) and
mean specific dissipation rate (b) in the near wake of the cylinder for 2D W-URANS
simulations.

reported together with the contour map of the corresponding vorticity field (b) at four
time instants, which are equispaced throughout the period of one shedding cycle. The
particular arrangement of grid points obeying the wake envelope approach of Beaudan
& Moin (1994) is apparent. The mesh lines are coloured by the resolution level that
is indexed by 16 j6 8. At a given time instant, the distribution of collocation points
in the physical domain closely resembles the position of the main flow structures.
Differently from other non-adaptive numerical studies, where the non-uniform mesh
spacing is given a priori by means of a zonal approach, in the present work, the actual
mesh is dynamically determined following the flow evolution in the spatio-temporal
domain. It is worth noting that the dissipation of the shedding vortex street causes
the decrease of grid density farther from the cylinder.

When looking at the wall region, the advantage of using a body-fitted mesh with
anisotropic refinement is demonstrated. The spatial resolution is not uniform along the
surface, but rather tracks unsteadiness within the boundary layer. The number of points
used to resolve the stagnation and the separation regions, as well as the near-wake
recirculation region, is effectively optimized. In practice, the use of anisotropically
stretched mesh elements on the body surface reduces the number of refinement
levels that are needed to resolve the boundary layer. There are only very limited
flow regions where the highest resolution level is involved, which indicates that the
numerical solution is indeed captured at the highest possible accuracy. Furthermore,
the adaptive method is able to follow the intermittency of the oscillating shear layer
resulting from the boundary layer separation. As vortical structures are convected into
the far wake, the presence of higher resolution levels compensate for the larger cells
inherent to the O-mesh, while maintaining the highly accurate spatial resolution. In
fact, while the smallest physical length scales are typically found at the body surface
and in the turbulent wake, the curvilinear transformation effectively regularizes the
local scales, in addition to providing the correct anisotropy for the boundary layer
region. This allows the present method to compensate for the underlying stretching
and coarsening that occurs in the far field of O-type meshes without the compounding
costs of overresolving the near region.
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FIGURE 7. (Colour online) Instantaneous numerical mesh coloured by the level of
resolution (a) and contour map of vorticity magnitude (b) in the near wake of the cylinder
for 2D W-URANS simulations at four time instants equispaced within a shedding cycle.
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FIGURE 8. (Colour online) Contour maps of streamwise (a) and cross-flow (b) velocity
fluctuations in the near wake of the cylinder for 2D W-URANS simulations.

The contour maps of streamwise and cross-flow velocity fluctuations in the near
wake of the cylinder for 2D W-URANS simulations are depicted in figure 8, with
〈u′2〉/U2 and 〈v′2〉/U2 being reported on the left and the right side, respectively.
Owing to the subcritical nature of the present circular cylinder flow, the turbulence
production is not due to the fluid–wall interaction as happens for turbulent boundary
layers. Instead, the most important contribution to turbulence production is due to the
flapping shear layers separating from the side of the cylinder and is associated with
scales whose size is of the order of the shear layer thickness. Therefore, the spatial
resolution constraint for wall-bounded turbulent flows can be partially relaxed and the
present approach can be referred to as wall-resolved W-URANS.

The computational grid actually involves approximately 2 % of the total amount
of available wavelets, including the wavelets belonging to the adjacent zone, and
the grid compression remains very high, as typically happens for wavelet-based
methods. It is worth noting that the computational cost of adaptive wavelet-collocation
methods (either AWCM or A-AWCM) is the same, whether they are used to
solve Navier–Stokes or RANS equations, because the underlying wavelet-based
computational framework is the same. Typically, per point cost of adaptive simulations
is 3–5 times more expensive with respect to non-adaptive simulations, which makes
the adaptive method practically outperform the corresponding non-adaptive one when
less than 20 % of grid points are retained in the calculation, e.g. De Stefano &
Vasilyev (2014).

Finally, in order to examine the turbulent wake mean flow statistics, the profiles
of mean velocity and velocity fluctuations at two different positions in the near
wake, which are x/D= 3 and 6, are presented. The profiles of mean streamwise and
cross-flow velocity components are shown in figures 9 and 10, respectively, while the
profiles of corresponding fluctuations are reported in figures 11 and 12, respectively.
The reference numerical data are provided by the URANS solutions in Young &
Ooi (2007), whereas the experimental findings are those in Ong & Wallace (1996).
When looking at 2D results, the comparison with reference numerical data is quite
successful. The W-URANS solution appears closer to the experimental data due to
the adaptive nature of the wavelet-based approach. The turbulent fluctuations are
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FIGURE 9. (Colour online) Profiles of mean streamwise velocity 〈u〉/U at two different
locations, which are x/D= 3 (a) and 6 (b), in the near wake of the cylinder: W-URANS
solutions (solid and dash-dot-dot lines) compared to URANS results in Young & Ooi
(2007) (circles and triangles) and experiment of Ong & Wallace (1996) (diamonds).
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FIGURE 10. (Colour online) Profiles of mean cross-flow velocity 〈v〉/U at two different
locations, which are x/D= 3 (a) and 6 (b), in the near wake of the cylinder: W-URANS
solutions (solid and dash-dot-dot lines) compared to URANS results in Young & Ooi
(2007) (circles and triangles) and experiment of Ong & Wallace (1996) (diamonds).

however overestimated with respect to the experiments, which confirms the previous
discussion about the inadequacy of two-dimensional simulations.

5.2. Three-dimensional simulation
In order to further assess the W-URANS method performance, a three-dimensional
simulation of the circular cylinder flow at Re= 3900 is carried out, where the third
spatial direction is aligned with the cylinder axis. The curvilinear mapping discussed
above is maintained in the cross-section plane (x, y), while the identity map is
prescribed in the spanwise direction (z). The width of the physical domain, which
plays an important role for cross-flow around a circular cylinder (Norberg 1994), is
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FIGURE 11. (Colour online) Profiles of streamwise velocity fluctuations 〈u′2〉/U2 at two
different locations, which are x/D = 3 (a) and 6 (b), in the near wake of the cylinder:
W-URANS solutions (solid and dash-dot-dot lines) compared to URANS results in Young
& Ooi (2007) (circles and triangles) and experiment of Ong & Wallace (1996) (diamonds).
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FIGURE 12. (Colour online) Profiles of cross-flow velocity fluctuations 〈v′2〉/U2 at two
different locations, which are x/D = 3 (a) and 6 (b), in the near wake of the cylinder:
W-URANS solutions (solid and dash-dot-dot lines) compared to URANS results in Young
& Ooi (2007) (circles and triangles) and experiment of Ong & Wallace (1996) (diamonds).

here prescribed so that 0 6 z/D < π, following similar computational studies, e.g.
Kravchenko & Moin (2000), Young & Ooi (2007). Periodic boundary conditions
are imposed in the homogeneous spanwise direction for all the resolved variables.
To visualize the resolved three-dimensional turbulent wake, the isosurfaces of the
instantaneous vorticity magnitude field at 5U/D are illustrated in figure 13, for
x/D< 10.

When looking at the 3D results, the prediction of the average pressure distribution
on the cylinder surface is highly improved with respect to the 2D simulations, as
illustrated in figure 3. The proposed wavelet-based adaptive method appears to perform
better than the reference non-adaptive approaches (Young & Ooi 2007; Palkin et al.
2016). All the global flow parameters, reported in table 1, are indeed better estimated.
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X

Y

Z

FIGURE 13. (Colour online) Isosurfaces of the instantaneous vorticity magnitude field at
5U/D in the near wake (x/D< 10) of the cylinder.

As it results from the mean streamwise velocity profiles shown in figure 5, by making
a comparison with the experiment of Lourenco and Shih reported in Kravchenko &
Moin (2000), differently from 3D URANS, the present 3D W-URANS is able to
capture the minimum velocity in the near wake. The extension of the recirculation
region is however not very well reproduced. Regarding the near-wake mean flow
statistics, the difference in the mean streamwise velocity profiles, which are shown in
figure 9, with respect to the experimental measurements is due to not fully converged
statistics. The present results could also be affected by the length of the physical
domain aft of the cylinder, which appears reduced when considering the wake region
simulated in Young & Ooi (2007) that extended up to x/D = 25. Apparently, the
mean cross-flow velocity profile is well predicted, as illustrated in figure 10. Even
examining the profiles of streamwise and cross-flow velocity fluctuations reported in
figures 11 and 12, respectively, differently from the classical non-adaptive URANS
approach, where only minor improvement is achieved by considering 3D over 2D
calculations, as also concluded by Young & Ooi (2007), the 3D W-URANS results
show better agreement with experimental findings. However, the real meaning of the
comparison of the present W-URANS solution with the non-adaptive URANS data
deserves some clarification, as discussed in the following.

5.3. Discussion
It should be emphasized that, in contrast to steady RANS models that simulate
the mean flow, URANS models not only reproduce large scale motions, typically
associated with flow geometry variations and/or unsteady boundary conditions, but
can also resolve relatively small scale structures. Indeed, intermittent three-dimensional
small scale eddies can be captured by the URANS solution, similarly to what happens
in the large-eddy simulation (LES) approach, e.g. Fröhlich & von Terzi (2008),
Menter & Egorov (2010). Even though the resolution requirements for URANS are
less severe than for LES, because the governing equations are more dissipative in
nature, they remain considerably higher than for steady RANS. Therefore, practical
computations benefit from the use of adaptive mesh refinement methods, if one
truly wants to resolve all the scales theoretically present in the URANS solution
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in a computationally affordable way. This is exactly the essence of the adaptive
W-URANS approach proposed in this work, where the important three-dimensional
small scale vortical structures are effectively represented, as illustrated in figure 13.

In practical applications, the URANS equations are often solved using the same
methods adopted for conventional steady RANS simulations that often rely on the
use of highly dissipative numerical algorithms, which are implicitly embedded into the
numerical solvers, enabling us to find stabilized solutions even on coarse meshes, e.g.
Reina & De Stefano (2017). This way, the small scale eddies are completely filtered
out and the URANS solution is dominated by numerical errors. For turbulent flow
past bluff bodies, dissipative URANS models would typically reproduce only the main
vortex shedding frequency. In contrast, in the present study, the governing equations
are solved using the non-dissipative A-AWCM approach that is able to reproduce
relatively small-eddy dynamics but requires considerably higher resolution than for
classical non-adaptive URANS. This fact must be properly taken into account when
making a fair comparison between the present results and the reference data.

Finally, the efficient resolution of the three-dimensional intermittent small scale
structures on adaptive computational meshes not only improves the reliability of
URANS simulations, but also paves the path towards a different turbulence modelling
paradigm, where fully integrated computational methods and turbulence models
complement and strengthen each other. With this perspective in mind, the proposed
W-URANS approach can be viewed as a proof of concept that lays the foundation
for the construction of mathematically consistent wavelet-based adaptive hybrid
LES/URANS methods with adaptive mesh/anisotropy/model-form refinement and
active communication between W-URANS and adaptive LES regions.

6. Concluding remarks

This paper introduces a new wavelet-based adaptive unsteady Reynolds-averaged
Navier–Stokes approach for the simulation of wall-bounded turbulent flows. The
proposed W-URANS modelling framework is demonstrated for a two-equation
eddy-viscosity turbulence model. The computational modelling is integrated with
the adaptive-anisotropic wavelet-collocation method for the more efficient numerical
solution of the governing equations. In order to reveal the capabilities of the novel
modelling approach, the present numerical experiments comprise baseline simulations
of the compressible flow over a circular cylinder at a subcritical Reynolds number,
where the physical geometry is enforced by means of an analytic curvilinear mapping.

The new approach is validated by comparison with reference non-adaptive URANS
solutions as well as experiments. The existing difference between 2D simulations
and experimental data is imputable to the inherent deficiency of two-dimensional
calculations. When considering 3D simulations, the improvement in the numerical
results is more evident for adaptive W-URANS with respect to classical URANS.
This is due to the adaptive non-dissipative nature of the present method that makes it
possible to reproduce relatively small scale structures. Following the work by Fröhlich
& von Terzi (2008), the proposed wavelet-based adaptive method can be referred to
as a second generation URANS model.

It should be noted that the present study is intended to be the proof of concept
of the proposed W-URANS approach. Prior to this work, the use of the AWCM
for the simulation of high Reynolds number turbulent wall-bounded flows was quite
questionable, since the number of required degrees of freedom did not satisfactorily
scale with the flow Reynolds number. The new approach overcomes that difficulty and
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paves the path to W-URANS simulations of engineering turbulent flows at affordable
costs. Even though the present W-URANS modelling procedure has its own range
of applicability, in addition, it should be considered as the first step towards the
construction of wavelet-based adaptive hybrid LES/URANS methods with adaptive
mesh/anisotropy/model-form refinement, which is the ultimate goal of our ongoing
research.
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