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We study the existence of planar flames, in the case of a single-step chemical reaction with

volumetric heat losses, with a general reaction term. We prove that for all positive Lewis

numbers, and for small values of the heat loss rate parameter, two distinct solutions exist. We

also give upper bounds for the flame speed and for the heat loss rate parameter. Moreover,

we explicitly compute a lower bound for the unburned gases after reaction.

1 Introduction and main results

Zeldovitch showed [16], using asymptotic methods, that the reaction-diffusion system mod-

elling the propagation of a premixed laminar flame with heat losses has got two travelling-

wave solutions in the case of high activation energies. More recently, Glangetas &

Roquejoffre [7] demonstrated the same result, as a consequence of the dispersion relation

which was obtained by Joulin & Clavin [9, 10], and proved rigorously in Glangetas &

Roquejoffre [7]. The case of a more general nonlinearity has been studied by Giovangigli

[6], in which the author proves the existence of a solution for a fixed flame speed c

(considering that the minimum heat loss rate parameter λ is an unknown of the problem),

with a Lewis Number Le equal to 1. In this paper, we follow the framework of Berestycki

et al. [3], who studied the adiabatic case (λ = 0); keeping c as a solution of the problem,

we prove the existence of two solutions for small values of λ. Also we establish that, in

some cases, the solution with the greatest flame speed converges to the solution of the

adiabatic problem as λ → 0, whereas the other flame speed converges to 0.

Furthermore, we compute some new bounds for the solutions. In particular, Giovangigli

[6] has proved that, when Le = 1, the flame speed c was bounded from above by the

flame speed cad of the adiabatic problem. Here we extend his result to Le � 1 (which is

physically meaningful, since Le = 0.4 for hydrogen), by showing that c is smaller than

the flame speed of an adiabatic scalar problem. Moreover, for all Le > 0, we give an

explicit upper bound for c. We also give a lower bound for the unburned gases after

reaction.

Let Λ and λ be two positive real numbers. The aim of this work is to prove existence and

nonexistence results for the following problem: Find two nonnegative classical functions
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742 L. Roques

u and v and a nonnegative real number c which satisfy

{
−u′′ + cu′ = f(u, v) − λh(u)

−Λv′′ + cv′ = −f(u, v)
on �, (1.1)

with the boundary conditions

{
u(−∞) = 0, u(+∞) = 0,

v(−∞) = 1, v′(+∞) = 0.
(1.2)

The following assumptions on f will be made in the sequel: there exist two functions p

and g such that

f(u, v) = p(u)g(v) in � × �, (1.3)

where the function p is globally Lipschitz continuous on �, nondecreasing and of “igni-

tion” type:

∃ θ ∈ (0, 1) s.t. p(x) = 0 for all x � θ and p(x) > 0 for all x > θ, (1.4)

and the function g is in C0(�), increasing on �+ and such that

g < 0 on (−∞, 0) and g(0) = 0; (1.5)

furthermore, for all γ > 0, let us set

k∗(γ) := max

{
sup
s∈(0,1)

g(γs)

g(s)
, γ

}
and k∗(γ) := min

{
inf

s∈(0,1)

g(γs)

g(s)
, γ

}
,

we then assume that

for all γ > 0, 0 < k∗(γ) � γ � k∗(γ) < +∞. (1.6)

Hypothesis (1.6) is, for instance, satisfied by functions g of the type g(y) = yn, with n > 0.

It also works with functions g such that there exists n � 1, n ∈ � such that g ∈ Cn(�)

g(n)(0)� 0, where g(n) is the nth derivative of g.

The function h is supposed to be in C1(�) and strictly increasing. Moreover, it satisfies

h(0) = 0, h(1) = 1, ∃ α, β ∈ � s.t. 0 < α � h′ � β. (1.7)

We call (uad, vad, cad) the solution of the following problem without heat loss (see [3] for

the existence of such solutions):

{
−u′′

ad + cadu
′
ad = f(uad, vad)

−Λv′′
ad + cadv

′
ad = −f(uad, vad)

on �, (1.8)

with the boundary conditions

{
uad(−∞) = 0, uad(+∞) = 1,

vad(−∞) = 1, vad(+∞) = 0.
(1.9)
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Remark 1.1 The reaction term used here is more general than in Berestycki et al. [3],

nevertheless, the results of Berestycki et al. [3] can be easily adapted to our case.

Remark 1.2 In the case g(y) = y and Λ � 1 the solution (uad, vad, cad) of (1.8–1.9) is

shown to be unique (up to translation) in Marion [12]. Moreover, Bonnet [4] proved that

uniqueness does not hold in the general case for Λ > 1.

Let (us, cs) be the unique solution (see Berestycki et al. [3]) of the following adiabatic

problem

−Λu′′
s + csu

′
s = f(us, 1 − us) with us(−∞) = 0, us(+∞) = 1. (1.10)

Remark 1.3 Note that in the case Λ = 1, the problem (1.8)–(1.9) reduces to the scalar

case (1.10), and therefore, uniqueness always holds.

Under this hypothesis, we have the following results:

Theorem 1.4 (1) For all Λ > 0, if λ is sufficiently small, there exist two distinct and non-

trivial solutions (u1, v1, c1) and (u2, v2, c2) of the problem (1.1)–(1.2), with c1 < c2. Moreover,

vi (i = 1, 2) is nonincreasing.

(2) For all Λ > 0, c1 → 0 as λ → 0. Moreover, if we assume that Λ � 1 and g(y) = y on

�, (u2, v2, c2) converges locally uniformly to (uad, vad, cad), the unique solution of (1.8)–(1.9),

as λ → 0. In the case Λ = 1, the same result holds for the reaction term f(x, y) = p(x)g(y)

satisfying (1.4)–(1.6).

The next Theorem gives new bounds for every solution (u, v, c) of (1.1–1.2).

Theorem 1.5 (1) If λ > f(1,1)
h(θ)

, the problem (1.1)–(1.2) has no solution.

(2) Assume that g is globally Lipschitz continuous with constant K , then for all nontrivial

solutions (u, v, c) of (1.1)–(1.2),

v(+∞) > exp

(
−Kp(1)

λh(θ)

)
.

(3) Let (u, v, c) be a solution of (1.1)–(1.2), then, for all Λ � 1, 0 < c � cs, where (us, cs) is

the solution of (1.10).

(4) Let (u, v, c) be a solution of (1.1)–(1.2), and set

σ1 = max
s∈(θ,1)

f(s, 1 − s)

s
and σ2 = max

s∈[0,1]
f(1 − Λs, s) with Λ := min{Λ, 1}, then

0 < c < 2
√

σ1Λ for all Λ � 1 and 0 < c <

√
σ2

θ
for all Λ > 0.
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2 Proof of the existence theorem

2.1 Equivalence with a problem on �+

In this section, we recall some results of Giovangigli. He establishes [6, Proposition 2.2]

that, under conditions (1.4) and (1.7),

Proposition 2.1 For all c � 0 and λ � 0, every solution (u,v) of (1.1)–(1.2), after a shift of

the origin, is a solution of

{
−u′′ + cu′ = f(u, v) − λh(u)

−Λv′′ + cv′ = −f(u, v)
on (0,+∞) , (2.1)

with the boundary conditions{
u(0) = θ, u′(0) = cθ + λ

∫ 0

−∞ h(u−), v′(0) = c
Λ
(v(0) − 1),

u(+∞) = 0, v′(+∞) = 0,
(2.2)

where u− is the unique (see Giovangigli [6]) solution of

{
−u′′

− + cu′
− + λh(u−) = 0 on �−,

u−(−∞) = 0, u−(0) = θ.
(2.3)

Conversely, every solution (u, v) of (2.1)–(2.3) can be extended to � in such a way that it

is a nontrivial solution of (1.1)–(1.2).

Remark 2.2 This proposition clearly uses the fact that p is of ignition type. It was

demonstrated in Giovangigli [6] with g(y) = yn and a Lewis number 1/Λ equal to 1, but

it is straightforwardly still valid with our more general reaction term f(x, y) and with

1/Λ� 1.

Finally, Proposition (2.1) shows that solving (1.1)–(1.2) is equivalent to finding a solution

(u, v, c) of (1.1) on �+ with

{
u′(0) = cu(0) + k(θ, c, λ), u(+∞) = 0, u(0) = θ,

Λv′(0) = c(v(0) − 1), v′(+∞) = 0,
(2.4)

where we have set k(θ, c, λ) = λ
∫ 0

−∞ h(u−).

2.2 Existence of solutions in bounded domains

To use a topological degree argument, we study the system (1.1) on a bounded interval

of �+. Namely, for each a > 0, we set Ia = (0, a), and we look for solutions (u, v, c) in

C2(Ia, [0, 1])2 × �+ of

{
−u′′ + cu′ = f(u, v) − λh(u)

−Λv′′ + cv′ = −f(u, v)
on Ia, (2.5)
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with the boundary conditions{
u′(0) = cu(0) + k(θ, c, λ), u(0) = θ, u(a) = 0

Λv′(0) = c(v(0) − 1), v(a) = 0.
(2.6)

Let us define the Banach space Xa = C1(Ia, [0, 1]) × C1(Ia, [0, 1]) × �, with the norm

‖(u, v, c)‖Xa
= ‖u‖C1(Ia) + ‖v‖C1(Ia) + |c|, and let Jτ be the mapping defined by

Jτ : Xa −→ Xa, (u, v, c) 	→ (U,V , c + θ − U(0)),

where (U,V ) is the unique solution of the linear problem{
−U ′′ + cU ′ = τ[f(u, v) − λh(u)] + (1 − τ)(V − λU)

−ΛτV
′′ + cV ′ = −τf(u, v) − (1 − τ)V ,

(2.7)

on Ia = (0, a) with the boundary conditions,{
U ′(0) = cU(0) + τk(θ, c, λ), U(a) = 0

ΛτV
′(0) = cV (0) − c, V (a) = 0,

(2.8)

where Λτ = τΛ + (1 − τ).

Remark 2.3 This mapping Jτ is close to that of Giovangigli [6]. The homotopic trans-

formation of Berestycki et al. [3] cannot be used here. Indeed, we will see in the proof of

Proposition 2.10 that the right-hand side plays a crucial role in the definition of a positive

real number c∗ such that no solution (u, v, c) exists with c ∈ (ε, c∗ − ε) for λ small enough

(and ε arbitrarily small).

Let (uτ, vτ, cτ) be a fixed point of the mapping Jτ, with τ ∈ [0, 1]. To compute a

topological degree, we need some a priori estimates on (uτ, vτ, cτ). More precisely, we

prove the following proposition.

Proposition 2.4 Let (uτ, vτ, cτ) be a fixed point of the mapping Jτ, with c � 0. Then


0 < uτ < 1, 0 < vτ < 1, vτ �
1 − uτ

min{1, Λτ}
,

−cτ < u′
τ < cτ

(
1 +

1

Λτ

)
, − cτ

Λτ

< v′
τ < 0, 0 < cτ �

√
f(1, 1) + 1

θ
.

(2.9)

Proof of Proposition 2.4 For the readability of the following calculations, we shall omit

the index τ by replacing (uτ, vτ, cτ) with (u, v, c).

Lemma 2.5 v > 0 on Ia.

Proof of Lemma 2.5 For each τ ∈ (0, 1), v satisfies the following equation

−Λτv
′′ + cv′ + γv = 0 on Ia, (2.10)

where we have set γ(x) := τf(u,v)+(1−τ)v
v

if v(x)� 0, and γ(x) := 1 if v(x) = 0.
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From our hypothesis (1.3)–(1.6), we have γ(x) � 0 on Ia. Therefore, using a maximum

principle (e.g. see Gilbarg & Trudinger [5]), we obtain infx∈Ia v(x) = min {v(0), v(a)}. Let

us assume that v(0) < 0, then, from (2.8), v′(0) � 0. Since v(a) = 0, we necessarily have

v′(0) = 0, which implies c = 0 from (2.8). Therefore, from (2.10), v is concave as long

as v(x) � 0, which is impossible since v(a) = 0. It follows that v � 0. From the strong

maximum principle applied to (2.10), we have v > 0 on Ia. �

Lemma 2.6 v < 1 and − c
Λτ

< v′ < 0 on Ia.

Proof of Lemma 2.6 From (2.10), and since v > 0, we have (e− c
Λτ

xv′)′ � 0 on Ia. Thus,

integrating between x ∈ Ia and a, we obtain e− c
Λτ

(a−x)v′(a) � v′(x). Since v > 0 on Ia and

v(a) = 0, it is then classical that v′ < 0. It then follows from (2.8) that v(0) < 1, hence

v < 1 on Ia. Furthermore, from (2.10), Λτv
′ − cv is nondecreasing on Ia, thus

v′(x) > − c

Λτ

on Ia, (2.11)

from (2.8), and since v > 0. �

Lemma 2.7 0 < u < 1 and v � 1−u
min{1,Λτ} on Ia.

Proof of Lemma 2.7 From the strong maximum principle, and using the hypothesis (1.7),

we easily obtain u > 0 on Ia. Moreover, setting w = u + v, and integrating the equation

satisfied by w between 0 and x ∈ Ia, we obtain, using (2.8), and since h(u) � 0,

−w′(x) + cw(x) − c + k � (Λτ − 1)v′(x) on Ia. Thus, since k � 0, −
[
(w − 1)e−cx

]′
�

e−cx(Λτ − 1)v′(x) on Ia, and integrating between x and a gives

w(x) � (Λτ − 1)ecx
∫ a

x

v′(t)e−ctdt + 1. (2.12)

As a consequence, if Λτ > 1, we have u + v � 1 since v′ � 0 from the above calculations.

Next, if Λτ � 1, we deduce from (2.12) that w � (1 − Λτ)v + 1. Therefore u � 1 − Λτv.

Thus, since v > 0, in both cases u < 1. Also, we see that v � 1−u
min{1,Λτ} . �

Lemma 2.8 −c < u′ < c(1 + 1
Λτ

) on Ia.

Proof of Lemma 2.8 Let us add the equations satisfied by u and v, and integrate the

sum between 0 and x. Using (2.11) and the boundary conditions (2.8), we obtain u′ > −c.

Moreover, setting y = u + Λτv and using arguments similar to those in Lemma 2.7, we

get u′ < c(1 + 1
Λτ

). �

Lemma 2.9 0 < c �
√

f(1,1)+1
θ

.

Proof of Lemma 2.9 The proof of the inequality c > 0 is standard (e.g. see Berestycki

et al. [3]). The upper bound for c follows from a simple comparison principle argument.

�
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Proposition (2.4) is proved. �

To compute a topological degree, we need another estimate that will be established for

small parameters λ.

Let (uτ, vτ, cτ) ∈ Xa be a fixed point of Jτ.

Proposition 2.10 For all ε > 0, there exist λ1 > 0 and a1 > 0 such that for all a > a1 and

for all τ ∈ [0, 1],

(λ < λ1) =⇒ (cτ � (ε, c∗ − ε)),

where c∗ is a positive real number defined at the end of the proof.

Proof of Proposition 2.10 Let (un, vn, cn, τn ) be a sequence of fixed points of Jτn , with

cn ∈ (ε, c∗ − ε), τn ∈ [0, 1], an → +∞, λn → 0 and ε > 0. Then, from Proposition 2.4, the

sequence (un, vn, cn, τn )n∈� is bounded in [C2(0, an)]
2 ×�×[0, 1]. By compactness, we obtain

the convergence (up to the extraction of some subsequence), in C1
loc(�+)2 × � × [0, 1] of

(un, vn, cn, τn ) to (u, v, c, τ) which is a classical solution of

{
−u′′ + cu′ = τf(u, v) + (1 − τ)v

−Λτv
′′ + cv′ = −τf(u, v) − (1 − τ)v

on �+, (2.13)

with

u′(0) = cθ, Λτv
′(0) = cv(0) − c, u(0) = θ, (2.14)

since k(θ, c, 0) = 0 (see (2.8)) and

c ∈ [ε, c∗ − ε]. (2.15)

Let us set Λ∗ = min{1, 1
Λτ

} and Λ∗ = max{1, 1
Λτ

}. We have the following:

Lemma 2.11 Λ∗(1 − u) � v � Λ∗(1 − u).

Proof of Lemma 2.11 v � Λ∗(1−u) is a consequence of Proposition (2.4). Setting w = u+v

and y = u + Λτv, a straightforward computation leads to

w(x) = 1 + (Λτ − 1)ecx

∫ +∞

x

v′(t)e−ctdt

y(x) = 1 + c(Λτ − 1)ecx
∫ +∞

x

v(t)e−ctdt

on �+,

thus 

v(x) = 1 − u(x) + (Λτ − 1)ecx

∫ +∞

x

v′(t)e−ctdt

v(x) =
1 − u(x)

Λτ

+
(Λτ − 1)

Λτ

ecx
∫ +∞

x

v(t)e−ctdt

on �+.

Therefore, if Λτ � 1, then v � 1 − u since v′ � 0, and if Λ > 1, then v � 1−u
Λτ

since v > 0.

That concludes the proof of the lemma. �
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Lemma 2.12 The function u + v − 1 has a constant sign on �+.

Proof of Lemma 2.12 From Lemma 2.11, (1 − u)(Λ∗ − 1) � u + v − 1 � (1 − u)(Λ∗ − 1).

Thus, if Λτ > 1, Λ∗ = 1 and u+ v − 1 � 0, and if Λτ � 1, Λ∗ = 1 and we get u+ v − 1 � 0.

�

Lemma 2.13 u′(+∞) = v′(+∞) = u′′(+∞) = v′′(+∞) = 0.

Proof of Lemma 2.13 Let us integrate the equation satisfied by v from 0 to x ∈ �+. We

obtain

Λτv
′(x) − cv(x) = −c +

∫ x

0

[τf(u, v) + (1 − τ)v(x)] dx. (2.16)

Since v is nonincreasing and nonnegative, it has got a finite limit as x → +∞. Furthermore,

since τf(u, v)+ (1 − τ)v(x) � 0, the integral
∫ x

0
[τf(u, v) + (1 − τ)v(x)] dx converges (even to

+∞). As a consequence, from (2.16), v′(x) has a limit as x → +∞. Since v is bounded, this

limit is equal to 0. Integrating the equation satisfied by y = u + Λτv from 0 to x ∈ �+,

we obtain

Λτv
′(x) + u′(x) = c(u(x) + v(x) − 1). (2.17)

Therefore Λτv(x) + u(x) = c
∫ x

0
(u(t) + v(t) − 1)dt + Λτv(0) + θ. But, from Lemma 2.12 the

integral of the right-hand side converges, thus u admits a limit at +∞. Arguing as for v

we deduce that u′(+∞) = 0. It then follows from (2.13) that u′′(+∞) = v′′(+∞) = 0. That

completes the proof of Lemma 2.13. �

Lemma 2.14 u′ � 0 on �+

Proof of Lemma 2.14 The equation satisfied by u in (2.13) is equivalent to

−(u′(x)e−cx)′ = e−cx [τf(u(x), v(x)) + (1 − τ)v(x)] � 0.

Therefore, integrating this expression from x ∈ �+ to +∞, and using Lemma 2.13 we

obtain the sought result. �

Lemma 2.15 u(+∞) = 1 and v(+∞) = 0.

Proof of Lemma 2.15 From (2.13) and (2.17), u(+∞) and v(+∞) satisfy{
τf[u(+∞), v(+∞)] + v(+∞)(1 − τ) = 0

u(+∞) + v(+∞) = 1.

Thus, since c > ε, we have u′(0) = cθ > 0. Therefore, from Lemma 2.14, u(+∞) > θ. It

follows that v(+∞) = 0 and u(+∞) = 1. �

Using Lemma 2.11, we obtain:

−u′′ + cu′ = τf(u, v) + (1 − τ)v (2.18)

� τf(u, Λ∗(1 − u)) + (1 − τ)Λ∗(1 − u). (2.19)
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Moreover, from the hypothesis (1.6) and from the definition of k∗(Λ∗), we see that

f(u, Λ∗(1 − u)) � k∗(Λ∗)f(u, 1 − u), and

Λ∗ � k∗(Λ∗) < +∞, (2.20)

hence, from (2.19) and (2.20),

−u′′ + cu′ � k∗(Λ∗)[τf(u, 1 − u) + (1 − τ)(1 − u)]. (2.21)

Let us now multiply the inequality (2.21) by u and integrate over (0,+∞). We then obtain,

using again Lemma 2.13,∫ ∞

0

(u′)2 +
c

2
(1 + θ2) � k∗(Λ∗)

∫ ∞

0

[τf(u, 1 − u) + (1 − τ)(1 − u)], (2.22)

since u � 1. Next, still using Lemma 2.11, we get

−u′′ + cu′ = τf(u, v) + (1 − τ)v

� τf(u, Λ∗(1 − u)) + (1 − τ)Λ∗(1 − u). (2.23)

Again, from the definition of k∗(Λ∗), we have f(u, Λ∗(1 − u)) � k∗(Λ∗)f(u, 1 − u) and

0 < k∗(Λ∗) � Λ∗. (2.24)

Then, integrating (2.23) over (0,+∞), and using (2.24), we get, from the limiting behaviours

obtained in the previous lemmas,

c � k∗(Λ∗)

∫ ∞

0

[τf(u, 1 − u) + (1 − τ)(1 − u)],

thus, with (2.22), we obtain the inequality∫ ∞

0

(u′)2 +
c

2
(1 + θ2) �

k∗(Λ∗)

k∗(Λ∗)
c,

which is equivalent to ∫ ∞

0

(u′)2 �
c

2

(
2
k∗(Λ∗)

k∗(Λ∗)
− 1 − θ2

)
. (2.25)

Next, let us multiply the equality (2.18) by u′ and integrate it over (0,+∞). Using again

Lemma 2.11 and the result (2.24) above, we get

θ2c2

2
+ c

∫ ∞

0

(u′)2 � k∗(Λ∗)

∫ ∞

0

u′[τf(u, 1 − u) + (1 − τ)(1 − u)],

which gives, using Lemma 2.14 and inequality (2.25),

c2

2

(
2
k∗(Λ∗)

k∗(Λ∗)
− 1

)
� k∗(Λ∗)

∫ 1

θ

[τf(s, 1 − s) + (1 − τ)(1 − s)]ds

� k∗(Λ∗)m∗,
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where m∗ is defined by m∗ = min{m1, m2}, with

m1 :=

∫ 1

θ

f(s, 1 − s)ds and m2 =

∫ 1

θ

(1 − s)ds.

Therefore,

c2 � 2
k∗(Λ∗)

2

2k∗(Λ∗) − k∗(Λ∗)
m∗ > 0 from (2.20) and (2.24), (2.26)

thus, if Λ < 1 then Λ∗ = 1 and k∗(Λ∗) = 1. Furthermore, Λ∗ � 1
Λ
, which implies from

the definition of k∗ that k∗(Λ∗) � k∗( 1
Λ
). Similarly, for Λ � 1, Λ∗ = 1 and k∗(Λ∗) = 1.

Furthermore, Λ∗ � 1
Λ
, which implies that k∗(Λ∗) � k∗(

1
Λ
). Also, it follows from (1.6) that

1
Λ

� k∗( 1
Λ
) < +∞ and 0 < k∗(

1
Λ
) � 1

Λ
. Thus we can set

c∗ :=

√
2

2k∗
(

1
Λ

)
− 1

m∗ if Λ < 1 and c∗ :=

√√√√ 2k∗
(

1
Λ

)2

2 − k∗
(

1
Λ

)m∗ if Λ � 1.

Then c∗ is positive and independent of τ (although Λ∗ and Λ∗ depend on τ). Moreover, we

have c � c∗, which is in contradiction to (2.15). That completes the proof of Proposition

2.10. �

To compute a topological degree, we need to investigate the case τ = 0. (u, v, c) is a

fixed point of J0 in Xa if and only if it satisfies

{
−u′′ + cu′ + λu = v

−v′′ + cv′ + v = 0
in Ia,

{
u′(0) = cu(0), u(a) = 0, u(0) = θ,

v′(0) = cv(0) − c, v(a) = 0.
(2.27)

Proposition 2.16 For λ small enough and a large enough, (2.27) admits exactly two solutions

(u1, v1, c1) and (u2, v2, c2). Moreover, there exists cθ > 0, such that for all ε > 0, ∃ λ2 > 0

and a2 > 0, such that for all λ < λ2 and for all a > a2, 0 < c1 < ε and c2 > cθ .

Proof of Proposition 2.16 For each c there is only one pair of functions (u, v) which

satisfies (2.27). We can compute these functions explicitly. Let us set φ(c) := u(0)(c). To

solve the equation φ(c) = θ, we study the function c 	→ φ(c) on �+. The results of the

Appendix show that for λ small enough and a large enough, the equation φ(c) = θ admits

exactly two solutions c1 and c2, with 0 < c1 < (2λ)1/3 and c2 > cθ , where cθ is positive

and does not depend on λ and a. The proof of Proposition 2.16 is then complete. �

Using Propositions 2.4, 2.10 and 2.16, we are now able to define topological degrees. First,

set Kτ ≡ I−Jτ, where I is the identity mapping of Xa. Coming back to the definition of Jτ,

with (2.7) and (2.8), we can easily check that U and V are bounded in C2(Ia), if u and v are

in C1(Ia). Furthermore C2(Ia) is compactly embedded into C1(Ia). Therefore the mappings

Jτ and Kτ are compact. Similarly, the mapping F : Xa × [0, 1] → (Xa 	→ Xa) defined

by (u, v, c, τ) 	→ Kτ is compact and uniformly continuous with respect to τ. Moreover,

we notice that (u, v, c) is a classical solution of (2.5)–(2.6) if and only if K1(u, v, c) = 0,

therefore, we look for the solutions of this equation. From the properties of Kτ, and using
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the homotopy invariance of the topological degree (see Rabinowitz [14]), we only need

to compute the degree for τ = 0. First, let us prove that a degree can be defined. Set

Λ := min{Λ, 1}, M := f(1, 1) + 1 and

Ω =

{
(u, v, c) ∈ Xa : ‖(u, v, c)‖(Xa)

< 2 + 2

√
M

θ

(
1 +

1

Λ

)}
. (2.28)

From Proposition 2.4, we know that

Proposition 2.17 For all τ ∈ [0, 1], and for a large enough,

0 � Kτ(∂Ω). (2.29)

Next, we define two open sets of Xa, in which the topological degree will be computed.

Let us set ε > 0 such that ε < min
{

c∗
8
, cθ

}
where c∗ and cθ are defined in Propositions

2.10 and 2.16 respectively, a∗ := max{a1, a2} and λ∗ := min{λ1, λ2}, where a1, a2, λ1 and

λ2 are defined in Propositions 2.10 and 2.16. Now, set

Oa
1 := Ω ∩ {(u, v, c) ∈ Xa s.t. c < 2ε} , and

Oa
2 := Ω ∩ {(u, v, c) ∈ Xa s.t. c > c∗ − 2ε} . (2.30)

Notice that Oa
2 � {∅}: since ε < cθ , we deduce from Propositions 2.10 and 2.16 that

c2 > c∗ − ε (c2 is defined in Proposition 2.16), thus Proposition 2.4 ensures that

√
M

θ
> c2 > c∗ − ε > c∗ − 2ε. (2.31)

We have the following

Proposition 2.18 For all λ < λ∗, for all τ ∈ [0, 1], 0 � Kτ(∂O
a
i ), for i = 1, 2, and for a � a∗.

Proof of Proposition 2.18 Let (u∗
i , v

∗
i , c

∗
i ) be a solution of Kτ = 0 in ∂Oa

i (i = 1, 2). Then

we deduce from Proposition 2.17 that c∗
1 = 2ε (and c∗

2 = c∗ − 2ε). From Proposition 2.10,

c∗
i � (ε, c∗ − ε) (i = 1, 2), thus we get a contradiction, and the proposition is proved. �

Proposition 2.18 enables us to define the Leray–Schauder degree deg(Kτ, O
a
i , 0), for

i = 1, 2. Let us compute its value:

Proposition 2.19 Let us assume that λ < λ∗ and a � a∗; for i = 1, 2 we have

deg(K1, O
a
1 , 0) = deg(K0, O

a
1 , 0) = 1 and deg(K1, O

a
2 , 0) = deg(K0, O

a
2 , 0) = −1.

Proof of Proposition 2.19 From the compactness of the mapping Kτ, and its uni-

form continuity with respect to τ, we obtain, using the homotopic invariance of the
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Leray-Schauder degree (see Rabinowitz [14]),

deg(K1, O
a
i , 0) = deg(K0, O

a
i , 0).

Furthermore, K0 is known explicitly:

K0 : Xa → Xa : (u, v, c) 	→ (u − U0(c), v − V0(c), U0(0) − θ)

where U0 and V0 are the solutions of (2.7–2.8). Moreover, this mapping is homotopic to

Φτ : Xa → Xa : (u, v, c) 	→ (u − τU0(c), v − τV0(c), U0(0) − θ).

Besides, since λ < λ∗ � λ2, c
1 < ε and, as noted in (2.31), c2 > c∗ − ε > c∗ − 2ε (c1

and c2 are defined in Proposition 2.16). Hence, defining φ as in the proof of Proposition

2.16, the equation φ(c) = θ admits exactly one solution in (0, 2ε) and one solution in

(c∗ − 2ε,
√

M
θ
). Using the homotopy invariance and the multiplicative properties of the

degree, we find that deg(K1, O
a
1 , 0) = deg(Φ0, O

a
1 , 0) = deg(φ(c) − θ, (0, 2ε), 0) = 1 and

deg(K1, O
a
2 , 0) = deg(Φ0, O

a
2 , 0) = deg(φ(c) − θ, (c∗ − 2ε,

√
M
θ
), 0) = −1 for a � a∗ (the sign

of the degree is given by the sign of φ′ – see Giovangigli [6, Proposition 4.6]). �

Remark 2.20 The real ε can be chosen as small as we want, provided λ is sufficiently

small.

As a consequence of Proposition 2.19, it follows that:

Corollary 2.21 For λ < λ∗, and for a > a∗, the problem (2.5)–(2.6) admits at least two

classical solutions (ua1, v
a
1 , c

a
1) and (ua2, v

a
2 , c

a
2), with 0 < ca1 <

c∗
4

and 3c∗
4

< ca2. Moreover, from

Remark 2.20, we can assume that ca1 < rλ, where rλ does not depend upon a and rλ → 0 as

λ → 0.

2.3 Passage to the limit in �+

For λ < λ∗, and for a large enough, let (ua1, v
a
1 , c

a
1) and (ua2, v

a
2 , c

a
2) be the solutions obtained

in Corollary 2.21. Using Proposition 2.4, we find that, for a large enough, (ua1, v
a
1 , c

a
1) and

(ua2, v
a
2 , c

a
2) are bounded (independently of a) in C2(Ia)×C2 (Ia)×�+. By compactness, there

exist two sequences (a1
n)n∈� and (a2

n)n∈� such that (u
a1
n

1 , v
a1
n

1 , c
a1
n

1 ) and (u
a2
n

2 , v
a2
n

2 , c
a2
n

2 ) converge in

C1
loc (�+) × C1

loc (�+) × �+ to (u1, v1, c1) and (u2, v2, c2) respectively. When the distinction

between the two solutions is not needed, we may use the general notation (u, v, c) for

(u1, v1, c1) and (u2, v2, c2) henceforth. (u, v, c) satisfies:

{
−u′′ + cu′ = f(u, v) − λh(u)

−Λv′′ + cv′ = −f(u, v)
on �, (2.32)

with the boundary conditions,

u′(0) = cu(0) + k(θ, c, λ), u(0) = θ, Λv′(0) = cv(0) − c. (2.33)
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Moreover, since the real numbers λ∗, c∗ and rλ of Corollary 2.21 are independent of a, we

see that

0 � c1 � rλ and
3c∗
4

� c2. (2.34)

Now let us prove that:

Lemma 2.22 The two solutions found above satisfy

u(+∞) = 0, u′(+∞) = v′(+∞) = 0 and u′′(+∞) = v′′(+∞) = 0.

Proof of Lemma 2.22 Passing to the limit a → +∞ in Proposition 2.4, we find that v is

nonnegative and nonincreasing. Let us integrate the equation satisfied by v in (2.32) from

0 to x > 0. We obtain

Λv′(x) − cv(x) = Λv′(0) − cv(0) +

∫ x

0

f(u, v)(s)ds. (2.35)

Therefore, since f(u, v) � 0 on �+, the right-hand side of the above equation converges

as x → +∞. Hence v′(+∞) is defined. Since v is bounded, v′(+∞) = 0.

Next, let us add the equations satisfied by u and v in (2.32). This gives, after an

integration from 0 to x > 0:

−Λv′(x) − u′(x) + cu(x) + cv(x) = (2.36)

−Λv′(0) + u′(0) − cu(0) − cv(0) − λ
∫ x

0 h(u)(s)ds. (2.37)

Since the left-hand side is bounded, and since h(u) is nonnegative (because u � 0), we

get limx→+∞ h(u)(x) = 0. From the hypothesis (1.7) on h, it follows that u(+∞) = 0. Now,

using the above results on v′(+∞), equation (2.37) implies that u′(+∞) exits. Since u is

bounded, we find u′(+∞) = 0. Then u′′(+∞) = v′′(+∞) = 0 immediately follows from

(2.32). �

From Proposition 2.1, we have found two distinct solutions of (1.1)–(1.2). In order to

complete the proof of Theorem 1.4, it only remains to prove that these two solutions are

nontrivial. Since u(0) = θ and u(+∞) = 0, u is not a trivial solution. Let us assume that v is

a constant. Then it follows from (2.32) that f(u, v) = 0 on �, hence −u′′ + cu′ + λh(u) = 0

on �. Since u(±∞) = 0, we obtain that u ≡ 0 from the maximum principle, which

contradicts u(0) = θ.

Part 1) of Theorem 1.4 is then proved.

Remark 2.23 An upper bound for v(+∞) can be derived from Proposition 2.4. Indeed,

we have v(0) � 1−u(0)
min{1,Λ} , and since v is nonincreasing, nontrivial, and u(0) = θ, we get

v(+∞) < v(0) � 1−θ
min{1,Λ} .
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2.4 Passage to the limit λ → 0

In this subsection, we study the behaviour of the two solutions (u1, v1, c1) and (u2, v2, c2)

found above. Let us recall that, besides satisfying (1.1)–(1.2), (ui, vi, ci) satisfies

u′
i(0) = ciui(0) + k(θ, ci, λ), ui(0) = θ, Λv′

i(0) = civi(0) − ci, (2.38)

with

0 � c1 � rλ and
3c∗
4

� c2, (2.39)

and

‖u‖C1(Ia)
� 1 +

√
M

θ

(
1 +

1

Λ

)
, ‖v‖C1(Ia)

� 1 +

√
M√
θΛ

, (2.40)

for i = 1, 2.

Let λ → 0. Since (ui, vi, ci) is bounded independently of λ in C2 (�) ×C2 (�) × �+ from

(1.1) and (2.40), by compactness it follows that (ui, vi, ci) converges, up to the extraction

of some subsequence, in C1
loc (�) × C1

loc (�) × �+ to a solution (u0
i , v

0
i , c

0
i ) of

{
−(u0

i )
′′ + c0

i (u
0
i )

′ = f(u0
i , v

0
i )

−Λ(v0
i )

′′ + c0
i (v

0
i )

′ = −f(u0
i , v

0
i )

on �, (2.41)

with

(u0
i )

′(0) = c0
i θ, Λ(v0

i )
′(0) = c0

i v
0
i (0) − c0

i , u
0
i (0) = θ, (2.42)

since k(θ, c, 0) = 0 (see (2.8)), and

c0
1 = 0,

3c∗
4

� c0
2, (2.43)

since limλ→0 rλ = 0. Therefore, since 0 < 3c∗
4

� c0
2, Lemma 2.15 applied to (u0

2, v
0
2 , c

0
2) gives

u0
2(+∞) = 1 and v0

2(+∞) = 0. (2.44)

Moreover, since for each λ > 0, u2 � θ on (−∞, 0), we have

{
−(u0

2)
′′ + c0

2(u
0
2)

′ = 0

−Λ(v0
2)

′′ + c0
2(v

0
2)

′ = 0
on (−∞, 0). (2.45)

Furthermore, u2 is nondecreasing on (−∞, 0) and v2 is nonincreasing on (−∞, 0); it follows

that u0
2 is nondecreasing on (−∞, 0) and v0

2 is nonincreasing on (−∞, 0). Therefore, from

(2.42) and (2.45),

u0
2(−∞) = 0 and v0

2(−∞) = 1. (2.46)

Hence, (u0
2, v

0
2 , c

0
2) is a solution of (1.8–1.9).

Let us study now (u0
1, v

0
1 , c

0
1). As seen in (2.43), c0

1 = 0. Since u1 � 0 and v1 � 0 for all λ, we

have u0
1 � 0 and v0

1 � 0. It then follows from (2.41) that u0
1 is concave. Since u0

1 is bounded,

it follows that u0
1 ≡ u0

1(0) = θ. Similarly, v0
1 ≡ K1, where K1 is an unknown constant.

Let us assume now that Λ � 1 and g(y) = y on �. Then, as mentioned in Remark 1.2

the problem (1.8)–(1.9) has a unique solution. Since we have just demonstrated that for

https://doi.org/10.1017/S0956792505006431 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792505006431


Premixed flame model with heat losses 755

all converging subsequences (u2, v2, c2)k of (u2, v2, c2), (u2, v2, c2)k converges to a solution

of (1.8–1.9); this uniqueness result allows us to say that the whole sequence (u2, v2, c2)

converges to the solution of (1.8)–(1.9).

Similarly, it follows from Remark 1.3 that, when Λ = 1, for the reaction term f(x, y) =

p(x)g(y) satisfying (1.4)–(1.6), the whole sequence (u2, v2, c2) converges to the solution of

(1.8)–(1.9).

That concludes the proof of Theorem 1.4, part 2).

3 Proof of Theorem 1.5

In this section, we give the proof of Theorem 1.5, establishing some results about the

general solutions of (1.1)–(1.2).

3.1 An upper bound for λ

Let us prove that problem (1.1)–(1.2) has no solution for λ large enough.

Lemma 3.1 Let (u, v, c) be a nontrivial solution of (1.1)–(1.2) with u � 0 and v � 0. Then

c > 0.

Proof of Lemma 3.1 Assume by contradiction that c = 0. Then, from (1.1),

Λv′′ = f(u, v) � 0 on �, (3.1)

thus v is a convex function. From (1.2), it follows that the function v is constant. Hence,

(3.1) gives f(u, v) = 0, thus, from (1.1), −u′′ = −λh(u) � 0. Similarly, it follows from the

boundary conditions (1.2) that u is a constant function. The solution (u, v, c) is then trivial.

�

Furthermore, using similar arguments as in Lemmas 2.6 and 2.7, we obtain the following

lemma.

Lemma 3.2 Let (u, v, c) be a solution of (1.1)–(1.2) with u � 0 and v � 0. Then u � 1,

v � 1 and v is nonincreasing. Moreover, if Λ � 1 then u � 1 − v.

Now, let us integrate the equation satisfied by u between −∞ and +∞; we obtain, from

(1.2), ∫ +∞

−∞
f(u, v) − λ

∫ +∞

−∞
h(u) = 0. (3.2)

(Indeed, u′(±∞) = 0, see for instance Lemma 2.22). Moreover, from Lemma 3.2, we have

0 � v � 1 and 0 � u � 1, therefore, using the hypotheses (1.3)–(1.7), we obtain that

f(u, v) � f(1, 1) h(u)
h(θ)

. Therefore, from (3.2), we deduce that

∫ +∞

−∞
f(1, 1)

h(u)

h(θ)
� λ

∫ +∞

−∞
h(u)

and thus λ � f(1,1)
h(θ)

. This completes the proof of Theorem 1.5, part 1).
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3.2 A lower bound for the unburned gases

To establish a lower bound we need some more computations. Assume that the function

g is Lipschitz-continuous on �, and let (u, v, c) be a nontrivial solution of (1.1)–(1.2).

Let us show first that v(+∞)� 0. Since the solution (u, v, c) is nontrivial, we can assume

that it satisfies u(0) = θ (see Proposition 2.1). Thus we can define x0, as the smallest y ∈
[0,+∞) such that u(y) = θ and u � θ for all x � y. Hence (u, v, c) satisfies the following

problem: {
−u′′ + cu′ + λh(u) = 0

−Λv′′ + cv′ = 0
on (x0,+∞), (3.3)

with the boundary conditions

{
u(x0) = θ, u(+∞) = 0,

v′(+∞) = 0.
(3.4)

It immediately follows that v ≡ v(+∞) on (x0,+∞). Moreover, using Proposition 2.1 (2.3),

we know that u′(x0) = cθ − λ
∫ +∞
x0

h[u+(s)]ds, where u+ is the unique solution of

{
−u′′

+ + cu′
+ + λh(u+) = 0 on (x0,+∞),

u+(x0) = θ, u+(+∞) = 0.
(3.5)

Also, if v(+∞) = 0, we see that

v(x0) = 0, v′(x0) = 0, u(x0) = θ and u′(x0) = cθ − λ

∫ +∞

x0

h[u+(s)]ds.

It follows from the Cauchy-Lipschitz uniqueness theorem that v ≡ 0, and hence this is a

contradiction. Therefore, we have shown that v∞ := v(+∞) > 0.

Now, dividing the second equation of (1.1) by v, and integrating by parts over �, we

obtain, using v∞ > 0, v′ � 0 (see Lemma 3.2) and (1.2),

−Λ

∫
�

[
v′

v

]2

+ c ln(v∞) = −
∫

�

f(u, v)

v
, (3.6)

and it follows that

c ln(v∞) � −
∫

�

f(u, v)

v
. (3.7)

Let K be the Lipschitz constant of g. Then g(v)
v

� K on �, thus, since f(u, v) = p(u)g(v),

we get

c ln(v∞) � −K

∫
�
p(u). (3.8)

Since p(u) � h(u) p(1)
h(θ)

, it follows from (3.8) that

c ln(v∞) � −K
p(1)

h(θ)

∫
�
h(u), (3.9)

https://doi.org/10.1017/S0956792505006431 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792505006431


Premixed flame model with heat losses 757

and adding the equations in (1.1) and integrating over � we obtain∫
�
h(u) =

c

λ
(1 − v∞). (3.10)

From (3.9) and (3.10), we deduce that

ln(v∞) � −K
p(1)

λh(θ)
(1 − v∞) > −Kp(1)

λh(θ)
. (3.11)

Finally one deduces that

v∞ > exp

(
−Kp(1)

λh(θ)

)
,

and part 2) of Theorem 1.5 is proved.

3.3 Upper bounds for the flame speed c

Let x0 be defined as in the subsection 3.2. We can again assume (up to translation) that

every solution (u, v, c) of (1.1)–(1.2) satisfies u(0) = θ and u � θ on (−∞, 0).

3.3.1 Comparison with an adiabatic problem

In this subsection, we assume that Λ � 1. As was proved in Berestycki et al. [3], we know

that the following problem admits a unique solution (us, cs):

−Λu′′
s + csu

′
s = f(us, 1 − us), (3.12)

with the boundary conditions

us(−∞) = 0, us(+∞) = 1 and us(0) = θ. (3.13)

Furthermore, us is strictly increasing, therefore, setting w = 1−us, we can define a function

k by k(y) := −w′ ◦w−1(1−y), moreover, k ∈ C1 (0, 1), k > 0 on (0, 1) and k(θ) = u′
s(0) = csθ

Λ
.

Then we need:

Lemma 3.3 Let (u, v, c) be a solution of (1.1)–(1.2) with c > 0, u � 0 and v � 0. Then v is

decreasing on (−∞, x0).

Proof of Lemma 3.3 This is similar to that of Lemma 3.2, using v′(x0) = 0. �

Let us set j(y) := −v′ ◦ v−1(1 − y). Then, from Lemma 3.3, j is well defined and j ∈
C1 ([1 − v(0), 1 − v∞]). Moreover, j > 0 on (1 − v(0), 1 − v∞), and

j(1 − v(0)) =
c

Λ
(1 − v(0)), j(1 − v∞) = −v′(x0) = 0. (3.14)

The equation satisfied by v in (1.1) gives

−Λv′′(v−1(1 − y)) + cv′(v−1(1 − y)) = −f(u(v−1(1 − y)), 1 − y),
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for y in (1 − v(0), 1 − v∞). But, since Λ � 1, Lemma 3.2 gives u � 1 − v, thus

−Λv′′(v−1(1 − y)) + cv′(v−1(1 − y)) � −f(1 − v ◦ v−1(1 − y), 1 − y),

for y in (1 − v(0), 1 − v∞), which finally gives

(Λjj ′ − cj)(y) � −f(y, 1 − y) in (1 − v(0), 1 − v∞). (3.15)

Similarly, we have

(Λkk′ − csk)(y) = −f(y, 1 − y) in (0, 1). (3.16)

Moreover, since k > 0, we deduce from (3.16) that
(
k(y) − csy

Λ

)′
< 0, therefore integrating

between θ and 1 − v(0), we get

k(1 − v(0)) <
cs

Λ
(1 − v(0)) =

cs

c
j(1 − v(0)),

by (3.14), thus

k(1 − v(0))

j(1 − v(0))
<

cs

c
. (3.17)

Then, subtracting equation (3.16) from (3.15), we obtain

Λ

2

(
j2 − k2

)′
� c

(
j − cs

c
k
)

in (1 − v(0), 1 − v∞). (3.18)

Now, assume that cs
c
< 1, then, from (3.17) and (3.18),

(j2 − k2)′(1 − v(0)) > 0, and (3.19)

(j2 − k2)(1 − v(0)) > 0. (3.20)

Let us assume now that the set {y ∈ (1 − v(0), 1 − v∞) s.t. (j2 − k2)(y) = 0} is nonempty

and admits a lower bound y1. Then (j2 − k2)(y1) = 0 and, from (3.18), it follows that

(j2 − k2)′(y1) > 0 which is impossible from the definition of y1. Therefore, j2 > k2 on

(1 − v(0), 1 − v∞), which is impossible since (3.14) gives j(1 − v∞) = 0, and k > 0 in (0, 1).

Finally, we obtain
cs

c
� 1, (3.21)

and Theorem 1.5, part 3), is proved.

3.3.2 Computation of explicit upper bounds for c

Let us assume that Λ � 1, and set

σ1 = max
s∈(θ,1)

f(s, 1 − s)

s
, (3.22)

we get, using (3.16),

k′ �
cs

Λ
− σ1y

Λk(y)
for y ∈ (0, 1). (3.23)
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Let us assume that cs > 2
√
σ1Λ. Now, as was done in Marion [12] for bounded intervals,

we can set m(y) = ry, with r =
cs+

√
c2
s −4σ1Λ

2Λ
. Then we have the following:

Lemma 3.4 k(y) > m(y) for all y ∈ (θ, 1).

Proof of Lemma 3.4 First, let us note that

m′(y) =
cs

Λ
− σ1y

Λm(y)
for y ∈ (0, 1). (3.24)

Therefore, since m(θ) = rθ < cs
Λ
θ, and k(θ) = −w′(0) = cs

Λ
θ, we see that k(θ) > m(θ).

Furthermore, from (3.23) and (3.24),

(k − m)′(y) �
σ1y

Λ

(
1

m(y)
− 1

k(y)

)
for y ∈ (θ, 1).

It follows that k(y) > m(y) on (θ, 1). �

Hence, for all x ∈ (0,+∞), m(1 − w(x)) < k(1 − w(x)), thus r(1 − w(x)) < −w′(x) which

is equivalent to

r <
(us)

′(x)

us(x)
for x ∈ (0,+∞), (3.25)

where us is defined by (3.12)–(3.13). Integrating (3.25) between 0 and a > 0, we obtain

ln

(
us(a)

θ

)
> ra. (3.26)

It follows from the definition of r that, for a chosen large enough, cs can be as small as

we want, which is in contradiction to the hypothesis cs � 2
√
σ1Λ. Finally, it follows that

cs < 2
√
σ1Λ, and from (3.21) we have

c < 2
√

σ1Λ.

Let us now compute another upper bound for c, depending on θ but holding for all

Λ � 0.

Let us set σ2 = maxs∈[0,1] f(1 − Λs, s), and let w be the solution of




−w′′ + cw′ = σ2 on (0, a),

w′(0) = cw(0) + k(θ, c, λ),

w(a) = 1,

(3.27)

where k(θ, c, λ) is defined as in (2.4). The function w can be computed explicitly:

w(x) = X1(a) + X2(a)e
cx +

σ2

c
x, (3.28)

where X1, X2 are two real-valued functions.

Moreover, w′(0) = cw(0) + k(θ, c, λ) gives X1(a) = σ2

c2 − k
c
, and lima→+∞ X2(a) = 0 since

w(a) = 1. Finally, we get w(0) = X1(a) + X2(a) → σ2

c2 − k
c

as a → +∞.
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Figure 1. First solution: c = 0.10, and second solution: c = 0.29.

Since the function w is a super-solution of the equation satisfied by u, we get, from

the boundary conditions of w together with the maximum principle, that w � u on (0, a),

thus w(0) = X1(a) + X2(a) � u(0) = θ. Therefore, taking a large enough, we deduce that

c <
√

σ2

θ
.

The proof of Theorem 1.5 is complete.

4 Numerical results

In this section we give some numerical approximations of the two solutions obtained

in Corollary 2.21 on a bounded domain [0, a]. Numerically, no other solution has been

found. A shooting method on c and v(0) was used to compute these approximations, and

the solutions were extended to [−a, a].

We have taken here f(u, v) = vH(u− θ)(u− θ)2, where H is the Heaviside function, and

h(u) = u. The values of the parameters are: Λ = 1, λ = 0.01, θ = 0.2 and a = 20. The

results are plotted in Figure 1.

5 Concluding remarks

Besides providing an existence result, Theorem 1.4 also solves a non-uniqueness problem.

In the adiabatic case Marion [12] has proved the uniqueness of flames when the Lewis

number (1/Λ in this paper) is greater than 1, and Bonnet [4] has shown that when the

Lewis number is less than unity, uniqueness cannot be generally assumed. Here, we prove

that uniqueness never holds in the non-adiabatic case (for small heat losses λ). When heat

loss intensity goes to zero one of our solutions has a flame velocity c which goes to zero.

The asymptotic behaviour of the other solution, as λ → 0 could depend on the value

of the Lewis number. Indeed, the result of Theorem 1.4 part 2), which asserts that this

solution goes to the adiabatic solution as λ → 0, may not be true in the non-uniqueness

case of Bonnet [4]. Nevertheless, the counter-example to uniqueness of Bonnet [4] involves

a special type of nonlinearity, and even if the Lewis number is less than unity, there are

many examples of nonlinearities for which uniqueness holds in the adiabatic framework.
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Theorem 1.5 provides some estimates for every solution (u, v, c) of (1.1)–(1.2), for all

λ > 0. These results include the case of non-unit Lewis numbers and can therefore be

used in many physically meaningful situations.

Even if the present paper gives some answers about the non-adiabatic combustion

model, some questions remain open. We do not know if uniqueness holds for each fixed

value of c; the curve c 	→ λ(c) would be then bell-shaped (λ(c) is bounded from part

1) of Theorem 1.5). Similarly, the question of the existence of a critical value λ∗ such

that a solution (u, v, c) exists if and only if λ � λ∗ is still open. In the adiabatic case,

the stability of the solution, when Λ = 1 has been treated by Berestycki et al. [2] (linear

stability) and Roquejoffre [15] (nonlinear stability). Here, the analysis of the stability is

even more complicated, since the system (1.1)–(1.2) cannot reduce to a scalar equation,

even if Λ = 1. However, we conjecture, from our numerical computations and from the

asymptotic analysis of Joulin & Clavin [9, 10], that the solution with small flame velocity

is unstable, whereas the other is stable.

Appendix

Let us recall the notation of Proposition 2.16:

φ(c) =
c

λ − 1

(
1

ea∆λr2 + r2 − c
+

1

e−a∆λr1 + r1 − c

− 1

ea∆z2 + z2 − c
− 1

e−a∆z1 + z1 − c

)
,

and ∆λ :=
√
c2 + 4λ, ∆ :=

√
c2 + 4, r1 = c−∆λ

2
, r2 = c+∆λ

2
, z1 = c−∆

2
, and z2 = c+∆

2
. It is

straightforward to show that φ is a C2 ([0,+∞)) function. Set φ′ := ∂
∂c
φ.

Proposition 5.1 For λ < 1 and a large enough, φ′ vanishes only once on (0,+∞).

Proof of Proposition 5.1 Let us show at first that

Lemma 5.2 Let µ be the function such that, for a large enough and for all c in (0,+∞),

φ(c) = 2
1−λ

( c
c+∆λ

− c
c+∆

) + µ(c, a). Then the function µa(c) := c 	→ µ(c, a) is in C2 ([0,+∞))

for a large enough and

| (µ(c, a))(n) | �
4

1 − λ
e

−a∆λ
2 for all n ∈ {0, 1, 2},

where (µ(c, a))(n) is the nth derivative of the function µ with respect to the variable c.

Proof of Lemma 5.2 Setting µ(c, a) := φ(c) − 2
1−λ

( c
c+∆λ

− c
c+∆

), it easily follows that

c 	→ µ(c, a) is a C2 ([0,+∞)) function for a large enough. Furthermore, we see that∣∣∣∣∣
(

c

ea∆λr2 + r2 − c

)(n)
∣∣∣∣∣ � e− a∆λ

2 and

∣∣∣∣∣
(

c

ea∆z2 + z2 − c

)(n)
∣∣∣∣∣ � e− a∆λ

2 ,
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for all n ∈ {0, 1, 2}. Furthermore, we can also easily check that∣∣∣∣∣
(

2c

c + ∆λ

+
c

e−a∆λr1 + r1 − c

)(n)
∣∣∣∣∣ � e− a∆λ

2 , for all n ∈ {0, 1, 2},

and the same inequality holds with ∆λ replaced by ∆ and r1 replaced by z1.

Finally, Lemma 5.2 follows from the above calculations. �

In the following, we write µ′(c, a) for ∂µ
∂c

(c, a), and µ′′(c, a) for ∂2µ
∂c2 (c, a).

Let us set b(c) := c
c+∆λ

− c
c+∆

.

Lemma 5.3 The first derivative of b vanishes only once on (0,+∞).

Proof of Lemma 5.3 Let us notice at first that ∆′
λ = c

∆λ
, ∆′ = c

∆
, ∆′′

λ = 1
∆λ

− c2

∆3
λ

and

∆′′ = 1
∆

− c2

∆3 . Then we get

b′(c) =
c + ∆λ − c(1 + ∆′

λ)

(c + ∆λ)2
− c + ∆ − c(1 + ∆′)

(c + ∆)2
=

∆λ − c2

∆λ

(c + ∆λ)2
−

∆ − c2

∆

(c + ∆)2
.

Setting k(c) = b′(c)(c + ∆λ)
2(c + ∆)2, we obtain

k(c) =

(
∆λ − c2

∆λ

)
(c + ∆)2 −

(
∆ − c2

∆

)
(c + ∆λ)

2 ,

thus we have k′(c) = 2(c+∆)(1+ c
∆
)(∆λ − c2

∆λ
)−2(c+∆λ)(1+ c

∆λ
)(∆− c2

∆
) +c[(− 1

∆λ
+ c2

∆3
λ

)(c+

∆)2 + ( 1
∆

− c2

∆3 )(c+∆λ)
2]. Hence, k′(c) = 5c3( 1

∆
− 1

∆λ
) + 4c(∆λ − ∆) + 6c2(∆λ

∆
− ∆

∆λ
) + c5( 1

∆3 −
1
∆3
λ

)+2c4( ∆
∆3
λ

− ∆λ

∆3 )+ c3(∆
2

∆3
λ

− ∆
λ2

∆3 )+ c(
∆2
λ

∆
− ∆2

∆λ
). Therefore, we can write k′(c) = c( 1

∆λ
− 1

∆
)I(c),

with

I(c) = −5c2 − 4∆∆λ − 6c(∆λ + ∆) + c4

(
1

∆2
λ

+
1

∆∆λ

+
1

∆2

)

+ 2c3

(
∆

∆2
λ

+
1

∆λ

+
1

∆
+

∆λ

∆2

)
+ c2

(
∆2

∆2
λ

+
∆

∆λ

+ 1 +
∆λ

∆
+

∆λ2

∆2

)
− (∆2

λ + ∆∆λ + ∆2).

Furthermore, since c < ∆λ < ∆, we see that I(c) � −8c2. Finally,

k′(c) � −8c3

(
1

∆λ

− 1

∆

)
< 0. (5.1)

Furthermore, from a series expansion of k(c) at c = +∞, we obtain

lim
c→+∞

k(c) = 8(λ − 1) < 0, (5.2)

and, since

k(0) = 8
√
λ − 8λ = 8

√
λ
(
1 −

√
λ
)
> 0, (5.3)
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we deduce from (5.1–5.3) that k vanishes only once, and since k(c) = b′(c)(c+∆λ)
2(c+∆)2,

Lemma 5.3 is proved. �

Let us now prove Proposition 5.1.

We have φ′(c) = 2
1−λ

b′(c) + µ′(c, a), thus, from a straightforward computation,

φ′(0) =
1 −

√
λ√

λ (1 − λ)
+ µ′(0, a).

Therefore, we deduce from Lemma 5.2 that for a large enough,

φ′(0) >
1

2

1 −
√
λ√

λ (1 − λ)
> 0. (5.4)

Moreover, it follows from (5.2) that

b′(c) − λ − 1

2c4
→ 0 as c → +∞. (5.5)

Thus, as a consequence of Lemma 5.2, we have φ′(c) < − 1
2c4 < 0 for c large enough.

Hence, by continuity, φ′ vanishes at least once on (0,+∞).

From (5.3) and (5.5), we know that b′(0) > 0, and b′(c) < 0 for c large enough.

Therefore, it follows from Lemma 5.3 that there exists a unique c0 > 0 such that b′ > 0

on [0, c0) b
′(c0) = 0 and b′ < 0 on (c0,+∞). Let c1 and c2 be two points in �+ such that

φ′(c1) = φ′(c2) = 0. Then

|b′(c1)| �
1 − λ

2
|µ′(c1, a)|. (5.6)

Using Lemma 5.3 and the continuity of b′, |c0 − c1| → 0 as b′(c∗) → 0. Hence Lemma 5.2

and (5.6) give

|c0 − c1| → 0 as a → +∞. (5.7)

Assume that c1 � c2 and set l(c) := 1−λ
2
φ′(c)(c + ∆λ)

2(c + ∆)2, then l(c1) = l(c2) = 0 and

there exists c3 ∈ [c1, c2] such that l′(c3) = 0, since c1 � c2. Thus, since

l(c) = k(c) +
1 − λ

2
(c + ∆λ)

2(c + ∆)2µ′(c, a),

we have k′(c3) = t1(c3)µ
′(c3, a) + t2(c3)µ

′′(c3, a), where t1 and t2 are two functions which

are polynomially increasing.

From (5.7), we can take a large enough such that |c0 − c1| < c0

2
, and, since c0 > 0,

c1 >
c0

2
. Thus, since (5.1) gives k′(c) � −8c3( 1

∆λ
− 1

∆
), we have

k′(c3) � max
c>

c0
2

{
−8c3

(
1

∆λ(c)
− 1

∆(c)

)}
� −c3

0

(
1

∆λ(
c0

2
)

− 1

∆( c0

2
)

)
< 0. (5.8)

But, from Lemma 5.2, we can assume for a large enough that

|k′(c3)| = |t1(c3)µ
′(c3, a) + t2(c3)µ

′′(c3, a)| <
c3
0

2

(
1

∆λ(
c0

2
)

− 1

∆( c0

2
)

)
,
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therefore, (5.8) gives c3
0(

1
∆λ(

c0
2 )

− 1
∆(

c0
2 )

) <
c3
0

2
( 1
∆λ(

c0
2 )

− 1
∆(

c0
2 )

). Thus, we get a contradiction,

and we conclude that c1 = c2. Proposition 5.1 is then proved. �

Proposition 5.4 There exists cθ > 0 such that for λ small enough and a large enough, the

equation φ(c) = θ admits exactly two solutions c1 and c2, with 0 < c1 < (2λ)1/3 and c2 > cθ .

Proof of Proposition 5.4 Let us begin with the lemma:

Lemma 5.5 The function φ admits a unique maximum.

Proof of Lemma 5.5 We have seen in (5.4) that φ′(0) > 0 for a large enough. Moreover,

φ(0) = 0 and φ(+∞) = 0. The proof of Lemma 5.5 then follows from Proposition 5.1.

�

Let us now compute φ
[
(2λ)1/3

]
. A series expansion about λ = 0 gives

φ
[
(2λ)1/3

]
= 1 − 3

22/3
λ1/3 + µ(

√
λ, a).

Therefore, for a large enough and λ small enough, φ
[
(2λ)1/3

]
can be as close as we want

to 1. It then follows from Lemma 5.5, with φ(0) = 0, φ(+∞) = 0 and θ < 1, that the

equation φ(c) = θ admits exactly two solutions c1 and c2, with 0 < c1 < (2λ)1/3.

Next, a series expansion of φ(c) about λ = 0 gives

φ(c) =

√
c2 + 4 − c√
c2 + 4 + c

+ O(λ) + µ(
√
λ, a),

and, with another series expansion at c = 0, we obtain

φ(c) = 1 − c + O(c2) + O(λ) + µ(
√
λ, a),

thus, since θ < 1, there exists cθ > 0 independent of λ and a, such that for λ small

enough and a large enough, φ(cθ) > θ. It then follows from Lemma 5.5 that c2 > cθ .

Proposition 5.4 follows. �
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