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The dynamics of the fragmentation equation with size diffusion is investigated when the size ranges
in (0, ∞). The associated linear operator involves three terms and can be seen as a nonlocal pertur-
bation of a Schrödinger operator. A Miyadera perturbation argument is used to prove that it is the
generator of a positive, analytic semigroup on a weighted L1-space. Moreover, if the overall frag-
mentation rate does not vanish at infinity, then there is a unique stationary solution with given mass.
Assuming further that the overall fragmentation rate diverges to infinity for large sizes implies the
immediate compactness of the semigroup and that it eventually stabilizes at an exponential rate to a
one-dimensional projection carrying the information of the mass of the initial value.
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1 Introduction

The well posedness of the fragmentation equation with size diffusion

∂tφ(t, x) = D∂2
xφ(t, x) − a(x)φ(t, x)

+
∫ ∞

x
a(y)b(x, y)φ(t, y) dy , (t, x) ∈ (0, ∞)2 , (1.1a)

φ(t, 0) = 0 , t> 0 , (1.1b)

φ(0, x) = f (x) , x ∈ (0, ∞) , (1.1c)

along with the long-term behaviour of its solutions is investigated by a semigroup approach.
In (1.1), φ = φ(t, x) � 0 denotes the size distribution function of particles of size x ∈ (0, ∞) at
time t> 0, while a(x) � 0 is the overall fragmentation rate of particles of size x, and b(x, y)
is the daughter distribution function that describes the distribution of fragments resulting from
the breakup of a particle of size y. Besides undergoing fragmentation events, particles are also
assumed to modify their size by diffusion at a constant diffusion rate D> 0. Finally, nucleation
is not taken into account in this model that leads to the homogeneous boundary condition (1.1b)
at x = 0.
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An interplay between diffusion and fragmentation as depicted by (1.1) is met in the growth of
ice crystals, see [16, 27]. Indeed, on the one hand, ice crystals grow or shrink in a way which
looks like diffusion and break apart due to internal stresses, the latter process being referred to
as polygonization or rotation recrystallization in ice physics. The fragmentation equation with
size diffusion (1.1) is also derived in [18] to describe the growth of microtubules. In the absence
of diffusion (i.e. D = 0), equation (1.1) is the spontaneous fragmentation equation which has a
long and rich history and has been extensively studied in the mathematical and physical literature
since the pioneering works [17, 28, 32], see [5, 7–10], and the references therein.

An important role is played in the dynamics by the total mass of the particles’ distribution

M1(φ(t)) :=
∫ ∞

0
xφ(t, x) dx , t � 0 ,

which is expected to be conserved throughout time evolution when there is no loss of matter
during fragmentation events; that is, when b satisfies∫ y

0
xb(x, y) dx = y , y ∈ (0, ∞) .

Thus, X1 := L1((0, ∞), xdx) is a natural functional framework for the study of the fragmentation
operator. We further observe that the homogeneous Dirichlet boundary condition (1.1b) corre-
sponds actually to a no-flux boundary condition for the Laplace operator in X1, so that this space
turns out to be also well suited for diffusion. However, the analysis already performed on the
fragmentation equation without diffusion reveals that a complete scale of weighted L1-spaces is
needed besides X1. In this regard, we introduce the spaces

Xm := L1((0, ∞), xmdx) and X1,m := X1 ∩ Xm

for m ∈R. We denote the positive cone of X1,m by X +
1,m. For f ∈ Xm and m ∈R, we also define the

moment Mm(f ) of order m of f by

Mm(f ) :=
∫ ∞

0
xm f (x) dx ,

so that ‖f ‖Xm = Mm(|f |). For definiteness, we equip X1,m with the norm

‖ · ‖X1,m := ‖ · ‖X1 + ‖ · ‖Xm

and note that X1
.= X1,1. Finally, we set BC([0, ∞)) := C([0, ∞)) ∩ L∞(0, ∞) and recall that

C∞
c ((0, ∞)) stands for the space of C∞-smooth functions on (0, ∞) with compact support in

(0, ∞).
Our strategy to study the well posedness and the long-term behaviour of (1.1) is to write it as

an abstract Cauchy problem in X1,m for m � 1 and show that the corresponding operator generates
a semigroup with properties depending on m, a, and b. To this end, we assume throughout the
paper that

a ∈ L∞,loc([0, ∞)) , a � 0 a.e. in (0, ∞) , (1.2)

and that the daughter distribution function b is a nonnegative measurable function on (0, ∞)2

satisfying ∫ y

0
xb(x, y) dx = y , y ∈ (0, ∞) . (1.3)

Moreover, the diffusion rate D is normalized to D = 1.
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For m � 1 we then define the (Schrödinger) operator Aa,m on X1,m by

dom(Aa,m) := {f ∈ X1,m : f ′′ ∈ X1,m , af ∈ X1,m , f (0) = 0} ,

Aa,mf := f ′′ − af , f ∈ dom(Aa,m) , (1.4)

as well as the nonlocal operator Bm on X1,m by

dom(Bm) := {f ∈ X1,m : af ∈ X1,m} ⊂ dom(Aa,m) ,

Bmf (x) :=
∫ ∞

x
a(y)b(x, y)f (y) dy , x ∈ (0, ∞) , f ∈ dom(Bm) . (1.5)

Owing to (1.3) the operator Bm turns out to be well defined, see Lemma 5.1. Setting

Am := Aa,m + Bm with dom(Am) := dom(Aa,m) , (1.6)

equation (1.1) can be equivalently formulated as the Cauchy problem

d

dt
φ =Amφ , t> 0 , φ(0) = f , (1.7)

in X1,m, and we shall investigate generation properties of the operator Am.
For concise statements we introduce the following notation: Given κ � 1 and ω ∈R, we write

A ∈ G(X1,m, κ ,ω) if the (unbounded) linear operator A on X1,m is the generator of a strongly
continuous semigroup (etA)t�0 on X1,m and

‖etA‖L(X1,m) � κeωt , t � 0 .

We set

G(X1,m) :=
⋃

κ�1 ,ω∈R
G(X1,m, κ ,ω) .

Moreover, we write A ∈ G+(X1,m) if the semigroup (etA)t�0 is positive on the Banach lattice X1,m.
We denote the domain of the (unbounded) operator A in X1,m by dom(A) and set

D(A) := (
dom(A), ‖ · ‖A

)
,

where ‖f ‖A := ‖f ‖X1,m + ‖Af ‖X1,m for f ∈ dom(A) is the graph norm. Finally, we write A ∈
H(X1,m) if A ∈ G(X1,m) and the semigroup (etA)t�0 is analytic.

With this notation we may formulate the generation result in X1,m for m � 1:

Theorem 1.1 Assume that a and b satisfy (1.2) and (1.3).

(a) There is an extension Ã1 ∈ G+(X1, 1, 0) of A1.

(b) Assume further that there is δ2 ∈ (0, 1) such that

(1 − δ2)y2 �
∫ y

0
x2b(x, y) dx , y ∈ (0, ∞) . (1.8)

If m> 1, then Am ∈ G+(X1,m) ∩H(X1,m). In addition, for all f ∈ X1,m,

M1
(
etAm f

) = M1(f ) , t � 0 . (1.9)
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(c) Assume that a satisfies

lim
x→∞ a(x) = ∞ (1.10)

and that b satisfies (1.8). Then, (etAm)t�0 is immediately compact on X1,m for m> 1.

Assumption (1.8) is commonly encountered in the investigation of the fragmentation equation
and somehow excludes the concentration of b along the diagonal. Recall that the exponent 2 in
(1.8) plays no particular role and may be replaced by any exponent p> 1, since (1.8) is equivalent
to the existence of p> 1 and δp ∈ (0, 1) such that

(1 − δp)y p �
∫ y

0
x pb(x, y) dx , y ∈ (0, ∞) ,

see [8, Theorem 5.1.47 (c)].
At this stage, the extension Ã1 of A1 is not completely identified. In particular, we do not know

whether or not Ã1 coincides with A1. Still, it is a question worth of investigation and we refer
to [8] for a thorough discussion of this issue for the fragmentation equation without diffusion.
Anyway, a positive answer is straightforward when a ∈ L∞(0, ∞) and reported in the next result.

Proposition 1.2 Assume that a ∈ L∞(0, ∞) is nonnegative and that b satisfies (1.3).

(a) For m � 1, Am ∈ G+(X1,m) ∩H(X1,m) and (1.9) is satisfied. In addition, A1 ∈ G+(X1, 1, 0).

(b) The semigroup (etAm )t�0 is not compact on X1,m.

We immediately obtain the well posedness of the Cauchy problem (1.7) in X1,m and, equiva-
lently, of (1.1) in a classical sense. Since we shall see that D(Am)

.= D(Aa,m), we can formulate
the result as follows:

Corollary 1.3 Assume that a and b satisfy (1.2) and (1.3). Assume further that, either m = 1 and
a ∈ L∞(0, ∞), or m> 1 and b satisfies (1.8). Then, for any f ∈ X1,m, there is a unique classical
solution

φ ∈ C([0, ∞), X1,m) ∩ C1((0, ∞), X1,m) ∩ C((0, ∞), D(Aa,m))

to (1.1) which is given by φ(t) = etAm f for t � 0 and satisfies

M1(φ(t)) = M1(f ) , t � 0 . (1.11)

Moreover, if f � 0 a.e. in (0, ∞), then φ(t) � 0 for all t> 0.

Remark 1.4 Given f ∈ X +
1,m, the corresponding solution φ to (1.1) provided by Corollary 1.3

satisfies the mass conservation (1.11), a feature which is in particular due to the assumed bound-
edness (1.2) of a on (0,1). Indeed, even when b satisfies (1.3), infringement of mass conservation
is known to occur when the overall fragmentation a is unbounded for small sizes. In that case,
the total mass is a decreasing function of time, a phenomenon usually referred to as shattering
which is closely related to the honesty property of the associated semigroup, see [4, 8, 11, 17,
21, 22, 28]. In fact, shattering takes place as soon as x 
→ 1/(xa(x)) fails to be integrable at x = 0.
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Having settled the well posedness of (1.1), we next turn to qualitative properties of its
dynamics. As a guideline, it was pointed out in [16] that the interplay between diffusion and
fragmentation results in the stabilization of solutions to (1.1) to a stationary solution. This is
in sharp contrast to the fragmentation equation without diffusion, since fragmentation is an
irreversible process driving the particle distribution to zero. When diffusion is turned on, a
closed-form stationary solution to (1.1) can be computed for the particular choice a(x) = x and
b(x, y) = 2y−11(0,y)(x), see [16]. The existence of stationary solutions is also established in [25]
for an overall fragmentation rate a obeying a power law (a(x) = xγ , γ � 0) and for a specific
class of daughter distribution functions b. Here we extend this existence result to a broader class
of fragmentation coefficients a and b, see Proposition 1.6. In addition, when a diverges to infinity
as x → ∞, we provide the exponential decay of the solution to (1.1) to the steady state with the
total mass of the initial value.

Theorem 1.5 Assume that a and b satisfy (1.2), (1.3), (1.8), and (1.10), and that a> 0 and b> 0.
There is a unique nonnegative

ψ1 ∈
⋂
r�1

dom(Ar)

such that M1(ψ1) = 1 and ker(Am) =Rψ1 := {rψ1 : r ∈R} for every m> 1. In particular, for
m> 1, the spectral bound s(Am) = 0 is a dominant eigenvalue of Am and there are Nm � 1 and
νm > 0 such that, for all f ∈ X1,m,

‖etAm f − M1(f )ψ1‖X1,m � Nme−νmt‖f ‖X1,m , t � 0 .

It is worth pointing out that the stationary solution ψ1 decays faster than algebraically at infin-
ity, a property which is perfectly consistent with the exponentially decaying tail experimentally
observed in [27]. Also, combining Theorem 1.5 with Lemma 2.1 below implies that ψ1 ∈ Xr for
all r>−1.

Theorem 1.5 provides a complete description of the long-term behaviour of solutions to (1.1)
when a diverges to infinity as x → ∞. However, the unboundedness of a at infinity is not a
necessary condition for the existence of stationary solutions. In fact, when

a(x) = 1 , b(x, y) = 2

y
1(0,y)(x) , 0< x< y ,

we notice that equation (1.1) has an explicit stationary solution ψ1(x) = xe−x, x> 0.1 This partic-
ular example is not peculiar, and we actually obtain the existence of stationary solutions to (1.1)
as soon as there is a positive lower bound for a as x → ∞.

Proposition 1.6 Assume that a and b satisfy (1.2), (1.3), and (1.8) and that a> 0 and b> 0.
Assume further that

α := 1

2
lim inf

x→∞ a(x) ∈ (0, ∞) . (1.12)

1We actually compute explicit stationary solutions to (1.11) when a(x) = xγ and b(x, y) = (ν +
2)xνy−ν−1 for γ � 0, ν ∈ (−2, 0] in [26].

https://doi.org/10.1017/S0956792521000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792521000346


1088 Ph. Laurençot and Ch. Walker

There is a unique nonnegative

ψ1 ∈
⋂
r�1

dom(Ar)

such that M1(ψ1) = 1 and ker(Am) =Rψ1 for every m> 1.

Let us mention here that there is no loss of generality in assuming the finiteness of
lim infx→∞ a(x) in (1.12). Indeed, if lim infx→∞ a(x) = ∞, then a satisfies (1.10), a situation
which is dealt with in Theorem 1.5.

When a only satisfies (1.12), the associated semigroup
(
etAm

)
t�0

need not be compact, see
Proposition 1.2. We thus take a different route to prove Proposition 1.6 by an approximation
procedure. This approach does not allow us to retrieve information on the long-term behaviour
and it is likely that, either a more precise study of the operator A1 or a different approach (such
as the one developed in [29]) is required to fully identify the long-term behaviour when a only
satisfies (1.12).

Let us end this introduction with a brief outline of the paper. Auxiliary results are gathered
in the next section, which includes integrability properties of elements of dom(A0,1) on the one
hand and a weighted version of Kato’s inequality on the other hand. In Section 3, we recall
some properties of the heat semigroup in the weighted L1-space X1,m with m � 1, relying on
the explicit representation formula which is available in that case. Section 4 is devoted to the
Schrödinger operator Aa,m and the associated absorption semigroup and is mostly a consequence
of the thorough study performed in [3]. We then use a perturbation argument in Section 5 to
study the full fragmentation-diffusion operator Am = Aa,m + Bm. On the one hand, for m = 1, the
existence of an extension Ã1 ∈ G+(X1, 1, 0) of A1 is a consequence of [31]. On the other hand,
if m> 1, then we can use a Miyadera perturbation technique to prove that Am ∈H(X1,m). We
recall that this approach has already proved successful for the fragmentation equation without
size diffusion, see [6]. The remainder of the paper is then devoted to the long-term dynamics.
As a preliminary step, we establish in Section 6 the immediate compactness of the semigroup in
X1,m for m> 1 when a diverges to infinity as x → ∞. We then construct in Section 7 a bounded
convex subset of X1,m which is invariant with respect to the semigroup. This feature, along with
the immediate compactness of the semigroup, implies the existence of at least one stationary
solution for any given mass. After showing that this stationary solution is unique, we perform
a detailed study of the spectrum of Am and end up with the announced convergence at a (yet
non-explicit) exponential rate. Building upon the analysis performed in Section 7, we turn to the
proof of Proposition 1.6 in Section 8 which relies on an approximation procedure. Specifically,
introducing an(x) := a(x) + x/n for x> 0 and n � 1, we deduce from Theorem 1.5 that there is
a unique nonnegative stationary solution ψ1,n to (1.1) with an instead of a. We then show that
cluster points as n → ∞ of this sequence are stationary solutions to (1.1).

2 Auxiliary results

According to the definition of dom(A0,1), an important role is played in the forthcoming analysis
by functions f ∈ X1 such that f ′′ ∈ X1. We collect useful properties of this class of functions in

https://doi.org/10.1017/S0956792521000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792521000346


The fragmentation equation with size diffusion 1089

the next lemma and show, in particular, that the boundary condition (1.1c) is well defined for
such functions.

Lemma 2.1 Consider f ∈ X1 such that f ′′ ∈ X1. Then f ∈ BC([0, ∞)) ∩ C1((0, ∞)), f ′ ∈
L1(0, ∞), and, for x> 0,

|f (x)|� ‖f ′′‖X1 , x|f ′(x)|� ‖f ′′‖X1 , ‖f ′‖L1(0,∞) � ‖f ′′‖X1 . (2.1a)

Moreover,

lim
x→∞ xf (x) = lim

x→∞ xf ′(x) = 0 . (2.1b)

In fact, f and f ′ are given by

f (x) = −
∫ ∞

x
f ′(y) dy , f ′(x) = −

∫ ∞

x
f ′′(y) dy , x ∈ (0, ∞) . (2.1c)

Also, f ∈ Xm for any m ∈ (−1, 1) and, for all ε > 0,

‖f ‖Xm � εm+1

m + 1
‖f ′′‖X1 + εm−1‖f ‖X1 . (2.2)

Equivalently,

‖f ‖Xm � 2(1 − m)(m−1)/2

m + 1
‖f ′′‖(1−m)/2

X1
‖f ‖(m+1)/2

X1
, m ∈ (−1, 1) . (2.3)

Proof. Introducing

F(x) :=
∫ ∞

x
(y − x)f ′′(y) dy , x ∈ (0, ∞) ,

it follows from the integrability of f ′′ that

−‖f ′′‖X1 �−
∫ ∞

x
(y − x)|f ′′(y)|dy � F(x) �

∫ ∞

x
(y − x)|f ′′(y)|dy � ‖f ′′‖X1 ,

so that F(x) is well defined for x � 0. Moreover,

F ∈ BC([0, ∞)) ∩ C1((0, ∞)) ∩ W 2
1,loc(0, ∞)

satisfies

F′(x) = −
∫ ∞

x
f ′′(y) dy , F′′(x) = f ′′(x) , x ∈ (0, ∞) , (2.4)

and

lim
x→∞ xF′(x) = lim

x→∞ F(x) = 0 . (2.5)

In particular, we infer from (2.4) that there is (α, β) ∈R
2 such that (f − F)(x) = α + βx for x> 0.

Moreover, since f ∈ X1, it follows from (2.5) that

lim
x→∞

∫ x+1

x
|α+ βy| dy � lim

x→∞

∫ x+1

x
(|f (y)| + |F(y)|) dy = 0 ,
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which readily gives α= β = 0 and F = f , thereby establishing (2.1), except for the limiting
behaviour of f at infinity. To this end, we observe that, since f ∈ L∞(0, ∞) and f ′ ∈ L1(0, ∞), a
formula for f (x)2 reads

f (x)2 = −2
∫ ∞

x
f (y)f ′(y) dy , x � 0 .

We then deduce from (2.1a) that

f (x)2 � 2
∫ ∞

x
y|f ′(y)||f (y)| dy

y
� 2

x2
‖f ′′‖X1

∫ ∞

x
y|f (y)| dy ,

which implies that xf (x) → 0 as x → ∞ due to f ∈ X1.
Next, let ε > δ > 0. It follows from (2.1c) that

∫ ∞

δ

xm|f (x)| dx �
∫ ε

δ

xm|f (x)| dx + εm−1
∫ ∞

ε

x |f (x)| dx

�
∫ ε

δ

xm
∫ ∞

x
|f ′(y)| dydx + εm−1‖f ‖X1

�
∫ ε

δ

xm

∫ ε

x
|f ′(y)| dydx + εm+1

m + 1

∫ ∞

ε

|f ′(y)| dy + εm−1‖f ‖X1 .

By Fubini’s theorem,

∫ ε

δ

xm
∫ ε

x
|f ′(y)| dydx = 1

m + 1

∫ ε

δ

(
ym+1 − δm+1

) |f ′(y)| dy � εm+1

m + 1

∫ ε

0
|f ′(y)| dy .

Combining the above inequalities with (2.1a) gives

∫ ∞

δ

xm|f (x)| dx � εm+1

m + 1

∫ ∞

0
|f ′(y)| dy + εm−1‖f ‖X1 �

εm+1

m + 1
‖f ′′‖X1 + εm−1‖f ‖X1 .

Letting δ→ 0 completes the proof of (2.2). We finally optimize (2.2) with respect to ε ∈ (0, ∞)
to derive (2.3). �

We next state for the sake of completeness the density in X1,m of smooth functions with
compact support in (0, ∞), which is actually a straightforward consequence of the density of
C∞

c ((0, ∞)) in L1(0, ∞).

Lemma 2.2 The space C∞
c ((0, ∞)) is dense in X1,m for m � 1.

We finally recall a variant of the celebrated inequality of Kato [23, Lemma A].

Lemma 2.3 Let 
 be a nonnegative function in W 1
∞,loc([0, ∞)) with 
(0) = 0 and consider f ∈

W 2
1,loc(0, ∞) ∩ X1 such that f ′
′ ∈ L1(0, ∞) and f ′′ ∈ L1((0, ∞), 
(x)dx). Then

−
∫ ∞

0

(x) sign(f (x))f ′′(x) dx �

∫ ∞

0

′(x) |f |′(x) dx . (2.6)
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Proof. For ε ∈ (0, 1), we define βε ∈ W 2
∞,loc(R) by βε(0) = 0 and

β ′
ε(r) := sign(r) , |r|> ε , and β ′

ε(r) := r

ε
, r ∈ [−ε, ε] .

Since f ∈ X1, we note that

|β ′
ε(f )|� |f |

ε
∈ X1 ,

while the integrability assumptions on f and 
 imply that

|(
f ′)(x)|� |(
f ′)(1)| +
∫ x

1
|(
′f ′ + 
f ′′)(y)| dy

� |(
f ′)(1)| + ‖
′f ′‖L1(0,∞) + ‖
f ′′‖L1(0,∞) , x � 1 .

Next, integration by parts gives

−
∫ ∞

0

(x) β ′

ε(f (x))f ′′(x) dx =
∫ ∞

0

[

(x) β ′′

ε (f (x))|f ′(x)|2 + 
′(x)β ′
ε(f (x))f ′(x)

]
dx ,

observing that the boundary terms vanish due to 
(0) = 0, 
f ′ ∈ L∞(1, ∞), and β ′
ε(f ) ∈ L1(1, ∞).

We then deduce from the nonnegativity of β ′′
ε on R that

−
∫ ∞

0

(x) β ′

ε(f (x))f ′′(x) dx �
∫ ∞

0

′(x)β ′

ε(f (x))f ′(x) dx .

Since |βε(r) − |r||� ε for r ∈R and since β ′
ε converges pointwise to the sign function in R as

ε→ 0 with |β ′
ε|� 1, we may pass to the limit as ε→ 0 in the previous inequality with the help

of Lebesgue’s dominated convergence theorem and the integrability properties of f ′ and f ′′ and
find

−
∫ ∞

0

(x) sign(f (x))f ′′(x) dx �

∫ ∞

0

′(x)sign(f (x))f ′(x) dx .

We finally use the classical property |f |′ = sign(f )f ′ a.e. in (0, ∞), see [24, Chapter II, Theorem
A.2], to complete the proof. �

3 The heat semigroup

It is well known, see [13, Section 3.4] for instance, that the solution to the heat equation with
homogeneous Dirichlet boundary conditions at x = 0,

∂tw − ∂2
x w = 0 , (t, x) ∈ (0, ∞) × (0, ∞) ,

w(t, 0) = 0 , t ∈ (0, ∞) ,

w(0, x) = f (x) , x ∈ (0, ∞) ,

is given by the representation formula

w(t, x) = W (t)f (x) :=
∫ ∞

0
[k(t, x − y) − k(t, x + y)]f (y) dy , (t, x) ∈ (0, ∞)2 , (3.1)
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where

k(t, x) := 1√
4π t

e−|x|2/4t , (t, x) ∈ (0, ∞) ×R . (3.2)

Moreover, (W (t))t�0 (with W (0) := idL1(0,∞)) is a positive analytic semigroup of contractions on
L1(0, ∞) with generator G given by

dom(G) := {f ∈ L1(0, ∞) : f ′′ ∈ L1(0, ∞) and f (0) = 0} ,

Gf := f ′′ , f ∈ dom(G) .

That is, G ∈ G+(L1(0, ∞), 1, 0) ∩H(L1(0, ∞)) and etG = W (t) for t � 0. We now consider this
semigroup in the weighted space X1,m. More precisely, for m � 1, we recall the definition (1.4)
(with a = 0) of the unbounded operator A0,m on X1,m, given by

dom(A0,m) = {f ∈ X1,m : f ′′ ∈ X1,m and f (0) = 0} ,

A0,mf = f ′′ , f ∈ dom(A0,m) , (3.3)

and show that it is the generator of the heat semigroup in X1,m.

Proposition 3.1 Let m � 1. There is ωm � 0 such A0,m ∈ G+(X1,m, 1,ωm) ∩H(X1,m) with (0, ∞) ⊂
ρ(A0,m). The semigroup

(
etA0,m

)
t�0

is given by

etA0,m f (x) =
∫ ∞

0
[k(t, x − y) − k(t, x + y)]f (y) dy , (t, x) ∈ (0, ∞)2 , (3.4)

for f ∈ X1,m, where k is defined in (3.2). Moreover, etA0,m = etA0,1 |X1,m for t � 0 and

(
λ− A0,m

)−1 = (
λ− A0,1

)−1 |X1,m , λ> 0 .

Two steps are needed to show Proposition 3.1. We first establish Proposition 3.1 for m = 1 and
m � 3, see Lemma 3.2 below. An interpolation argument then completes the proof for m ∈ (1, 3).

Lemma 3.2 Let m ∈ {1} ∪ (3, ∞). Then A0,m ∈ G+(X1,m, 1,ωm) ∩H(X1,m) with

ω1 := 0 and ωm := 41/(m−1)m(m − 3)(m−3)/(m−1) , m � 3 .

Moreover, etA0,m = etA0,1 |X1,m for t � 0, (0, ∞) ⊂ ρ(A0,m), and

(λ− A0,m)−1 = (λ− A0,1)−1|X1,m , λ> 0 .

Proof. We first note that A0,m is a closed operator on X1,m and that its domain is dense in X1,m

due to Lemmas 2.1 and 2.2. We divide the remainder of the proof into several steps.

Step 1. We first show the dissipativity of A0,m −ωm on X1,m. To this end, let λ> 0 and f ∈
dom(A0,m). Using the inequality

|r − s|� sign(r)(r − s) , (r, s) ∈R
2 ,
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along with the nonnegativity of λ and ωm, gives

‖λf − (A0,m −ωm)f ‖Xm = ‖(λ+ωm)f − A0,mf ‖Xm

�
∫ ∞

0
xm sign(f (x))[(λ+ωm)f (x) − f ′′(x)] dx .

By Kato’s inequality (2.6) (with 
(x) = xm), Lemma 2.1, and the boundary condition f (0) = 0,
we further obtain

‖λf − (A0,m −ωm)f ‖Xm � (λ+ωm)‖f ‖Xm + m

∫ ∞

0
xm−1 |f |′(x) dx

= (λ+ωm)‖f ‖Xm − m(m − 1)‖f ‖Xm−2 .

In particular, when m = 1,

‖λf − A0,1 f ‖X1 � λ‖f ‖X1 , (3.5)

so that A0,1 is dissipative on X1. We next handle the case m � 3. Then m − 2 ∈ [1, m) and we infer
from Young’s inequality that, for ε > 0,

m(m − 1)‖f ‖Xm−2 � m(m − 3)ε‖f ‖Xm + 2mε(3−m)/2‖f ‖X1 .

Hence,

(λ+ωm)‖f ‖Xm � m(m − 3)ε‖f ‖Xm + 2mε(3−m)/2‖f ‖X1 + ‖λf − (A0,m −ωm)f ‖Xm .

Combining (3.5) with this inequality gives

(λ+ωm)‖f ‖X1,m � ‖λf − (A0,m −ωm)f ‖X1,m

+ m(m − 3)ε‖f ‖Xm + 2mε(3−m)/2‖f ‖X1 .

We now choose ε= εm := (2/(m − 3))2/(m−1). Since

ωm = m(m − 3)εm = mε(3−m)/2
m ,

we readily conclude

λ‖f ‖X1,m � ‖λf − (A0,m −ωm)f ‖X1,m ,

so that A0,m −ωmI is a dissipative operator on X1,m.

Step 2. We next show that rg(λ− A0,m) = X1,m for λ> 0. Consider g ∈ X1,m. According to
Lemma 2.2, there is a sequence (gn)n�1 in C∞

c ((0, ∞)) such that

lim
n→∞ ‖gn − g‖X1,m = 0 . (3.6)

Since gn ∈ L1(0, ∞) and (0, ∞) ⊂ ρ(G), there is a unique fn ∈ dom(G) such that λfn − Gfn = gn;
that is,

λfn − f ′′
n = gn in (0, ∞) , fn(0) = 0 . (3.7)

Now, let R> 1. We multiply (3.7) by (x ∧ R)m sign(fn(x)) and integrate over (0, ∞). Using Kato’s
inequality (2.6) (with 
(x) = (x ∧ R)m), we obtain

https://doi.org/10.1017/S0956792521000346 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792521000346


1094 Ph. Laurençot and Ch. Walker

‖gn‖Xm �
∫ ∞

0
(x ∧ R)m sign(fn(x))[λfn(x) − f ′′

n (x)] dx

� λ
∫ ∞

0
(x ∧ R)m |fn(x)| dx + m

∫ R

0
xm−1|fn|′(x) dx

= λ

∫ ∞

0
(x ∧ R)m |fn(x)| dx − m(m − 1)

∫ R

0
xm−2 |fn(x)| dx .

In particular, for m = 1 we get

‖gn‖X1 � λ
∫ ∞

0
(x ∧ R) |fn(x)| dx ,

so that, letting R → ∞ and using Fatou’s lemma,

λ‖fn‖X1 � ‖gn‖X1 . (3.8)

The same argument entails that

λ‖fn − fl‖X1 � ‖gn − gl‖X1 , n, l � 1 . (3.9)

If m � 3, then m − 2 ∈ [1, m), and we use Young’s inequality to deduce that, for ε > 0,

λ

∫ ∞

0
(x ∧ R)m |fn(x)| dx � ‖gn‖Xm + m(m − 3)ε

∫ R

0
xm |fn(x)| dx

+ 2mε(3−m)/2
∫ R

0
x |fn(x)| dx

� ‖gn‖Xm + m(m − 3)ε
∫ ∞

0
(x ∧ R)m |fn(x)| dx

+ 2mε(3−m)/2‖fn‖X1 .

Choosing ε= λ/(2m(m − 3)), we combine (3.8) and the above inequality to conclude that

λ

2

∫ ∞

0
(x ∧ R)m |fn(x)| dx � ‖gn‖Xm + 2m

λ

(
2m(m − 3)

λ

)(m−3)/2

‖gn‖X1 .

We now let R → ∞ in this inequality and deduce from Fatou’s lemma that fn ∈ Xm with

λ‖fn‖Xm � 2‖gn‖Xm + 4m

λ

(
2m(m − 3)

λ

)(m−3)/2

‖gn‖X1 . (3.10)

The same argument entails that

λ‖fn − fl‖Xm � 2‖gn − gl‖Xm + 4m

λ

(
2m(m − 3)

λ

)(m−3)/2

‖gn − gl‖X1 (3.11)

for n � 1 and l � 1. Therefore, for m ∈ {1} ∪ [3, ∞), the estimates (3.9) and (3.11) along with
(3.6) guarantee that (fn)n�1 is a Cauchy sequence in X1,m and that there is f ∈ X1,m such that

lim
n→∞ ‖fn − f ‖X1,m = 0 . (3.12)
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Since f ′′
n = λfn − gn for all n � 1 by (3.7), it readily follows from (3.6) and (3.12) that (f ′′

n )n�1

converges to λf − g in X1,m and to f ′′ in the sense of distributions. Therefore, f ′′ ∈ X1,m with
f ′′ = λf − g and ‖f ′′

n − f ′′‖X1,m → 0 as n → ∞. Finally, by (2.1c),

|f (0)| = |f (0) − fn(0)|�
∫ ∞

0
|(f ′ − f ′

n)(x)| dx

�
∫ ∞

0

∫ ∞

x
|(f ′′ − f ′′

n )(y)| dydx =
∫ ∞

0
y |(f ′′ − f ′′

n )(y)| dy = ‖f ′′ − f ′′
n ‖X1 ,

from which we deduce that f (0) = 0. Consequently, f ∈ dom(A0,m) and λf − A0,m f = g. Since
λ− A0,m is one-to-one by (3.5), we have thus shown for any λ> 0 that

rg(λ− A0,m) = X1,m and (λ− A0,m)−1g = (λ− A0,1)−1g for all g ∈ X1,m . (3.13)

Step 3. For m ∈ {1} ∪ [3, ∞), we infer from Step 1, Step 2, and the Lumer-Phillips theorem
[30, Theorem 1.4.3] that A0,m −ωm belongs to G(X1,m, 1, 0). Hence, A0,m ∈ G(X1,m, 1,ωm). Also,
it readily follows from (3.13) that (0, ∞) ⊂ ρ(A0,m) and

(λ− A0,m)−1 = (λ− A0,1)−1|X1,m .

In particular, the latter, along with the exponential formula [30, Theorem 1.8.3], entails that
etA0,m = etA0,1 |X1,m for all t � 0.

Step 4. We next derive the representation formulation for (etA0,1 )t�0. To this end, we first note
that, for t> 0, the operator W (t) defined in (1.3) is a bounded operator on X1. Indeed, since
|x − y|� |x + y| = x + y for (x, y) ∈ (0, ∞)2,

k(t, x − y) − k(t, x + y) = 1√
4π t

(
e−|x−y|2/4t − e−|x+y|2/4t

)
� 0 (3.14)

for (x, y) ∈ (0, ∞)2. By Fubini–Tonelli’s theorem and (3.14),

‖W (t)f ‖X1 �
∫ ∞

0
x

∫ ∞

0
[k(t, x − y) − k(t, x + y)]|f (y)| dydx

= 1√
π

∫ ∞

0
|f (y)|

∫ ∞

−y/2
√

t
(y + 2z

√
t)e−z2

dzdy

− 1√
π

∫ ∞

0
|f (y)|

∫ −y/2
√

t

−∞
(−y − 2z

√
t)e−z2

dzdy

= 1√
π

∫ ∞

0
|f (y)|

(∫ ∞

−∞
(y + 2z

√
t)e−z2

dz

)
dy = ‖f ‖X1 .

Thus, W (t) is a contraction on X1. Since (λ− G)−1 = (λ− A0,1)−1 on L1(0, ∞) ∩ X1 for all λ> 0,
it follows from the exponential formula, see [30, Theorem 1.8.3], that etG = etA0,1 on L1(0, ∞) ∩
X1 for all t � 0. Therefore, W (t) = etA0,1 on L1(0, ∞) ∩ X1 for all t � 0. Since L1(0, ∞) ∩ X1 is
dense in X1 by Lemma 2.2 and etA0,1 and W (t) are both bounded operators on X1, we conclude
that etA0,1 = W (t) on X1 for all t � 0. Together with the outcome of Step 3, this identity proves
(3.4). In particular, (etA0,m )t�0 is a positive semigroup according to (3.14).
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Step 5. We are left with showing the analyticity of (etA0,m )t�0 on X1,m. To this end, let f ∈ X1,m.
Clearly,

t 
−→
∫ ∞

0
[k(t, x − y) − k(t, x + y)]f (y) dy

is differentiable on (0, ∞) and, since

2t∂tk(t, x) =
(

−1 + |x|2
2t

)
k(t, x) , (t, x) ∈ (0, ∞) ×R ,

we derive for (t, x) ∈ (0, ∞)2 that

2t
d

dt
etA0,m f (x) = −etA0,m f (x)

+ 2
∫ ∞

0

( |x − y|2
4t

k(t, x − y) − |x + y|2
4t

k(t, x + y)

)
f (y) dy

= −3etA0,m f (x)

+ 2
∫ ∞

0

(
1 + |x − y|2

4t

)
k(t, x − y)f (y) dy

− 2
∫ ∞

0

(
1 + |x + y|2

4t

)
k(t, x + y)f (y) dy .

Let t> 0. Since z 
→ (1 + z)e−z is non-increasing on (0, ∞) and |x − y|� x + y for (x, y) ∈
(0, ∞)2, we see that

(
1 + |x − y|2

4t

)
k(t, x − y) −

(
1 + |x + y|2

4t

)
k(t, x + y) � 0 (3.15)

for (x, y) ∈ (0, ∞)2 and infer from Fubini–Tonelli’s theorem that

∫ ∞

0
xm

∣∣∣∣
∫ ∞

0

[(
1 + |x − y|2

4t

)
k(t, x − y) −

(
1 + |x + y|2

4t

)
k(t, x + y)

]
f (y) dy

∣∣∣∣ dx

�
∫ ∞

0
xm

∫ ∞

0

[(
1 + |x − y|2

4t

)
k(t, x − y) −

(
1 + |x + y|2

4t

)
k(t, x + y)

]
|f (y)| dydx

= 1√
π

∫ ∞

0
|f (y)|

[∫ ∞

−y/2
√

t

(
y + 2z

√
t
)m

(1 + z2)e−z2
dz

−
∫ −y/2

√
t

−∞

(
−y − 2z

√
t
)m

(1 + z2)e−z2
dz

]
dy

= 1√
π

∫ ∞

0
|f (y)|

∫ ∞

−∞

∣∣∣y + 2z
√

t
∣∣∣m−1 (

y + 2z
√

t
)

(1 + z2)e−z2
dzdy .
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Consequently,

2t

∥∥∥∥ d

dt
etA0,m f

∥∥∥∥
X1,m

� 3
∥∥etA0,m f

∥∥
X1,m

+ 2√
π

∫ ∞

0
|f (y)|

∫ ∞

−∞

(
y + 2z

√
t
)

(1 + z2)e−z2
dzdy

+ 2√
π

∫ ∞

0
|f (y)|

∫ ∞

−∞

∣∣∣y + 2z
√

t
∣∣∣m−1 (

y + 2z
√

t
)

(1 + z2)e−z2
dz dy ,

so that

lim sup
t→0

t

∥∥∥∥ d

dt
etA0,m f

∥∥∥∥
X1,m

� 3‖f ‖X1,m

by Lebesgue’s convergence theorem. It then follows from [14, Theorem II.4.6 (c)] that this
property implies the analyticity of (etA0,m )t�0 on X1,m. Thus, the proof is complete. �

The proof of Proposition 3.1 is now a consequence of the previous lemma and an interpolation
argument as shown next.

Proof of Proposition 3.1. We only have to consider the case m ∈ (1, 3). Since A0,1 ∈H(X1,1)
and A0,3 ∈H(X1,3) according to Lemma 3.2, Hille’s characterization implies that there are λ0 > 0
and κ � 1 such that

‖(λ− A0,1)−1‖L(X1,1) + ‖(λ− A0,3)−1‖L(X1,3) �
κ

|λ− λ0| , Re λ> λ0 ,

see [14, Theorem II.4.6 (d)] for instance. Since (λ− A0,3)−1 = (λ− A0,1)−1|X1,3 , it readily follows
by interpolation that

‖(λ− A0,1)−1|X1,m‖L(X1,m) �
κ

|λ− λ0| , Re λ> λ0 . (3.16)

Obviously, A0,m is closed and densely defined in X1,m. Let g ∈ X1,m be arbitrary and Re λ> λ0.
There is a unique f ∈ dom(A0,1) such that (λ− A0,1)f = g. By (3.16), f = (λ− A0,1)−1|X1,mg ∈
X1,m and f ′′ = A0,mf = λf − g ∈ X1,m. From this identity, we deduce f ∈ dom(A0,m) with A0,mf =
A0,1f and (λ− A0,m)f = g. Since f is unique, we conclude that λ ∈ ρ(A0,m) and

(λ− A0,m)−1g = f = (λ− A0,1)−1|X1,m g ;

that is, (λ− A0,m)−1 = (λ− A0,1)−1|X1,m . Invoking (3.16) we derive that

‖(λ− A0,m)−1‖L(X1,m) �
κ

|λ− λ0| , Re λ> λ0 ,

and thus conclude that A0,m ∈H(X1,m) with etA0,m = etA0,1 |X1,m for t � 0. The fact that A0,m ∈
G(X1,m, 1,ωm) follows again by interpolation using Lemma 3.2. �
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4 The absorption semigroup

Let a ∈ L∞,loc([0, ∞)) be a nonnegative function and m � 1. We recall the definition (1.4) of the
Schrödinger operator Aa,m on X1,m given by

dom(Aa,m) = {f ∈ X1,m : f ∈ dom(A0,m) , af ∈ X1,m} ,

Aa,mf = f ′′ − af , f ∈ dom(Aa,m) .

The main result of this section is that Aa,m ∈ G+(X1,m, 1,ωm) ∩H(X1,m), the parameter ωm being
defined in Proposition 3.1. The proof relies on [3].

Proposition 4.1 Assume that a satisfies (1.2) and let m � 1. Then

Aa,m ∈ G+(X1,m, 1,ωm) ∩H(X1,m) .

Moreover, etAa,m = etAa,1 |X1,m for t � 0.

Proof. Let us recall that X1,m is a Banach lattice with order-continuous norm, see [1, Chapter 4]
for a precise definition and a complete list of properties, and introduce

Y := L1((0, ∞), (x + xm)a(x)dx) .

We first observe that
(
dom(A0,m) ∩ Y

)⊥ = {0}, where the disjoint complement F⊥ of a subset F
of the vector lattice X1,m is given by

F⊥ := {g ∈ X1,m : min{|f |, |g|} = 0 for all f ∈ F} .

Indeed, since C∞
c ((0, ∞)) is a subset of dom(A0,m) ∩ Y , we readily deduce that g ≡ 0 for g ∈(

dom(A0,m) ∩ Y
)⊥

. Consequently, we are in a position to apply [3, Proposition 4.3] and conclude

that there is an extension Âa,m ∈ G+(X1,m) of Aa,m with domain dom(Âa,m) defined as follows:
f ∈ dom(Âa,m) if and only if f ∈ X1,m and there exist (fn)n�1 in dom(A0,m) and g ∈ X1,m such that

lim
n→∞

(‖fn − f ‖X1,m + ‖A0,mfn − (a ∧ n)fn + g‖X1,m

) = 0 .

It first follows from Lemma 4.2 below that dom(Âa,m) = dom(Aa,m) and therefore Âa,m = Aa,m.

Moreover, 0 � etAa,m = etÂa,m � etA0,m for t � 0 by [3, p. 432]. Since A0,m ∈ G+(X1,m, 1,ωm) due to
Proposition 3.1, this ordering property, along with [7, Remark 2.68], implies

‖etÂa,m‖L(X1,m) � ‖etA0,m‖L(X1,m) � eωmt , t � 0 .

Hence Âa,m ∈ G+(X1,m, 1,ωm). Finally, recalling that

(−ωm + A0,m) ∈ G+(X1,m, 1, 0) ∩H(X1,m)

by Proposition 3.1, we infer from [3, Theorem 6.1] that Aa,m ∈H(X1,m). �

It remains to check that dom(Âa,m) = dom(Aa,m). This property actually follows from the
monotonicity of the Laplace operator A0,m and the multiplication f 
→ af .

Lemma 4.2 Assume that a satisfies (1.2) and let m � 1. Then dom(Âa,m) = dom(Aa,m).
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Proof. Pick f ∈ dom(Âa,m). Then there are a sequence (fn)n�1 in dom(A0,m) and g ∈ X1,m such
that

lim
n→∞

(‖fn − f ‖X1,m + ‖gn − g‖X1,m

) = 0 (4.1)

with gn := −A0,mfn + (a ∧ n)fn for n � 1. In particular,

κ := sup
n�1

{‖fn‖X1,m + ‖gn‖X1,m

}
<∞ .

Step 1. Let us first prove that af ∈ X1,m. We infer from Lemma 2.3 that, for n � 1,

‖gn‖Xm �
∫ ∞

0
xm sign(fn(x)) gn(x) dx

� m

∫ ∞

0
xm−1 |fn|′(x) dx +

∫ ∞

0
xm (a(x) ∧ n)|fn(x)| dx

= −m(m − 1)‖fn‖Xm−2 +
∫ ∞

0
xm (a(x) ∧ n)|fn(x)| dx .

In particular, we derive ∫ ∞

0
x (a(x) ∧ n)|fn(x)| dx � ‖gn‖X1 � κ . (4.2)

Next, if m � 3, then it follows from Young’s inequality that∫ ∞

0
xm (a(x) ∧ n)|fn(x)| dx � m(m − 1)

[
m − 3

m − 1
‖fn‖Xm + 2

m − 1
‖fn‖X1

]
+ ‖gn‖Xm

� [m(m − 1) + 1]κ .

Likewise, if m ∈ (1, 3), then Lemma 2.1 implies that∫ ∞

0
xm (a(x) ∧ n)|fn(x)| dx � m(m − 1)

[
1

m − 1
‖f ′′

n ‖X1 + ‖fn‖X1

]
+ ‖gn‖Xm

� m‖(a ∧ n)fn − gn‖X1 + [m(m − 1) + 1]κ

� m sup
l�1

{‖(a ∧ l)fl‖X1} + (m2 + 1)κ

� (m2 + m + 1)κ ,

where the last inequality is due to (4.2). Thus, in all cases for m � 1, we have shown that∫ ∞

0
(x + xm) (a(x) ∧ n)|fn(x)| dx � (m2 + m + 2)κ .

Fixing N � 1, we deduce from the previous estimate that, for all n � N ,∫ ∞

0
(x + xm) (a(x) ∧ N)|fn(x)| dx �

∫ ∞

0
xm (a(x) ∧ n)|fn(x)| dx � (m2 + m + 2)κ .

We then let n → ∞ and infer from (4.1) that∫ ∞

0
(x + xm) (a(x) ∧ N)|f (x)| dx � (m2 + m + 2)κ .
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Using Fatou’s lemma to let N → ∞, we conclude that af ∈ X1,m with

‖af ‖X1,m � (m2 + m + 2)κ . (4.3)

Step 2. We next show that ((a ∧ n)fn)n�1 converges to af in X1,m. Let χ ∈ C∞((0, ∞))
be such that χ (x) = 1 for x> 2, χ (x) = 0 for x ∈ (0, 1), and χ (x) ∈ [0, 1] for x ∈ [1, 2].
Introducing χR(x) := χ (x/R) for x ∈ (0, ∞) and R> 1, we deduce from Lemma 2.3 (with

(x) = xmχR(x)) that∫ ∞

0
xm (a(x) ∧ n)χR(x)|fn(x)| dx +

∫ ∞

0
[xmχ ′

R(x) + mxm−1χR(x)]|fn|′(x) dx

�
∫ ∞

0
xχR(x)sign(fn(x))gn(x) dx

�
∫ ∞

R
x |gn(x)| dx .

Since ∫ ∞

0
[xmχ ′

R(x) + mxm−1χR(x)]|fn|′(x) dx

= −
∫ ∞

0
[xmχ ′′

R (x) + 2mxm−1χ ′
R(x) + m(m − 1)xm−2χR(x)]|fn(x)| dx

= −
∫ ∞

0
xm |fn(x)|

[
1

R2
χ ′′

( x

R

)
+ 2m

Rx
χ ′

( x

R

)
+ m(m − 1)

x2
χ

( x

R

)]
dx

and ∣∣∣∣χ ′′(y) + 2m

y
χ ′(y) + m(m − 1)

y2
χ (y)

∣∣∣∣� 3m2‖χ ′′‖L∞(0,∞) , y ∈ (0, ∞) ,

we further obtain∫ ∞

2R
xm (a(x) ∧ n)|fn(x)| dx �

∫ ∞

0
xm (a(x) ∧ n)χR(x)|fn(x)| dx

� sup
l�1

{∫ ∞

R
xm |gl(x)| dx

}
+ 3m2

R2
‖χ ′′‖L∞(0,∞)‖fn‖Xm

� sup
l�1

{∫ ∞

R
xm |gl(x)| dx

}
+ 3m2κ

R2
‖χ ′′‖L∞(0,∞)

for n � 1. Since

lim
R→∞ sup

l�1

{∫ ∞

R
(x + xm) |gl(x)| dx

}
= 0

by (4.1), we conclude

lim
R→∞ sup

n�1

{∫ ∞

2R
(x + xm) (a(x) ∧ n)|fn(x)| dx

}
= 0 . (4.4)
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Now, let R> 1. Since a ∈ L∞(0, 2R) by (1.2), there is nR � 1 such that a(x) ∧ n = a(x) for x ∈
(0, 2R) and n � nR. Consequently, for n � nR,

‖(a ∧ n)fn − af ‖X1,m �
∫ 2R

0
(x + xm) a(x)|(fn − f )(x)| dx

+
∫ ∞

2R
(x + xm) (a(x) ∧ n)|fn(x)| dx

+
∫ ∞

2R
(x + xm) a(x)|f (x)| dx

� ‖a‖L∞(0,2R)‖fn − f ‖X1,m

+ sup
l�1

{∫ ∞

2R
(x + xm) (a(x) ∧ l)|fl(x)| dx

}

+
∫ ∞

2R
(x + xm) a(x)|f (x)| dx .

We then pass to the limit as n → ∞ and infer from (4.1) that

lim sup
n→∞

‖(a ∧ n)fn − af ‖X1,m � sup
l�1

{∫ ∞

2R
(x + xm) (a(x) ∧ l)|fl(x)| dx

}

+
∫ ∞

2R
(x + xm) a(x)|f (x)| dx .

We finally let R → ∞ with the help of (4.3) and (4.4) and end up with

lim
n→∞ ‖(a ∧ n)fn − af ‖X1,m = 0 . (4.5)

Step 3. We finally show that f ∈ dom(A0,m). Indeed, it readily follows from (4.1) that (f ′′
n )n�1

converges to f ′′ in the sense of distributions, while (4.1), (4.3), and (4.5) guarantee that the
sequence (f ′′

n )n�1 = ((a ∧ n)fn − gn)n�1 converges to af − g in X1,m. Therefore, f ′′ belongs to X1,m

with f ′′ = af − g and (f ′′
n )n�1 converges to f ′′ in X1,m. Since fn(0) = 0 for n � 1, this convergence

along with Lemma 2.1 ensures that f (0) = 0 and we have proved that f ∈ dom(A0,m). �

For further use, we show that the graph norm of Aa,m in X1,m controls independently the
diffusive and absorption terms in X1,m.

Lemma 4.3 Assume (1.2). For f ∈ dom(Aa,1),

1

3

(‖A0,1f ‖X1 + ‖af ‖X1

)
� ‖Aa,1f ‖X1 . (4.6)

Let m> 1. For f ∈ dom(Aa,m),

1

4(m + 1)

(‖A0,mf ‖X1,m + ‖af ‖X1,m

) − m‖f ‖X1,m � ‖Aa,mf ‖X1,m . (4.7)

Proof. Let f ∈ dom(Aa,1) and set g := −Aa,1f = −f ′′ + af . It follows from Lemma 2.3 (with

(x) = x) that

‖g‖X1 �
∫ ∞

0
x sign(f (x))g(x) dx �

∫ ∞

0
|f |′(x) dx + ‖af ‖X1 = ‖af ‖X1 .
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Consequently,

‖af ‖X1 � ‖Aa,1f ‖X1 and ‖A0,1f ‖X1 = ‖Aa,1f + af ‖X1 � 2‖Aa,1f ‖X1 , (4.8)

from which we deduce (4.6).
Next, let m> 1 and consider f ∈ dom(Aa,m). We set g := −Aa,mf = −f ′′ + af and infer from

Lemma 2.3 (with 
(x) = xm) that

‖g‖Xm �
∫ ∞

0
xm sign(f (x))g(x) dx � m

∫ ∞

0
xm−1|f |′(x) dx + ‖af ‖Xm

= ‖af ‖Xm − m(m − 1)‖f ‖Xm−2 .

Either m � 3 and it follows from Young’s inequality and the above inequality that

‖af ‖Xm � ‖g‖Xm + m(m − 1)

(
m − 3

m − 1
‖f ‖Xm + 2

m − 1
‖f ‖X1

)

� ‖g‖Xm + m(m − 3)‖f ‖Xm + 2m‖f ‖X1

� ‖g‖Xm + m2‖f ‖X1,m . (4.9a)

Or m ∈ (1, 3) and we infer from (2.2) and (4.8) that

‖af ‖Xm � ‖g‖Xm + m(m − 1)

(
1

m − 1
‖f ′′‖X1 + ‖f ‖X1

)

� ‖g‖Xm + m‖A0,1f ‖X1 + m(m − 1)‖f ‖X1

� ‖g‖Xm + 2m‖Aa,1f ‖X1 + m2‖f ‖X1 . (4.9b)

Collecting (4.8) and (4.9) leads us to

‖af ‖X1,m � (1 + 2m)‖Aa,mf ‖X1,m + m2‖f ‖X1,m ,

which in turn gives

‖A0,mf ‖X1,m � ‖Aa,mf ‖X1,m + ‖af ‖X1,m � 2(1 + m)‖Aa,mf ‖X1,m + m2‖f ‖X1,m .

Consequently,

1

4(1 + m)

(‖A0,mf ‖X1,m + ‖af ‖X1,m

)
� ‖Aa,mf ‖X1,m + m2

2(m + 1)
‖f ‖X1,m ,

from which (4.7) follows. �

5 The fragmentation-diffusion semigroup

We now consider the operator Am = Aa,m + Bm, where we recall that the nonlocal operator Bm on
X1,m is defined by

dom(Bm) = {f ∈ X1,m : af ∈ X1,m} ,

Bmf (x) =
∫ ∞

x
a(y)b(x, y)f (y) dy , x ∈ (0, ∞) , f ∈ dom(Bm) .

We first show that Bm is Aa,m-bounded in X1,m.
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Lemma 5.1 Assume (1.2) and (1.3). Let m � 1 and consider a measurable function f on (0, ∞)
such that af ∈ Xm. Then

∫ ∞

0
xm

∣∣∣∣
∫ ∞

x
a(y)b(x, y)f (y) dy

∣∣∣∣ dx � ‖af ‖Xm . (5.1)

In addition,

M1(Bmf ) = M1(af ) , f ∈ dom(Bm) , (5.2)

and Bm is Aa,m-bounded in X1,m.

Proof. We infer from (1.3) and Fubini–Tonelli’s theorem that

∫ ∞

0
xm

∫ ∞

x
a(y)b(x, y)|f (y)| dydx =

∫ ∞

0
a(y)|f (y)|

∫ y

0
xmb(x, y) dxdy

�
∫ ∞

0
ym−1a(y)|f (y)|

∫ y

0
xb(x, y) dxdy = ‖af ‖Xm ,

from which (5.1) readily follows. Next, (5.2) is a straightforward consequence of (1.3) and
Fubini’s theorem.

Finally, let f ∈ dom(Aa,m) ⊂ dom(Bm). By (4.7) and (5.1),

‖Bmf ‖X1,m �
∫ ∞

0
(x + xm)

∣∣∣∣
∫ ∞

x
a(y)b(x, y)f (y) dy

∣∣∣∣ dx � ‖af ‖X1,m

� 4(m + 1)‖Aa,mf ‖X1,m + 4m(m + 1)‖f ‖X1,m ,

so that Bm is Aa,m-bounded. �

As already observed in the literature, see, e.g., [8, Theorem 5.1.47 (c)], the inequality (1.8)
implies that, for each m> 1, there is δm ∈ (0, 1) such that

(1 − δm)ym �
∫ y

0
xmb(x, y) dx , y ∈ (0, ∞) . (5.3)

An immediate consequence of (5.3) is a strict domination of a f over Bmf in Xm.

Lemma 5.2 Assume (1.2), (1.3), and (1.8). Let m> 1 and consider f ∈ dom(Bm). Then

‖Bmf ‖Xm � (1 − δm)‖af ‖Xm .

Proof. It readily follows from (5.3) and Fubini’s theorem that

‖Bmf ‖Xm �
∫ ∞

0
xm

∫ ∞

x
a(y)b(x, y)|f (y)| dydx =

∫ ∞

0
a(y)|f (y)|

∫ y

0
xmb(x, y) dxdy

� (1 − δm)
∫ ∞

0
yma(y)|f (y)|dy = (1 − δm)‖af ‖Xm . �
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We shall see next that the property (5.3) ensures that Bm is a Miyadera perturbation of Aa,m.
Recall that a similar result is available for the fragmentation equation without diffusion [6].

Proposition 5.3 Let m> 1 and assume (1.2), (1.3), and (1.8). Then there are qm ∈ (0, 1) and
tm > 0 such that

∫ tm

0
‖BmesAa,m f ‖X1,m ds � qm‖f ‖X1,m , f ∈ dom(Aa,m) .

In particular, Bm is a Miyadera perturbation of Aa,m.

Proof. Consider f ∈ dom(Aa,m) and set F(t) := etAa,m f for t � 0. Owing to Proposition 4.1, we
have

‖F(t)‖X1 � ‖f ‖X1 , ‖F(t)‖X1,m � eωmt‖f ‖X1,m , t � 0 . (5.4)

In addition, F is a classical solution to

d

dt
F − Aa,mF = 0 , t> 0 , F(0) = f ,

and we deduce from Lemma 2.3 (with 
(x) = xm) that

d

dt
‖F‖Xm + ‖aF‖Xm � m(m − 1)‖F‖Xm−2 , t � 0 .

Hence, after integration with respect to time,

∫ t

0
‖aF(s)‖Xm ds � ‖f ‖Xm + m(m − 1)

∫ t

0
‖F(s)‖Xm−2 ds , t � 0 . (5.5)

Now, let t> 0. It follows from (1.3), (5.1) (with m = 1), and Lemma 5.2 that

∫ t

0
‖BmF(s)‖X1,m ds �

∫ t

0
‖aF(s)‖X1 ds + (1 − δm)

∫ t

0
‖aF(s)‖Xm ds . (5.6)

For R> 1, we infer from (1.2) and (5.4) that

∫ t

0
‖aF(s)‖X1 ds � ‖a‖L∞(0,R)

∫ t

0

∫ R

0
x|F(s, x)| dxds

+ R1−m
∫ t

0

∫ ∞

R
xma(x)|F(s, x)| dxds

� ‖a‖L∞(0,R)

∫ t

0
‖F(s)‖X1 ds + R1−m

∫ t

0

∫ ∞

0
xma(x)|F(s, x)| dxds

� ‖a‖L∞(0,R)‖f ‖X1 t + R1−m
∫ t

0
‖aF(s)‖Xm ds .
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Combining (5.5), (5.6), and the above estimate with R = Rm := (δm/2)1/(1−m) gives∫ t

0
‖BmF(s)‖X1,m ds � ‖a‖L∞(0,Rm)‖f ‖X1 t +

(
1 − δm

2

) ∫ t

0
‖aF(s)‖Xm ds

� ‖a‖L∞(0,Rm)‖f ‖X1 t +
(

1 − δm

2

)
‖f ‖Xm

+ m(m − 1)

(
1 − δm

2

) ∫ t

0
‖F(s)‖Xm−2 ds

� ‖a‖L∞(0,Rm)‖f ‖X1 t +
(

1 − δm

2

)
‖f ‖Xm

+ m(m − 1)
∫ t

0
‖F(s)‖Xm−2 ds . (5.7)

At this point, we handle the cases m � 3 and m ∈ (1, 3) in a different way. We first consider
m � 3. We use Young’s inequality, along with (5.4), to obtain

m(m − 1)
∫ t

0
‖F(s)‖Xm−2 ds � m(m − 1)

∫ t

0

[
m − 3

m − 1
‖F(s)‖Xm + 2

m − 1
‖F(s)‖X1

]
ds

� m(m − 3)

1 +ωm
‖f ‖X1,m

(
e(1+ωm)t − 1

) + 2m‖f ‖X1 t . (5.8)

Collecting (5.7) and (5.8) leads us to∫ t

0
‖BmF(s)‖X1,m ds �

[
‖a‖L∞(0,Rm)t + m(m − 3)

1 +ωm

(
e(1+ωm)t − 1

) + 2mt

]
‖f ‖X1

+
[

1 − δm

2
+ m(m − 3)

1 +ωm

(
e(1+ωm)t − 1

)] ‖f ‖Xm .

We now pick tm > 0 such that

(‖a‖L∞(0,Rm) + 2m
)

tm � 1 − δm

2
and

m(m − 3)

1 +ωm

(
e(1+ωm)tm − 1

)
� δm

4

and infer from the previous estimate (with t = tm) that∫ tm

0
‖BmF(s)‖X1,m ds �

(
1 − δm

4

)
‖f ‖X1,m .

Recalling that Bm is Aa,m-bounded by Lemma 5.1, we have thus established that Bm is a Miyadera
perturbation of Aa,m for m � 3.

Let us now consider m ∈ (1, 3). In that case, m − 2 ∈ (−1, 1) and it follows from Lemmas 2.1
and 4.3, and (5.4) that, for s ∈ (0, t),

‖F(s)‖Xm−2 �
2(3 − m)(m−3)/2

m − 1
‖F′′(s)‖(3−m)/2

X1
‖F(s)‖(m−1)/2

X1

� 6(3 − m)(m−3)/2

m − 1
‖Aa,1F(s)‖(3−m)/2

X1
‖f ‖(m−1)/2

X1
.
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Owing to the analyticity of
(
etAa,m

)
t�0

, see Proposition 4.1, we further infer from [30,
Theorem 2.5.2] that there is C> 0 such that

‖Aa,1esAa,1‖L(X1) � C
es

s
� C

et

s
, s ∈ (0, t) .

Combining the above two estimates gives

‖F(s)‖Xm−2 � C(m)‖f ‖X1 e(3−m)t/2s(m−3)/2 , s ∈ (0, t) .

Hence, recalling (5.7),∫ t

0
‖BmF(s)‖X1,m ds �

[‖a‖L∞(0,Rm)t + C(m)e(3−m)t/2t(m−1)/2
] ‖f ‖X1

+
(

1 − δm

2

)
‖f ‖Xm .

We now choose tm > 0 such that

‖a‖L∞(0,Rm)tm + C(m)e(3−m)tm/2t(m−1)/2
m � 1 − δm

2

and deduce from the previous inequality (with t = tm) that∫ tm

0
‖BmF(s)‖X1,m ds �

(
1 − δm

2

)
‖f ‖X1,m .

Consequently, using again Lemma 5.1, Bm is also a Miyadera perturbation of Aa,m when m ∈
(1, 3). �

We are now in a position to prove the first two statements in Theorem 1.1 for the operator
Am = Aa,m + Bm:

Proof of Theorem 1.1(a)-(b). We handle the cases m = 1 and m> 1 separately.

(a) If m = 1, then Aa,1 ∈ G+(X1, 1, 0) by Proposition 4.1, so that it generates a substochastic
semigroup in X1. Moreover, dom(Aa,1) ⊂ dom(B1) and B1 is obviously positive due to the
nonnegativity of a and b. Also, for f ∈ dom(Aa,1),

M1(Aa,1f + B1f ) = −
∫ ∞

0
f ′(x) dx − M1(af ) + M1(B1f ) = 0

by Lemma 2.1, (5.2), and the Dirichlet boundary condition. Consequently, we infer from
[31] and [8, Theorem 4.9.16] that there is an extension Ã1 ∈ G+(X1, 1, 0) of A1.

(b) Let m> 1. Since Aa,m ∈H(X1,m) by Proposition 4.1 and Bm is a Miyadera perturbation of
Aa,m by Proposition 5.3, it follows from [14, Corollary III.3.16 & Exercise III.3.17] that
Am = Aa,m + Bm ∈H(X1,m) with dom(Am) = dom(Aa,m). Note that D(Aa,m) and D(Am) are
both Banach spaces and that D(Aa,m) is continuously embedded in D(Am), since Bm is Aa,m-
bounded in X1,m according to Lemma 5.1. Consequently, D(Am)

.= D(Aa,m) by the open
mapping theorem.
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We now check the positivity of
(
etAm

)
t�0

, bearing in mind that we already know from
Proposition 4.1 that Aa,m is resolvent positive. Pick λ> 0 sufficiently large. Then λ−Am is
invertible with inverse given by

(λ−Am)−1 = (λ− Aa,m − Bm)−1 = (λ− Aa,m)−1
(
1 − Bm(λ− Aa,m)−1

)−1

= (λ− Aa,m)−1
∞∑

j=0

[
Bm(λ− Aa,m)−1

]j
,

where the Neumann series converges since Bm is a Miyadera perturbation of Aa,m, see the proof of
[14, Theorem III.3.14]. Now, Bm is obviously a positive operator on X1,m due to the nonnegativity
of a and b, and the positivity of (λ−Am)−1 directly follows from the above identity.

Finally, as in the proof of (a), we have M1(Amf ) = 0 for any f ∈ dom(Aa,m) by Lemma 2.1,
(5.2), and the Dirichlet boundary condition, so that (1.9) immediately follows. �

Proof of Proposition 1.2(a). Let m � 1. The operator Aa,m belongs to G+(X1,m) ∩H(X1,m) by
Proposition 4.1. Since a ∈ L∞(0, ∞) and b satisfies (1.3), the operator Bm is a positive bounded
operator on X1,m. On the one hand, it now follows from well known perturbation results that Am =
Aa,m + Bm belongs to H(X1,m), see [30, Theorem 3.2.1]. On the other hand, the same argument as
in the proof of Theorem 1.1(b) ensures the positivity of

(
etAm

)
t�0

. Finally, for m = 1, it readily

follows from [8, Proposition 4.9.16] that A1 = Ã1 ∈ G+(X1, 1, 0), thereby completing the proof.
�

6 Immediate compactness of the semigroup

We now turn to compactness properties of the semigroup (etAm)t�0 for m> 1 as stated in
Theorem 1.1 (c). To avoid loss of compactness for large sizes, we further require a to diverge to
infinity for large sizes, thus excluding bounded overall fragmentation rates.

Lemma 6.1 Let m � 1 and assume that a satisfies (1.2) and (1.10). Then D(Aa,m)
.= D(Am) is

compactly embedded in X1,m.

Proof. Recall that the relation D(Aa,m)
.= D(Am) is established in the proof of Theorem 1.1 (b).

Let (fn)n�1 be a bounded sequence in D(Aa,m). According to Lemmas 2.1 and 4.3, there is C> 0
such that

sup
x�0

{|fn(x)| + x|f ′
n(x)|}� C , n � 1 , (6.1a)

‖fn‖X1,m + ‖f ′′
n ‖X1 + ‖afn‖Xm � C , n � 1 . (6.1b)

On the one hand, we infer from (6.1a) and Arzelà–Ascoli’s theorem that (fn)n�1 is relatively
compact in C([1/R, R]) for each R> 1. There are thus a subsequence (fnj )j�1 and f ∈ C((0, ∞))
such that

lim
j→∞ fnj (x) = f (x) , x ∈ (0, ∞) . (6.2)
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On the other hand, it follows from (6.1) that, if R> 1 and E is a measurable subset of (0, ∞),
then, for n � 1,∫

E
(x + xm)|fn(x)| dx �

∫
E∩(0,R)

(x + xm)|fn(x)| dx +
∫ ∞

R
(x + xm)|fn(x)| dx

� (R + Rm)‖fn‖L∞(0,∞)|E ∩ (0, R)|

+ 2

infx�R{a(x)}
∫ ∞

R
xm a(x)|fn(x)| dx

� 2CRm|E ∩ (0, R)| + 2C

infx�R{a(x)} . (6.3)

A first consequence of (6.3) with E = (R, ∞) is that

sup
n�1

∫ ∞

R
(x + xm)|fn(x)| dx � 2C

infx�R{a(x)} ,

from which we deduce by (1.10) that

lim
R→∞ sup

n�1

∫ ∞

R
(x + xm)|fn(x)| dx = 0 . (6.4)

We next infer from (6.3) that, for δ > 0,

η(δ) := sup

{∫
E
(x + xm)|fn(x)| dx : n � 1 , E ∈B((0, ∞)) , |E|� δ

}

satisfies

0 � η(δ) � 2CRmδ + 2C

infx�R{a(x)}
for all R> 1. Therefore,

lim sup
δ→0

η(δ) � 2C

infx�R{a(x)}
for all R> 1 and we use once more (1.10) to conclude that

lim
δ→0

η(δ) = 0 . (6.5)

Gathering (6.4) and (6.5) implies that the sequence (fn)n�1 is uniformly integrable in X1,m and thus
weakly compact in X1,m by Dunford–Pettis’ theorem. This just established weak compactness in
X1,m, along with the pointwise convergence (6.2) and Vitali’s theorem, see [19, Theorem 2.24]
for instance, entails that (fnj )j�1 converges to f in X1,m, thereby completing the proof. �

We are now in a position to finish off the proof of Theorem 1.1.

Proof of Theorem 1.1(c). Let m> 1. By Lemma 6.1, (λ−Am)−1 is compact for λ> 0 large
enough and, since m> 1, the analyticity of

(
etAm

)
t�0

implies that it is continuous with respect to
the operator norm for positive times [30, Lemma 2.4.2]. We now may apply [30, Theorem 2.3.3]
to conclude that

(
etAm

)
t�0

is immediately compact. �
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The compactness result of Lemma 6.1 is not valid under the sole assumption (1.2) on a. In
particular, we show that it fails when a is bounded.

Lemma 6.2 Let m � 1 and a ∈ L∞(0, ∞). Then the embedding of D(Aa,m)
.= D(Am) in X1,m is not

compact.

Proof. Let ϕ ∈ C∞
c (R) be such that 0 � ϕ � 1, supp ϕ ⊂ [−1, 1], and ‖ϕ‖L1(R) = 1. We fix

m � 1 and set

ϕn(x) := 1

n + nm
ϕ(x − n) , x ∈ (0, ∞) , n � 1 .

Straightforward computations show that

‖ϕn‖X1,m + ‖aϕn‖X1,m �
(
1 + ‖a‖L∞(0,∞)

) ‖ϕn‖X1,m

�
(
1 + ‖a‖L∞(0,∞)

) (
1 +

∫ 1

−1

1 + m2mnm−1

n + nm
ϕ(y) dy

)
� (2 + m2m)

(
1 + ‖a‖L∞(0,∞)

)
and

‖ϕ′′
n ‖X1,m � n + 1 + (n + 1)m

n + nm

∫ 1

−1
|ϕ′′(y)| dy � 2m‖ϕ′′‖L1(R) ,

as well as

lim
n→∞ ‖ϕn‖X1,m = 1 , lim

n→∞ ‖ϕn‖L∞(0,∞) = 0 . (6.6)

Therefore, the sequence (ϕn)n�1 is bounded in D(Aa,m) but has no cluster point in X1,m due
to (6.6). �

Proof of Proposition 1.2(b). Let m � 1 and a ∈ L∞(0, ∞). Since D(Am) is not compactly
embedded in X1,m by Lemma 6.2, the resolvent (λ−Am)−1 is not compact. Hence, [30,
Theorem 2.3.3] implies that the semigroup (etAm )t�0 is not compact. �

7 Steady states and convergence

Throughout this section, we assume that a and b satisfy (1.2), (1.3), (1.8), and (1.10) and that
a> 0 and b> 0.

We begin with the construction of a stationary solution with the help of Schauder’s fixed point
theorem.

Lemma 7.1 There is a unique nonnegative

ψ1 ∈
⋂
r�1

dom(Ar)

such that M1(ψ1) = 1 and ker(Am) = ker(A2
m) =Rψ1 = {rψ1 : r ∈R} for all m � 1.

Proof. We split the proof into three steps.
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Step 1. The uniqueness of a solution ψ ∈ dom(A1) to A1ψ = 0 satisfying M1(ψ) = 1 relies
on the dissipativity properties of A1 in X1 and can be shown exactly as in the proofs of [15,
Lemma 3.5] and [25, Proposition 3], to which we refer.

Step 2. We now turn to the existence part. Let m � 3 and consider f ∈ X +
1,m satisfying

M1(f ) = 1. Setting F(t) := etAm f for t � 0, it readily follows from Theorem 1.1 (b) that

F(t) � 0 and M1(F(t)) = 1 , t � 0 . (7.1)

Next, by (5.3) and Fubini’s theorem,

d

dt
Mm(F(t)) = −m

∫ ∞

0
xm−1∂xF(t, x) dx −

∫ ∞

0
xma(x)F(t, x) dx

+
∫ ∞

0
a(y)F(t, y)

∫ y

0
xmb(x, y) dxdy

� m(m − 1)Mm−2(F(t)) − δmMm(aF(t)) .

Owing to (1.10), there is x∗ > 0 such that a(x) � 1 for x � x∗. Consequently, using (7.1),

d

dt
Mm(F(t)) + δmMm(F(t))

� d

dt
Mm(F(t)) + δm

∫ ∞

x∗
xmF(t, x) dx + δm

∫ x∗

0
xmF(t, x) dx

� d

dt
Mm(F(t)) + δmMm(aF(t)) + δmxm−1

∗

∫ x∗

0
xF(t, x) dx

� m(m − 1)Mm−2(F(t)) + δmxm−1
∗ .

Since m � 3, we now deduce from Young’s inequality that

d

dt
Mm(F(t)) + δmMm(F(t)) � δm

2
Mm(F(t)) + 2m

(
2m(m − 3)

δm

)(m−3)/2

M1(F(t))

+ δmxm−1
∗ .

Hence, by (7.1),

d

dt
Mm(F(t)) + δm

2
Mm(F(t)) � 2m

(
2m(m − 3)

δm

)(m−3)/2

+ δmxm−1
∗ =:

δmμm

2

for t � 0. After integration with respect to time, we conclude that

Mm(F(t)) � max {Mm(f ),μm} , t � 0 . (7.2)

Now, introducing

Cm := {f ∈ X +
1,m : M1(f ) = 1 , Mm(f ) �μm} ,

which is a closed convex subset of X1,m, an immediate consequence of (7.1) and (7.2) is that

etAmCm ⊂ Cm , t � 0 .
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Owing to the compactness of etAm in X1,m for all t> 0, see Theorem 1.1(c), we argue as in the
proofs of [2, Theorem 22.13] and [20, Theorem 5.2] to deduce from Schauder’s fixed point
theorem that there is ψm ∈ Cm such that

etAmψm =ψm , t � 0 .

Equivalently, Amψm = 0 and we have thus shown the existence of a stationary solution to (1.1a)
for m � 3. Obviously, ψ3 also belongs to dom(Am) and satisfies Amψ3 = 0 for any m ∈ [1, 3).
Thus, there is at least one stationary solutionψm to (1.1) for any m � 1. Obviously,ψm ∈ dom(A1)
solves A1ψm = 0 for every m � 1, and we infer from Step 1 that ψm =ψ1 for every m � 1.

Step 3. We finally identify ker(A2
m). To this end, let f ∈ ker(A2

m). Then Amf belongs to ker(Am),
so that Step 2 implies that there is μ ∈C such that Amf =μψ1. Therefore,

μ=μM1(ψ1) = M1(Amf ) = 0 .

Hence, f ∈ ker(Am). �

We now supply refined information on the spectrum of Am for m> 1.

Lemma 7.2 Let m> 1. The spectrum σ (Am) of Am only consists of isolated eigenvalues and
satisfies

σ (Am) ⊂ {0} ∪ {λ ∈C : Re λ<−εm} (7.3)

for some εm > 0. Moreover, the spectral bound s(Am) = 0 is a simple eigenvalue of Am.

Proof. Owing to the immediate compactness of (etAm )t�0, see Theorem 1.1 (c), and [14,
Corollary V.3.2], the spectrum σ (Am) only consists of isolated eigenvalues which are poles of
the resolvent with finite algebraic multiplicity. Moreover, for any r ∈R,

#{λ ∈ σ (Am) : Re λ� r}<∞ . (7.4)

We next claim that s(Am) = 0. Indeed, since Am ⊂A1 ⊂ Ã1 and Ã1 ∈ G(X1, 1, 0) by
Theorem 1.1, any eigenvalue of Am is also an eigenvalue of Ã1 and it follows from [30, Corollary
1.3.6] that

{λ ∈C : Re λ> 0} ⊂ ρ(Ã1) .

Consequently, any eigenvalue of Am has a non-positive real part. Thus,

σ (Am) ⊂ {λ ∈C : Re λ� 0} . (7.5)

Since zero belongs to the spectrum of Am by Lemma 7.1, we deduce from (7.5) that s(Am) = 0 is a
pole of the resolvent of Am. Recalling that (etAm )t�0 is a positive semigroup on the Banach lattice
X1,m, it follows from [12, Theorem 8.14] that σ (Am) ∩ iR is either reduced to {0} or contains
infinitely many elements. The latter being ruled out by (7.4), we conclude that σ (Am) ∩ iR= {0}.
Since all eigenvalues are isolated, this last property ensures that there is εm > 0 such that (7.3)
holds true.

Finally, since ker(Am) = ker(A2
m) =Rψ1 by Lemma 7.1, zero is a simple eigenvalue of Am

according to [14, Section IV.1.17]. �
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Proof of Theorem 1.5. Let m> 1. From Lemma 7.1 we obtain the existence of a unique
nonnegative

ψ1 ∈
⋂
r�1

dom(Ar)

such that M1(ψ1) = 1 and ker(Am) =Rψ1. We next infer from Lemma 7.2 that zero is a dominant
eigenvalue of Am and a first-order pole of its resolvent with residue P, where P ∈L(X1,m) denotes
the spectral projection onto ker(Am) and is given by

Pf = lim
λ→0

λ(λ−Am)−1f , f ∈ X1,m , (7.6)

see, e.g., [14, Section IV.1.17]. It then follows from [14, Corollary V.3.3] that there are Nm � 1
and νm > 0 such that

‖etAm − P‖L(X1,m) � Nme−νmt , t � 0 . (7.7)

It only remains to identify the spectral projection P. Introducing gλ := λ(λ−Am)−1f for f ∈
X1,m, we have

λf = λgλ −Amgλ ,

from which we readily deduce that M1(f ) = M1(gλ). Therefore, (7.6) implies M1(Pf ) = M1(f ).
Since Pf ∈Rψ1 and M1(ψ1) = 1, we conclude that

Pf = M1(f )ψ1 , f ∈ X1,m .

Recalling (7.7), the above identity completes the proof of Theorem 1.5. �

Remark 7.3 Since Am ∈H(X1,m) and since s(Am) = 0, we infer from [14, Corollary IV.3.12] that
there exists κ � 1 such that Am ∈ G(X1,m, κ , 0).

8 Stationary solutions revisited

We now prove the existence of a stationary solution to (1.1) when the overall fragmentation rate
a may be bounded for large sizes but does not decay to zero. Specifically, we assume that a
satisfies (1.12); that is,

α := 1

2
lim inf

x→∞ a(x) ∈ (0, ∞) .

Proof of Proposition 1.6. As in Lemma 7.1, the proof of the uniqueness assertion in
Proposition 1.6 relies on the dissipativity properties of A1 in X1 and can be shown exactly as
in the proofs of [15, Lemma 3.5] and [25, Proposition 3], to which we refer.

As for the existence assertion, we employ a compactness method. Let n � 1. We set an(x) :=
a(x) + x/n for x> 0 and, for m � 1, we denote the operators Bm and Am with an instead of a by
Bm,n and Am,n, respectively. Since an(x) → ∞ as x → ∞, we infer from Lemma 7.1 that there is
a unique nonnegative

ψ1,n ∈
⋂
r�1

dom(Ar,n)
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such that M1(ψ1,n) = 1 and ker(Am,n) =Rψ1,n for all m � 1. In particular, given m> 3, the
function ψ1,n belongs to dom(A0,m) with anψ1,n ∈ X1,m and solves

−ψ ′′
1,n + anψ1,n = Bm,nψ1,n in (0, ∞) , ψ1,n(0) = 0 . (8.1)

It follows from (8.1), Lemma 5.2, and Young’s inequality that, for ε > 0,

Mm(anψ1,n) = Mm(Bm,nψ1,n) − m

∫ ∞

0
xm−1ψ ′

1,n(x) dx

� (1 − δm)Mm(anψ1,n) + m(m − 1)Mm−2(ψ1,n)

� (1 − δm)Mm(anψ1,n) + m(m − 3)εMm(ψ1,n) + 2mε(3−m)/2M1(ψ1,n) .

Hence,

δmMm(anψ1,n) � m(m − 3)εMm(ψ1,n) + 2mε(3−m)/2 . (8.2)

Owing to (1.12), there is x∗ > 0 such that

a(x) � α , x � x∗ . (8.3)

In view of (8.2) and (8.3), we obtain

αδmMm(ψ1,n) � αδmxm−1
∗

∫ x∗

0
xψ1,n(x) dx + δm

∫ ∞

x∗
xman(x)ψ1,n(x) dx

� αδmxm−1
∗ M1(ψ1,n) + m(m − 3)εMm(ψ1,n) + 2mε(3−m)/2 .

Choosing ε= αδm/2m(m − 3) in the above inequality gives

αδm

2
Mm(ψ1,n) � αδmxm−1

∗ + 2m

(
αδm

2m(m − 3)

)(3−m)/2

.

Therefore, there is a positive constant c1(m) depending only on a and m such that

Mm(ψ1,n) � c1(m) , n � 1 . (8.4)

Several additional estimates can now be derived from (8.4). Indeed, it readily follows from (8.1),
(8.2) (with ε= 1), and Lemma 5.2 that, for n � 1,

‖ψ ′′
1,n‖Xm + ‖anψ1,n‖Xm + ‖Bm,nψ1,n‖Xm � 2

(‖anψ1,n‖Xm + ‖Bm,nψ1,n‖Xm

)
� 2(2 − δm)‖anψ1,n‖Xm � 4Mm(anψ1,n)

� 4m(m − 3)c1(m) + 8m

δm
=: c2(m) . (8.5)
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Similarly, by (1.2), (8.1), (8.4) (with m = 4), and Lemma 5.1,

‖ψ ′′
1,n‖X1 + ‖anψ1,n‖X1 + ‖Bm,nψ1,n‖X1

� 2
(‖anψ1,n‖X1 + ‖Bm,nψ1,n‖X1

)
� 4‖anψ1,n‖Xm

� 4
(
1 + ‖a‖L∞(0,1)

) ∫ 1

0
xψ1,n(x) dx + 4

∫ ∞

1
x4an(x)ψ1,n(x) dx

� 4
(
1 + ‖a‖L∞(0,1)

) + 4c2(4) =: c3 (8.6)

for n � 1. Moreover, a straightforward consequence of (8.5), (8.6), and Hölder’s inequality is
that (8.5) is also true for m ∈ (1, 3] with a suitable constant c2(m).

We next claim that (ψ1,n)n�1 is relatively compact in X1,m for any m � 1. To this end, we note
that, thanks to (8.5), (8.6), Lemma 2.1, and Fubini’s theorem,

‖ψ1,n‖X0 �
1√
2
‖ψ ′′

1,n‖1/2
X1

‖ψ1,n‖1/2
X1

�
√

c3

2

and

‖ψ1,n‖X1 + ‖ψ ′
1,n‖X1 � 1 +

∫ ∞

0
x

∫ ∞

x
|ψ ′′

1,n(y)| dydx � 1 + ‖ψ ′′
1,n‖X2

2
� 1 + c2(2)

for n � 1. Now, let m � 2. In view of (8.5) and the above estimates, (ψ1,n)n�1 is a bounded
sequence in X0 ∩ Xm ∩ W 1

1 ((0, ∞), xdx) and it follows from [9, Proposition 7.2.2] that (ψ1,n)n�1

is relatively compact in Xr for any r ∈ (0, m). As m � 2 is arbitrary, we conclude that there are
ψ1 ∈ ⋂

r>0 Xr and a subsequence (ψ1,nj )j�1 of (ψ1,n)n�1 such that

lim
j→∞ ‖ψ1,nj −ψ1‖Xr = 0 for all r> 0. (8.7)

An immediate consequence of (8.7) and the properties of (ψ1,n)n�1 is that

ψ1 ∈ X +
1 and M1(ψ1) = 1.

Finally, let m � 1. We observe that dom(Am,n) ⊂ dom(Am) for n � 1 (as an � a) and that (8.1)
also reads

Amψ1,n =Rn , (8.8)

where

Rn(x) := − x

n
ψ1,n(x) + 1

n

∫ ∞

x
yb(x, y)ψ1,n(y) dy , x> 0 .

It readily follows from (8.5) that

‖Rn‖X1,m � 2

n

(‖ψ1,n‖X2 + ‖ψ1,n‖Xm+1

)
� 2

n
(c2(2) + c2(m + 1)) ,

so that

lim
n→∞ ‖Rn‖X1,m = 0 . (8.9)

In view of (8.8) and (8.9), the sequence (Amψ1,nj )j�1 converges to zero in X1,m as j → ∞ and,
since Am is closed on X1,m, we readily deduce from (8.7) that ψ1 ∈ dom(Am) and Amψ1 = 0. �
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