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Vortex-ring-induced stratified mixing:
mixing model
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The study of vortex-ring-induced mixing has been significant for understanding
stratified turbulent mixing in the absence of a mean flow. Renewed interest in this
topic has prompted the development of a one-dimensional model for the evolution of
a stratified system in the context of isolated mixing events. This model is compared
to numerical simulations and physical experiments of vortex rings interacting with
a stratification. Qualitative agreement between the evolution of the density profiles
is observed, along with close quantitative agreement of the mixing efficiency. This
model highlights the key dynamical features of such isolated mixing events.
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1. Introduction
Understanding the mixing produced by turbulent motion in a stratified environment

remains elusive. Such mixing is particularly relevant in an oceanographic context
(Ivey, Winters & Koseff 2008). The energy cascade found in turbulent flows results
in a large range of length scales, which complicates the analysis. However, Turner
(1968), while examining grid-generated stratified turbulence (with no mean flow),
argued that most of the mixing of the density field was generated by independent
localized mixing events, resulting from large-scale turbulent eddies impacting the
density interface. These findings motivated Linden (1973) to study isolated vortex-ring
mixing events as an analogy to the intermittent large-eddy dynamics. Vortex rings
provide a reproducible coherent structure of vorticity with defined length and velocity
scales, making them the ideal candidate for studying turbulent-eddy mixing events.
Indeed, Linden’s work on vortex rings has had a significant impact on the stratified
turbulence literature (Linden 1979; Fernando 1991). Recent advances in experimental
fluid mechanics have prompted a return to these vortex-ring experiments. Direct
measurements of the density field evolution as a result of vortex-ring-induced mixing
events have been recently presented in Olsthoorn & Dalziel (2015). The current
paper presents a one-dimensional (1-D) model for the mixing induced by isolated
mixing events driven by a source of coherent (non-turbulent) energy, such as the
mixing induced by a sequence of vortex rings. In this discussion, we will focus on
mixing events with a length scale larger than the thickness of the density interface.

† Email address for correspondence: Jason.Olsthoorn@cantab.net
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130 J. Olsthoorn and S. B. Dalziel

Understanding the fluid mixing that occurs in this simplified context provides insight
into the mixing produced by fully developed stratified turbulence.

Building on the work of Balmforth, Llewellyn Smith & Young (1998), we model
the stratified vortex-ring experiments as a coupled system of equations for the coherent
vortex-ring energy density (T), stirring energy density (e) and the background (sorted)
density field (ρ). To ensure the validity of this approach, we compare the model
results with both numerical simulations of the mixing events (presented here) and the
experimental results of Olsthoorn & Dalziel (2015). The mixing efficiency, calculated
for all three methodologies, is shown to be highly consistent.

The remainder of this discussion is organized as follows. Section 2 describes the
mechanical and dynamical evolution of the physical vortex-ring experiments. Section 3
then details the construction of a 1-D mixing model to predict the mixing within
such a system. These model results are supplemented with numerical simulations,
as described in § 4. Finally, § 5 compares the mixing efficiency results for all three
methodologies, and summarizes these findings.

2. Description of the physical vortex-ring-induced mixing experiments

We attempt to model the mixing produced by a large number of independent
vortex-ring-induced mixing experiments. Physical measurements of such a system have
been recently reported in Olsthoorn & Dalziel (2015). In each of those experiments,
a tank was initially filled with a stable density stratification consisting of two nearly
homogeneous layers with a sharp density transition between them. For the remainder
of this paper, we will denote this type of stratification as a ‘continuous two-layer
stratification’, with the understanding that the stratification is approximately two layer
with a continuous transition region between them. A sequence of vortex rings were
then generated within the tank, such that they propagated along the direction of
gravity. The maximum distance below the interface that any vortex ring penetrated
was small compared with the depth of the lower layer fluid, such that the bottom of
the tank did not significantly affect the dynamics of the flow. As each vortex ring
translated under its self-induced velocity, it displaced the isosurfaces of the density
field. The perturbation to the density field resulted in the production of secondary
vorticity through a baroclinic torque. This secondary vorticity was produced directly
at the location of the density interface. Lawrie & Dalziel (2011) have previously
argued that the co-location of vorticity with the peak density gradients, as was the
case in these experiments, will lead to a high mixing efficiency. Further, in a recent
publication, Olsthoorn & Dalziel (2017) have demonstrated that the coupling of the
secondary vorticity with the impinging vortex-ring results in an instability that rapidly
generates turbulence. Thus, to review, each propagating vortex ring displaces the
isopycnal surfaces, which produces secondary vorticity that, through an interaction
with the vortex ring, is unstable to an instability identified in Olsthoorn & Dalziel
(2017). The subsequent turbulent production further enhances the stirring of the
density field, generating density fluctuations down to the Kolmogorov scale. In the
experiments of Olsthoorn & Dalziel (2015), the time interval between the generation
of each vortex ring was sufficient to allow the fluid within the tank to become nearly
quiescent (except for thermal fluctuations). By measuring the density field between a
sequence of these mixing events, Olsthoorn & Dalziel (2015) quantified the mixing
induced by each vortex ring.

Figure 1 presents representative snapshots of a single stratified vortex-ring
experiment. Although presented slightly differently, the experiment shown in figure 1
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(a)

(b)

(c)

(d)

(e)

Vorticity Density

FIGURE 1. (Colour online) Representative snapshots of a stratified vortex-ring experiment
provided every two advective time units. This plot presents the computed azimuthal
vorticity field with overlaid velocity field vectors (left) and the evolution of the density
field (right) within a vertical light sheet. A dashed line has been added to denote the
estimated initial position of the density interface. The experimental details associated with
this figure are provided in Olsthoorn & Dalziel (2017). For reference, the parameters
associated with this experiment are Re= 2400, Ri= 2.3.

is the same as one of those presented in figure 2 of Olsthoorn & Dalziel (2017), to
which the reader is referred for details on the experimental set-up. Here, figure 1
shows the computed azimuthal vorticity field with overlaid velocity field vectors (left)
and the evolution of the density field (right) within a vertical laser sheet. These
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132 J. Olsthoorn and S. B. Dalziel

equally spaced snapshots highlight the propagation of the vortex ring (figure 1a),
the displacement of the density interface (figure 1b), followed by the production of
secondary vorticity (figure 1c), the instability of the vortex ring (figure 1d) and the
slow transition back to quiescence (figure 1e). While this figure has been generated
from a single vortex-ring experiment, each of these five steps are characteristic of the
vortex-ring experiments considered here. Note that the height of the mixing region is
comparable to the diameter of the impacting vortex ring.

The above description of the vortex-ring experiment’s mechanics highlights the
stirring (and the associated production of strong density gradients) of the density
field. This is only one component of mixing, which occurs through a combination
of stirring and diffusion. In the vortex-ring experiments, the smallest-scale features
of the flow were produced through the turbulent eddies. Thus, we argue, that the
majority of the fine-scale stirring, and consequently the mixing, induced by the vortex
ring will only occur once the flow becomes unstable to the instability discussed in
Olsthoorn & Dalziel (2017). As we will see below, we construct our model such that
the growth rate of the vortex-ring instability will limit the mixing rate.

Both a velocity and length scare are required in order to parameterize the
vortex-ring-induced mixing. For the vortex-ring experiments, it is natural to select the
vortex-ring propagation velocity U as the characteristic velocity, and the vortex-ring
diameter a as the characteristic length scale. This paper focuses on three dimensionless
parameters: the Reynolds number (Re, the ratio of inertia to viscous forces), the
Richardson number (Ri, the ratio of buoyancy to advective forces) and the Schmidt
number (Sc, the ratio of viscous to molecular diffusion). These are defined as

Re=
Ua
ν
, Ri=

g (ρ2 − ρ1)

ρ1

a
U2
, Sc=

ν

κ
. (2.1a−c)

Here, g is the acceleration due to gravity, ρ1, ρ2 are densities associated with the
stratification, ν is the kinematic viscosity (here, ν = 1 × 10−6 m2 s−1) and κ is the
coefficient of mass diffusion. In this paper, we will model the vortex-ring-induced
mixing produced in the physical experiments and in numerical simulations (presented
in § 4). With each of these methodologies, we will ensure consistency by comparing
the Reynolds, Richardson and Schmidt numbers.

Another important parameter is the kinetic energy of each vortex ring (KEring).
According to Norbury (1973), the kinetic energy of a vortex ring is given as

KEring =CKE

(
1
2
ρ1U2

)(
4
3
π
(a

2

)3
)
. (2.2)

The constant CKE is a function of the vortex-ring aspect ratio (the ratio of the core
width to ring diameter). For the vortex rings used in Olsthoorn & Dalziel (2015), a
value of CKE = 6.5 has been estimated, and thus we use this value when discussing
the model experiments below.

Figure 2 presents a diagram of the energy pathways resulting from the input of
KEring. The propagating vortex ring produces available potential energy (APE, see
Winters et al. 1995) by displacing the isopycnal surfaces from their equilibrium
position that, in turn, generates the kinetic energy (KE) associated with the secondary
vorticity. In general, KE will produce APE in the system (and vice versa) via
a reversible buoyancy flux (H). The instability that results from the coupling of
the primary vortex ring and secondary vorticity then produces turbulent kinetic
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Stirring energy

Second. vort. TKE

APE
BPE

PE

Internal energy

Isopycnal
displacement

Small-scale
stirring

Coherent stirring energy Turbulent stirring energy

KE

FIGURE 2. Diagram of the simplified energy pathway for the vortex-ring experiments.
The input of kinetic energy from the vortex ring (KEring) will lead to an increase in the
gravitational potential energy (BPE) of the system. The size of each energy reservoir does
not correspond to its relative contribution.

energy (TKE) at a rate I. This TKE production is coupled to (both generates and
is generated by) the APE associated with the small-scale stirring of the density
field that, through diffusion, mixes the stratification at some rate M, increasing
the background potential energy (BPE) of the system. KE (predominantly through
TKE) also viscously dissipates at a rate ε, acting as a source for internal energy.
Diffusion of the background density profile (Dρ) will also slowly increase the BPE
of the system. There are additional partitions of energy in the system, such as
internal waves, that are not specifically labelled within figure 2 as these other energy
reservoirs do not significantly contribute to the dominant mixing mechanism. This
description of the energy pathways is consistent with the work of Winters et al.
(1995), who considered mixing in an oceanographic context. The total KE and APE,
excluding KEring, will be denoted as stirring energy. Here, stirring is a result of
both the coherent (reproducible) motions and the turbulent fluctuations. We denote
the energy associated with the coherent motions as ‘coherent stirring energy’, and
likewise, we denote the energy associated with the turbulent fluctuations as ‘turbulent
stirring energy’. We argue that the turbulent fluctuations (turbulent stirring energy)
are the dominant contributor to the change in the BPE of the system. We will return
to this when we discuss the model construction.

In the experiments, once the transient stirring energy in the system had sufficiently
dissipated, another vortex ring was generated and the cycle repeated. This process
continued until the desired number of vortex rings was generated. We will model the
repetitive generation of vortex rings below.

3. Model of the vortex-ring-induced mixing experiments
The purpose of the present model is to predict the mixing produced by isolated

vortex-ring-induced mixing events within a stratified fluid. To characterize this system,
we model the coherent vortex-ring energy density (T), the stirring energy density (e)
and the background density field (ρ). We consider horizontally averaged quantities
such that each variable is only a function of a single spatial (vertical) dimension and
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BPE

Int. energy

(a) (b) (c)

FIGURE 3. Diagram of the energy pathways in the model construction. The kinetic energy
of the vortex ring (T) (a) breaks down into stirring energy (e) (b), which subsequently
mixes the density profile (ρ) (c) changing the background potential energy of the system
(BPE).

time. This model builds upon the conceptualization introduced in figure 2. As the
majority of the mixing and dissipation will result from turbulent motions, we model
e as a turbulent quantity. That is, the model includes the coherent stirring energy
implicitly through the model breakdown parameter IM. Figure 3 presents a cartoon of
the simplified model. Note that the evolution of e and T are dependent on the density
field creating a coupled dynamical system for T, e and ρ. As discussed above, the
coherent energy T does not directly mix the density field (ρ), but acts as a propagating
source for e.

This model can be written as a system of three coupled differential equations:

∂tT =A− IM + S, ∂te=De − ε − gB+ IM, ∂tρ =−∂zB+Dρ . (3.1a−c)

The non-turbulent vortex-ring energy density (T) is produced (S), is advected (A)
and will, in the presence of the stratification, feed the stirring energy, e, at a rate
IM. The stirring energy then diffuses (De), dissipates (ε), and produces BPE via an
irreversible buoyancy flux (B) that raises the centre of mass of the density field ρ.
That is, B is positive semi-definite. Finally, the density field also diffuses (Dρ). Each
of the operators, described above, will vary with the vertical coordinate z and time t.

Balmforth et al. (1998) constructed a turbulence model that coupled the horizontally
averaged turbulent kinetic energy and the density (buoyancy) field. That model
depends critically on a mixing length scale l, over which the turbulent eddies can
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Vortex-ring model 135

mix the surrounding fluid. We follow an approach similar to Balmforth et al. (1998)
to model e and ρ. In this formulation, we write:

De = ∂z[(νe + ν)∂ze], ε = β
e3/2

l
, B=−ανe∂zρ, (3.2a−c)

Dρ = κ∂
2
z ρ. (3.3)

Here, we have augmented the previous model with an explicit kinematic viscosity (ν)
and molecular diffusivity (κ). Both e and ρ are primarily driven by eddy diffusion,
defined in terms of a turbulent viscosity that, on dimensional grounds, is given as
νe= l
√

e. The turbulent dissipation (ε) and buoyancy flux (B) are similarly constructed.
The parameters α and β are model constants and will be discussed below. Finally, the
non-dimensional turbulent length scale (l) will depend on the local density gradient.
For a nearly uniform density field, this length scale will be set by the vortex-ring
diameter (l= a). However, where there is a strong density gradient, the vertical length
scales are constrained. The experimental work of Park, Whitehead & Gnanadeskian
(1994) suggested that, in a strongly stratified environment, the turbulent length scale
will be proportional to e/

√
g|∂zρ|. As such, Balmforth et al. (1998) proposed a simple

model for the length scale that preserves these limits,

l=
a
√

e
√

e− γ g∂zρ
, (3.4)

with free parameter γ .
To model the vortex-ring system, we need to augment this model with the input of

energy from the vortex ring, T . We define the advection A and breakdown IM terms
as:

A=U∂zT, IM = λg
(
ρ − ρ1

ρ0

)
√

T. (3.5a,b)

The density ρ1=ρ(z= z0) is the density at the vortex-ring initialization height z0. The
advection term (A) prescribes that T is transported vertically downward at the constant
propagation speed U. Based upon the work of Olsthoorn & Dalziel (2017), we know
that the stratified vortex-ring system is unstable, with a growth rate proportional to the
bulk Richardson number of the flow. The parameterization of IM, which is constructed
on dimensional grounds, captures this dependence (see below) with constant λ, a free
parameter that we will set to unity.

Finally, we must prescribe the generation rate S of the vortex rings. In this model,
T is forced periodically and instantaneously. That is, after each time interval 1t= τR,
a vortex ring is instantaneously introduced into the system. Mathematically, this is
written as

S=
N∑

n=0

KERing

Aa
f (z− z0)δ(t− nτR). (3.6)

Here, A is the plan area of the stratified tank and δ is a Dirac delta function. The
system is periodically forced for a specified number of iterations N. The index n is
the vortex-ring generation number, which identifies the number of vortex rings that
have been input into the system. The functional form of f (z) is defined below.
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We non-dimensionalize the physical parameters as

z′ =
z
a
, t′ =

U
a

t, (3.7a,b)

T ′ =
T

U2
, e′ =

e
U2
, ρ ′ =

ρ − ρ0

ρ2 − ρ0
, (3.8a−c)

1ρ ′ =
ρ2 − ρ0

ρ0
, τ =

UτR

a
, K ′ =

KERing

ρ0U2Aa
, (3.9a−c)

where the reference density ρ0 is selected to be the initial minimum density of the
system. Similarly, 1ρ ′ is defined as the difference between the initial maximum and
minimum density of the system, from which we specify an initial Richardson number
Ri0 = g(ρ2 − ρ0)/ρ0(a/U2). Finally, K ′ is the non-dimensionalized kinetic energy of
the vortex ring. The model then reduces to the following, dropping the primes for
convenience:

∂tT = ∂zT − λRi0(ρ − ρ1)
√

T +
N∑

n=0

Kf (z− z0)δ (t− nτ) , (3.10)

∂te= ∂z

[(
νe +

1
Re

)
∂ze
]
− β

e3/2

l
+ αRi0νe∂zρ + λRi0(ρ − ρ1)

√
T, (3.11)

∂tρ = ∂z

[(
ανe +

1
Re Sc

)
∂zρ

]
. (3.12)

The functional form of f is then given:

f (z)=
1

√
2πσ 2

exp
[
−

z2

2σ 2

]
. (3.13)

Here, σ = 1/4 such that the width of the forcing equals the vortex-ring size.
This model has four free parameters. The work of Tominaga & Stathopoulos (2007)

has shown that the turbulent Schmidt (Prandtl) number α has a typical value of 0.2–
1.3, depending on the flow structure. For the purposes of this model, we set α = 1.
As reported in Vassilicos (2015) for decaying turbulence, the dissipation parameter β,
where it is constant, has a value near one, and thus we set β = 1. With reference to
Park et al. (1994), the parameter γ is of order one, and thus we set this parameter to
one. Based upon the work of Olsthoorn & Dalziel (2017), we suggest that the value of
λ is also O(1). The vortex breakdown parameter λ is therefore also set to one. Thus,
in this paper we restrict ourselves to the case where the free parameters are all set to
unity. We return to this later.

The model was implemented on a uniform grid, using pseudospectral spatial
derivatives and a first-order semi-implicit time stepping scheme. The computational
domain was defined with 1024 grid points. Varying the number of grid points
demonstrated that this resolution was sufficient for the parameter sets presented here.
The code was shown to preserve mass to near machine precision. Adaptive time
stepping was used to control the total energy conservation, which had a relative
energy loss typically within O(10−4). A spectral filter was also used to limit the
aliasing of the Fourier modes.
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FIGURE 4. (Colour online) Plot of the evolution of the density profiles for one run (1ρ=
0.01) from each of the model cases. Here, model experiments (a) M1, (b) M2: high Ri,
(c) M3: low Sc, and (d) M4: linear stratification, are all presented. Density profiles are
plotted just prior to the generation of vortex ring n= {0, 125, 250, 375}.

We ran a set of model experiments (runs) in a manner similar to that described for
the physical experiments in § 2. Four parameter cases were performed, which prescribe
the functional form of the stratification and the vortex-ring parameters. We label these
model cases M1–M4. For each of these cases, four different stratification strengths
(1ρ={0.01,0.02,0.04,0.08}) were set, resulting in a total of 16 runs. As described in
§ 2, each model run will comprise of sequentially generated vortex rings enumerated
as n = {0, 1, 2, . . . , N}, for a total of N = 500 generated vortex rings in each of
the 16 runs, as prescribed by (3.13). The parameters associated with each of these
runs are presented in table 1. In the first three model cases (M1–M3), similar to the
experiments of Olsthoorn & Dalziel (2015), a continuous two-layer density profile was
specified using a tanh function, with an initial interface height of H0 and an interface
thickness of σρ . These density profiles are prescribed as

ρM1−M3(z, t= 0)=
1
2

(
1− tanh

[
z−H0

σρ

])
. (3.14)

The dimensionalized initial conditions are given in table 2 and were selected to
approximate the physical experiments performed with salt water in Olsthoorn &
Dalziel (2015). The fourth case (M4) was initialized with a linear stratification,
given

ρM4(z, t= 0)= (z− L). (3.15)

Here, L is the height of the domain.
Figure 4 shows the evolution of the density profiles for one run (1ρ = 0.01) from

each of the four model cases. Density profiles were plotted just prior to the generation
of vortex ring n= {0, 125, 250, 375}. The results show excellent qualitative agreement
with the physical experiments. We observe that, as in Olsthoorn & Dalziel (2015), the
evolution of the density profiles is defined by three generic characteristics. First, the
vortex rings sharpen the density interface. Second, the vortex rings generate a middle
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L (m) z0 (m) σρ (m) H0 (m) τR (s)

Num. Exp. 0.5 0.375 0.02 0.15 30–40
Model Exp. 0.35 0.3 0.02 0.15 30

TABLE 2. Table of the dimensional domain parameters for the model and numerical
simulation.

fluid layer that is near homogeneously mixed. Third, the growth of the middle fluid
layer is limited by the vortex-ring injection height.

Comparison of figure 4(a) (Model Exp. M1) and figure 4(b)(M2) demonstrates how
the density field evolution changes for different vortex-ring parameters (M1:Re =
1600, Ri = 2.5 versus M2:Re = 400, Ri = 4.9). The same characteristic evolution of
the density profiles is observed for M2, though only a small amount of scouring of
the density interface has occurred due to the decrease in kinetic energy input. Figure
4(c) (M3) varies the molecular diffusivity (κ) of the stratification (Sc = 3 versus
Sc = 1000). Again, the same features of the density profiles are observable, except
that the vortex rings are no longer able to effectively sharpen the lower interface as
it diffuses. Due to the finite domain size, significant diffusion of the density interface
can limit the run time of the model. This will be important when discussing the
numerical simulations below. Finally, figure 4(d) (M4) encapsulates the effect of
a different initial background stratification (linear profile), demonstrating the same
characteristic evolution, although we have no matching physical experiments against
which to compare these runs.

Figure 5 shows the partition of energy for the model experiments for a single
mixing event (n = 250) of M1 (1ρ = 0.01). This shows the integrated vortex-ring
energy (VRE =

∫ L
0 T dz′) and integrated stirring energy (SE =

∫ L
0 e dz′) along with

the change in background potential energy (1BPE) of the system (correcting for the
background diffusion Dρ). The integrated dissipation (D =

∫ t
tn

∫ L
0 ε dz′ dt′) has also

been plotted. We observe that the mixing is temporally confined near the peak in e,
as emphasized in § 2. However, data on the time-dependent dissipation and mixing
rates are not available for the physical experiments and thus comparison is limited to
that of the density profiles ρ(z, t).

4. Simulation of the vortex-ring-induced mixing experiments
We validate the 1-D model results using a 3-D pseudospectral numerical solver

(SPINS; see Subich, Lamb & Stastna 2013) to solve the incompressible Navier–Stokes
equations under the Boussinesq approximation. These equations can be written as

(∂t + u · ∇) u=−∇p− Riρgẑ+
1

Re
∇

2u, (4.1)

(∂t + u · ∇) ρ =
1

Re Sc
∇

2ρ, (4.2)

∇ · u= 0. (4.3)

Here, u and p are the velocity and pressure fields, respectively. Boldface variables
denote vector quantities.

Experimental visualizations of the interaction of a vortex ring with a stratified
interface (see Olsthoorn & Dalziel 2017) demonstrate that, where the vortex ring
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FIGURE 5. (Colour online) Plot of the partition of energy between the integrated
vortex-ring energy (VRE) and stirring energy (SE) for vortex ring n = 250. The change
in potential energy (1BPE) and the integrated dissipation (D) are also plotted. Time has
been normalized by the inter vortex-ring spacing τ . Data have been plotted for M1 with
1ρ = 0.01.

propagates parallel to the direction of gravity, the flow field remains predominantly
axisymmetric about the vortex-ring axis throughout the majority of the interaction,
despite the formation of a three-dimensional instability. In order to facilitate the
numerical computations, we take partial advantage of this symmetry by simulating a
quarter ring in a triply periodic, free-slip (cosine transform) domain. The parameters
associated with the numerical simulations can be found in table 1. Grid resolution
studies determined that the resolution (see table 1) was sufficient to estimate the
mixing efficiency, although we note that we do not resolve down to the Batchelor
scale of the flow. As with the model results, a high molecular diffusivity results in a
thick density interface, which will eventually violate the continuous two-layer set-up
considered here, and will limit the run time of each experiment. Thus, we desire the
lowest diffusivity that is computationally viable. In these simulations, we select Sc= 3.
Four sets of numerical simulations were performed. The initial density stratification
for each case was defined via a tanh profile similar to (3.14). See table 2 for the
initial conditions.

Three sets of simulations (Num. Exp. N1–N3) were initialized with a Hill’s
spherical vortex as it is a classical vortex-ring solution. The Hill’s vortex can be
written as

ur =


3
2

U
zr
R2

r 6 R,

3
2

U
zr
R2

(
R2

z2 + r2

)5/2

r> R,

uz =


3
2

U
(

5
3
−

2r2
+ z2

R2

)
r 6 R

U

[(
R2

r2 + z2

)5/2 (2z2
− r2

2R2

)
− 1

]
r> R.


(4.4)
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In this paper, R is the radius of the Hill’s vortex, and U < 0 is its propagation
speed. We note that there is a mismatch between the definition of the Hill’s vortex
diameter (2R) and the experimentally measured vortex-ring diameter that was defined
as the distance between vorticity centroids (see Olsthoorn & Dalziel 2015). A random
initial velocity perturbation of O(10−4), relative to the vortex-ring propagation speed,
was added to the numerical simulations in order to trigger any instabilities in the
interaction between the vortex ring and the stratification.

For the fourth set of simulations (N4), a different initial condition was used to
assess the dependence of the results on the ring aspect ratio (core size/ring diameter).
Similar to Archer, Thomas & Coleman (2009), a vorticity distribution was initialized
into the numerical solver (we used an azimuthally rotated shielded dipole) that, when
time evolved, produced a coherent vortex ring. This resultant non-spherical vortex ring
was then used as the initial condition for the numerical mixing simulations. Fitting the
vortex core to a Gaussian distribution, we estimate the aspect ratio of this vortex ring
to be 0.17. In the physical experiments, the vortex rings had an aspect ratio of ≈0.1.

As with the experimental setup described in § 2, and the model set-up described
in § 3, the simulations were run by generating vortex rings that interact with the
stratification. The flow was then evolved until the velocity field dissipated sufficiently.
After a delay (τ ), the velocity field for a new vortex ring was superimposed (by
addition) onto the residual velocity field. This cycle was repeated until the desired
number of iterations was achieved. We set the end time to be 100 vortex rings.
Thirteen different parameter cases (requiring 1300 simulations) were performed for
various Reynolds and Richardson numbers, the details of which can be found in
table 1. As with the experimental results of Olsthoorn & Dalziel (2015) and the
model results above, there is an initial set-up period, within which the functional
form of the stratification varies. After this setup period, the stratification tends to a
self-similar form and the mixing rate is nearly constant, and it is this value that is
reported.

Figure 6 shows the sorted density profile every 20 vortex-ring generations for
one numerical simulation (N3: Re = 3500, Ri = 2.75). Here, we again observe
the same characteristic features of the background density field evolution. Note the
similarity between figure 4(c) and figure 6. As before, the diffusion of the background
stratification is significant and must be accounted for when considering the mixing
rate of each vortex ring.

Additionally, figure 7(a) shows the evolution of the distribution of energy into
its various compartments for the first vortex ring of one numerical simulation (N3:
Re= 3500, Ri= 2.75). This figure is reminiscent of figure 5 from the model results.
In particular, the time dependence of the mixing (M) and the total dissipation (D)
provided in figure 7(a) are similar to those found previously in figure 5, though their
relative values are different. Unlike the model, the numerical simulations explicitly
support the generation of APE. Associated with this APE is the generation of internal
waves that manifest as oscillations between the APE and the kinetic energy (KE).
Figure 7(b) shows the relative energy distribution prior to the generation of a new
vortex ring, for all vortex-ring generations. This plot quantifies the incremental
change to the mixing rate of each subsequent vortex ring. Both panels (a–b) have
been normalized by the initial vortex-ring energy (E) and the interval τ between
vortex rings for comparison with the model results. Typical net relative energy loss
at time t = τ is 5 × 10−3. Due to the late-time exponential decay of the internal
waves generated, there will always be some residual stirring energy (RE=KE+APE
at t = τ ) in the system prior to subsequent vortex-ring generations. As there is a
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FIGURE 6. (Colour online) Plot of the sorted density profile every twenty vortex-ring
generations of one numerical simulation (N3: Re= 3500, Ri= 2.75). A solid line is drawn
at z= z0.
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FIGURE 7. (Colour online) (a) Plot of the energy partition for the first vortex-ring
interaction of Num. Exp. N3 (N3: Re = 3500, Ri = 2.75). Note that the KE is initially
slightly above 1 as a result of the initial perturbation. (b) Plot of the energy partition at
the end of each subsequent n vortex-ring interactions.

practical limitation on the length of each numerical simulation, we terminated the
simulations when RE/KEring = O(10 %). The physical experiments also have RE,
though it is much less than that of the numerical simulations, as we can wait longer
between vortex-ring generations at almost no cost. As this residual energy remains
nearly constant with subsequent vortex-ring generations, the RE will have a small,
near constant, contribution to the increase in BPE of the system, when compared to
the mean mixing rate of each vortex ring. As mentioned above, these simulations
demonstrate an initialization period, after which the change in potential energy of the
system is near constant.

5. Discussion and conclusion
For each experiment, we compute the ratio of the change in background potential

energy (1BPE) between successive vortex rings (1t = τ ) versus the energy of the
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FIGURE 8. (Colour online) Mixing efficiency as a function of Richardson number for
the model, numerical simulations and physical experiments found in table 1. The black
solid line corresponds to the mean mixing efficiency of the physical experiments (η0 =

0.42). The dashed red line is the estimated mixing efficiency of the numerical simulations
(ηN = 0.45).

input vortex ring (KEring). We define this ratio as the mixing efficiency (η), indicating
the amount of background potential energy change for a given energy input. This
definition of the mixing efficiency is unambiguous where RE = 0. Where RE 6= 0,
provided that the RE is constant between vortex-ring generations, the associated
mixing will also be constant and the interpretation of the mixing efficiency remains
well defined over the interval between vortex rings. The mixing efficiency is then
computed as

η=
1BPE−1PEκ

KEring
, where 1BPE= gAρ01ρa2

∫ [
ρ(n+1)

s − ρ(n)s

]
z dz. (5.1)

Here, ρ(n)s is the sorted density profile after n vortex rings have been produced. The
change in BPE is corrected for the diffusive increase in potential energy (1PEκ =
gAκτ(ρ(0) − ρ(L))) as we are interested only in the contribution due to the vortex
ring.

Comparing the model, numerical simulations and physical experiments, figure 8
shows the mixing efficiency determined for all cases identified in table 1. In this
plot, the mixing efficiency is near constant with Ri. Error bars are computed as the
root mean squared error from the associated mean mixing efficiency value, once the
system has completed its initial set-up period. We observe that the mixing efficiency
of the numerical simulations (ηN ≈ 0.45) is slightly higher than the physical, salt-water
experiments (η0≈ 0.42), as would be expected from the lower Sc. (The computational
resources necessary to use the experimental value of Sc were not available.) The
mixing efficiencies found in the model are consistently higher still (ηM ≈ 0.49)
than the numerical simulations or physical experiments, though it is still within the
experimental uncertainty of the physical experiments.

As we have noted previously, the model is dependent on four free parameters
(α, β, γ , λ). Figure 9 presents the linear parameter analysis for the four free model
parameters. In each of the four plots, one of the four parameters was varied while
the other three were held constant. In each case the mixing efficiency was computed
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FIGURE 9. (Colour online) The dependence of the mixing efficiency on the model
parameters (a) α, (b) β, (c) γ and (d) λ. A dashed line has been plotted at η = 0.5.
Mixing efficiency values were generated from case M1 (1ρ = 0.01) at n= 100.

for one run of case M1 (1ρ = 0.01) at n = 100. We note that an increase in the
dissipation parameter β by ≈15 % (see figure 9b) would account for the difference
between the experimental value of the mixing efficiency and the model runs. It is
worth noting that that the parameters associated with the dissipation rate are where
most of the sensitivity of the model resides. A more precise parameter selection is
left for future work.

As the Richardson number decreases below O(1), the mixing efficiency dependence
on Ri becomes more ambiguous. Indeed, recent work by Shrinivas & Hunt (2015)
has indicated that the vertical confinement of turbulent mixing may change the mixing
efficiency dependence on Ri. This confinement will be especially pronounced at low Ri
due to the deep penetration of the vortex rings into the lower layer. The confinement is
entirely omitted in the model due to its 1-D construction. As the effect of confinement
will influence the three-dimensional structure of the flow, one might initially model it
by modifying the propagation speed (U) of the vortex rings near the boundaries. We
do not attempt this here.

Finally, we want to highlight that the mixing efficiency is defined here as an
aggregate, time-independent quantity. That is, the net fluid mixing that results from
a given energy input. This definition suggests that vortex rings are effective mixers
as they transport energy directly to the density interface (with minimal dissipation),
produce vorticity directly at the location of the peak in the density gradient (which
Lawrie & Dalziel (2011) argued would result in a high mixing efficiency), and,
through a flow instability (see Olsthoorn & Dalziel 2017), generate turbulence. This
series of events enables each vortex ring to create a near optimal mixing state
such that nearly all the vortex-ring energy is deposited directly at the location of
peak mixing. That is, the kinetic energy of the vortex ring produces stirring energy
at the location of peak density gradient. In addition, turbulent stirring energy is
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generated at a rate proportional to the bulk Richardson number of the system, which
is essential for the system to establish a self-similar density profile. The model,
which is a simplification of the vortex-ring system, emphasizes this picture by only
generating stirring energy (at a rate proportional to the bulk Richardson number)
where the density field is not constant; where mixing can occur. This is in contrast to
grid-generated turbulence, which dissipates significantly before reaching the density
interface.

This paper presents a model for isolated vortex-ring-induced stratified mixing
experiments. This work has been shown to provide qualitative and quantitative
agreement with both physical experiments and numerical simulations. At moderate Ri,
the mixing efficiency of the vortex rings has been shown, in all three methodologies,
to be near constant after an initialization period with very similar asymptotic values.
This constant mixing efficiency regime of the vortex-ring experiments has been
previously reported in Olsthoorn & Dalziel (2015), although the numerical work
found in this paper demonstrates this regime at a much lower Schmidt number
(Sc = 3 versus Sc = 700). The 1-D model constructed in the paper encapsulates
the essential features of the energy pathways for the vortex-ring-induced mixing
experiments. In particular, this work highlights the important contribution of the
vortex-ring breakdown being proportional to the Richardson number (IM ∝ Ri0). As
demonstrated in Olsthoorn & Dalziel (2017), the dominant vortex-ring instability
in the strongly stratified system (Ri > O(1)) has a growth rate proportional to the
bulk Richardson number of the flow. This model demonstrates that the identified
vortex-ring instability plays a key role in establishing the constant mixing efficiency
regime.

We study vortex-ring-induced mixing in analogy to large-scale turbulent-eddy
mixing events. However, it should be clear that stratified turbulence is characterized
by its large range of length scales and complex flow structures. As such, a natural
extension of the present model would investigate a convolution of the individual
mixing events discussed here. Future work will investigate the application of this
model to a mixing box experiment, similar to the one described in Turner (1968).
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