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Abstract

The Kirchhoff approximation is widely used to describe the scatter of elastodynamic
waves. It simulates the scattered field as the convolution of the free-space Green’s tensor
with the geometrical elastodynamics approximation to the total field on the scatterer
surface and, therefore, cannot be used to describe nongeometrical phenomena, such as
head waves. The aim of this paper is to demonstrate that an alternative approximation,
the convolution of the far-field asymptotics of the Lamb’s Green’s tensor with incident
surface tractions, has no such limitation. This is done by simulating the scatter of a
critical Gaussian beam of transverse motions from an infinite plane. The results are of
interest in ultrasonic nondestructive testing.

2010 Mathematics subject classification: primary 74H15; secondary 74H10, 74J05,
74J10, 74J15, 74J20, 74L99.

Keywords and phrases: nondestructive testing, ultrasound, high-frequency asymptotics,
Lamb’s Green’s tensor, critical Gaussian beam.

1. Introduction

Nondestructive testing (NDT) is commonly used to assess size, location and
orientation of flaws in industrial structures. Ultrasonic inspections offer the least
expensive alternative. In the nuclear industry, it is a legal requirement that NDT
inspectors carry out inspection qualification to demonstrate that safety critical defects
can be detected. As part of inspection qualification, they routinely perform computer
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simulation of relevant configurations. If necessary this can be done with commercial
finite-element packages, but, when the speed of simulation is of essence, whenever
possible, inspectors use packages such as CIVA [10], which utilize approximate tools
for simulating radiation, propagation and scattering of ultrasonic pulses in solids. One
such tool is the elastodynamic Kirchhoff approximation (KA) [4, 13] that relies on the
well-known free-space Green’s tensor for a homogeneous and isotropic solid as well
as the classical assumptions of geometrical elastodynamics (GE): these are satisfied by
large scatterers with locally straight edges, when both the incident wave front and the
scatterer surface are locally plane. The industrial ultrasonic probes operate at relatively
high frequencies, so these assumptions usually hold.

The KA cannot be used to simulate nongeometric phenomena, such as head waves,
which arise when the wave fronts or scatterers are curved or contain irregularities.
One circumstance in which such waves make a significant contribution arises when
the probing beam of T (transverse) motions is incident on the plane surface at the
critical angle. Then the reflected T beam and head wave both propagate in the same
direction and may experience destructive interference. The accompanying effects are
beam shifting (the Goos–Hänchen effect) [12] and a Goodier–Bishop-type wave [14].

In order to overcome this drawback we propose to simulate nongeometric aspects
of scatter using an alternative Kirchhoff approximation (AKA) that relies on (the high-
frequency asymptotics) of the Lamb’s Green’s tensor instead of the free-space Green’s
tensor. The rationale behind the proposal is simple: the free-space Green’s tensor
does not contain any information on the boundary of the solid, while the Lamb’s
Green’s tensor describes the field radiated by a point source situated on such boundary
(provided its is planar) and using its far-field asymptotics can lead to a computer code
that is still relatively fast. In this paper, we demonstrate capabilities of the AKA by
simulating scatter of a critical Gaussian T beam by a planar scatterer. To be more
precise, the incident beam is chosen to be generated by a CPS (complex point source),
which in the paraxial approximation behaves as a Gaussian beam. Such beams serve
as a good model of beams generated by industrial ultrasonic transducers, are easy to
treat analytically and have intensity dropping at the beam boundary so fast that the
geometrical elastodynamics does not apply.

The paper is organized as follows: the problem statement is offered in Section 2,
followed by Section 3, where the incident CPS beam is described. The exact integral
representation of the Lamb’s Green’s tensor as well as its high-frequency asymptotics
are introduced in Section 4 and appendices. The validation of AKA is presented in
Section 5, followed by a conclusion in Section 6.

2. Problem statement

We consider the displacement fields U exp[−i(ωt) − kx] created in an homogeneous
and isotropic solid half-space by a time-harmonic load, where i is the imaginary unit,
x is a point in space, t denotes time, ω is the circular frequency, k is the wave vector
with amplitude k = ω/c and c is the wave speed. For simplicity of presentation, in the
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Figure 1. The scatterer Cartesian coordinate system and associated spherical polar coordinate system.
Thick line denotes the boundary of a solid half-space.

rest of the paper, the exponential factor exp(−iωt) is omitted but implied everywhere.
We use bold symbols to denote vectors and, when in regular font, the same symbols
denote the corresponding amplitudes.

Let the scatterer be the planar boundary of this half-space. Let us introduce the
scatterer Cartesian coordinate system {e1, e2, e3} with e3, the inner normal to this
boundary. The corresponding Cartesian coordinates of any vector x are (x1, x2, x3)
and associated spherical polar coordinates are (s, φ, θ) (see Figure 1). Throughout the
paper, subscripts k, l,m, n = 1, 2, 3 refer to the respective coordinates in the appropriate
Cartesian system. Other subscripts and superscripts are used to indicate the field type.
In particular, descriptors in, sc and tot relate to the incident, scattered and total fields,
respectively.

Inside the half-space, let the incident and total (and hence scattered) displacement
vector fields, u(x) = (um(x)), and the associated stress tensor fields, σ(x) = (σ`m(x)),
satisfy the reduced equations of motion of linear elasticity (see, for example, [8,
§ 5.1]),

σ`m,` + ρω2um = 0, (2.1)

as well as Hooke’s law [8, equation (A.5.13)]

σ`m = ρc2
T (u`,m + um,`) + ρc2

L(1 − 2γ2)δ`mun,n], (2.2)

where δ`m is the Kronecker delta, the subscript k denotes the partial derivative with
respect to xk, ρ is the material density, cL, cT are the L (longitudinal) and T (transverse)
speeds, respectively, γ = cT/cL < 1, and the summation convention implied. Also let
the boundary be subjected to an integrable incident traction (see [8, equation (5.1.39)])

tin = σin
· e3 (2.3)

and impose the stress-free boundary condition [8, equation (6.1.13)]

σsc
`3(x)|x3=0+ = −tin

` (x)|x3=0+ .
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In addition, let us assume the usual radiation condition (see [8, § 1.1.7]) that when kT

is complexified with a small complex part, all outgoing waves decay at infinity.
The above BVP (boundary value problem) can be formulated via Green’s theorem

[13, equation (5.57)] to represent the scattered field usc(x) as the convolution of the
free-space Green’s stress tensor of the third rank σG(x) and (an unknown) surface
displacement utot(x′) = uin(x′) + usc(x′),

usc
` (x) = −

∫ ∞

−∞

∫ ∞

−∞

σG
`3k(x − x′) utot

k (x′) dx′1 dx′2 (2.4)

with x′ = (x′1, x
′
2, 0) an arbitrary surface point; and the stress tensor σG associated with

the second-rank free-space Green’s tensor G`k – the displacement due to δ`kδ(x − x′),
the delta function type point source at x′. The standard KA utilizes this relationship
and the assumption that on the shadow side of the boundary, utot(x′) is zero and, on
the irradiated side, it is the sum of incident and reflected fields (see [13, § 6.6]).

Let us now introduce the Lamb’s Green’s tensor of the second rank GLamb(x) and
the stress tensor of the third rank σLamb(x), solutions of (2.1) supplied with the same
radiation condition as above and the boundary condition

σLamb
`3k (x)|x3=0+ = −δ`kδ(x)|x3=0+ . (2.5)

It is easy to check by substitution that the convolution

usc
` (x) =

∫ ∞

−∞

∫ ∞

−∞

GLamb
`k (x − x′) tin

k (x′) dx′1 dx′2 (2.6)

solves the same BVP as (2.4). In physical terms, (2.6) represents the Huygens
principle: the displacement is the superposition of the displacements generated by
the elementary point loads on the scatterer surface. Below we derive expressions for
GLamb and construct the AKA by substituting into (2.6) the far-field asymptotics of this
tensor.

3. Incident tractions

Let us assume that the incident field in (2.6) is due to a CPS.

3.1. Complex point source To introduce a CPS, we first consider an ordinary point
source U0 δ(x − a) at point a. It radiates the outgoing spherical field U0 G, where the
reduced free-space Green’s tensor has components [3, equation (2.5.54)]

G`k =
1
ρc2

T

[k−2
T (IT − IL),`k + ITδ`k], Iα =

eikαsin

4πsin
(3.1)

with sin =
√

(x1 − a1)2 + (x2 − a2)2 + (x3 − a3)2 and α = T or L.
Let us complexify the first coordinate of a. This operation turns the spherical field

into a beam, which propagates along the axis singled out by the complexification
process [5]. Introducing the beam Cartesian coordinate systems {ē1, ē2, ē3} shown

[4] The alternative Kirchhoff approximation 409
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Figure 2. Scatterer/beam coordinate systems {e1, e2, e3}/{ē1, ē2, ē3}.

in Figure 2, this beam axis lies in the (ē1, ē3) plane, the beam coordinates of the
source a are (−ā1, 0, 0) and the beam coordinates of its complexified version A are
(−ā1 + iaR, 0, 0). Figure 2 introduces ϑin, the supplementary angle between e1 and the
beam axis, and, below, we sometimes make use of its counterpart ϑ̄in = −ϑin. For a
point load fδ(x − A), the resulting displacement is

UCPS = U0G(x,A)f. (3.2)

Introducing the distance along the beam axis ∆x̄1 = x̄1 + ā1, in the paraxial approxi-
mation x̄2

2 + x̄2
3 � (∆x̄1)2, the complexified distance between an arbitrary point x and

the complexified source A can be approximated in the following manner:√
(∆x̄1 − iaR)2 + x̄2

2 + x̄2
3 ≈ ∆x̄1 − iaR +

1
2

x̄2
2 + x̄2

3

∆x̄1 − iaR
.

Therefore, on the surface of the scatterer, inside the beam, ∆x̄1 can be treated as
constant and

Īα ≈ −
i

4π
w0

w(x̄1)
ekα{aR−(x̄2

2+x̄2
3)/2w2}eikα{∆x̄1+(x̄2

2+x̄2
3)/2%}−iζ ,

demonstrating that in the paraxial approximation the CPS field behaves as a three-
dimensional Gaussian beam [12] with

√
2w2(∆x̄1)/kα as the beam spot (the radius of

the beam at a distance ∆x̄1 from the waist),
√

2w2(0)/kα as the beam spot at the waist,
aR as the Rayleigh length (the distance along the propagation direction of the beam
from its waist to where the beam spot increases by

√
2), % = %(∆x̄1) as the radius of

curvature of the beam wave front, and ζ = ζ(∆x̄1) as the Gouy phase shift, where

% = ∆x̄1

[
1 +

( aR

∆x̄1

)2]
, w2 = aR

[
1 +

(∆x̄1

aR

)2]
, ζ =

1
2

tan−1 ∆x̄1

aR
.

Here, w = w(∆x̄1). It is reasonable to select the constant U0 = exp (−kα aR).

3.2. Surface tractions due to complex point source Let us now find the incident
surface tractions tin

` (x′1, x′2, 0) generated by a CPS. Applying (2.2) to the complexified
version of (3.1), the beam coordinates of the corresponding stress tensor become

σ̄G
`mk = ρc2

T [Ḡ`k,m + Ḡmk,` + γ−2(1 − 2γ2)Ḡnk,nδ`m]. (3.3)

[5]L. J. Fradkin et al.410
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Using beam coordinates (x̄1, x̄2, x̄3) and their complexified version

X̄1 = ∆x̄1 − iaR, X̄2 = x̄2, X̄3 = x̄3,

the derivatives of IT -terms and IL-terms in (3.3) become

Īα,` =
Iα
S 2

in

(ikαS in − 1)X̄`,

Īα,`m =
Iα
S 4

in

[(3 − 3ikαS in − k2
αS 2

in)X̄`X̄m + S 2
in(ikαS in − 1)δ`m],

Īα,`mk =
Iα
S 6

in

[(−15 + 15ikαS in + 6k2
αS 2

in − ik3
αS 3

in)X̄`X̄mX̄k

+ S 2
in(3 − 3ikαS in − k2

αS 2
in)(X̄`δmk + X̄mδ`k + X̄kδ`m)].

Using (2.3), (3.2) and the beam coordinates of both the normal n = e3 and the point
load f, at the surface point x′, the components of the incident surface traction are

t̄in
` = σ̄G

`mkn̄m f̄k.

4. The Lamb’s Green’s tensor

The components of the Lamb’s Green’s tensor have no analytical expressions, but
their Fourier transforms do. These are derived below.

4.1. The Lamb’s Green’s tensor in the Fourier space We introduce the relevant
Fourier transforms first. In an isotropic and homogeneous space, there is no difference
between directions, but the plane boundary singles out the direction of its normal. For
this reason, we utilize the double spatial transform defined for any integrable function
f (x1, x2) as

f̃ (ξ1, ξ2) =

∫ ∞

−∞

∫ ∞

−∞

f (x1, x2)e−ikT (ξ1 x1+ξ2 x2) dx1 dx2. (4.1)

Its inverse is the usual spectrum of the outgoing waves

f (x1, x2) =
k2

T

4π2

∫ ∞

−∞

∫ ∞

−∞

f̃ (ξ1, ξ2)eikT (ξ1 x1+ξ2 x2) dξ1 dξ2. (4.2)

Above, ξ = (ξ1, ξ2, ξ3) are dimensionless wave vectors. Introducing ξ⊥ =

√
ξ2

1 + ξ2
2 and

γα = cT/cα, their magnitudes are ξα = γα and their third components are given by

ξα3 =

√
γ2
α − ξ

2
⊥ (4.3)

with the root chosen to be principal, so that the outgoing waves u exp i(−ωt + kTξ · x)
decay at infinity and thus satisfy the radiation condition.

Applying (4.1) to (2.1), the double Fourier transforms of each column k of the
Lamb’s Green’s tensor can be represented as a sum of TV (transverse vertical), T H
(transverse horizontal) and L (longitudinal) components,

G̃Lamb
k (ξ1, ξ2, x3) = ŨTV

k eikT ξ
T
3 x3 + ŨT H

k eikT ξ
T
3 x3 + ŨL

k eikT ξ
L
3 x3 . (4.4)

[6] The alternative Kirchhoff approximation 411
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The amplitudes Ũβ
`

= Ũβ
`
(ξ1, ξ2) = Ũβ

`
(ξ1, ξ2)̃dβ(ξ1, ξ2) can be found by applying (4.1)

to (2.5) (see Appendix A).

4.2. The Lamb’s Green’s tensor in the physical space Using Appendix A
and (4.2) in the physical space, the columns of the Lamb’s Green’s tensor can be
represented as the double integrals

GLamb
k (x − x′) =

k2
T

4π2

"
{ŨT

k eikT ξ
T ·(x−x′) + ŨL

k eikT ξ
L·(x−x′)} dξ1 dξ2, (4.5)

where ŨT
k = ŨTV

k + ŨT H
k . It is convenient to introduce cylindrical coordinates (ξ⊥, ϕ),

such that ξ1 = ξ⊥ cosϕ, ξ2 = ξ⊥ sinϕ, x1 − x′1 = r′ cosφ′, x2 − x′2 = r′ sinφ′ and express
the TV components of the Lamb’s Green’s tensor as

GLamb(TV)
`k (x − x′) =

ikT

2πρc2
T

∫ ∞

0
A`k g(2)

k

ξ2
⊥(1 − 2ξ2

⊥)
R(ξ2

⊥)
eikT ξ

T
3 x3 dξ⊥. (4.6)

Here, g(2)
1 = ξT

3 , g(2)
2 = ξT

3 , g(2)
3 = −ξ⊥. Combining Euler’s formula, the standard

definition of the Bessel function Jp(z) [1, equation (9.1.21)] as well as the identity
J−p(z) = −Jp(z) with p = 0− treated as p = 0+, the components of the symmetric matrix
A are

A11 = 1
2 [J0(kTξ⊥r′) − i sin (2φ′)J2(kTξ⊥r′)],

A12 = −i cos (2φ′)J2(kTξ⊥r′), A22 = 1
2 [J0(kTξ⊥r′) + i sin (2φ′)J2(kTξ⊥r′)],

A13 = i cos(φ′)J1(kTξ⊥r′), A23 = i sin(φ′)J1(kTξ⊥r′), A33 = J0(kTξ⊥r′).

Integrals (4.6) can be evaluated with a two-dimensional variable step version of the
Simpson rule [6]. There is no need to derive similar results for T H and L components,
because their stationary phase asymptotics give satisfactory results (see below).

4.3. Numerical evaluation of integral (2.6) It can be checked that at the Rayleigh
distance aR from the waist, the boundary value of the intensity of the Gaussian beam
falls from its axial value by a factor of exp(−2). Therefore, choosing a1 = aR, a
reasonable approximation to (4.5) can be achieved by reducing the integration domain
to the footprint of the beam on the scattering surface (see Figure 2). This footprint
is an ellipse with the axes amin = 2

√
aR/kα and amax = 2

√
aR/kα/ cos ϑin. Hence, its

boundary can be described by the parametric equations

x′1 = amax cosϕ′, x′2 = amin sinϕ′ = amax cos ϑ̄in sinϕ′.

We introduce the corresponding circular coordinates (a′, ϕ′)

x′1 = a′ cosϕ′, x′2 = a′ cos ϑ̄in sinϕ′.

The Jacobian of transformation from (x′1, x′2) coordinates to (a′, ϕ′) coordinates is
a′ cos ϑ̄in. It follows that (2.6) can be approximated using

usc(β)
`

(x) ' cos ϑ̄in

×

∫ 2π

0

∫ amax

0
GLamb(β)
`k (x1 − a′ cosϕ′, x2 − a′ cosϑin sinϕ′, x3)tkin(a′, φ′)a′ da′ dϕ′.

(4.7)

[7]L. J. Fradkin et al.412
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Figure 3. Wave fronts generated by a normal point load.

In order to evaluate this integral numerically, we employ a two-dimensional
Simpson’s scheme with the intervals [0, amax] and [0, 2π] divided, respectively, into N f

and M f equal subintervals, and also specify the grid of evenly distributed observation
points. Below we plot results in the x1x3-plane only, and No and Mo are the
numbers of nodes in x1- and x3-directions, respectively. When dealing with the
exact expression for the Lamb’s Green’s tensor, considerable reduction in runtime is
achieved by specifying the footprint grid first and a convenient grid of observation
points, afterwards.

5. The alternative Kirchhoff approximation and its validation

If the Lamb’s Green’s tensor in (4.7) is evaluated numerically, the resulting codes
have long runtimes. Fortuitously, the ultrasonic inspections are normally conducted
in the far field |kLx3| � 1, where x3 is the vertical distance from the observation point
to the scatterer. In this approximation, the double integrals in (4.5) contain a rapidly
oscillating exponent and a slowly varying amplitude and, therefore, can be evaluated
using the uniform stationary phase method [2]. The method describes asymptotic
contributions of such critical points as stationary points of the phase and singularities
of the amplitude, both in the geometrical regions in the scattered field where the critical
points are isolated, and transition regions where some of them coalesce.

It is easy to check that in (4.5), the phases kαξT · (x − x′) possess stationary points,
and the amplitudes have poles as well as branch points ξ⊥ = ±γ, where ξL

3 = 0. These
amplitude singularities give rise to the Rayleigh wave and head wave, respectively.
Calculation of the Rayleigh wave is easy, and lies outside the scope of this paper.
The simplest situation giving rise to a head wave is discussed in [7] and presented in
Figure 3, where the fronts of transverse, longitudinal and head waves are designated
by T , L and H, respectively. The T and L fronts are semi-spherical and the conical H
front exists only for θ > θH .

To evaluate the contributions of the isolated stationary phase points, for each surface
point x′ let us choose the Cartesian coordinate system with the origin at this point. The
associated cylindrical coordinates are (r′, s′, θ′), where

∆x′n = xn − x′n, n = 1, 2, r′ =

√
∆x′21 + ∆x′22 , s′ =

√
r′2 + x2

3, sin θ′ = r′/s′

[8] The alternative Kirchhoff approximation 413
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(see Figure 1). In these coordinates, the phase functions in (4.5) are

f α(ξ1, ξ2) = ξ1∆x′1 + ξ2∆x′2 +

√
γ2
α − ξ

2
⊥x3.

Their stationary points and associated values are, respectively,

(ξα(GE)
1 , ξα(GE)

2 ) = (γα∆x′1/s′, γα∆x′2/s′), f α(ξα(GE)
1 , ξα(GE)

2 ) = s′, ξα(GE)
⊥ = γα sin θ′.

The eigenvalues of each Hessian ( f α)
′′

(ξα(GE)
1 , ξα(GE)

2 ) are positive. The above
considerations allow us to produce an asymptotic description of TV, T H and L waves
generated by each Huygens source (see Appendix B). The superscript GE emphasizes
that the same description can be obtained using the geometrical elastodynamics.

The asymptotic contributions of branch points ξ⊥ = ±γ, where ξL
3 = 0 (see (4.3)),

are also well known [3]. However, in industrial steels these asymptotics do not work
well [9]. For this reason, we do not use them and advocate the AKA instead, that is,
substitute into (2.6) the amplitudes GLamb(β,GE)

`k (for β = TV, T H or L) of the semi-
spherical waves from Appendix B. Note that the components GLamb(TV,GE)

`k possess
branch points at sin θ′ = ±γ and, therefore, retain information about the branch points
in the Fourier space.

The AKA has been tested by simulating scatter of Gaussian beams oscillating at
f = ω/2π = 5 MHz, a typical frequency of industrial transducers, from the surface of
a block of stainless steel with cL = 5890 ms−1, cT = 3210 ms−1 and ρ = 8050 kg m−3.
The corresponding critical incident angle is ϑin = cos−1 γ ≈ −57◦(θin ≈ 33◦).

Figures 4(c) and 4(d) simulate reflection of the subcritical T Gaussian beam. For
comparison, reflection of the L beam is shown in Figures 4(a) and 4(b). As expected,
the L beams have a wavelength twice as large and display larger footprints.

In both L − L or T − T cases, the reflection takes place according to Snell’s law
for elastic waves [8, equation (6.1.33)]. By contrast, Figure 4(e) shows the full scatter
of the T beam into a weaker upper beam (reflected according to Snell’s law) and a
stronger lower beam (propagating at the critical angle). In principle, beam splitting
could be due to a variation in the incidence angle over the footprint, but inspection
of the incident beams in Figure 4 shows no comparable variation. We conclude
that the lower beam is formed by the head wave. This conclusion is supported
further by the fact that the beam appears or disappears depending on whether, when

imaginary, the radical
√
γ2 − sin2 θ′ is supplied with the + or − sign; such behaviour

is typical to branch point contributions [6]. Figures 4(f) and 4(g) simulate scatter of
the critical Gaussian T beam. They demonstrate a small Goos–Hänchen shift to the
right: the reflected T wave and head wave both propagate at the same angle, and their
interference breaks the incident/reflected beam symmetry.

Let us now compare KA and AKA. Figures 5(a) and 5(b) demonstrate that the
two approximations produce similar scattered L beams—the fact that the KA beam is
somewhat stronger might be due to the fact that KA does not allow for the head wave
and the head wave energy must be distributed between T and L modes. For the same
reason, when the incidence is subcritical, the KA T beam is stronger than the AKA
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Figure 4. Simulation of scatter of Gaussian beams using AKA. The scalar displacement amplitude in the

beam u is traditionally defined as |Re
√

u2
1 + u2

2 + u2
3|. The colour bar represents displacement amplitudes

in pm.
ϑin

L = −75◦: (a) incident L beam, (b) reflected L beam;
ϑin

T = −75◦: (c) incident T beam, (d) reflected T beam, (e) reflected T beam and head wave beam;
ϑin

T = −ϑH : (f) incident T beam, (g) scattered T beam.
No = 120,Mo = 120,N f = 24,M f = 40.
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Figure 5. Comparison of KA and AKA of scattered Gaussian beams.
ϑin

L = −75◦, reflected L beam simulated using (a) KA, (b) AKA;
ϑin

T = −75◦, reflected T beam simulated using (c) KA, (d) AKA; reflected T beam and head wave beam
simulated using (e) AKA;
ϑin

T = −ϑH , scattered T beam simulated using (f) KA, (g) AKA.
N f = 24,M f = 40,No = 80,Mo = 80. The colour bar is same as in Figure 4.
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Figure 6. Comparison of TV components of scattered critical Gaussian beam simulated using (2.6) and
(a) Section 4.2 (N f = 36,M f = 40), (b) AKA and (c) KA (N f = 36,M f = 80 for both). No = 80,Mo = 40.
The colour bar is same as in Figure 4.

T beam (see Figures 5(c) and 5(d); cf. Figure 5(e)). At the critical incidence, KA
produces a much stronger T beam than AKA and no Goos–Hänchen shift.

Finally, let us compare both AKA and KA to the exact numerical solution based
on (4.7). Figure 6 shows that when the incident Gaussian T beam is critical, unlike
KA and AKA, it produces reasonable results; it reproduces the footprint, angle of
scatter and even the scattered intensity. Note that using an Intel (R) Core (TM) i3-
3227U processor CPU @1.90 GHz, Figures 6(a) and 6(b) have been produced in 11 h
and 4 min, respectively.

6. Conclusions

We have shown that while the KA is incapable of simulating head waves, the
AKA simulates the effect similarly to the exact numerical solution, reproducing a
small lateral Goos–Hänchen shift and—more importantly—the correct amplitude of
the scattered critical Gaussian beam. The result is not obvious, because the asymptotic
expressions of the Lamb’s Green’s tensor utilized in the AKA describe only the semi-
spherical L and T waves generated by each Huygens source and not the associated
head waves. On the other hand, the amplitudes of the T waves contain the square
roots, retaining information about the square roots in their Fourier transforms, and it
is these roots (more precisely, the fact that the integrands used in the AKA are double-
valued functions) that give rise to the head waves. The findings are of interest in NDT
applications.
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Appendix A
The Lamb’s Green’s tensor in Fourier space

Each component GLamb
`k = GLamb

`k (x1, x2, x3) of the Lamb’s Green’s tensor represents
the `th component of the displacement GLamb

k = GLamb
k (x1, x2, x3), which is due to a unit

traction acting in the direction ek. Therefore, the original problem can be decomposed
into three, two—with the tangential unit traction acting in the direction e1 and e2 and
one—with the traction acting normally to the surface. In order to find the Lamb’s
Green’s tensor, we first rewrite equation (2.1) as

Lm`GLamb
`k + ρω2GLamb

mk = 0, (A.1)

where Lm` = Lm`(∂1, ∂2, ∂3) are components of the operator matrix

L = ρc2
L


(1 − γ2)∂2

1 + γ2∇2 (1 − γ2)∂1∂2 (1 − γ2)∂1∂3

(1 − γ2)∂1∂2 (1 − γ2)∂2
2 + γ2∇2 (1 − γ2)∂2∂3

(1 − γ2)∂1∂3 (1 − γ2)∂2∂3 (1 − γ2)∂2
3 + γ2∇2

 ,
with ∂` as the partial derivative with respect to x`, and ∇2 = ∂2

1 + ∂2
2 + ∂2

3. Applying to
(A.1) the double Fourier transform (4.1), we obtain the system of ordinary differential
equations

L̃m`(ξ1, ξ2, ∂3)G̃Lamb
`k (ξ1, ξ2, x3) + ρω2G̃Lamb

mk (ξ1, ξ2, x3) = 0. (A.2)

We seek the outgoing solutions of this system in the form

G̃β (Lamb)
k (ξ1, ξ2, x3) = Ũβ

k(ξ1, ξ2)eikT ξ3 x3 = Ũβ
k (ξ1, ξ2) d̃β(ξ1, ξ2)eikT ξ3 x3 . (A.3)

Substituting (A.3) into (A.2),

L̃(ξ)Ũβ
k(ξ1, ξ2) = −ρω2Ũβ

k(ξ1, ξ2), (A.4)

where the operator L̃ = L̃(ξ) has components

L̃m` = −ρω2[(γ−2 − 1)ξmξ` + ξ2δm`]. (A.5)

Equation (A.4) can be embedded into the so-called Kelvin–Cristoffel equation

L̃d̃
β

= −ρω2νβd̃
β
,

which possesses a nonzero solution only if

|L̃ + ρω2νI| = −ρω2(ξ2 − ν)2(γ−2ξ2 − ν) = 0,

where I is the unit matrix. It follows that the operator L̃ has a double eigenvalue
νT = νTV = νT H = ξ2 and a simple eigenvalue νL = γ−2ξ2 with the corresponding
eigenvectors d̃β = d̃β(ξ1, ξ2) given by

d̃TV =


1

ξTξ⊥


ξ1ξ

T
3

ξ2ξ
T
3

−ξ2
⊥


e1

, d̃T H =


1
ξ⊥


ξ2

−ξ1

0

 if ξ⊥ , 0,

e2 if ξ⊥ = 0,

d̃L =
1
ξ L

ξ1
ξ2
ξL

3

 . (A.6)
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As usual, there is arbitrariness in choosing eigenvectors corresponding to a double
eigenvalue. The choice made in (A.6) ensures that limξ⊥→0(ξ1/ξ⊥) = 1 and
limξ⊥→0(ξ2/ξ⊥) = 0. The eigenvectors in (A.6) become solutions of (A.5) when νβ = 1,
that is, when |kTξ

β| = kβ.
The unknown amplitudes Ũβ

k = Ũβ
k (ξ1, ξ2) can be found from the boundary

condition (2.5) rewritten as

BmkGLamb
k |x3=0+ = −δmkδ(x)|x3=0+ (A.7)

with Bmk = Bmk(∂1, ∂2, ∂3) as elements of the operator matrix

B = ρc2
L

 γ2∂3 0 γ2∂1
0 γ2∂3 γ2∂2

(1 − 2γ2)∂1 (1 − 2γ2)∂2 ∂3

 .
The double Fourier transform of (A.7) is

B̃G̃Lamb
k |x3=0+ = −ek (A.8)

with the operator matrix B̃ = B̃(ξ1, ξ2, ∂3) given by

B̃(ξ1, ξ2, ∂3) = ρc2
L


γ2∂3 0 γ2ikTξ1

0 γ2∂3 γ2ikTξ2

(1 − 2γ2)ikTξ1 (1 − 2γ2)ikTξ2 ∂3

 .
Combining (A.3), (A.6) and (A.8) produces the linear algebraic system

AŨk = ck, (A.9)

where we use the notation

A =




ξ1(1 − 2ξ2

⊥) ξ2ξ
T
3 2γ−1ξ⊥ξ1ξ

L
3

ξ2(1 − 2ξ2
⊥) −ξ1ξ

T
3 2γ−1ξ⊥ξ2ξ

L
3

−2ξT
3 ξ

2
⊥ 0 γ−1ξ⊥(1 − 2ξ2

⊥)

 if ξ⊥ , 0,


1 0 0
0 1 0
0 0 γ−1

 if ξ⊥ = 0,

Ũk(ξ1, ξ2) =


ŨTV

k

ŨT H
k

ŨL
k

 , ck =
iξ⊥

kTρc2
T

ek.

For ξ⊥ , 0, |A| = −γ−1ξ3
⊥ξ

T
3 R(ξ2

⊥) with the Rayleigh function

R(ξ2
⊥) = 4ξ2

⊥ξ
T
3 ξ

L
3 + [1 − 2ξ2

⊥]2. (A.10)
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Solving (A.9), the components of the vectors Ũk are
ŨTV

1 =
i

kTρc2
T

ξ1(1 − 2ξ2
⊥)

ξ⊥R(ξ2
⊥)

, ŨT H
1 =

i
kTρc2

T

ξ2

ξ⊥ξ
T
3

if ξ⊥ , 0,

ŨTV
1 =

i
kTρc2

T

, ŨT H
1 = 0 if ξ⊥ = 0,

ŨL
1 =

2i
kLρc2

L

ξ1ξ
T
3

R(ξ2
⊥)
,

ŨTV
2 =

i
kTρc2

T

ξ2(1 − 2ξ2
⊥)

ξ⊥R(ξ2
⊥)

, ŨT H
2 (ξ1, ξ2) = −

i
kTρc2

T

ξ1

ξ⊥ξ
T
3

if ξ⊥ , 0,

ŨTV
2 = 0, ŨT H

2 =
i

kTρc2
T

if ξ⊥ = 0,

ŨL
2 =

2i
kLρc2

L

ξ2ξ
T
3

R(ξ2
⊥)
,

ŨTV
3 = −

2i
kTρc2

T

ξ⊥ξ
L
3

R(ξ2
⊥)
, ŨT H

3 = 0, ŨL
3 =

i
kLρc2

L

1 − 2ξ2
⊥

R(ξ2
⊥)

.

Each column of the Lamb’s Green’s tensor can be represented as a sum (4.4). Similar
results have been obtained earlier for a linear source [11].

Appendix B
Stationary phase asymptotics of the Lamb’s Green’s tensor

Let us associate with each Huygens source x′ a Cartesian coordinate system
{e′1, e

′
2, e3}, with the origin at this source, and let all such systems be oriented in the

same way as the scatterer coordinate system {e1, e2, e3}. Then all vectors have the same
components in all of them. Evaluating the stationary phase asymptotics of (4.5), for
each Huygens source the unit displacement vectors (A.6) and the Rayleigh functions
(A.10) become, respectively,

dTV (x − x′) =

cos θ′ (cos φ′ e1 + sin φ′ e2) − sin θ′ e3 if r′ , 0,
e1 if r′ = 0,

dT H(x − x′) =

sin φ′ e1 − cos φ′ e2 if r′ , 0,
e2 if r′ = 0,

dL(x − x′) = sin θ′ (cos φ′ e1 + sin φ′ e2) + cos θ′ e3,

and

RT (sin2 θ′) = 4 sin2 θ′ cos θ′
√
γ2 − sin2 θ′ + (1 − 2 sin2 θ′)2,

RL(sin2 θ′) = 4γ3 sin2 θ′ cos θ′
√

1 − γ2 sin2 θ′ + (1 − 2γ2 sin2 θ′)2,
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where φ′ and θ′ are specific to the source. Similar to Appendix A, the formal rule
applied above is

lim
(x1,x2)→(x′1,x

′
2)

(x1 − x′1)/r′ = 1 and lim
(x1,x2)→(x′1,x

′
2)

(x2 − x′2)/r′ = 0.

The stationary phase contributions to the ` components of GLamb(GE)
k = GLamb(GE)

k (x −
x′) become

GLamb(TV,GE)
`1 =


−

cos φ′

2πρc2
T

cos θ′(1 − 2 sin2 θ′)
RT (sin2 θ′)

eikT s′

s′
dTV
`

if r′ , 0,

−
1

2πρc2
T

eikT s′

s′
δ`1 if r′ = 0,

GLamb(T H,GE)
`1 =

−
sin φ′

2πρc2
T

eikT s′

s′
dT H
` if r′ , 0,

0 if r′ = 0,

GLamb(L,GE)
`1 = −

cos φ′

2πρc2
L

sin 2θ′
√

1 − γ2 sin2 θ′

RL(sin2 θ′)
eikL s′

s′
dL
` ,

GLamb(TV,GE)
`2 =

−
sin φ′

2πρc2
T

cos θ′(1 − 2 sin2 θ′)
RT (sin2 θ′)

eikT s′

s′
dTV
`

if r′ , 0,

0 if r′ = 0,

GLamb(T H,GE)
`2 =


cos φ′

2πρc2
T

eikT s′

s′
dT H
` if r′ , 0,

−
1

2πρc2
T

eikT s′

s′
δ`2 if r′ = 0,

GLamb(L,GE)
`2 = −

sin φ′

2πρc2
L

sin 2θ′
√

1 − γ2 sin2 θ′

RL(sin2 θ′)
eikL s′

s′
dL
` ,

GLamb(TV,GE)
`3 =

1
2πρc2

T

sin 2θ′
√
γ2 − sin2 θ′

RT (sin2 θ′)
eikT s′

s′
dTV
` ,

GLamb(L,GE)
`3 = −

1
2πρc2

L

cos θ′ (1 − 2γ2 sin2 θ′)
RL(sin2 θ′)

eikL s′

s′
dL
` .
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