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We investigate the dynamics of the buoyancy-driven rise of a bubble inside a
viscoplastic material when it is subjected to an acoustic pressure field. To this
end, we develop a simplified model based on the Lagrangian formalism assuming
a pulsating bubble with a spherical shape. Moreover, to account for the effects
of a deformable bubble, we also perform detailed two-dimensional axisymmetric
simulations. Qualitative agreement is found between the simplified approach and
the detailed numerical simulations. Our results reveal that the acoustic excitation
enhances the mobility of the bubble, by increasing the size of the yielded region
that surrounds the bubble, thereby decreasing the effective viscosity of the liquid and
accelerating the motion of the bubble. This effect is significantly more pronounced
at the resonance frequency, and it is shown that bubble motion takes place even for
Bingham numbers (Bn) that can be orders of magnitude higher than the critical Bn
for bubble entrapment in the case of a static pressure field.

Key words: bubble dynamics

1. Introduction

Over the years, the motion of air bubbles in complex fluids with yield stress has
drawn the attention of many research groups, due to both the fundamental nature
of this problem and the wide range of scientific, engineering and even geophysical
applications. Characteristic examples of such applications include (i) prevention of
bubble formation and expansion in adhesives (Foteinopoulou et al. 2006; Papaioannou
et al. 2014) and bubble removal from structural materials (e.g. cement) because their
presence may significantly degrade the mechanical properties, (ii) mobilization of
bubbles containing oxygen to accelerate waste treatment and fermentation processes
(Blanch & Bhavaraju 1976), (iii) control of air bubbles in foods to improve their
texture (e.g. aerated chocolate, ketchup, mayonnaise) (Campbell 2016), or various
cosmetic products to increase their volume (e.g. hand creams, hair gels, toothpaste),
(iv) inhibition of large bubble formation in drilling mud, which may cause dangerous
explosions, delay production and potentially inflict a huge burden on ecosystems and
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the finances of oil-drilling companies (Johnson & White 1991; BP report 2010) and
(v) the role of bubble dynamics in volcanic activities, e.g. eruptions, earthquakes or
inflation of volcanoes (Ichihara & Nishimura 2011; Tran, Rudolph & Manga 2015).
In all these applications we are often concerned with the mobility and dynamics of
gas bubbles under different conditions, and the purpose of this paper is to examine
how these are affected in the presence of an acoustic field.

The motion of a bubble through a viscoplastic material exhibits some interesting
aspects, which cannot be directly deduced from the corresponding laws for Newtonian
liquids. It is well known, for example, that bubbles may become entrapped indefinitely
in a viscoplastic material when their buoyancy is sufficiently small compared to the
yield stress, owing to their inability to break the weak physical bonds in the material.
This was first demonstrated in the experiments performed by Astarita & Apuzzo
(1965) who reported bubble shapes and velocities in Carbopol solutions and slightly
or highly elastic liquids. Their experiments revealed that curves of bubble velocity
versus bubble volume had an abrupt change in slope at a critical value of bubble
volume that depended on the concentration of Carbopol in the solution. Terasaka
& Tsuge (2001) studied the formation of bubbles at a nozzle in yield-stress fluids
(xanthan gum and Carbopol) and provided an approximate model for bubble growth.
A model, based on variational inequalities, to obtain the critical conditions for bubble
entrapment in viscoplastic fluids was proposed by Dubash & Frigaard (2004, 2007);
these estimations, however, were characterized as conservative, in the sense that they
provide a sufficient but not necessary condition. They compared their predictions with
experiments and found that surface tension affects significantly the bubble stopping
conditions. Their experiments also revealed that the bubbles had a rounded shape
on their front, but terminated downstream in a cusp. These findings were confirmed
by Sikorski, Tabureau & de Bruyn (2009) and Mougin, Magnin & Piau (2012) who
conducted detailed and careful experiments to investigate the shape, trajectory and
dynamics of an air bubble in Carbopol solutions of various concentrations.

An early attempt to address this problem theoretically was made by Bhavaraju,
Mashelkar & Blanch (1978) who considered a spherical air bubble and performed
a regular perturbation analysis in the singular limit of small yield stress. A detailed
numerical study of the steady rise of a deformable bubble was performed much
later by Tsamopoulos et al. (2008), employing a regularized model (Papanastasiou
1987) to account for viscoplastic effects and fully taking into account the effects
of inertia, surface tension and gravity. Their calculations provided a more accurate
evaluation of the conditions for bubble entrapment than the conservative estimate
provided by Dubash & Frigaard (2004, 2007). A more accurate estimation of the
stopping conditions was made by Dimakopoulos, Pavlidis & Tsamopoulos (2013),
Dimakopoulos et al. (2018) who employed the augmented Lagrangian method to
account for the discontinuous behaviour of the constitutive model. Tripathi et al.
(2015) showed through time-dependent simulations that rise dynamics may become
complex in the case of highly deformable bubbles, punctuated by periods of rapid
acceleration which separate stages of quasi-steady motion. Finally, the interaction of
multiple bubbles or droplets in a yield-stress fluid has been examined by Potapov
et al. (2006), Singh & Denn (2008) and Islam, Ganesan & Cheng (2015). It is
noteworthy that inverted teardrop shapes, observed in experiments, were not reported
in any of these theoretical works probably because the effect of fluid elasticity
was ignored. The importance, though, of even small amounts of fluid elasticity,
encountered in real yield-stress fluids such as Carbopol, has been discussed in detail
in Fraggedakis, Dimakopoulos & Tsamopoulos (2016a,b) and its effect on bubble
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shapes was confirmed very recently by experiments performed by Lopez, Naccache
& de Souza Mendes (2018).

It has been suggested that an increase in the mobility of a bubble could be achieved
by applying an oscillatory pressure field or vibrations (Stein & Buggisch 2000; Iwata
et al. 2008). The presence of an acoustic field causes volume oscillation of the bubble,
due to its compressibility, modifying the stress in the liquid surrounding the bubble
and thus allowing it to overcome the yield stress of the material. In fact, this is a
well-established practice in the construction business where vibrators are often used to
de-aerate and consolidate concrete (ACI Committee 1993, 1996). Besides engineering
applications, this mechanism is also very relevant to geophysical phenomena, where
pressure perturbations, e.g. caused by passing seismic waves from a near or distant
source, may affect the mobility of bubbles entrained in magmas (Ichihara & Nishimura
2011).

The response of bubbles to pressure forces driven by sound waves has been
studied extensively in the case of Newtonian fluids; extensive reviews can be found
in Plesset & Prosperetti (1977), Feng & Leal (1997) and Lauterborn & Kurz (2010).
It has been established that under the action of an acoustic pressure wave, besides
radial oscillation, a bubble is also forced into a translational motion relative to the
surrounding fluid due to the action of the primary ‘Bjerknes’ force (see Brennen
2014). This interaction of acoustic and hydrodynamic forces can give rise to complex
flow dynamics (e.g. Pelekasis & Tsamopoulos 1993a,b; Rensen et al. 2001; Chatzidai,
Dimakopoulos & Tsamopoulos 2011). In order to account for this complex behaviour,
theoreticians have developed models of varying complexity assuming either bubbles
with spherical shape undergoing volume oscillations (Doinikov 2002; Reddy & Szeri
2002a; Krefting et al. 2006) or deformable bubbles that may also exhibit shape
oscillations (Reddy & Szeri 2002b; Doinikov 2004; Shaw 2006); in these works, the
effect of buoyancy was typically neglected.

Another degree of complexity is introduced when gravitational effects are important
since the dynamics of the bubble will also be affected by its rising motion due to
buoyancy. A reduced-order model was derived by Gordillo et al. (2012) to investigate
the coupling between bubble acceleration and deformation, considering a bubble with
constant volume and small perturbations to its spherical shape. The motion of a
spherical pulsating bubble under gravity was investigated by Chakraborty & Tuteja
(1993) and later by Tuteja et al. (2010) using the Lagrangian formalism to derive
a fully two-way coupled model. Ricciardi & De Bernardis (2016) recently used a
similar methodology to investigate the acoustic emission of a pulsating bubble in an
inviscid liquid. Numerical simulations, solving the full Navier–Stokes equations and
fully accounting for the deformability of the bubble, were also employed by Yang,
Prosperetti & Takagi (2003) and Lalanne, Tanguy & Risso (2013) to investigate the
interaction of shape oscillations and rising motion; a simpler model based on force
balances to investigate the same problem has been developed by de Vries, Luther &
Lohse (2002). Numerical simulations were also used by Romero, Torczynski & von
Winckel (2014) to evaluate the terminal velocity in a vertically vibrated liquid which
produces oscillations in both pressure and gravitational fields.

In the case of non-Newtonian fluids, interest has focused mainly on liquids that
exhibit either a generalized viscous behaviour or viscoelastic effects (see Brujan
2009 and Cunha & Albernaz 2013). In the latter case, the most significant effects
arise due to the response of viscoelastic liquids in an extensional flow such as
that generated around a bubble during its growth and collapse phase. As reported
in Iwata et al. (2008), the effect of elasticity becomes more obvious during the
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compression phase where the cusp shape arises. The case of viscoplastic materials,
though, has received considerably less attention with two notable exceptions.
Chan & Yang (1969) considered a spherical gas bubble ignoring the effect of
buoyancy and derived a generalized Rayleigh–Plesset equation, accounting for the
yield stress of the material and investigated the dynamics of a bubble subject to
harmonic pressure fluctuations close to the natural frequency of the system. Stein &
Buggisch (2000), as mentioned above, were interested in the mobilization of bubbles
by setting an oscillating external pressure and provided simplified analytical solutions
along with some experimental data; the latter suggested that larger bubbles tend to
rise faster than smaller bubbles at similar amplitudes.

The goal of our work is to investigate in detail the dynamics of a bubble inside a
viscoplastic medium that is subjected to an acoustic pressure field. Our approach fully
takes into account the effects of inertia, surface tension and gravity. First, we develop
a reduced-order model assuming that the bubble has a spherical shape and then we
proceed with numerical simulations of a deformable bubble, solving the momentum
conservation equation assuming axial symmetry. For the purposes of the present study,
the effects of elasticity will be ignored, and we will focus only on the role of yield
stress. To this end, we employ the discontinuous Bingham constitutive equation for
the reduced-order model and the regularized Papanastasiou model for the axisymmetric
simulations. As has been shown by Tsamopoulos et al. (2008), the latter model, when
used with caution, provides a good understanding of the qualitative and in many cases
quantitative characteristics of the flow. A thorough parametric study will be presented
to investigate the dynamics of the system and determine the conditions under which
acoustic excitation may enhance bubble mobility.

This paper is organized as follows. In § 2 the physical problem is described. A
sphero-symmetric reduced-order model is derived in § 3, while a more detailed model
assuming axial symmetry and its numerical implementation are discussed in § 4.
A discussion of the results from our numerical simulations for both models and a
thorough parametric analysis are presented in § 5. Conclusions are drawn in § 6.

2. Physical problem

We examine the dynamics of an axisymmetric gas bubble rising through a
viscoplastic medium which is subjected to acoustic excitation (depicted schematically
in figure 1). The viscoplastic liquid is considered to be incompressible with density,
ρ, exhibiting a constant yield stress, τy, and upon yielding a constant dynamic
viscosity, µ. The density and viscosity of the gas inside the bubble are assumed to
be much smaller than those of the liquid, so that the gas is considered to be inertialess
and inviscid. Finally, a constant interfacial tension of the liquid–gas interface, γ , is
assumed.

Initially, the gas bubble is at equilibrium with the surrounding material and
depending on the yield stress of the viscoplastic liquid the bubble may either be
entrapped in the liquid or rise with a constant velocity under the effect of buoyancy.
Thus, we assume that, under these equilibrium conditions, the bubble has an initial
pressure Pgo, volume Vo with a nominal radius Ro = (3Vo/4π)1/3 and may rise in the
liquid with a velocity Uo, while the pressure at far field is given by Po(z)=Pr − ρgz;
g denotes the gravitational acceleration. Parameter Pr denotes the reference pressure
which is chosen to be the equilibrium pressure in the liquid at the same level as the
initial position of the bubble centre of mass (i.e. at z(t = 0) = 0). At time t = 0, a
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FIGURE 1. (Colour online) Schematic of a pulsating bubble rising in an unbounded
viscoplastic liquid under the effect of an acoustic pressure field and the coordinate system
in a reference frame that follows the bubble motion. (a) Model assuming sphero-symmetric
bubble oscillations and (b) axisymmetric model. Here Ω denotes the volume of the
surrounding viscoplastic material and S1 and S2 denote the surface of the liquid–gas
interface (at r= R) and the outflow boundary at r= R∞, respectively.

single-frequency acoustic excitation is applied by imposing the following sinusoidal
variation of the liquid pressure far from the bubble:

P∞(z, t)= Pr[1+ a sin( ft)] − ρgz, (2.1)

where a and f are the amplitude and angular frequency of the imposed pressure
oscillation. We assume that, under the action of the acoustic pressure field, the gas
inside the bubble undergoes a polytropic process and the pressure of the gas inside
the bubble depends on the bubble volume according to the following law:

Pg(t)= Pgo[Vo/V(t)]k, (2.2)

where Pg(t) and V(t) are the pressure of the gas in the bubble and the volume
of the bubble, respectively, at a certain time instant and k denotes the polytropic
constant, with 1 6 k 6 1.4. Hereafter, we will restrict ourselves to the case of a
bubble undergoing an adiabatic process and thus consider the case of k = 1.4. Here
Pgo = Pr + 2γ /Ro denotes the gas pressure in the bubble at equilibrium.

3. One-dimensional sphero-symmetric model
In this part of our work, we will derive a simple one-dimensional model by

assuming spherical symmetry of the bubble. The simplest way to model a spherical
bubble which oscillates and translates simultaneously would be to decouple the
two motions, i.e. to solve the radial equations by using a Rayleigh–Plesset type of
equation and then use the variation of the bubble radius with time as an input for
the translation equation which can be obtained by applying Newton’s second law.
Such an approach has been used by Watanabe & Kukita (1993) and Matula (2003),
but is limited by the fact that the feedback of the translational motion on the radial
oscillation is completely ignored.
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An alternative and more rigorous approach has been suggested by Chakraborty &
Tuteja (1993) and was later also used by Tuteja et al. (2010) and Ricciardi & De
Bernardis (2016) to investigate the motion of a spherically pulsating gas bubble under
gravity for the case of either an inviscid or a viscous Newtonian fluid. According to
this method, the radial and translational motions are fully coupled, and the relevant
equations are derived simultaneously by using the Lagrangian formalism. A similar
approach has been used by Doinikov (2002) to investigate the coupled dynamics of
a bubble moving under the effect of pressure gradient due to a forcing acoustic field.
Here, we will employ the same methodology based on the Lagrangian formalism to
derive the coupled set of equations for the case of a pulsating bubble moving under
the effect of buoyancy inside a viscoplastic liquid.

The flow in the viscoplastic material is governed by the momentum and mass
conservation equations

ρ

(
∂u
∂t
+ u · ∇u

)
+ gez +∇P=∇ · T , (3.1)

∇ · u= 0. (3.2)

For the purposes of the present simplified approach, we will consider the Bingham
constitutive equation to account for the viscoplasticity of the surrounding material:

T =

(
µ+

τy

‖Γ ‖

)
Γ for τ > τy, (3.3)

‖Γ ‖ = 0 for τ < τy, (3.4)

where Γ and ‖Γ ‖ denote the rate of strain tensor, Γ = ∇u + ∇uT, and its second
invariant, ‖Γ ‖ =

√
(Γ : Γ )/2, respectively.

We assume that the flow around the spherical pulsating bubble remains irrotational
except for a very small region near the liquid–gas interface. Under this assumption,
it is possible to introduce a velocity potential such that u = −∇ϕ. This assumption
is typically used for inviscid fluids, but can be extremely useful even for the case
of viscous fluids. As will be shown below, the model that will be derived using this
assumption provides a prediction of the critical Bn for bubble entrapment, in the
absence of an acoustic field, which is remarkably close to the exact value. For an
extended discussion of the plausibility of the vorticity-free approximation for viscous
liquids, we refer the reader to Joseph & Wang (2004) and Joseph (2006).

Assuming a spherical polar system of coordinates (r, θ) with origin at the centre of
the bubble (see figure 1a) and the axis of symmetry aligned with the bubble velocity
U, the velocity potential function is given by

ϕ =UR3 cos θ/2r2
+ ṘR2/r, (3.5)

where the dot denotes the time derivative. Using the above expression, it is possible
to evaluate the kinetic energy, K, of the fluid flow surrounding the bubble:

K =
1
2
ρ

∫
u2 dΩ =

(
1−

R
R∞

)
ρπR3

[(
1+

R
R∞
+

R2

R2
∞

)
U2

3
+ 2Ṙ2

]
. (3.6)

We have further assumed that the contribution of the gas phase inside the bubble to
the kinetic energy of the system is negligible, given its much smaller density.
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The potential energy of the system, ∆, is given by (see Ceschia & Nabergoj 1978)

∆=−

∫
(Pg − P∞) dV +

∫
γ dS1 =

4
3
πR3

[
P∞ +

Pgo

k− 1

(
Ro

R

)3k

+
3γ
R

]
, (3.7)

where V and S1 denote the bubble volume and the surface of the liquid–gas interface,
respectively. In the above expression, we have considered that the bubble consists of
inert gas and neglected the contribution of the vapour to the bubble pressure.

We are now in a position to define the Lagrangian functional, L= K −∆. Taking
R(t) and z(t), where z(t) denotes the instantaneous distance of the bubble centre of
mass from its initial position, as the only independent coordinates in our problem, the
Euler–Lagrange equations become

d
dt

(
∂L
∂Ṙ

)
−
∂L
∂R
=−

∂F
∂Ṙ
, (3.8)

d
dt

(
∂L
∂ ż

)
−
∂L
∂z
=−

∂F
∂ ż
, (3.9)

where F denotes the Rayleigh dissipation function of the system. The latter can be
defined as (see Shaw 2009)

F=
1
2

∫
T : ∇u dΩ. (3.10)

Here, the contribution of the vapour is also neglected. Evidently, a direct evaluation of
the above integral in our case of viscoplastic fluids is not possible due to the strong
nonlinearity of the Bingham constitutive model. Using this expression, though, it can
be readily shown that in the case of a Newtonian fluid (τy= 0) and assuming R�R∞,
the dissipation function is given by

FN = 2πµR(4Ṙ2
+ 3U2). (3.11)

We notice that FN is simply the sum of the dissipation for a sphero-symmetric
oscillation without translation, Fo,N = 8πµRṘ2, and the dissipation for bubble
translation under the effect of buoyancy alone, Ft,N = 6πµRU2. Based on this
observation, we will assume that for the case of a viscoplastic liquid the dissipation
function can be approximated by F≈ Fo + Ft, where

Fo = 8πµRṘ2(1− R3/R3
∞
)+ 4
√

3πτy ln
(

R∞
R

)
R2
√

Ṙ2, (3.12)

Ft = 6πµRU2(1− R5/R5
∞
)+ χπR2τyU

(
1−

R
R∞

)
. (3.13)

Dissipation Fo is readily evaluated using (3.10) and assuming sphero-symmetric
oscillation without translation, while Ft is evaluated using (3.10) and assuming
bubble translation under the effect of buoyancy alone. During the evaluation of the
latter the factor χ = (3/2)[2

√
3+
√

2 arcsinh(
√

2)] ≈ 7.62764 arises. It is reasonable
to expect that in the case of a viscoplastic liquid, and due the nonlinear dependence
of the stress on the rate of deformation, the coupling of the two motions would give
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additional terms which are clearly neglected with our assumption. Therefore, this
approximation most probably provides an underestimation of the total dissipation of
the system and is probably valid in the limit of a liquid with relatively low yield
stress.

To simplify the above expressions, we further assume that R� R∞ but retain the
logarithmic term ln(R∞/R); note that for the purposes of our analysis we consider
large but finite values of R∞. We refrain from considering the limit R∞→∞ as is
typically done for Newtonian liquids to avoid the built-in discontinuity of (3.3) and
(3.4), since ‖Γ ‖ → 0 for r→∞. Under these conditions, we obtain the following
equation for the total dissipation of the system:

F= 2πµR(4Ṙ2
+ 3U2)+πτyR2

(
4
√

3 ln
(

R∞
R

)√
Ṙ2 + χU

)
. (3.14)

Clearly, for τy = 0, equation (3.14) reduces to the Newtonian limit.
Finally, in order to close the model, we need an expression for P∞ which arises

in (3.7). To derive such an expression, which is also consistent with our assumption
of irrotational flow, we return to the momentum equation (see (3.1)). As discussed
in Joseph & Liao (1994), since for this irrotational flow the momentum conservation
holds far from the bubble, we must have ∇ × (∇ · T ) = 0. If this is the case, then
there exists a real function ψ such that

∇ · T =−∇ψ. (3.15)

Thus, introducing the velocity potential in (3.1) along with (3.15) we get

∇

(
−ρ

∂ϕ

∂t
+

1
2
ρ|∇ϕ|2 + ρgz+ P+ψ

)
= 0. (3.16)

Solving with respect to the pressure, a generalized Bernoulli equation is derived

P= ρ
∂ϕ

∂t
−

1
2
ρ|∇ϕ|2 − ρgz−ψ +C(t), (3.17)

where C(t) is simply a constant that depends on time. The function ψ can be
evaluated by integrating (3.15) with respect to the radial position and employing the
divergence theorem which gives∫

S1

[T +ψ I] · er dS1 =

∫
S2

[T +ψ I] · er dS2, (3.18)

where S1 and S2 denote the surface of the liquid–gas interface (at r = R) and the
outflow boundary at r= R∞, respectively (see figure 1). Since the surface integral on
the left-hand side must always have a finite value and this equation should hold for
arbitrarily large values of R∞, we may deduce that, for this analysis to be consistent,
at r= R∞ we should have

ψ =−T rr. (3.19)

Note that T rr is the only component of the stress tensor that remains at very large
distances from the bubble. Therefore, introducing (3.5) and (3.19) in (3.17) and using
R� R∞ we obtain

P∞ = P∞(z= 0, t)− ρgz−
2τy

√

Ṙ2
√

3Ṙ
. (3.20)
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This expression can now be introduced in (3.7) to give the total potential energy
of the system for the case of a viscoplastic material. Interestingly, we find that
the potential energy of the system depends on the yield stress of the material and
decreases (increases) when the bubble expands (contracts).

By introducing (3.6), (3.7) and (3.14) in (3.8) and (3.9) and using the fact that U= ż,
we end up with the following coupled evolution equations:

Pr[1− (Ro/R)3k
+ a sin( ft)] − ρgz+ 2γR−1

[1− (Ro/R)3k−1
] + 4µṘR−1

+ τy[−2/
√

3+
√

3 ln(R∞/R)]sign(Ṙ)+ ρ(RR̈+ 3
2 Ṙ2
− ż2 1

4)= 0, (3.21)

−2ρgR3
+ 18µRż+ 3

2τyχR2sign(ż)+ ρ(3R2Ṙż+ R3z̈)= 0. (3.22)

The only unknowns in the above equations are the bubble radius, R, and the distance
that it has covered from its initial position, z.

We non-dimensionalize the above equations by scaling all lengths with the nominal
radius Ro, the velocities with ρgR2

o/µ, pressure and stresses with ρgRo and time
with f−1. Hereafter, all mentioned variables will be considered to be dimensionless
based on the above scalings, unless otherwise noted. The dimensionless groups that
arise are the Archimedes number, Ar= ρ2gR3

o/µ
2, the Bond number, Bo = ρgR2

o/γ ,
the Strouhal number, Sr = ρgRo/µf , the Bingham number, Bn = τy/ρgRo, and the
dimensionless reference pressure, pr = Pr/ρgRo. Using these scalings, the evolution
equations in dimensionless form become

pr[1− R−3k
+ a sin(t)] − z+ 2Bo−1R−1

[1− R1−3k
]

+ 4Sr−1ṘR−1
+ Bn[−2/

√
3+
√

3 ln(R∞/R)]sign(Ṙ)
+ ArSr−2(RR̈+ 3

2 Ṙ2
−

1
4 ż2)= 0, (3.23)

−2R3
+ 18Sr−1Rż+ 3

2χBn R2sign(ż)+ ArSr−2(3R2Ṙż+ R3z̈)= 0. (3.24)

3.1. Limiting cases
Before proceeding any further, it is useful to examine first two important limiting
cases.

3.1.1. Rising bubble in the absence of an acoustic field
We first consider the case which corresponds to a bubble that rises under the effect

of buoyancy having a constant volume in the presence of a constant pressure field.
Thus setting Ṙ = R̈ = 0 and R = Ro while assuming ż = z̈ = 0 it is also possible,
using (3.22), to estimate the critical Bingham number, Bnc, below which the bubble
becomes entrapped in the viscoplastic material:

Bnc = 4χ/3≈ 0.175. (3.25)

It is important to note that this value is very close to the value that has been
reported by Tsamopoulos et al. (2008) (i.e. Bnc = 0.143) and Dimakopoulos et al.
(2013) (i.e. Bnc= 0.129) who performed axisymmetric finite element simulations fully
taking into account the deformability of the bubble using the regularized Papanastasiou
model and the augmented Lagrangian method, respectively. The remarkable agreement
with such detailed calculations corroborates the validity of the present analysis.
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3.1.2. Pulsating bubble without translation and negligible buoyancy
Next, we consider the case which corresponds to a bubble that pulsates in the

presence of an acoustic field without any translation. Thus setting U = U̇ = 0 and
neglecting buoyancy we obtain the following dimensional equation:

Pr[1− (Ro/R)3k
+ a sin( ft)] + 2γR−1

[1− (Ro/R)3k−1
]

+ 4µṘR−1
+ τy[−2/

√
3+
√

3 ln(R∞/R)]sign(Ṙ)+ ρ(RR̈+ 3
2 Ṙ2)= 0. (3.26)

We note that this equation is almost identical to the equation that has been derived
by Chan & Yang (1969); the only difference is a factor of 2 in front of the logarithm
term.

Assuming small amplitude of pressure and radial oscillations (i.e. assuming a� 1
and R= Ro + εR(1)(t) with εR(1)(t)� Ro), the above equation can be linearized, and
the following expression can be derived:

R̈(1)(t)+
4µ
ρR2

o

Ṙ(1)(t)+
[3kPr + 2(3k− 1)γ /Ro − 2

√
3τ ysign(Ṙ(1))]

ρR2
o

R(1)(t)

=−
Pr

ρRo
sin( ft). (3.27)

Thus, we have obtained an equation of the generic form of a forced harmonic
oscillator with damping factor 4µ/ρR2

o and natural frequency

fn =

√
3kPr + 2(3k− 1)γ /Ro − 2

√
3τysign(Ṙ)

ρR2
o

−
8µ2

ρ2R4
o

. (3.28)

We should note that the presence of sign(Ṙ(1)) in the numerator of the first term
implies that the spring constant of the oscillator varies depending on the phase of
the oscillation. The average natural frequency, though, matches that of a Newtonian
liquid (τy = 0) for which (3.26) reduces to the well-known Rayleigh–Plesset equation.
Thus, the natural frequency for our system is given by (see Brennen 2014)

fn =

√
3kPr + 2(3k− 1)γ /Ro

ρR2
o

−
8µ2

ρ2R4
o

, (3.29)

or in dimensionless form

Srn =
Ar√

Ar(3kpr + 2(3k− 1)Bo−1)− 8
. (3.30)

As will be shown below, the mobilization of the bubble becomes maximized when the
imposed frequency of the acoustic field, or Sr in dimensionless terms, is close to the
natural frequency that is calculated by (3.29) or its equivalent (3.30).

When it comes to the flow of a viscoplastic material, it is always important to
investigate the existence of an unyielded region and the position/shape of the possible
yield surface. This limiting case can be used to draw some interesting conclusions
regarding the flow of the viscoplastic material that surrounds the bubble. In the
absence of any translation, the velocity potential is simply given by ϕ = ṘR2/r,
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which can be introduced into (3.3) to evaluate the stress tensor, and subsequently its
dimensional second invariant is given by

‖T‖ = 2
√

3µ
∣∣∣∣R2Ṙ

r3

∣∣∣∣+ τy. (3.31)

According to the Von Mises criterion, an unyielded region exists in areas where
the following inequality is satisfied: ‖T‖6 τy. When the bubble expands or contracts,
i.e. Ṙ 6= 0, ‖T‖ > τy, and therefore it becomes evident that in the case of sphero-
symmetric bubble oscillation a true unyielded region cannot exist except for the time
instants that Ṙ is equal to zero, i.e. the time of maximum expansion or contraction
of the bubble. However, since the yielding of the material is typically related to the
buildup or breakdown of a specific structure which requires a finite amount of time,
we conclude that practically unyielded regions do not exist in the case of a sphero-
symmetric bubble oscillation. The non-existence of an unyielded region in this type of
flow can be attributed to the incompressibility of the material. As the bubble expands
sphero-symmetrically, there will always be flow in the radial direction as the bubble
displaces the material while it expands or due to the fact that the liquid follows the
contraction of the bubble to occupy the empty space.

4. Two-dimensional axisymmetric finite element model
In this part of our work, we will develop a more rigorous model assuming axial

symmetry and fully taking into account the deformability of the bubble. Since the
dynamics as well as the motion of the bubble in the viscoplastic medium will be
driven by the combined effect of buoyancy and the externally imposed acoustic
pressure field, the time-dependent velocity of the bubble centre of mass, Ub(t),
its position and shape will have to be evaluated through transient simulations. A
boundary-fitted finite element model is developed for that purpose.

Considering the case of an axisymmetric bubble, we assume that the bubble motion
is aligned with the z-axis of our coordinate system (see figure 1b). Moreover, the
origin of the cylindrical coordinate system is set at the initial position of the centre
of mass of the bubble, i.e. zcm(t= 0)= 0.

The flow in the viscoplastic material is governed by the momentum and mass
conservation equations, which in dimensionless form and under the arbitrary
Lagrangian–Eulerian description become

Ar
[

Sr−1 ∂u
∂t
+ (u− ug) · ∇u

]
−∇ · (−pI + T )+ ez = 0, (4.1)

∇ · u= 0, (4.2)

where u = (ur, uz) and p denote the dimensionless velocity field and pressure,
respectively, T is the dimensionless stress tensor and ∇ is the gradient operator.
Parameter ug = Sr−1∂rg/∂t is the velocity of the mesh nodes on the flow domain,
where rg denotes the position vector of the mesh nodes. We use the same scaling as
that described in the previous section.

To complete the description, a constitutive equation that describes the rheology of
the fluid is required, and as such we will employ the continuous constitutive equation
proposed by Papanastasiou (1987):

T =

(
1+ Bn

1− e−N‖Γ ‖

‖Γ ‖

)
Γ , (4.3)
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where N is the dimensionless stress growth exponent. In the simulations to be
presented in this paper and after careful evaluation, we have chosen the value of
N to be in the range 104–106 in order to neither affect the yield surface by overly
decreasing N nor produce numerical instabilities or stiff equations by increasing
it. As shown in Dimakopoulos et al. (2013) such values of N provide results with
reasonable agreement with the augmented Lagrangian method.

Along the free surface of the bubble, the velocity field should satisfy a local force
balance between capillary forces and viscous stresses in the liquid and pressure inside
the bubble:

n · (−pI + T )=−pg(t)n+ Bo−1κn, (4.4)

where n denotes the outward unit normal to the free surface and κ is its mean
curvature which is defined as

κ =−∇s · n, ∇s = (I − nn) · ∇. (4.5a,b)

Here pg(t) denotes the dimensionless gas pressure in the bubble given by

pg(t)= cov(t)−k. (4.6)

Here co=pgov
k
o, where pgo=pr+2Bo−1 is the dimensionless gas pressure in the bubble

at equilibrium and vo = 4π/3 its corresponding dimensionless volume. Volume v(t)
is the dimensionless bubble volume at any time instant. The bubble volume can be
evaluated efficiently using the following expression:

v(t)=−
1
3

∫
r · n dS1, (4.7)

where r denotes the position vector along the liquid–gas interface in the cylindrical
coordinate system. Here, we have used the divergence theorem to turn the volume
integral into a surface integral that can be evaluated along the liquid–gas interface.

On the axis of symmetry (r = 0) we apply the usual symmetry conditions, i.e.
ur = 0 and ∂ur/∂r= 0. Far from the bubble, we employ the open boundary condition
introduced by Papanastasiou, Malamataris & Ellwood (1992). According to this
scheme, sufficiently far from the bubble, at distance R∞ from the bubble centre of
mass, the axial component of the fluid velocity is imposed at one node of the outer
boundary, i.e. by imposing uz = 0 at (r, z)= (0, R∞ + zcm), while the rest are simply
calculated from the weak form of the equations (e.g. see Dimakopoulos et al. 2012;
Fraggedakis, Dimakopoulos & Tsamopoulos 2016c); a rigorous explanation as to why
this treatment of the boundary conditions works is given by Renardy (1997). In all
cases to be presented below, the value of R∞ has been chosen so that it does not
affect the solution. Far from the bubble at the equatorial plane (r = R∞, z= zcm) the
imposed pressure is given by

p∞(z, t)= pr(1+ a sin(t))− z, (4.8)

where a is the dimensionless pressure amplitude. Finally, the position of the bubble
centre at every time instant is evaluated using the following expression:

zcm(t)=
∫

z dV
/∫

dV =
3
4

∫
zr · n dS1

/∫
r · n dS1 . (4.9)
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Bn Bo Ar Sr a pr k

0.1 0.5 0.1 0.1 0.3 5000 1.4

TABLE 1. Parameter values which correspond to the ‘base’ case considered in this study.

Here, we have also used the divergence theorem to turn the volume integrals into
surface integrals that can be evaluated along the liquid–gas interface.

As in our previous work, the above set of equations is combined with an elliptic
grid generation scheme (see Dimakopoulos & Tsamopoulos 2003) which consists of a
system of quasi-elliptic partial differential equations, capable of generating a boundary-
fitted discretization of the deforming domain occupied by the liquid (see Tsamopoulos
et al. (2008) for details). This is achieved by imposing as boundary condition the
kinematic equation along the moving liquid–gas interface:

(u− ug) · n= 0. (4.10)

Moreover, we apply the following boundary conditions along the outer boundary so
that our physical domain is able to follow the rising motion of the bubble:

z(t)= zo + zcm(t), (4.11)

r(t)=
√

R2
∞
− z(t)2, (4.12)

where zo denotes the axial position of the nodes at t= 0. In order to solve numerically
the governing equations along with the elliptic grid equations, we used the mixed
finite element method. The set of discretized differential equations is integrated in time
with the implicit Euler method while the initial time step was set to 10−4. In order
to resolve adequately the flow, the mesh is refined around the liquid–gas interface
(Chatzidai et al. 2009); our typical mesh consists of 20 000 triangular elements and
numerical checks showed that increasing the number of elements further led to
negligible changes. The code has been thoroughly validated against our previous
work (Tsamopoulos et al. 2008).

5. Results and discussion

For the purpose of the present study, we place our focus on the parameter range
which is most relevant to an important engineering application, i.e. the process of
de-aeration and consolidation of concrete, since it is encountered in everyday life.
Nevertheless, it is important to note that the results of the present analysis will have
a much more general applicability than this specific application. For this purpose, we
have obtained numerical solutions over a wide range of parameter values, while the
‘base’ case has broadly the typical values shown in table 1.

These values correspond to a bubble of millimetric size entrained in a dense liquid
such as fresh concrete at a depth of 1 m and an imposed frequency of 200 Hz; more
details of the corresponding physical constants can be found in appendix A. The
simulations for all cases presented below were performed until several periods of the
bubble oscillations were completed, to ensure that the oscillations have reached a
steady state.
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FIGURE 2. (Colour online) Evolution of (a) bubble rise velocity and (b) position of bubble
centre of mass for different values of Bn. The other parameter values are given in table 1.

5.1. Sphero-symmetric bubble oscillations: one-dimensional reduced-order model
We begin our study with a discussion about the predictions of the sphero-symmetric
model that we developed in § 3. Note that for all simulations presented below, we have
considered R∞= 104; considering values one order of magnitude lower or higher than
this value led to negligible differences. First, we examine in figure 2 the effect of the
yield stress by varying the value of Bn. In this figure we plot the evolution of the
dimensionless velocity of the bubble, dzcm/dt (see figure 2a), along with the position
of its centre of mass, zcm (see figure 2b). It is already known for the case of steady
bubble rise under a static pressure field that motion takes place below a critical value
of Bn and the bubble rise velocity decreases with increasing viscoplasticity of the
material because of the increasing effective viscosity. As shown in figure 2, a similar
behaviour is encountered when the bubble is subjected to an acoustic field resulting
in deceleration of the bubble with increasing yield stress. For Bn = 0.1, the bubble
covers a distance equal to 0.3 times the bubble radius after approximately 10 cycles
of pressure oscillation (at t = 61.53), whereas in the case of a Newtonian liquid the
same distance is covered at t= 26.75; assuming that the imposed frequency is 200 Hz
the corresponding time in dimensional terms would be 0.308 and 0.134 s, respectively.

The presence of the acoustic field, though, causes volume oscillations of the bubble
(see figure 3a for the evolution of the bubble radius), due to its compressibility. The
volume oscillation modifies the stress in the liquid surrounding the bubble and thus
allows overcoming the yield stress of the material. Therefore, even though the present
simplified model predicts that in the presence of a static pressure field the bubble
will become entrapped for Bn = 0.175 (see (3.26)), we find that in the presence
of an acoustic field bubble motion is still possible beyond this critical value, i.e.
for Bn = 0.18. For this value of Bn, the bubble rises during the expanding phase
of the bubble whereas remains stagnant when the bubble contracts. Eventually, for
even higher values of Bn, e.g. for Bn= 0.2, the model predicts that the rise velocity
becomes equal to zero and thus the bubble is entrapped.

It is noteworthy that the effect of Bn on the amplitude of volume oscillations is
negligible (not shown here for conciseness). However, as shown in figure 3(a), the
amplitude of radial oscillations depends strongly on the surface tension of the liquid–
air interface, and thus on the value of the Bond number, which acts as a restoring
force to maintain the bubble shape. Higher values of Bo result in bubbles which are
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FIGURE 3. (Colour online) Evolution of (a) bubble radius and (b) position of bubble
centre of mass for different values of Bo. The other parameter values are given in table 1.
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FIGURE 4. (Colour online) Evolution of (a) bubble radius and (b) position of bubble
centre of mass for different amplitudes of pressure oscillation. The other parameter values
are given in table 1.

susceptible to larger volume oscillations leading to a slight increase of their mobility;
the latter is not significant for the specific parameter values that we have considered
(see figure 3b).

The amplitude of volume oscillations also depends significantly on the amplitude
of the imposed pressure oscillations, a, far from the bubble (see figure 4a). For small
values of a, the difference in the bubble volume is not significant between the two
phases of the flow, i.e. contraction and expansion. On increasing the amplitude, a, this
symmetry breaks and the bubble undergoes substantial growth which is followed by
limited contraction. For amplitude a= 0.7, i.e. 70 % of the reference pressure, during
expansion the bubble radius increases by approximately 33 % which corresponds to
an increase in bubble volume of ∼235 %. On the other hand, during contraction the
minimum bubble radius reaches ∼88 % of its initial value, i.e. the volume decreases
at most by ∼32%. As expected, increasing the amplitude of bubble oscillations leads
to an increase of the mobility of the bubble (see figure 4b).

In figure 5 we examine the effect of Ar, which is a measure of the importance
of inertia in our system, on the bubble rise velocity. At this point, it is important
to mention that the particular selection of our scaling poses an inherent difficulty in
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FIGURE 5. (Colour online) Evolution of (a) bubble rise velocity and (b) position of bubble
centre of mass for different values of Ar; t and t′ denote the time scaled with f−1 and tv ,
respectively. The other parameter values are given in table 1.

the interpretation of our results when varying Ar while keeping fixed the value of Sr.
These two numbers are related to each other according to the following expression:
Ar=Sr2f 2Ro/g. Therefore, assuming that the characteristic time is fixed, i.e. a constant
imposed frequency, would imply that bubbles of different radii are examined with
fixed Sr and increasing values of Ar. Since lengths are scaled with Ro it would be
difficult to evaluate the dependence of the actual bubble rise velocity on Ar. To
overcome this problem, we introduce an alternative scaling for the length, using the
viscous length scale lv = (µ2/ρ2g)1/3, and for time, using the viscous time scale
tv = (µ/ρg2)1/3, which are solely based on liquid properties. Assuming a liquid with
density 2400 kg m−3 and viscosity 1 Pa s, we get that tv = 0.0163 s, lv = 2.605 mm
and lv/tv = 0.16 m s−1. We denote the new dimensionless position of the centre of
mass and dimensionless time as z′cm and t′, respectively; accordingly, the bubble rise
velocity, dz′cm/dt′, has been scaled with lv/tv = (µg/ρ)1/3. The new scaling allows a
direct comparison of the bubble rise velocity for different values of Ar. As depicted
in figure 5, increasing the value of Ar results in a considerable speeding up of the
bubble rising motion due to the increased effect of buoyancy. Note that in figure 5(a)
dz′cm/dt′ is plotted against t to clearly depict the dependence of the rise velocity for
all values of Ar for the same number of pressure cycles, whereas in figure 5(b) we
prefer to plot z′cm versus t′ since from the slope of these curves it is possible to infer
the rise velocity of the bubble, dz′cm/dt′. Moreover, as shown in figure 5(a), nonlinear
effects become prominent for the highest value of Ar that we have considered, i.e.
for Ar= 10.

The effect of Sr, over a wide range of values, is examined in figure 6. For very
small values of Sr, i.e. Sr = 0.0005, which correspond to high-frequency pressure
oscillations, the bubble does not have enough time to adjust to the changing pressure
field and therefore the amplitude of volume oscillations is reduced (see figure 6a)
while the rise velocity (see figure 6b) soon approaches the steady rise velocity for a
static pressure field dz′cm/dt′= (1/9)(1− (3/4)χBn)Ar2/3

≈0.0102; the latter expression
has been derived using (3.24) assuming Ṙ = 0, z̈ = 0 and ż > 0. The amplitude of
radial oscillations increases with increasing Sr indicating that the resonance frequency
of the system should be in the regime 0.001< Sr < 0.01. For even higher values of
Sr, i.e. Sr > 0.1, an asymptotic regime is reached where the behaviour of the system
is determined only by the amplitude of the imposed pressure oscillations.
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FIGURE 6. (Colour online) Evolution of (a) bubble radius and (b) bubble rise velocity
for different values of Sr. The other parameter values are given in table 1.
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FIGURE 7. (Colour online) Evolution of (a) bubble rise velocity and (b) bubble radius for
values of Sr which correspond to frequencies in the region of the resonance frequency. The
other parameter values are given in table 1.

As discussed in § 3.1.2, Sr which corresponds to the natural frequency of a pulsating
bubble in the absence of buoyancy effects is given by (3.30). For the parameter values
that we consider as our base case, this equation predicts that resonance should take
place for Sr ≈ 0.002185. Our numerical simulations indicate that this is a good
approximation of the natural frequency even in our case where buoyancy is important.
This is clearly demonstrated in figure 7 where we plot the evolution of the rise
velocity, dz′cm/dt′, and bubble radius, R, with time for three different values of Sr.
Near resonance the volume oscillations become maximized affecting the mobility
of the bubble in the viscoplastic material through two different mechanisms. The
first mechanism is related to the increased effect of buoyancy due to the maximized
bubble volume during the expansion phase that can be attained near resonance. The
second mechanism is related to the rapid growth of the bubble size inducing high
shear rates in the liquid surrounding the bubble which results in decreased effective
viscosity of the material.

These two mechanisms are always present when a bubble is subjected to an acoustic
field. We have already seen in figure 2 that even for conditions far from resonance the
bubble is able to rise for values of Bn slightly higher than the critical value. However,
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FIGURE 8. (Colour online) Evolution of the position of bubble centre of mass, zcm, for
different values of Bn. The value of Sr= 0.002185 corresponds to an imposed frequency
close to the natural frequency of the system. The other parameter values are given in
table 1.

the effect of these mechanisms on the stress field is significantly more near resonance,
and, as shown in figure 8, our simplified model predicts that for Sr = 0.002185 the
range of Bn for which bubble motion is possible widens considerably, i.e. even for
Bn = 0.25 the bubble rises slowly whereas bubble entrapment is predicted for Bn =
0.175 in the case of static pressure field.

5.2. Axisymmetric deformable bubble: two-dimensional model
So far, we have examined in detail the predictions of a simplified sphero-symmetric
model. In this part of our work, we perform simulations using a more rigorous model
that fully takes into account bubble deformability and the flow field surrounding the
bubble, assuming axial symmetry only. The details of the model are presented in § 4.
Note that for all the simulations that will be presented below, we have considered
R∞ = 50; considering values higher than this value (e.g. R∞ = 100) led to negligible
differences (see appendix B). Moreover, the exponential factor, N, which arises in (4.3)
was considered to be equal to 104 for all the simulations that will be presented below,
in line with our previous work (Tsamopoulos et al. 2008); considering values higher
than this value (e.g. N = 5× 104) led to negligible differences in the dynamics of
bubble motion (see appendix B).

Below, we determine the yield surface as the location where ‖T‖ = Bn = 0.1,
employing the Von Mises criterion. It is important to keep in mind, though, that
according to the Papanastasiou model, even for ‖T‖ < Bn, finite motion of the
material is allowed, albeit with very large viscosity, and therefore using this model
it is not possible to predict a true zone of unyielded material. In fact, in our case,
given the radial character of the flow and the fact that the liquid is considered to be
incompressible, we expect that the radial velocity will acquire small but finite values
even very far from the bubble and therefore we expect a material following the
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Papanastasiou model, and thus exhibiting no elasticity, should actually yield. On the
other hand, in the case of elastoviscoplastic materials, the material could exhibit true
unyielded zones, since in this case the material could also experience an elastic solid
deformation. Therefore, in the discussion that follows, we will still refer to a yield
surface but with the understanding that this does not correspond to a true boundary
between truly yielded and unyielded domains. It will rather be used as a convenient
way to study the evolution and visualize regions with relatively low viscosity (which
hereafter we will refer to as yielded regions) and regions with much higher viscosity
(which hereafter we will refer to as unyielded regions). It should also be noted that
the position of this pseudo-yield surface is quite sensitive to the value of N but its
evolution at different time instants is qualitatively similar.

Figure 9 shows the evolution of the bubble shape and the yielded (red) and
unyielded (grey) regions for the ‘base’ case while we depict four different isolines of
the second invariant of the stress tensor with values 0.1, 0.2, 0.3 and 1. We observe
that the bubble at all times acquires a nearly spherical shape while the stresses
monotonically decrease away from the bubble resulting in the presence of unyielded
material there; according to the Von Mises criterion the yield surface arises where
‖T‖ = Bn = 0.1. When the bubble rate of expansion (at t = 31.42 and t = 37.70) or
contraction (at t = 34.56) is at its peak, the stress field in the material surrounding
the bubble is maximized leading thus to the maximum size of the yielded regions.
At these time instants the yield surface appears to be nearly symmetric. For time
instants where the bubble volume has reached a maximum (at t= 32.99) or minimum
(at t = 36.13), the radial velocity decreases (see figure 10) and thus the stress
field reduces significantly resulting in a decrease of the size of the yielded regions.
Another characteristic of this system is that we do not observe at any time instant
the formation of an unyielded region near the equatorial plane. Such formations have
been reported by Tsamopoulos et al. (2008) in the case of a static pressure field,
due to the locally zero shear and normal stresses. However, in our case, the strong
hoop stresses that the liquid experiences adjacent to the liquid–air interface due to
the radial oscillations of the bubble do not allow such formations. Note that the
destruction of unyielded zones around the bubble equator has also been reported in a
freely oscillating bubble by Tripathi et al. (2015).

The velocity field around the bubble is depicted in figure 10. In this figure, we
assume a spherical coordinate system, the origin of which is placed at the bubble
centre of mass, and plot the radial velocity component for the same time instants
as in figure 9; the velocity profile for t = 37.70 is not shown since it looks very
similar to the one for t = 31.42 due to the periodic character of the flow. Clearly,
the velocity field around the bubble is non-symmetric which can be attributed to its
rising motion; a symmetric profile would be expected in the absence of buoyancy.
During the phase of expansion, the bubble increases its pace, due to the continuously
increasing effect of buoyancy. As it rises, it encounters unyielded material at the
top, whereas the material below has been yielded at earlier times. As a result, the
bubble, as it expands, encounters an area with high effective viscosity at the top and
low effective viscosity at the bottom which leads in turn to preferential expansion
towards the bottom part of the bubble. On the other hand, at t= 34.56 (for which the
bubble reaches its maximum rate of contraction), the bubble at a previous time instant
creates an unyielded region around it. Due to its contraction though at a next time
instant the bubble acquires smaller volume and thus decelerates covering less distance
leaving more yielded material at the top and resulting again in an asymmetry of the
effective viscosity of the material surrounding bubble. Thus, the fore–aft symmetry,
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(a) (b) (c)

(d) (e)

FIGURE 9. (Colour online) Yielded (red) and unyielded (grey) domains for the ‘base’ case
at different time instants: (a) t = 31.42, (b) t = 32.99, (c) t = 34.56, (d) t = 36.13, (e)
t = 37.70. Four isolines of the second invariant of the stress tensor with values 0.1, 0.2,
0.3 and 1 are shown. The yield surface is evaluated as the location where ‖τ‖=Bn with
N = 104. The other parameter values are given in table 1.

which would be expected in the case of a spherical bubble rising steadily in the limit
of low values of Ar, breaks and the flow field becomes non-symmetric for the case
of a pulsating bubble.

Next, we examine the effect of Bn on the rise velocity of the bubble. In
figure 11 we plot the evolution of the dimensionless velocity of the bubble, dzcm/dt
(figure 11a), along with the position of its centre of mass, zcm (figure 11b). For
the case of a Newtonian liquid we find a behaviour similar to that described
by our sphero-symmetric model, i.e. a sinusoidal dependence of the rise velocity
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FIGURE 10. (Colour online) Contour plots of the velocity field around the bubble: (a)
t= 31.42, (b) t= 32.99, (c) t= 34.56, (d) t= 36.13. We present the radial component in
spherical coordinates of the velocity; the origin of the coordinate system is taken at the
bubble centre of mass. The other parameter values are given in table 1.
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FIGURE 11. (Colour online) Evolution of (a) bubble rise velocity and (b) position of
bubble centre of mass for different values of Bn. The other parameter values are given in
table 1.

that follows the pressure oscillations. We should note, though, that although the
sphero-symmetric model is able to qualitatively describe the flow, it provides an
underestimation of bubble rise velocity. In the case of a viscoplastic material, the
picture changes radically since the sphero-symmetric model fails to capture certain
qualitative characteristics of the flow. As shown in figure 11(a), for each cycle of the
acoustic pressure field, the bubble velocity exhibits a double minimum at two different
time instants which coincide with the times where the bubble reaches its maximum
and minimum volume. As explained above, at these time instants the stresses decrease
significantly resulting in the decrease of the size of the yielded region around the
bubble causing a severe deceleration. Possibly, the failure of the sphero-symmetric
model to capture this behaviour can be attributed to our assumption of a simplified
flow field, as given by (3.5). The latter also leads to an underestimation of the second
invariant of the rate of strain tensor which in turn results in an underestimation of the
stress in the surrounding material. Therefore, the simplified sphero-symmetric model
also provides an underestimation of the critical value of Bn for bubble entrapment
since we clearly see in figure 11 that the bubble rises for values of Bn that can be
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FIGURE 12. (Colour online) Evolution of (a) bubble rise velocity and (b) bubble radius
for different values of Bo. The other parameter values are given in table 1.

as high as 0.5; note that according to Tsamopoulos et al. (2008) the critical value
for Bn for steady bubble rise has been evaluated to be approximately equal to 0.143.

In figure 12, we show how the bubble rise velocity and the bubble radius are
affected by the value of the Bond number. As already noted in the discussion
of figure 3, increasing the value of Bo results in volume oscillations with larger
amplitude; similar evolution of the bubble radius is also found here. We observe
negligible differences for the two highest values that are considered in this figure, i.e.
for Bo = 0.01 and Bo = 0.1, while a small decrease in the rise velocity is observed
for Bo= 0.001. For the lowest value of Bo (0.0001), though, we notice that besides
the considerable decrease of the overall rise velocity, its average value is significantly
higher during the expansion phase of the bubble and lower during the compression
phase. As noted above, even for the highest values of Bo that we have examined in
this study the bubble retains its spherical shape. To evaluate whether any deviations
from its spherical shape are important we may consider a spherical coordinate system
with origin the centre of mass of the bubble and decompose its shape in spherical
harmonics. Thus, we may evaluate the Legendre coefficients using the following
expression:

ci =
2k+ 1

2

∫ π

0
f (θ)Pk(θ) sin(θ) dθ, (5.1)

where θ denotes the azimuthal angle and f (θ) is the radial distance to the bubble
surface from the centre of the local spherical coordinate system. The evolution of the
Legendre decomposition of the shape of the bubble is shown in figure 13. As expected,
we find that the bubble shape is dominated by volume oscillations and c2, c3 and c4
remain small for all times while higher modes are negligible.

The effects of the amplitude of the imposed pressure oscillations, a, on the bubble
rise velocity and position of the centre of mass are examined in figure 14. We observe
in figure 14(a) that for large values of a the local minimum in the rise velocity, which
corresponds to the time where the bubble volume reaches its maximum point, tends
to disappear. This is due to the fact that even though the rate of change of the
bubble radius is very small, the bubble has a large enough size so that only the
effect of buoyancy is sufficient to overcome the yield stress of the material and thus
maintain its motion. On the other hand, the local minimum which corresponds to the
point of minimum bubble volume also increases due to the higher level of stresses
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FIGURE 13. (Colour online) Variation with time of selected Legendre coefficients of
the shape of the bubble for the ‘base’ case. The decomposition is done in a spherical
coordinate system located on the instantaneous centre of mass of the bubble. The other
parameter values are given in table 1.

0 10 20 30 40 50 60
t

10 20 30 40 50 60
t

dz
cm

/d
t

0.030

0.025

0.040

0.035

0.020

0.015

0.010

0.005

1.5

1.0

0.5

0

zcm

a = 0
a = 0.05
a = 0.3
a = 0.7

(a) (b)

FIGURE 14. (Colour online) Evolution of (a) bubble rise velocity and (b) position of
bubble centre of mass for different amplitudes of pressure oscillation. The other parameter
values are given in table 1.

that the fluid experiences with increasing amplitude of the pressure oscillations also
maintaining the overall stress in the material above its yield stress. Moreover, as
discussed in § 5.1, increasing the amplitude, a, leads to a break of symmetry with the
bubble undergoing substantial growth during the expansion phase which is followed
by limited contraction; the evolution of the bubble radius looks very similar to the
one shown in figure 4(a) and it is not shown here for conciseness. This is also clearly
reflected in the evolution of the bubble rise velocity which is shown in figure 14(a).
We have also examined the effect of different values of the reference pressure while
keeping a constant. Such a situation would arise, for example, if the bubble was
located at larger depths; however, we found that varying Pr between 2000 and 10 000
led to negligible differences in the dynamics of the bubble (not shown here for
brevity).

To examine the effect of Ar and Sr, we again employ the alternative scaling
for the length and time using the viscous scales, as done in § 5.1, and derive the
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FIGURE 15. (Colour online) Evolution of the bubble rise velocity for different values of
Ar. The other parameter values are given in table 1.

new dimensionless position of the centre of mass, z′cm, time, t′, and bubble rise
velocity, dz′cm/dt′. As shown in figure 15, on increasing the value of Ar the rise
velocity increases due to the increased effect of buoyancy. For low values of Ar, the
average rise velocities of the compression and expansion phases are similar since the
bubble has adequate time to adjust to the changing pressure field. With increasing
values of Ar, the effect of buoyancy becomes more important and the flow becomes
dominated by the rising motion of the bubble causing a substantial area around the
bubble to remain yielded even at times where the rate of expansion or compression
is very small. As noted above, increasing the value of Ar, while keeping fixed the
value of Sr also implies that we consider bubbles with increasing radius which also
explains why the amplitude of rise velocity oscillations increases, i.e. due to the
increased size of the amplitude of volume oscillations. The asymmetry between the
compression and expansion phase is also apparent in this figure, especially for the
case of moderate values of Ar, i.e. for Ar = 1, while for higher value of the local
minimum corresponding to the point of maximum volume it disappears.

Finally, we examine the effect of excitation frequency in figure 16. As discussed in
§ 5.1, in order to maximize the effect of the acoustic field on the bubble motion and
to minimize the energy damping, it is reasonable to choose a frequency in the region
of the resonance frequency of the system. Our axisymmetric simulations indicate
that, in accordance with the prediction of the sphero-symmetric model and (3.29),
resonance takes place in the region of Sr= 0.0022 (see figure 16c). To examine how
effective acoustic excitation can be in mobilizing a bubble in viscoplastic liquids,
we have performed simulations at resonance frequency for a wide range of Bn as
shown in figure 16(d). Interestingly we find that motion of the bubble takes place for
the highest value of Bn that we have examined, i.e. for Bn = 20, a value which is
more than one order of magnitude higher than the critical Bn for bubble entrapment
in a static viscoplastic liquid. It is therefore evident that acoustic excitation can be
an extremely efficient way to mobilize bubbles inside a viscoplastic material. For
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FIGURE 16. (Colour online) Evolution of bubble rise velocity for (a) low values of Sr,
(b) high values of Sr and (c) near resonance. (d) Evolution of the bubble centre of mass
for different values of Bn near resonance. The other parameter values are given in table 1.

oscillations of very high and very low frequency (see figure 16a,b) the steady rise
velocity approaches that for a static pressure field. In the former case, the reason is
because the viscoplastic liquid does not have enough time to adjust to the rapidly
changing pressure field, whereas in the latter case the change in the pressure field
is so slow that the liquid experiences a reduced level of stress due to the radial
oscillation and the stress field is dominated by the rising motion due to buoyancy.

So far, we have performed a thorough parametric study and have investigated
in detail the effect of all dimensionless groups of our system. However, in
experiments it is often difficult to control each parameter separately while keeping
the rest fixed. An important parameter, though, which can be easily fixed is the
size of the bubble at equilibrium. Therefore, it is also of value to examine the
effect of the bubble radius on the particular system, while keeping the liquid
properties fixed. To this end, we define the following dimensionless groups: the
Morton number, Mo = gµ4/ρσ 3, the dimensionless frequency, Ω = f (µ/ρg2)1/3,
the yield stress parameter, Υ = τy/(ρg2µ2)1/3, and dimensionless reference pressure,
Π =Pr/(ρg2µ2)1/3. These dimensionless groups depend solely on the liquid properties
and for our ‘base’ case acquire the following values: Mo= 32.7, Ω = 3.26, Υ = 0.16
and Π = 2000. Keeping the values of these groups constant and varying only the
bubble radius, we end up with the values of the other dimensionless groups that are
shown in table 2.

In figure 17 we plot the evolution of the bubble rise velocity, dz′cm/dt′, for six
different bubble radii and it can be clearly seen that the viscoplastic character of the
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FIGURE 17. (Colour online) Evolution of the position of bubble centre of mass for
bubbles of different size. We consider a liquid with Mo = gµ4/ρσ 3

= 32.7 and Υ =
τy/(ρg2µ2)1/3 = 0.16. The dimensionless reference pressure and angular frequency are
Π = Pr/(ρg2µ2)1/3 = 2000 and Ω = f (µ/ρg2)1/3 = 3.26, respectively.

Radius (mm) 0.5 1 2 5 7.5 10

Bn 0.834 0.417 0.208 0.083 0.055 0.0417
Ar 0.00706 0.0565 0.452 7.06 23.83 56.5
Bo 0.118 0.47 1.883 11.77 26.48 47.1
Sr 0.05885 0.117 0.235 0.588 0.8827 1.177
pr 10 425 5212 2606 1042 695 521
Ro/lv 0.192 0.384 0.767 1.918 2.877 3.837
a 0.3 0.3 0.3 0.3 0.3 0.3

TABLE 2. Typical values of the dimensionless groups for bubbles of different size for
a liquid with Mo = gµ4/ρσ 3

= 32.7 and Υ = τy/(ρg2µ2)1/3 = 0.16. The dimensionless
reference pressure and angular frequency are Π = Pr/(ρg2µ2)1/3 = 2000 and Ω =
f (µ/ρg2)1/3 = 3.26, respectively, and lv = (µ2/ρ2g)1/3 denotes the viscous length scale.

fluid is most prominent for bubbles of smaller radii where we observe the two local
minima of the rise velocity that arise inside each pressure cycle. For bubble of large
radius, the flow is dominated by buoyancy effects and the system tends to a more
Newtonian behaviour.

In the latter case, the bubble also is more deformable and acquires the shape of
a spherical cap as shown in figure 18 where we also plot the yielded (red) and
unyielded (grey) regions of the viscoplastic liquid. During a period of pressure
oscillation the bubble grows and contracts retaining its deformation which also affects
the shape of the yield surface, although the size of the indentation decreases as the
bubble reduces in size tending to recover its oblate shape. It is also noted that an
island of unyielded material arises either above the bubble, during the expansion
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(a) (b) (c) (d)
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FIGURE 18. (Colour online) Yield regions and bubble shapes: (a) t= 62.83, (b) t= 63.62,
(c) t= 64.40, (d) t= 65.19, (e) t= 65.97, ( f ) t= 66.76, (g) t= 67.54, (h) t= 68.33. The
yield surface is evaluated as the location where ‖τ‖=Bn with N= 104. The dimensionless
parameters are the same as for figure 17 and we consider a bubble with nominal radius
at equilibrium equal to 7.5 mm, i.e. Ro/lv = 2.878.

phase, or below the bubble, during the contraction phase. The size of this island
grows at times where the rate of expansion or contraction decreases, i.e. at times
where the bubble volume reaches its minimum or maximum point, and eventually
merges with the outer unyielded domain which grows in size at the same time.

We have also examined the case of a liquid with the same properties and bubble of
the same size as in figure 18 but for a frequency that corresponds to Sr= 0.2 which is
close to the natural frequency of the system (Srn≈0.09). As expected, the deformation
of the bubble is much more marked in this case and even leads to rupture at the end
of the eleventh cycle (see figure 19). Moreover, the large deformations of the bubble
and high amplitude of the volume oscillations that the bubble experiences cause a
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(b) (c)(a) (d)

(e) (f) (g)

FIGURE 19. (Colour online) Yield regions and bubble shapes for Ω= 0.738: (a) t= 31.42,
(b) t = 32.20, (c) t = 32.99, (d) t = 33.77, (e) t = 34.56, ( f ) t = 35.34, (g) t = 35.80.
The yield surface is evaluated as the location where ‖τ‖ = Bn with N = 104. The other
dimensionless parameters are the same as for figure 18.

significant increase in the size of the yielded region that surrounds the bubble; the
yield surface, though, is within the region of our computational domain at all times.

6. Concluding remarks
We have investigated the rise of a bubble in a viscoplastic material when

it is excited by an acoustic pressure field. We have derived both a simplified
sphero-symmetric model and performed two-dimensional axisymmetric simulations.
Qualitative agreement is found between the simplified approach and the detailed
numerical simulations, although it is important to note that some of the characteristics
of the flow cannot be captured by the simplified model. The simplification of the
flow field that surrounds the bubble renders the sphero-symmetric assumption valid
only in the limit of low Bn.

We examined in detail the effects of the yield stress and the capillary, viscous
and gravity forces along with the effects of frequency and amplitude of pressure
oscillations. Our detailed axisymmetric simulations indicate that the rise velocity, for
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sufficiently high yield stress and far from resonance, typically exhibits two local
minima during a pressure cycle because the size of the yielded region decreases
significantly as the bubble reaches its minimum or maximum volume size. The
decrease in the rise velocity at the point of minimum bubble volume is less significant
with increasing amplitude of the pressure oscillations. Far from resonance and for the
parameter range that we have examined, the bubble retains a shape which is nearly
spherical except for bubbles of larger size where the bubble may acquire the shape
of a spherical cap. Near resonance, though, and for sufficiently large bubbles their
deformation can be more severe and may even lead to bubble rupture.

Our simulations demonstrate that bubble rise motion is possible even for values of
Bn which are one order of magnitude higher than in the case of a quiescent liquid.
Therefore, the method of acoustic excitation can be quite efficient in enhancing the
mobility of bubbles inside a viscoplastic material and thus can play an important role
in a wide range of applications, which range from the process of fermentation or the
aeration of wastes to the performance of adhesives or structural materials or cosmetic
products. In such materials the effect of material elasticity may be quite important
requiring the adoption a more general constitutive model along the lines presented by
Fraggedakis et al. (2016a,b). In materials such as fresh concrete, material elasticity is
very high (∼700 Pa) allowing the use of the simpler viscoplastic models used in this
work. Extending the present work to study elastoviscoplastic materials is under way.
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Appendix A
A mass of freshly placed concrete is usually honeycombed with entrapped air. If

allowed to harden in this condition, the concrete will be non-uniform, weak and
porous, and poorly bonded to the reinforcement; it will also have a poor appearance.
Typically, the de-aeration process involves the use of an internal vibrator that is
dropped inside the fresh concrete to enhance the mobility of air bubbles and reduce
voids.

A concrete vibrator has a rapid oscillatory motion that is transmitted to the
fresh concrete and induces a sinusoidal compression wave. The maximum pressure
generated by the transmission of the compression wave can be evaluated using the
following formula:

Pmax = ρcApf , (A 1)

where c denotes the wave velocity, Ap is the maximum particle displacement and f is
the angular frequency. For internal vibrators that are used in practice, the amplitude
of oscillation is typically in the range 0.25–1 mm while the angular frequency varies
between 50 and 400 Hz. Moreover, researchers have reported wave velocities between
60 and 240 m s−1 (ACI Committee 1996).

Assuming an amplitude of oscillation equal to 0.5 mm, a typical angular frequency
of 200 Hz, a typical wave velocity of 150 m s−1 and density of concrete of
2400 kg m−3, we deduce that the maximum pressure generated by the transmission
of the compression wave is Pmax = 0.036 MPa. We also assume that initially
the bubble lies at a depth of h = 1 m and therefore the reference pressure
Pr = Pair + ρgh ≈ 0.12 MPa; Pair denotes the atmospheric pressure. Finally, if we
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FIGURE 20. (Colour online) Evolution of the bubble rise velocity for different values of
(a) R∞ and (b) N. The other parameter values are given in table 1.

consider the case of a liquid with viscosity of 1 Pa s, yield stress of 10 Pa and a
typical surface tension of 0.05 N m−1, the values of the various dimensionless groups,
as defined in §§ 3 and 5, for bubbles with radius in the range of 0.5–10 mm are
given in table 2.

Appendix B

For all the two-dimensional simulations that are presented in this paper, we have
considered R∞ = 50. In figure 20(a) we examine the effect of doubling the radius
of our computational domain (i.e. R∞ = 100) and find that the evolution of the
rise velocity is not affected significantly. Moreover, in figure 20(b) we examine the
sensitivity to the exponential factor, N, which arises in (4.3). Note that, for all the
simulations presented in this paper, we consider N to be equal to N = 104 in line
with our previous work (Tsamopoulos et al. 2008). As shown in figure 20(b), varying
the value of N leads to negligible differences in the dynamics of bubble motion.
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