
Robotica (2017) volume 35, pp. 809–831. © Cambridge University Press 2015
doi:10.1017/S0263574715000831

3D SLAM in texture-less environments using rank
order statistics
Khalid Yousif∗, Alireza Bab-Hadiashar and Reza
Hoseinnezhad
School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne,
VIC 3001, Australia

(Accepted September 21, 2015. First published online: October 21, 2015)

SUMMARY
We present a real time 3D SLAM system for texture-less scenes using only depth information
provided by a low cost RGB-D sensor. The proposed method is based on a novel informative
sampling scheme that extracts points carrying the most useful 3D information for registration. The
aim of the proposed sampling technique is to informatively sample a point cloud into a subset of
points based on their 3D information. The flatness of a point is measured by applying a rank order
statistics based robust segmentation method to surface normals in its local vicinity. The extracted
keypoints from sequential frames are then matched and a rank order statistics based robust estimator
is employed to refine the matches and estimate a rigid-body transformation between the frames.
Experimental evaluations show that the proposed keypoint extraction method is highly repeatable
and outperforms the state of the art methods in terms of accuracy and repeatability. We show that
the performance of the registration algorithm is also comparable to other well-known methods in
texture-less environments.

KEYWORDS: SLAM; Localization; Mapping; RGB-D; Texture-less.

1. Introduction
The availability of affordable RGB-D sensors has generated intense interest in creating dense 3D
models of the environment.1–3 These sensors are able to record RGB images as well as pixel depth
information. A popular family of this type of sensors is developed by Microsoft and its latest version,
called Kinect 2.0, has a resolution of 1920 × 1080 pixels and can measure distance of around 5 m.
The affordability of these sensors makes them a very attractive 3D sensor for different computer
vision and robotics applications.

In particular, RGB-D sensors are very useful for autonomous navigation applications. Simultaneous
Localization and Mapping (SLAM)4 is the task of estimating the pose of a moving sensor and mapping
its unknown environment, simultaneously. The SLAM problem has been intensely studied over the
past couple of decades and many solutions have been developed for specific applications,4 including
generation of dense 3D maps. These maps are rich in information and are useful for object recognition
and manipulation, collision avoidance and path planning. A 3D representation of the environment is
also useful in augmented reality applications that facilitate interactions between the real and virtual
environments.1

The use of RGB-D sensors for 3D SLAM poses a number of challenges. In particular, mobile robots
are commonly required to navigate in texture-less areas such as offices, warehouses and residential
buildings. The registration of frames in such texture-less environments is difficult as there are not
readily available visual cues to align those frames. This issue is illustrated in Fig. 1 which shows a
typical corridor in a university building. Furthermore, the size of data generated by RGB-D sensors
makes it difficult to capture and process their data in real-time.

* Corresponding author. E-mail: s3362555@student.rmit.edu.au; abh@rmit.edu.au; rezah@rmit.edu.au

https://doi.org/10.1017/S0263574715000831 Published online by Cambridge University Press

http://orcid.org/http://orcid.org/0000-0002-6192-2303
https://doi.org/10.1017/S0263574715000831

810 3D SLAM in texture-less environments

Fig. 1. (Top) A typical corridor in an office building with limited texture information. (Bottom) Alignment of
multiple image using either (Left) only 3D features (Right) or only visual features.19

The paper outlines the problem of 3D SLAM in texture-less environments. Our aim is to develop
a fast and accurate method that does not rely on the information provided by the RGB images. This
enables us to study the limits of using structures for solving 3D SLAM. To fulfill this goal, we
developed a sampling strategy to extract salient geometric 3D keypoints from sequential frames. We
then assign a descriptor to each feature, match them using their descriptors and refine the matches
and calculate a rigid-body transformation between the two frames using a robust estimator.5 The
relative transformations are then concatenated up to the current time resulting in a global pose. We
finally employ a loop closure and pose graph optimization technique6 in order to reduce the drift and
obtain a globally consistent trajectory. Finally, a map is constructed by projecting and transforming
the points according to the optimized trajectory. An example of a map that is obtained using the
proposed method is shown in Fig. 2. Extraction and matching of 3D keypoints for a typical point
cloud captured by an RGB-D sensor is very time consuming. The emphasis here is on the selection of
a small subset of points that can be used to register two point clouds with similar registration accuracy
to using the entire sets.

The main contribution is the development of an informative sampling based 3D feature extraction
technique. The method is able to exploit the geometric information of the points and their neighbors
to identify points that carry the most useful information. We call the points resulting from our
informative sampling scheme: Ranked Order Statistics (ROS) keypoints. We show that the proposed
keypoint extraction method is highly repeatable and can obtain a subset of points of the original point
cloud that results in a very accurate registration compared to using a point cloud containing many
more points (≈15 times more points). The main advantage of using this sampling technique is that
it would reduce computational time significantly. In fact, we will show that our method outperforms
several state of the art registration methods both in accuracy and computational efficiency. This paper
is an extended version of work published in ref. [20]. We extend our previous work as follows:

� Evaluating the repeatability of the proposed 3D keypoint extraction method in comparison to
other well-known methods.

� Adding loop closure and global optimization steps for achieving global consistency. The proposed
scheme stores only ROS keypoints at certain increments of motion (translation or rotation) and
uses those to speed up loop closure detection.

� Performing additional experiments for the evaluation of the accuracy and efficiency of registration
methods using a new rotation and translation sequence.

� Evaluating the effect of point cloud pre-processing.
� Evaluating 3D descriptors for point cloud based SLAM.
� Evaluating the key-frame selection criteria on the pose graph optimization
� Evaluating the performance of the proposed method using publicly available benchmark datasets.8

� Comparing the proposed method with the state of the art RGBD-SLAM v29 using both our own
sequences and the public datasets.

https://doi.org/10.1017/S0263574715000831 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000831

3D SLAM in texture-less environments 811

Fig. 2. Three views of a the constructed 3D map of an open office area using the proposed 3D registration and
mapping algorithm.

The rest of the paper is organized as follows. In Section 2 the related work in this area are reviewed.
We will present our informative sampling based feature extraction method in Section 3 and our 3D
registration and mapping method in Section 4. Results are presented in Section 5 followed by a
conclusion in Section 6.

2. Literature Review

2.1. RGB-D SLAM
The use of Microsoft Kinect for 3D SLAM was popularized by Henry et al.2 They used a Microsoft
Kinect to capture RGB-D data in sequential frames and estimated the camera pose and obtained a
3D reconstructed environment. In their method, Features from Accelerated Segment Test (FAST)
keypoints10 were extracted and matched between sequential RGB images and Random Sample
Consensus (RANSAC) method was used to refine those matches and estimate an initial transformation.
This transformation was refined using a generalized-version of the Iterative Closest Point (ICP)11

algorithm. Global consistency was achieved by applying a Sparse Bundle Adjustment method
and loop closure was detected by matching the current frame to previously collected key-frames.
Endres et al.3, 9 proposed a similar method called “RGB-D-SLAM” in which Scale Invariant Feature
Transform (SIFT),12 Speeded Up Robust Features (SURF)13 or Oriented FAST and Rotated BRIEF
(ORB)14 keypoints were used in place of FAST keypoints and the pose-graph optimization was used
instead of Bundle Adjustment for global optimization. Du et al.15 extended Henry et al.’s method by
incorporating on-line user interaction and feedback during the map building step. User input enabled
the system to recover from registration failures which may be caused by a fast moving camera. Audras
et al.16 outlined the problem of false feature matching and instead, used an appearance based optical
flow method for estimating the camera pose and building a 3D map.

https://doi.org/10.1017/S0263574715000831 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000831

812 3D SLAM in texture-less environments

To avoid using the RGB images, Newcombe et al.1 proposed a GPU based RGB-D mapping
algorithm called “KinectFusion”. In their method, an ICP variant for registration in which the
current measurement is matched with the full growing surface model was proposed as opposed
to matching sequential frames. They also implemented a segmentation step which divided the scene
into foreground and background and was able to detect moving humans that would be present in
the scene. This allowed user interaction during the map building procedure without deteriorating the
accuracy of the estimated transformations and the map. The major downside to their approach is
that it is computationally expensive because of the requirement to store and process the full dense
volumetric representation of the constructed model in GPU memory and as such, is not scalable for
large environments. Whelan et al.17 proposed an extension to KinectFusion which outlined those
problems and allowed the region of the environment that is mapped by the KinectFusion algorithm to
vary dynamically, allowing their approach to map larger scenes. Our approach is similar as we also do
not rely on the availability of RGB keypoints for registration. However, since ICP only works when
there is a good initial alignment, we advocate the use of geometric 3D keypoints for registration. In
addition, both of the aforementioned approaches are GPU based methods, whereas our approach uses
CPU only for processing.

Bachrach et al.18 proposed a visual odometry and RGB-D mapping system for unmanned air
vehicles (UAVs). Their method relied on pre-processing and extracting FAST keypoints from
sequential RGB images at different pyramid levels, followed by a rotation estimation step that
improved the efficiency of feature matching by limiting the size of the search window. An 80-byte
descriptor was assigned to each feature, consisting of the brightness values of the 9 × 9 pixel patch
around the feature and omitting the bottom right pixel. Feature matching was then performed by
finding the mutual lowest sum of squared difference (SSD) score between the descriptor vectors. In
order to refine the matches which were then used to estimate the transformation between frames, a
greedy algorithm was employed. The authors suggested matching the current frame to a previously
stored key-frame instead of matching consecutive frames for reducing the drift in the motion
estimates.

Kerl et al.20 recently proposed a 3D SLAM method that uses both photometric and geometric
information for registration. In their implementation, they use all the points for registration and
optimize both intensity and depth errors. Another recent method proposed by Keller et al.21 allows
for 3D reconstruction of dynamic environments by automatically detecting dynamic changes in the
scene. Hu et al.22 also proposed a 3D SLAM method that used a heuristic switching algorithm to
choose between an RGB-D mapping approach and a 8-point RANSAC monocular SLAM, based on
the availability of depth information. A 3D Iterative Sparse Local Submap Joining Filter (I-SLSJF)
was then used to merge the two generated maps. In our previous work,19 we outlined the problem of
3D registration in dark environments and proposed a method that switches between RGB and Infrared
(IR) images for visual feature extraction and matching based on the brightness of the RGB image.
A highly robust estimator5 was then employed to estimate the transformation between frames. The
estimate was then refined using an ICP algorithm. This method fails in cases where both the RGB
and the IR images contain insufficient visual information, since ICP alone fails to provide an accurate
estimate without being provided with a good initial guess. The method proposed in this paper is
designed to overcome this issue solely based on using depth information.

2.2. Keypoint detection in 3D
Three dimensional keypoints are typically an extension of their 2D counterparts. For instance, the well-
known Harris corner detector23 has been implemented in 3D and is available in the point cloud library
(PCL).24 In the 3D version, surface normals were used in place of image gradients .25 Similarly SIFT,12

which is a blob detector to extract image patterns that differ from their immediate neighborhood in
terms of intensity, color and texture, has also been extended to in 3D and is available in PCL. In
the 3D implementation, instead of comparing a pixel with its neighboring pixels in an image, a 3D
point is compared to its neighbors by using a kd-tree search based on the Euclidean distance. Gelfand
et al.26 proposed a sampling strategy that groups the point cloud data into stable points (constraining
points) and non-stable points (that have no effect on the transformation estimation). This is achieved
by analyzing the contribution of the force (translational) and torque (rotational) components by each
pair of points using a point-to-plane error metric. The main shortcoming of this method is that it is

https://doi.org/10.1017/S0263574715000831 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000831

3D SLAM in texture-less environments 813

Fig. 3. A comparison between different sampling techniques. The point clouds after: (a) uniform sampling (b)
ISS (c) covariance keypoints (d) the proposed keypoint extraction method (ROS).

optimized for a specific metric and it becomes suboptimal when other metrics (such as the squared
Euclidean distance error metric employed here) are used. An example of this method is illustrated
in Fig. 3 (c) which shows some points with significant local curvature being omitted from the point
cloud (such as the top part of a chair). Zhong27 proposed a 3D feature detector and descriptor called
Intrinsic Shape Signatures (ISS). This method relies on exploiting the information provided by the
covariance matrix that is constructed using surface normals estimates. The method extracts keypoints
based on two measures: points that correspond to the smallest eigenvalues of the covariance matrix
representing those with large variations, and the ratio between successive eigenvalues in order to
discard redundant points that have a similar spread.

It’s important to know that the above 3D feature extraction methods are mainly developed for
general 3D modeling applications and those are not particularly optimized for SLAM purposes. For
instance, our experiments showed that Zhong’s method27 finds many feature points on commonly
encountered planar surfaces such as office walls and doors (see Fig. 3(b)). Some of those points are
ill-conditioned for registration purposes and can deteriorate the estimation outcome.

This paper addresses the problem of aligning RGB-D images in an environment that may not
contain sufficient texture information for 3D registration. Our proposed method extracts unique 3D
keypoints from sequential frames using a novel ROS based informative sampling segmentation
method. The extracted 3D keypoints are then matched using SHOT descriptors28 and finally,
the modified selective statistical estimator (MSSE)5 is employed to segment the good matches
and estimate a 6DOF transformation between the two frames. The estimated transformations are
concatenated up to the current time in order to obtain a global transformation of the camera. Finally,
we construct pose graph consisting of nodes (frames) and edges (constraints) and optimize the camera
trajectory using a global optimization method.6 The map in obtained by projecting and aligning the
points into a global reference frame using the optimized trajectory. Figure 4 shows a system overview
of the proposed SLAM method. The above steps are outlined in the following sections.

3. Extracting Geometric Keypoints Using Ranked Order Statistics
The aim of our proposed keypoint extraction method is to informatively down-sample a point cloud
into a subset of points that geometrically differ from their immediate neighborhood. This is somewhat
similar to the idea behind geometrically stable sampling for ICP.26 However, we present an efficient
method that finds the sample with the most information directly using the statistical analysis of their
flatness. The main idea is to segment the points into two main groups: points that are locally flat

https://doi.org/10.1017/S0263574715000831 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000831

814 3D SLAM in texture-less environments

Fig. 4. A system overview of the proposed SLAM method.

and points that have significant local curvature. The details of the implementation of this method are
presented in Algorithm 1. The input to this method is a point cloud with a normal vector calculated at
every point. We then calculate the average of the squared angles between each point’s normal and the
normals of its N nearest neighbors which are found using a kd-tree search. The angles are calculated
using the following equations:

φ = arccos(pi.qf) (1)

θi =

N∑
j=1

φ2
j

N
; i = 1 . . . n, (2)

where φ is the positive angle between two normal vectors pi (a query point) and qf (a neighboring
point), n is the number of points in the point cloud and θi is the average angle between normals (of the
query points and all its neighbors). The average squared angle θi which is calculated for every point
in the point cloud, is considered as an error measure that specifies the similarity of a point’s curvature
to its neighbors. Therefore, for points associated with a θi value close to zero, the orientations of

Algorithm 1 Step-by-Step Algorithm of Proposed Feature Extraction Method
1: Input: Point cloud with Normals Pn

2: Output: Sampled Point cloud Pd

3: Initialize and clear vector α;
4: for i = 0 to length(Pn) do
5: Find N nearest neighbors to query point i;
6: for j = 1 to N do
7: Calculate angle between normals (φj) of query point and its neighbor j ;
8: Add φ2

j to the vector α;
9: end for

10: Calculate the average of the angles in vector α (θ);
11: Add θ to a vector;
12: end for
13: Sort θ values in an ascending order and store in (rθ);
14: Apply the MSSE (4) to find transition point (k′) that separates the two groups;
15: Store indices associated with points (from Group 2) that have sorted indices > k′ and < k′ + 400

in indices vector KIndices ;
16: Store points from Pn associated with KIndices into Pd ;
17: return Pd ;

https://doi.org/10.1017/S0263574715000831 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000831

3D SLAM in texture-less environments 815

normals of the point and its neighbors are similar (such as points lying on a flat plane) regardless of
the normal vector’s orientation at those points (i.e. regardless of which plane they lay on). On the
other hand, the points associated with higher residual values differ from their neighborhood and carry
more useful information for registration purposes.

To further clarify this point, let us assume that there are two planes perpendicular to each other.
Those points with the smallest residuals correspond to points lying on either one of the two planes.
However, we are mainly looking for the points that lay close to the intersection between the two
planes. In this scheme, those correspond to points with higher residual values.

In the next step, we sort all the θi values (those are all positive) in ascending order and store those
in the vector rθ . The final step is to find the transition point that separates the two aforementioned
groups. A ROS based segmentation technique (MSSE)5 is employed for this segmentation. This
method is outlined as follows.

3.1. Robust segmentation
Although there are many techniques to conduct robust segmentation, we chose MSSE because its
implementation is straight forward and runs efficiently.29 In MSSE, the segmentation is conducted
iteratively by first calculating the standard deviation of sorted data using the first k sorted values
(initial value of k corresponds to the assumed minimum percentage of points included in the first
segment) as follows:

σ 2
k =

k∑
i=1

r2
θi

n − p
, (3)

where rθi is ith data in the sorted vector rθ and p is the dimension of the model. The transition point
k′ is found by iteratively incrementing k until the following condition is met:

rθk′+1
> T σk′, (4)

where T is a constant factor which is set to 2.5 and includes around 99% population of a normal
distribution.

3.2. Keypoint selection
The points associated with values in rθ vector beyond the transition point (GROUP 2) are deemed
to have statistically significant local curvature. Figure 5 shows the classification of different points

0 500 1000 1500 2000 2500 3000 3500
0

0.05

0.1

0.15

0.2

0.25

Sorted point index (i)

R
es

id
ua

ls

T σi

Sorted resdiuals (rθ(i))

Group 2 (points
with significant
local curvature)Transiction

Point (k’)

Group 1 (Points with similar normal vector
orientations to neighbors)

Fig. 5. Classification of points based on the calculated residuals using the MSSE. The extracted keypoints are
those chosen from Group 2 (points with significant local curvature).

https://doi.org/10.1017/S0263574715000831 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000831

816 3D SLAM in texture-less environments

based on the calculated θ values using the MSSE constraint (4) starting at a k associated with 20% of
all data. Since these are sorted values, group of points with the highest values (e.g. last 5% of sorted
values) are likely to include points with gross measurement errors (outliers such as outside range
values returned by the sensor). The points associated with the remaining members of GROUP 2 are
then chosen as keypoints (called ROS keypoints).

Our extensive experiments showed that although the exact number of chosen points does not affect
the registration accuracy, having around 400 keypoints provides a good balance between registration
accuracy and speed. Figure 3 shows a comparison between the proposed method and other feature
extraction techniques. In our experiments, ROS keypoints are always chosen as ones associated with
the first 400 sorted values of GROUP 2.

4. 3D Registration and Mapping
In the following sections, we will discuss the steps of our proposed 3D registration and mapping
method which are outlined in Algorithm 2.

Algorithm 2 Step-by-Step Algorithm of Proposed 3D Registration and Mapping Method
1: Input: Point cloud (previous frame) Pt , point cloud (current frame) Ps)
2: Output: Transformation between frames T , Global pose of camera Gn, Map M

3: Filter point clouds;
4: Uniformly down-sample Pt and Ps to approximately ≈ 4000;
5: Calculate normal vectors at each point in Pt and Ps ;
6: Extract ROS keypoints from Pt and Ps as described in Algorithm 1;
7: Assign SHOT descriptors to each feature point in Pt and Ps ;
8: Initially match the extracted keypoints between Pt and Ps using their descriptors;
9: Obtain the inliers (good matches) using MSSE and estimate the 6DOF transformation T between

the two consecutive frames;
10: Concatenate the estimated transformations to obtain a global pose of the camera Gn.
11: Transform and map (M) the points with respect to a global reference frame;
12: return T , Gn and M;

4.1. Pre-processing steps
To improve the efficiency and accuracy of the registration, we apply a pass-through filter to exclude
points that are more than 4 m away from the sensor (due to the decrease in depth precision the
further the points are from the camera). We then uniformly sample the point cloud (containing
around 300, 000 points) using a voxel grid in which the 3D space is divided into many small 3D
boxes (voxels). All points lying inside a box (with pre-defined dimensions) are represented by their
centroid. As a result, the minimum distances between points in the point cloud are constrained and
the total number of points are reduced. The point cloud spatial resolution decreases the further the
scene is from the RGB-D sensor. As such, using a pre-defined voxel grid size results in point clouds
with varying number of points in each frame, depending on the depth information in the scene (e.g.
in our experiments, point clouds consisted of around 2000 to 7000 points). To insure that the sampled
points are distributed fairly uniformly in different frames with varying depth, we assign a variable
voxel leaf size to every frame based on computing the point cloud resolution which is calculated by
finding the average distance between each point in the point cloud and its nearest neighbors. The
voxel leaf size can be calculated using the following equation:

� = C × ϕ, (5)

where � is the voxel leaf size, ϕ is the calculated point cloud resolution and C is a pre-defined
constant. This constant is defined based on approximately how many points the user wishes to obtain.
In our experiments, the above procedure reduces the number of points to around 4000 points (using
a constant factor of 11).

https://doi.org/10.1017/S0263574715000831 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000831

3D SLAM in texture-less environments 817

Fig. 6. Example of estimated surface normals for a subset of points using a small search radius (left) large search
radius (right) (Courtesy of and permission granted by Radu B. Rasu30).

4.2. Normal vector estimation
We estimate the normal to a surface at a given point by fitting a plane to the point and its neighbors
in a variable search area that is calculated in a similar way to the method explained in Section 4.1.
The search area is intentionally large to include points from adjacent surfaces, therefore affecting the
surface normals near edges and corners. By doing so, we differentiate between the angles of normals
lying entirely on a plane and those near corners and edges. This concept is illustrated in Fig. 6 in
which the effect of using a large search area is demonstrated in the right image.

4.3. 3D keypoint extraction and matching
The process of constructing a descriptor vector, even for around 4, 000 points, and matching those with
their corresponding points from the previous frame is still computationally expensive. To improve
the computation efficiency, we need to find a way to reduce the number of points without losing the
information required for registration. To achieve this, we developed an informative sampling scheme
based on using ROS (described in Section 3). After applying this method, the resulting point cloud
would contain around 400 points. A feature descriptor is then computed for each extracted keypoint.
Our experiments showed that SHOT descriptors28 were the most accurate and efficient descriptors in
comparison to other state of the art descriptors (see Section 5.3). Matching was performed, using a
mutual consistency check, by finding the nearest neighbors in the descriptor vector space from the
source point cloud (at time t) to the target point cloud (at time t − 1) and vice versa. Only pairs
of corresponding points that were mutually matched to each other were considered as the initial
correspondences.

4.4. Inlier detection and initial transformation estimation
Matching 3D keypoints between consecutive images using their descriptors usually results in a number
of false matches (outliers). To remove the effect of these false matches, we refine the matches using a
high breakdown point robust estimator (i.e. MSSE5). The MSSE is an extension of the robust least kth
order statistical estimator and can tolerate much higher ratio of outliers compared to RANSAC (we
previously showed that MSSE outperforms RANSAC in terms of registration accuracy19). MSSE is
comprised of two main steps, first the MSSE fits a given model to a set of data that contains outliers.
In the second step, the scale of noise from this data is estimated. In contrast to RANSAC, MSSE
is flexible and does not rely on the strong fixed error threshold assumption (which forms the bases
of the RANSAC algorithm).19 Instead, MSSE assumes that the minimum number of inliers that are
required to define a structure is known a priori. After setting the minimum number of inliers (k), the
implementation of MSSE is very straightforward and is as follows. One thousand sets of 3-tuples of
corresponding initial matches are randomly chosen and for each set, the transformation is estimated
using the following equation:

T∗ = argmin
T

(Ad∑
i=1

|T(pi
s) − pi

t |2
)

(6)

T =
[

R t
0 1

]
, (7)

https://doi.org/10.1017/S0263574715000831 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000831

818 3D SLAM in texture-less environments

where T∗ is the estimated 6DOF transformation which consists off a translational component t ∈ �3×1

and a rotational component R ∈ SO(3), ps and pt are the 3D coordinates of the matched feature points
of the source and target frames respectively and Ad is the number of correspondences (here Ad = 3).
The estimated transformation is applied to all the keypoints in the first frame and the distances
between the transformed keypoints and the corresponding points in the target frame are calculated
(called residuals - r) and their squared values are sorted in ascending order. Having set the k, then the
transformation associated with the least kth order residual (from the 1000 hypotheses) is chosen as
the best initial transformation. To segment these residual values, we use the robust segmentation part
of MSSE as outlined in Section 3.1. Using the residuals of the chosen transformation, the inlier group
members are chosen by applying the condition (4) iteratively starting at i = k and incrementing this
value at each iteration until the condition is met. Finally, the transformation is re-calculated using all
the obtained inliers.

4.5. Global pose estimation
The transformation that was calculated in the previous section describes the motion between two
RGB-D frames. In order to obtain a global pose of the camera with respect to a fixed reference frame
(the initial frame), we concatenate all the transformations up to the current time using:

Gn = Gn−1Tn,n−1, (8)

where Gn−1 is the previous global transformation with respect to the pose of the initial reference
frame G0 at n = 1 and Tn,n−1 is the 6DOF transformation between the current frame and the previous
frame.

4.6. Global optimization
The global pose estimation procedure described above concatenates the relative transformations
between frames and provides visual odometry information. However, these frame to frame estimates
contain a small error due to noise and inaccuracies in the camera model. Accumulation of those
small errors increase the motion estimation error over time. In order to reduce the accumulated
drift and obtain a globally consistent trajectory and map, we employ an open-source pose graph
optimization framework g2o.6 The graph model in this framework consists of nodes that correspond
to the camera poses and edges which represent the constraints between the nodes, described by
rigid-body transformations. The pose graph model allows the formation of constraints between non-
adjacent poses by re-observing the same keypoints from different locations or re-visiting a previously
seen region of the scene (loop closures). Our implementation of the global optimization procedure is
described in detail below.

4.6.1. Node addition. In this step, a node is constructed and added to the graph. Each node consists
of the global camera pose of this frame with respect to a global reference frame and its index. To
minimize the computational burden, we do not store points/features for every node. We only store
the required information for a subset of nodes (key-frames). The key-frame selection procedure is
described in Section 4.6.3.

4.6.2. Edge addition. Each time a new node is added to the graph, an edge that connects this node with
the previous one is added to the graph. The edge describes the estimated rigid-body transformation
(7) between the two consecutive nodes. In addition, a matrix containing information about the number
of matches between the nodes is also stored.

4.6.3. Key-frame selection. The detection of loop closures and addition of constraints between non-
adjacent nodes is necessary for reducing the accumulated drift. In order to do so, the current frame is
required to be matched with previous frames. However, matching the current frame with all the
previous frames is computationally expensive especially as the map gets larger (computational
expense increases linearly with the number of estimates9). As such, in order to reduce the
computational burden, we select a subset of frames (“key-frames”) which will be used for the
detection of loop closures and the addition of non-adjacent constraints. A number of methods exist
for the selection of key-frames. The simplest form of key-frame selection is to select every nth frame.
Kerl et al.20 proposed a key-frame selection method based on a differential entropy measure. Other

https://doi.org/10.1017/S0263574715000831 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000831

3D SLAM in texture-less environments 819

solutions such as the one used by Henry et al.2 and Endres et al.9 are to match the current frame
with the previous key-frame. A new key-frame is selected only when the number of inliers detected
is below a pre-defined threshold (making it a new scene). In order to improve the computational
efficiency and avoid the matching step between each frame and the key frame, we add a key-frame
when the accumulated rotation or translation from the last key-frame exceeds a pre-defined threshold
(15 degrees in rotation or 25 cm in translation). For each key-frame, we extract the ROS keypoints
as described in Section 3 and assign SHOT descriptors to those points. The keypoints and their
descriptors are stored with each key-frame.

4.6.4. Loop closure detection. Different methods have been proposed for loop closure detection. The
simplest form is to match the current frame with all the previously selected key-frames. Other more
sophisticated approaches such as the one introduced by Henry et al.2 employ the place recognition
method based on the vocabulary tree described by Nister and Stewenius31 in which the feature
descriptors of the candidate key-frames are hierarchically quantized and are represented by a “bag
of visual words”. In our approach, in order to increase the computational efficiency, we only match
the newly selected key-frame (since a key-frame is a representation of a number of adjacent frames)
with the stored key-frames instead of matching every frame to all the stored key-frames. A loop
closure is detected as follows. First, when a new key-frame is stored, we check if there are previous
key-frames with a global pose that is adjacent to the pose of the this key-frame (accumulated
rotation and accumulated translation difference between the key-frames is less than a pre-defined
threshold). In the next step, only those adjacent key-frames resulting from the previous filtering
step are matched with the new key-frame using the mutual consistency matching and robust inlier
detection procedures described in Sections 4.4 and 4.3. Note that we have already extracted and
stored the ROS keypoints (around 400 points) for each key-frame and their associated descriptors.
As such, we can directly match the key-frames without performing the keypoint selection and the
computationally expensive descriptor assignment each time. Thus, increasing the computational
efficiency significantly. Finally, when a loop closure is detected (number of good matches identified
by MSSE during the transformation estimation between new key-frame and neighboring key-frames
is greater than a threshold) an edge containing the estimated transformation between the key-frames
is added to the graph.

4.6.5. Graph optimization. The goal of this optimization is to find the arrangement of poses that best
satisfies those constraints. Generally, this is a non-linear least squares optimization problem which
can be described as:

C∗ = argmin
C

∑
i,j

wi||Ci − Ti,jCj||2, (9)

where C∗ = C∗
1 . . . C∗

n is a vector containing all the optimized camera poses (consisting off x, y and
z values) and Ti,j is the 6DOF rigid-body transformation between a node pair and wi is a weighting
factor based on the information matrix described in 4.6 step 2. This minimization problem is solved by
a non-linear optimization algorithm (i.e. Levenberg–Marquardt). Figure 7 demonstrates the positive
effect of the global optimization on the global consistency of the mapping.

4.7. Map representation
The previous global optimization step produces a globally consistent trajectory (i.e. each node/frame
is associated with an optimized global pose). In order to construct the map, first we project the points
(from the image frames) to 3D using the following equations:

X = (u − cx) ∗ Z/fx (10)

Y = (v − cy) ∗ Z/fy, (11)

where (u, v) is the image coordinate of an extracted visual feature and (X, Y, Z) is its projected 3D
coordinate in the camera optical frame. Z is obtained from the depth image which is provided by
the Microsoft Kinect. fx and fy are the focal lengths in the horizontal and vertical axes, respectively
and (cx, cy) is the 2D coordinate of the camera optical center. This is followed by transforming the
projected points to a common reference frame using the optimized trajectory. In order to reduce the

https://doi.org/10.1017/S0263574715000831 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000831

820 3D SLAM in texture-less environments

Fig. 7. Example of a reconstructed map of an office scene (a) with (b) without loop closure and global
optimization. The loop closure and global optimization step has been able to correct the drifts in the reconstructed
map.

computational burden of storing all points provided by the Microsoft Kinect (307,000 points for each
frame), we randomly down-sample each point cloud into 5000 points. Figure 2 shows a reconstructed
3D map of an office environment using the proposed method while Fig. 7 compares a map of the
same area with and without loop closure and global optimization.

5. Experimental Results
We evaluated the performance of the proposed 3D registration and mapping method by comparing it
with the state of the art techniques. All methods were implemented using a Dell Precision M3800,
powered by an Intel i7-4702HQ processor, 16 GB of RAM and running on Ubuntu 12.04. The
Robot Operating System (ROS Hydro)32 and PCL 1.724 were used for perception and 3D geometry
processing. We used a Microsoft Kinect for capturing RGB-D data which operates at a frame-rate of
30 fps in VGA resolution mode. All of the experiments were conducted at typical university offices,
which contain many texure-less objects (e.g. plain walls). We performed seven trials for each method
and averaged the calculated results and errors. Since we do not have a ground truth trajectory of the
camera when using our own datasets, we calculated the rotational and translational errors by returning
the camera to the initial (known) location. This procedure is described in detail in Section 5.4. For the
evaluation using the public datasets, we used the provided ground truth information which is recorded
using a high accuracy motion capture system.

5.1. ROS keypoint repeatability evaluation
The most crucial characteristic of a keypoint extraction method is its repeatability, which is defined
as the ability to extract the same set of corresponding points from different point clouds (differences
may be due to noise, view point change, occlusion or a combination of the previous factors33) of an
overlapping scene. The repeatability of the proposed keypoint extraction method is evaluated using
the relative repeatability measure described in ref. [33] and outlined below.

� In the first step, we transform the set of keypoints ks extracted from the source point cloud Ps

according to the ground-truth rotation and translation (Rst , Tst) that aligns the source point cloud
Ps and the target point cloud Pt . We then check for the presence of points in Pt in a pre-defined
neighborhood (1× source cloud resolution) of the transformed keypoints. If at least one point is
present in Pt in this a neighborhood, the keypoint extracted from Ps is added to a set Ost . Finally,
the cardinality of this set is calculated.

� In the second step, we calculate the absolute repeatability by first transforming the set of keypoints
ks according to the ground-truth rotation and translation (Rst , Tst). The transformed keypoint ki

s is
said to be repeatable if the distance from its nearest neighbor, kj

t , in the set of keypoints extracted

https://doi.org/10.1017/S0263574715000831 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000831

3D SLAM in texture-less environments 821

Fig. 8. A comparison between the relative repeatability of different keypoint extraction methods measured using
misaligned point clouds. The misalignment angles = 0◦, 5◦, 15◦ and 20◦.

from the target pointcloud Pt is less than a threshold ρ (2× source cloud resolution) as follows:

|Rstks + Tst − kt | < ρ. (12)

The absolute repeatability is obtained by calculating the cardinality of the set of repeatable points
REks .

� Finally, in order to take into account the amount of overlap between Ps and Pt in the repeatability
measure, the relative repeatability r is calculated using the following equation:

r = |REks |
|Ost | . (13)

In this evaluation, we compared the repeatability of our method to the state of the art keypoint
extraction methods. In all of the experiments, we first measured the relative repeatability by extracting
keypoints from two different (aligned) point clouds of the same office scene. We then calculated the
relative repeatability using two misaligned point clouds (angle difference between point clouds = 5◦,
15◦ and 20◦). The results of this comparison are shown in Fig. 8. The results show that our method
obtained the highest relative repeatability scores when compared to other state of the art methods.

5.2. Point cloud preprocessing evaluation
5.2.1. Evaluating the registration using different pass-through filter depth limits . In order to evaluate
the effect of point cloud pre-processing on the registration, we compared the accuracy of the
registration using different pre-processing parameters. We first evaluate the effect of applying a
pass-through filter (removing points that are further than a certain distance from the camera) at
different depth limits. In these experiments, we rotated the Microsoft Kinect counter clockwise until
it was back to its original position (360◦). During this process, the point clouds were acquired,
registered, mapped and a global pose of the camera was estimated online. For this evaluation, we
used the registration procedure explained in Section 4 and set the number of ROS keypoints to 450.
We set the camera’s initial pose to the identity matrix. Since the camera is returned back to the exact
original position (using markers), we evaluated the accuracy of all methods by calculating the average
translational error (in the x, y and z directions) in meters and average rotational error (roll, pitch and
yaw angles) in degrees with reference to the initial pose. We also calculated the average time of the
registration process in seconds and compared the point cloud sizes before and after uniform sampling.
The depth limits that we compared were: no limit (no filtering), 6 m, 5 m, 4 m, 3 m and 2 m. The
rotation and translation accuracy for different depth limits are illustrated in Fig. 9 and the full results
are outlined in Table I. The results show that the accuracy of the registration increases when far away
points are excluded. We found that filtering points that are further than 4 m generally provides the
best accuracy. Notice that both the rotation and translation accuracy begin to decrease as we reduce

https://doi.org/10.1017/S0263574715000831 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000831

822 3D SLAM in texture-less environments

Table I. Comparison of the accuracy of registration using different pass-through filtering depths. The results
are averaged over seven trials.

Depth Trans. Rot. Registration Cloud Sample
limit error(m) error(◦) time(s) size size

No filter 0.176 ± 0.063 7.064 ± 2.898 0.127 307000 5660
6 m 0.141 ± 0.066 7.180 ± 1.888 0.120 283168 5578
5 m 0.115 ± 0.034 6.878 ± 3.137 0.117 279228 4753
4 m 0.118 ± 0.043 3.311 ± 1.988 0.117 267692 4078
3 m 0.149 ± 0.042 6.994 ± 1.878 0.115 256526 3809
2 m 0.434 ± 0.0297 24.294 ± 9.014 0.075 169030 1908

0

5

10

15

20

25

30

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

No filter 6m 5m 4m 3m 2m

Transla�onal errors
(m)

Rota�onal errors
(degrees)

Fig. 9. Accuracy of the registration using different depth limits.

20%

6%

9%

21%

34%

10%

Time consump�on

Uniform Sampling

Normal es�ma�on

ROS keypoint extrac�on

Descriptor assignment

Mutual matching

MSSE transforma�on est.

(a)

Fig. 10. Percentage of time consumed by each individual process in the registration procedure.

the depth limit to 3 m and 2 m respectively. This could be a result of loosing important information
that are useful for registration (e.g. using a 2 m depth filter results in a point cloud containing only
1908 points after uniform sampling). Also, there is no significant computational time reduction when
reducing the depth limit (except for 2m), the main reason is that the resultant point cloud after this
operation is sampled to 450, and then only those points are used for feature descriptor assignment
and matching, which are the most computationally expensive procedures in the registration process
(combined, these procedures account for approximately 55% of the total registration process time).
Figure 10 shows the percentage of time consumption by each procedure. Note that uniform sampling
accounts for approximately 20%, which explains why the process time was significantly reduced
when using the 2 m depth filter (the point cloud size was only 169,030, which is significantly less
than the point cloud size after applying the 3 m depth filter).

5.2.2. Evaluating the effect of using an variable vs. fixed voxel size on the point cloud. As it was
mentioned in Section 4.1, we use a variable voxel size for the uniform sampling step. In order

https://doi.org/10.1017/S0263574715000831 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000831

3D SLAM in texture-less environments 823

Table II. Comparison of the point clouds using a variable vs. fixed voxel size.

Average No. Min No. Max No. Standard Reg. time Reg. time
Method of points of points of points deviation (ROS) (Uniform Sampling)

Variable size 3999 2831 5274 523 0.117s 1.989s

Fixed size 4144 2130 7031 1320 0.118s 2.409s

to evaluate the effect of using a variable voxel size compared to a fixed one, we performed the
proposed registration method on the rotation sequence described in the previous section and set the
pass-through filter depth limit to 5m. In this experiment, we are mainly interested in comparing
the variance of the point cloud sizes (after uniform sampling) captured by different frames in this
sequence and comparing the registration process time. The results of this experiment are outlined in
Table II. The results show that when using a variable size, the standard deviation of the point cloud
sizes after uniform sampling is reduced by about 60%. In other words, the point cloud sizes did
not vary as much in different frames (which contain different point cloud resolutions depending on
how far the points are from the camera) when compared to using a fixed voxel size. Also note that
since we are extracting ROS keypoints after uniform sampling, there is no significant process time
difference between using a variable vs. fixed size. However, if we use all the uniform sampled points
for registration (instead of the ROS keypoints), the process time is reduced by approximately 21%
when using a variable voxel size .

5.3. 3D descriptors evaluation for point cloud based SLAM
In this experiment, we compared the accuracy of registration using the state of the art 3D descriptors.
In all of the experiments, we used the proposed registration method described in Section 4. We
fixed all parts of the system and only changed the descriptor method. We evaluated the performance
of the methods using the rotation sequence described in Section 5.2.1 and used the recommended
default descriptor parameters. The descriptor methods were Point Feature Histogram (PFH),30 Fast
Point Feature Histogram (FPFH),34 3D Shape Context (3DSC),35 Unique Shape Context (USC)28 and
Signatures of Histograms of Orientations (SHOT).28 The PFH captures information of the geometry
surrounding each point by analyzing the difference between the directions of the normals in its
vicinity. The PFH does not only pair the query keypoint with its neighbors, but also the neighbors
with themselves. As such, the PFH is computationally expensive and would be not suitable for real-
time applications. The FPFH extends the PFH by only considering the direct connections between the
query keypoint and its surrounding neighbors. To make up for the loss of extra connections between
neighbors, an additional step after all histograms have been computed is added: the sub-PFHs of a
point’s neighbors are merged with its own and is weighted according to the distance between those.
This provides point surface information of points as far away as two times the radius used. The 3DSC
is a descriptor that works by constructing a structure (sphere) centered at the each point, using the
given search radius. The “north pole” of that sphere is pointed in the same direction as the normal at
that point. Then, the sphere is divided in 3D regions (regions vary in volume in the radial direction
as they are logarithmically spaced so they are smaller towards the center). A descriptor is computed
by counting the number of points in each 3D region. The count is weighted by the volume of the bin
and the local point density (number of points around the current neighbor). As such, the descriptor is
resolution invariant to some extent. In order to account for rotation variances, the support sphere is
rotated around the normal N times and the process is repeated for each, giving a total of N descriptors
for a point. This procedure is computationally expensive, as such, the USC descriptor extends the
3DSC by defining a local reference frame that provides a unique orientation at each point. This
procedure reduces the size of the descriptor when compared to 3DSC, since computing multiple
descriptors to account for orientations is not required. SHOT descriptor is similar to 3DSC and USC
in that it encodes surface information within a spherical support structure. The sphere around each
keypoint is divided into 32 bins, and for each bin, a descriptor containing one variable is computed.
This variable is the cosine of the angle between the normal of the keypoint and the neighboring point
inside the bin. Finally, the descriptor is obtained by augmenting local histograms. Similar to USC,
SHOT descriptors are also rotation invariant.

https://doi.org/10.1017/S0263574715000831 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000831

824 3D SLAM in texture-less environments

Table III. Accuracy comparison between offline 3D registration
methods using different 3D descriptors for the rotation only

sequence. The results are averaged over seven trials.

Trans. Rot. Registration
Method error(m) error(◦) time(s)

PFH 0.375 ± 0.031 11.388 ± 0.5521 10.939
FPFH 0.189 ± 0.045 10.347 ± 2.899 0.346
3DSC 0.417 ± 0.051 12.467 ± 1.178 5.409
USC 0.221 ± 0.129 8.011 ± 2.960 2.168

SHOT 0.129 ± 0.044 5.880 ± 1.041 0.154

Table IV. Accuracy comparison between online 3D registration
methods using different 3D descriptors for the rotation only

sequence. The results are averaged over seven trials.

Trans. Rot. Registration
Method error(m) error(◦) time(s)

FPFH 0.182 ± 0.076 3.949 ± 1.019 0.331
SHOT 0.122 ± 0.057 1.968 ± 1.048 0.154

Some of the above descriptors are computationally expensive, and as such, would not be suitable
for cases with fast camera movement. Thus, we performed two experiments: offline and online. The
results of the offline evaluation are outlined in Table III. The results of this experiment show that both
FPFH and USC are indeed an improvement over PFH and 3DSC, respectively. FPFH significantly
improves the computational efficiency by a factor of 31 when compared to PFH. Whereas USC
improves the efficiency by a factor of 2.6. FPFH improves the translational and rotational registration
accuracy by 49.6% and 9.1% respectively in comparison to PFH. USC also improves the translational
and rotational registration accuracy by 47% and 35.7% respectively when compared to 3DSC. Overall,
SHOT descriptors significantly outperformed all of the other descriptor both in terms of accuracy
and computational efficiency. As can be seen in Table III, PFH, 3DSC and USC have relatively high
processing times. As such, it was not possible to perform online registration with these methods
and we only compared the methods that were able to perform the online registration process. Those
methods were FPFH and SHOT descriptors. The results of the online registration comparison are
outlined in Table IV. The results show that SHOT descriptors outperforms FPFH both in terms of
registration accuracy and efficiency. SHOT improves the translational and rotational accuracy by
32.9% and 50% respectively and improves the computational efficiency by 53.4% when compared
to FPFH.

5.4. Registration accuracy and efficiency comparison using different keypoint extraction methods
In this experiment, we compared the accuracy of registration using our proposed keypoint extraction
and some of the best available methods. In the first experiment, we used the rotation sequence described
in Section 5.2.1. In the second experiment, the Micosoft Kinect was rotated 180◦, then translated
for 1.5 m, followed by another 180◦ rotation and finally translated back to its original position.
The compared methods are: SIFT3D,24 ISS keypoints,27 geometrically stable points26 (covariance
sampling) and uniform sampling (we set a large search radius to obtain around 400 points). We
compare the average translational error, average rotational error and average time of the registration
process. In addition to those measures, we also compared the average keypoint extraction time (in
seconds) and average number of extracted keypoints. The results of both experiments are outlined
in Tables V and VI. The results show that our proposed method significantly outperforms the other
methods in terms of both the translational and rotational accuracy. In terms of computational efficiency,
our method was slightly slower than covariance sampling and uniform sampling. However, this
does not significantly affect the registration efficiency, as those methods required similar times for
registration. Our experiments show that SIFT3D was the most computationally expensive keypoint
extraction algorithm.

https://doi.org/10.1017/S0263574715000831 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000831

3D SLAM in texture-less environments 825

Table V. Comparison of the accuracy of 3D registration using different keypoint extraction methods
for the rotation only sequence. Translational errors are in meters, rotational errors are in degrees

and times are in seconds. The results are averaged over seven trials.

Trans. Rot. Extraction Registration Number of
Method error error time time points

ROS 0.086 ± 0.01 2.2 ± 0.76 0.0091 0.12 400
SIFT3D 0.118 ± 0.02 3.12 ± 1.73 0.295 0.45 402
ISS keypoints 0.135 ± 0.04 8.9 ± 3.11 0.018 0.09 160
Covariance samp. 0.304 ± 0.07 17.4 ± 6.46 0.0065 0.113 453
Uniform samp. 0.107 ± 0.02 5.65 ± 2.51 0.0015 0.102 365

Table VI. Comparison of the accuracy of 3D registration using different keypoint extraction methods
for the rotation + translation sequence. Translational errors are in meters, rotational errors are in

degrees and times are in seconds. The results are averaged over seven trials.

Trans. Rot. Extraction Registration Number of
Method error error time time points

ROS 0.134 ± 0.03 3.6 ± 1.41 0.0078 0.112 400
SIFT3D 0.147 ± 0.03 4.82 ± 2.12 0.28 0.404 393
ISS keypoints 0.26 ± 0.06 7.6 ± 3.73 0.018 0.09 157
Covariance samp. 0.22 ± 0.08 10.83 ± 2.92 0.0056 0.112 450
Uniform samp. 0.19 ± 0.07 4.5 ± 1.41 0.0014 0.102 367

5.5. Registration comparison using sparse keypoints vs. a denser point cloud
In this experiment, we demonstrate the effectiveness of our informative sampling keypoint extraction
method by comparing its registration accuracy and computational efficiency with another method
that uses a much denser point cloud for registration using the rotation sequence described above.
The point cloud was processed as it was described in Section 4.1. Table VII shows the results of this
experiment. The results show that our method was able to achieve a very similar accuracy, despite
using only 6.4% of the processed point cloud points and 0.13% of the original point cloud. The
computational time for registration was significantly improved by a factor of 24.

5.6. Comparison of different registration methods
In this experiment, we evaluated the performance of our registration method by comparing it to two
state of the art registration techniques using the two sequences mentioned above. In the first of the
compared methods, SIFT3D keypoints were extracted and matched using SHOT descriptors (simply
because those were shown to outperform other methods36). Then SAC-IA34 (a sampling consensus
method that is similar to RANSAC but instead of selecting random samples between the source and
target clouds, samples are selected based on points with the most similar feature histograms) was
applied for rejecting false matches and initial transformation estimation, followed by ICP (in order to
achieve real time performance, we performed ICP on the uniformly sampled point cloud instead of the
full point cloud) for refining the initial transformation. The second compared method uses SIFT3D
keypoint extraction and matching, followed by a pre-rejection RANSAC algorithm.37 This method
adds an additional verification step to the standard RANSAC algorithm which eliminates some false
matches by analyzing their geometry. Tables VIII and IX show the results of those comparisons. Our
proposed registration method significantly outperforms the other methods both in terms of accuracy
and computational efficiency.

5.7. Evaluation of global optimization
In this experiment, we compared the performance of the proposed mapping method with and without
global optimization in terms of accuracy and efficiency. In the first comparison, we performed the
mapping method on the translation and rotation sequence described in Section 5.4. In the second
experiment, we used a sequence that is similar to the rotation only sequence described in Section 5.4.
However, the Microsoft Kinect is rotated 1080◦ and back to its original position (full rotation ×3).
The reason behind rotating the Kinect multiple times is that we wanted the drift to be significant for

https://doi.org/10.1017/S0263574715000831 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000831

826 3D SLAM in texture-less environments

Table VII. Registration comparison using a sparse point cloud vs. a denser point cloud. The results are
averaged over seven trials.

Trans. Rot. Registration Number of
Method error(m) error(◦) time(s) points

Proposed registration 0.086 ± 0.01 2.2 ± 0.76 0.12 400
Uniform sampling 0.006 ± 0.004 2.2 ± 0.54 2.88 6205

Table VIII. Accuracy comparison of 3D registration methods using the rotation only sequence. The results are
averaged over seven trials.

Trans. Rot. Registration
Method error(m) error(◦) time(s)

Proposed registration 0.086 ± 0.01 2.2 ± 0.76 0.12
SIFT3D+SAC-IA+ICP 0.122 ± 0.03 4.667 ± 1.63 0.68
SIFT3D+pre-rejective RANSAC 0.305 ± 0.14 13.92 ± 5.72 0.65

Table IX. Accuracy comparison of 3D registration methods using the rotation + translation sequence. The
results are averaged over seven trials.

Trans. Rot. Registration
Method error(m) error(◦) time(s)

Proposed registration 0.134 ± 0.03 3.6 ± 1.41 0.112
SIFT3D+SAC-IA+ICP 0.151 ± 0.04 6.5 ± 2.52 0.68
SIFT3D+pre-rejective RANSAC 1.44 ± 0.27 29.8 ± 22.68 0.65

Table X. Comparison of the accuracy of registration with and without global optimization
and loop closure using the rotation + translation scene. The duration of this sequence is

37.71s. The results are averaged over seven trials.

Trans. Rot. Registration
Method error(m) error(◦) time(s)

Method without global optimization 0.134 ± 0.03 3.6 ± 1.41 0.112
Method with global optimization 0.02 ± 0.007 1.4 ± 0.29 0.157
RGBD-SLAM v2 0.102 ± 0.03 2.24 ± 1.23 0.4

this evaluation (since 1 rotation does not result in a very large drift) in order to showcase the effect
of global optimization and loop closure detection. The results of those comparisons are outlined
in Tables X and XI. The results show that the average registration error was reduced by a around
85.7% and 92.7% for the first and second experiments, respectively. However, the average time of
registration was increased by 40.1% in the first experiment and 136% in the second experiment. In the
first experiment, the average number of nodes and keynodes that were added to the pose graph was
180 and 40 respectively, and the number of detected loop closures was 78. In the second experiment,
the average number of nodes and keynodes were 144 and 89 respectively. The average number of
loop closures detected was 389, which was much higher than the number of loop closures detected in
the first sequence. The reason is that the Microsoft Kinect was rotated multiple times and re-observed
the same scene many times. As a result, 389 additional constraints were added to the pose graph,
which explains the 136% increase in registration time when mapping this sequence. Figure 7 shows
a top view of the reconstructed maps with and without employing global optimization. The figure
clearly shows that the addition of global optimization reduces the drift and produces a more globally
consistent map. Finally, the above results were compared with the state of the art RGBD-SLAM
v29 method (using the default parameters) which also utilizes the g2o framework. The results are
outlined in Tables X and XI. The results show that the proposed method (with global optimization)
outperforms RGBD-SLAM in both accuracy and efficiency using the two aforementioned sequences.

https://doi.org/10.1017/S0263574715000831 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000831

3D SLAM in texture-less environments 827

Table XI. Comparison of the accuracy of registration with and without global optimization
and loop closure using the multiple rotation scene. The duration of this sequence is 48.4s.

The results are averaged over seven trials.

Trans. Rot. Registration
Method error(m) error(◦) time(s)

Method without global optimization 0.138 ± 0.05 8.5 ± 1.84 0.122
Method with global optimization 0.01 ± 0.003 0.65 ± 1.41 0.288
RGBD-SLAM v2 0.01 ± 0.006 3.396 ± 1.12 0.44

Table XII. Evaluation of different key-frame selection criteria on the registration procedure.

Trans.-Rot. Trans. Rot. No. of Total No. of Key-frames to Registration
threshold error(m) error(◦) key-frames frames frames ratio time(s)

No threshold 0.011 ± 0.001 0.423 ± 0.172 116 116 1 1.325
0.07 m – 5◦ 0.025 ± 0.001 0.929 ± 0.413 62 116 0.534 0.648

0.1 m – 7◦ 0.022 ± 0.002 0.586 ± 0.264 53 130 0.407 0.553
0.2 m – 10◦ 0.021 ± 0.007 0.560 ± 0.172 54 150 0.360 0.489
0.25 m – 15◦ 0.026 ± 0.008 0.760 ± 0.243 32 160 0.200 0.312
0.3 m – 25◦ 0.056 ± 0.047 2.212 ± 1.862 27 164 0.164 0.300

Table XIII. The median, mean and standard deviation of the absolute trajectory error (ATE) between the
estimated trajectory and the ground truth data for the proposed and RGBD-SLAM v2 methods. The results

are averaged over seven trials.

Proposed Method RGBD-SLAM v2

Dataset Median ATE Mean ATE SD Median ATE Mean ATE SD

fr1/xyz 0.0250 m 0.0306 m 0.0184 m 0.0412 m 0.0545 m 0.0468 m
fr1/desk 0.0695 m 0.0815 m 0.047 m 0.0548 m 0.0700 m 0.048 m
fr1/desk2 0.1032 m 0.1165 m 0.0679 m 0.0911 m 0.1013 m 0.057 m
fr3/structure notexture
near

0.0726 m 0.0927 m 0.07 m 0.1679 m 0.1893 m 0.155 m

fr3/structure notexture
far

0.0413 m 0.0482 m 0.029 m 0.1244 m 0.1513 m 0.119 m

fr3/structure texture
near

0.0648 m 0.0859 m 0.059 m 0.0607 m 0.0787 m 0.05 m

fr3/structure texture
far

0.0664 m 0.0768 m 0.038 m 0.3823 m 0.5387 m 0.291 m

fr3/nostructure texture
near with loop

1.8890 m 1.9038 m 0.349 m 0.0360 m 0.0523 m 0.04 m

5.8. Evaluation of key-frame selection criteria
As described in Section 4.6.3, a key-frame is selected when the accumulated translation or rotation
exceeds a certain threshold. We evaluated the performance of the registration algorithm using different
translation/rotation combinational thresholds using the rotation only sequence. In the first experiment,
no threshold was used, in other words, all frames were used in the global optimization. We then
evaluated the following translation/rotation thresholds: 0.07 m/5◦, 0.1m/7◦, 0.2 m/10◦, 0.25m/15◦
and 0.3 m/25◦. The results of this experiment are outlined in Table XII. The most accurate results are
unsurprisingly the ones obtained by using all the frames in the optimization. However, this approach
increases the computational complexity of the system significantly and makes it unsuitable for real-
time applications (computational time is 1.325 s - less than a frame/second). The following four
thresholds combinations (up to 0.25 m/15◦) provided comparable registration accuracy. However,
the computational time decreased as we increased the thresholds. For instance, the computational
time when using the 0.25 m/15◦ threshold combination is 51.8% lower than using the 0.07 m/5◦
threshold combination, since only 20% of all frames are selected as key-frames, as opposed to 64.8%
of all frames. Also note that when selecting the 0.3 m/25◦ threshold combination, the translational

https://doi.org/10.1017/S0263574715000831 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000831

828 3D SLAM in texture-less environments

Fig. 11. Visualization of the absolute trajectory error (ATE) which was calculated after performing our proposed
method on the: (a) “freiburg3 structure texture near” sequence (b) “freiburg3 structure no texture far ”.

and rotational accuracy is reduced by 53% and 65% respectively when compared to the 0.25 m/15◦
threshold. This is due to the key-frames being too far apart and as such, the matching between key-
frames was reduced (which results in less constraints in the pose graph). We also experimented with
larger thresholds, but we found that anything higher than the 0.3 m/25◦ threshold combination results
in no additional non-adjacent constraints being added to the pose graphs. This results in a system with
similar registration accuracy to the registration method that does not employ global optimization, but
with the added computational expenses of the global optimization procedure.

5.9. Proposed method evaluated using public RGB-D dataset
We evaluated the performance of the proposed 3D SLAM method using the publicly available RGB-D
benchmark provided by the Technical University of Munich.8 The datasets contain various scenes

https://doi.org/10.1017/S0263574715000831 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000831

3D SLAM in texture-less environments 829

captured by an RGB-D camera and provide very accurate ground truth information that were obtained
by an external motion capture system. For the evaluation of the compared methods, we utilize the
absolute trajectory error (ATE) metric provided by8 in which the absolute distances between the
estimated and ground truth data are calculated. Given a sequence of camera poses from the estimated
trajectory P1, . . . , Pn ∈ SE(3) and from the ground truth trajectory Q1, . . . , Qn ∈ SE(3), the ATE
at time-step i can be obtained using the following equation:

AT Ei = Q−1
i SPi, (14)

where S denotes the rigid body transformation that aligns the coordinate frames of Pi and Qi . We
then calculated the mean and median errors over all time indices n of the translational components
of the ATE. An example of the ATE between the estimated trajectory (using the proposed method)
and ground truth data is illustrated in Fig. 11. For this evaluation, we performed the proposed
SLAM method using the scenes available from the “freiburg3 structure vs. texture” category and
compared it with the RGBD-SLAM v2 (using the default SURF keypoints and descriptors). Table
XIII shows a summary of the results of this experiment. We first evaluated both methods using
the “freiburg3 structure notexture near” and “freiburg3 structure notexture far” sequences. Both
sequences are captured by moving the sensor along a zig-zag structure that is built from wooden panels
and contains very limited visual information. As we expected, our method clearly outperforms the
RGBD-SLAM v2 method using those sequences since RGBD-SLAM only uses visual information for
registration. We then evaluated both methods using the “freiburg3 nostructure texture near withloop”
sequence which is captured by moving the Microsoft Kinect over a highly textured planar surface.
Due to the very limited structure information in this scene, our method struggles registering this
sequence and the RGBD-SLAM v2 method clearly outperformed our method. We then used the
“freiburg3 structure texture near” and “freiburg3 structure texture far” sequences, which consist of
moving the camera along a zig-zag structure that is fully wrapped in a colorful plastic foil. In the
first of the aforementioned sequences, the performance of both methods was very comparable, with
the RGBD-SLAM v2 method having the slight advantage. For the second sequence, our method
significantly outperformed the RGBD-SLAM method since RGBD-SLAM seems to fail around
the 15s mark due to a false loop closure which disrupts and breaks the registration process. The
RGBD-SLAM v2 fails to recover from this, which results in a very high ATE. We repeated this
experiment many times and also tried using RGBD-SLAM’s other recommended keypoints (SIFT
and ORB), resulting with the same failure each time. We then evaluated both methods using the
“freiburg1 xyz”, “freiburg1 desk” and “freiburg1 desk2” sequences. All of those sequences are
captured by moving the camera in a postgraduate office environment and contain varying amounts
of structure and texture information. In addition, the “freiburg1” sequence is challenging due to fast
camera motions. The performance of both the compared methods using these sequences is comparable,
with our method having the advantage in first sequence and the RGBD-SLAM v2 having the slight
advantage in the last two. Also note that at around 9 seconds in the “freiburg1 desk2”, the camera
is moved over a planar table containing very little structure, which results in a slight misalignment.
This explains the relatively high ATE of the proposed method when using this sequence. In such
cases (where there is a lack of either texture of structure information), it might be better to use a
combination of texture and structure information. This is something we would like to add to our
method in the future.

6. Conclusions
In this paper, we presented a novel real-time 3D SLAM system that uses only the depth information
provided by RGB-D sensors, without relying on texture information. As such, our method is well
suited to perform localization and mapping in texture-less environments commonly encountered
in both office and industrial buildings. Since registration using the dense point cloud is a very
computationally expensive operation, we propose a novel sampling scheme that informatively selects
the points carrying the most useful information using the statistical analysis of their flatness. We
showed that the proposed keypoint extraction method outperforms other state of the art methods in
terms of accuracy and repeatability and performs comparably in terms of efficiency. We also showed

https://doi.org/10.1017/S0263574715000831 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000831

830 3D SLAM in texture-less environments

that our proposed registration method is faster and more accurate compared to other well-known
registration methods.

Having said that, depth only registration methods struggle when registering scenes with very little
structure. As such, we plan on aiding the depth information with visual information when available.
Another aspect that our method struggled with was the registration in the presence of multiple motions
(such as people walking in the scene). Since we use a high-breakdown estimator in our method, we
think it should be possible to segment different motions explicitly and register those separately. This
is part of our future work.

Acknowledgment
The first author would like to acknowledge the financial support provided by the Australian
Postgraduate Award (APA) scholarship. This research was in part supported under Australian
Research Council’s Linkage Projects funding scheme (LP130100521).

References
1. R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. Davison, P. Kohli, J. Shotton, S. Hodges

and A. Fitzgibbon, “Kinectfusion: Real-Time Dense Surface Mapping and Tracking,” Proceedings of the
10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Basel, Switzerland (2011)
pp. 127–136.

2. P. Henry, M. Krainin, E. Herbst, X. Ren and D. Fox, “Rgb-d mapping: Using kinect-style depth cameras
for dense 3d modeling of indoor environments,” Int. J. Robot. Res. 31(5), 647–663 (2012).

3. F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers and W. Burgard, “An Evaluation of the rgb-d Slam
System,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), St - Paul,
Minnosota, USA (2012) pp. 1691–1696.

4. H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: Part i,” Robot. Autom. Mag.
IEEE 13(2), 99–110 (2006).

5. A. Bab-Hadiashar and D. Suter, “Robust segmentation of visual data using ranked unbiased scale estimate,”
Robotica 17(6), 649–660 (1999).

6. R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige and W. Burgard, “g2o: A General Framework for Graph
Optimization,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
Shanghai, China (2011) pp. 3607–3613.

7. K. Yousif, A. Bab-Hadiashar and R. Hoseinnezhad, “Real-Time rgb-d Registration and Mapping in Texture-
Less Environments using Ranked Order Statistics,” Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2014), IEEE, Chicago, Illinois, USA (2014) pp. 2654–2660.

8. J. Sturm, N. Engelhard, F. Endres, W. Burgard and D. Cremers, “A Benchmark for the Evaluation of rgb-d
Slam Systems,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE, Vilamoura - Algarve, Portugal (2012) pp. 573–580.

9. F. Endres, J. Hess, J. Sturm, D. Cremers and W. Burgard, “3-d mapping with an rgb-d camera,” IEEE Trans.
Robot. 30, 177–187 (2014).

10. F. Fraundorfer and D. Scaramuzza, “Visual odometry: Part ii: Matching, robustness, optimization, and
applications,” Robot. Autom. Mag. IEEE 19(2), 78–90 (2012).

11. A. Segal, D. Haehnel and S. Thrun, “Generalized-icp,” Robot.: Sci. Syst. 2, 4 (2009).
12. D. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110

(2004).
13. H. Bay, T. Tuytelaars and L. Van Gool, “Surf: Speeded Up Robust Features,” Computer Vision–ECCV

3951, 404–417 (Graz, Austria, 2006).
14. E. Rublee, V. Rabaud, K. Konolige and G. Bradski, “Orb: An Efficient Alternative to Sift or Surf,”

Proceedings of the IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain (2011)
pp. 2564–2571.

15. H. Du, P. Henry, X. Ren, M. Cheng, D. Goldman, S. Seitz and D. Fox, “Interactive 3d Modeling of Indoor
Environments with a Consumer Depth Camera,” Proceedings of the 13th International Conference on
Ubiquitous Computing, ACM, Beijing, China (2011) pp. 75–84.

16. C. Audras, A. Comport, M. Meilland and P. Rives, “Real-Time Dense Appearance-Based Slam for rgb-d
Sensors,” Australasian Conference on Robotics and Automation, Melbourne, Australia (2011).

17. T. Whelan, M. Kaess, M.F. Fallon, H. Johannsson, J.J. Leonard and J.B. McDonald, “Kintinuous: Spatially
Extended Kinectfusion,” RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras, Sydney,
Australia (July 2012).

18. A. Bachrach, S. Prentice, R. He, P. Henry, A. Huang, M. Krainin, D. Maturana, D. Fox and N. Roy,
“Estimation, planning, and mapping for autonomous flight using an rgb-d camera in gps-denied
environments,” Int. J. Robot. Res. 31(11), 1320–1343 (2012).

https://doi.org/10.1017/S0263574715000831 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000831

3D SLAM in texture-less environments 831

19. K. Yousif, A. Bab-Hadiashar and R. Hoseinnezhad, “3d Registration in Dark Environments using rgb-d
Cameras,” Proceedings of the International Conference on Digital Image Computing: Techniques and
Applications (DICTA), Hobart, Tasmania, Australia (2013) pp. 1–8.

20. C. Kerl, J. Sturm and D. Cremers, “Dense Visual Slam for rgb-d Cameras,” Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan (2013) pp. 2100–2106.

21. M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich and A. Kolb, “Real-Time 3d Reconstruction
in Dynamic Scenes using Point-Based Fusion,” Proceedings of the International Conference on 3DTV-
Conference, Tokyo, Japan (2013) pp. 1–8.

22. G. Hu, S. Huang, L. Zhao, A. Alempijevic and G. Dissanayake, “A Robust rgb-d Slam Algorithm,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE,
Vilamoura - Algarve, Portugal (2012) pp. 1714–1719.

23. C. Harris and M. Stephens, “A Combined Corner and Edge Detector,” Alvey Vision Conference, vol. 15,
Manchester, UK (1988), p. 50.

24. R. B. Rusu and S. Cousins, “3d is Here: Point Cloud Library (pcl),” Proceedings of the 2011 IEEE
International Conference on Robotics and Automation (ICRA), IEEE, Shanghai, China (2011) pp. 1–4.

25. S. Filipe and L. A. Alexandre, “A Comparative Evaluation of 3d Keypoint Detectors,” Proceedings of the
9th Conference on Telecommunications, Conftele, Castelo Branco, Portugal (2013) pp. 145–148.

26. N. Gelfand, L. Ikemoto, S. Rusinkiewicz and M. Levoy, “Geometrically Stable Sampling for the icp
Algorithm,” Proceedings of the 4th International Conference on 3-D Digital Imaging and Modeling, Banff,
Canada (2003) pp. 260–267.

27. Y. Zhong, “Intrinsic Shape Signatures: A Shape Descriptor for 3d Object Recognition,” Proceedings of
the IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), Kyoto, Japan
(2009) pp. 689–696.

28. F. Tombari, S. Salti and L. Di Stefano, “Unique Signatures of Histograms for Local Surface Description,”
Computer Vision–ECCV, Springer, Haraklion, Crete, Greece (2010) pp. 356–369.

29. R. Hoseinnezhad, A. Bab-Hadiashar and D. Suter, “Finite sample bias of robust estimators in segmentation
of closely spaced structures: A comparative study,” J. Math. Imaging Vis. 37(1), 66–84 (2010).

30. R. B. Rusu, “Semantic 3d object maps for everyday manipulation in human living environments,” KI-
Künstliche Intelligenz 24(4), 345–348 (2010).

31. D. Nister and H. Stewenius, “Scalable Recognition with a Vocabulary Tree,” Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, New York, USA (2006)
pp. 2161–2168.

32. M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler and A. Y. Ng, “Ros: An
Open-Source Robot Operating System,” ICRA Workshop on Open Source Software, Kobe, Japan (2009)
p. 5.

33. S. Salti, F. Tombari and L. Di Stefano, “A Performance Evaluation of 3d Keypoint Detectors,” Proceedings
of the International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission
(3DIMPVT), Hangzhou, China (2011) pp. 236–243.

34. R. B. Rusu, N. Blodow and M. Beetz, “Fast Point Feature Histograms (fpfh) for 3d Registration,”
Proceedings of the IEEE International Conference on Robotics and Automation, ICRA’09, Kobe, Japan
(2009) pp. 3212–3217.

35. A. Frome, D. Huber, R. Kolluri, T. Bülow and J. Malik, “Recognizing Objects in Range Data using Regional
Point Descriptors,” Computer Vision-ECCV, Springer, Prague, Czech Republic (2004) pp. 224–237.

36. L. A. Alexandre, “3d Descriptors for Object and Category Recognition: A Comparative Evaluation,”
Workshop on Color-Depth Camera Fusion in Robotics at the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), vol. 1, no. 2, Vilamoura, Portugal (2012).

37. A. G. Buch, D. Kraft, J.-K. Kämäräinen, H. G. Petersen and N. Krüger, “Pose Estimation using Local
Structure-Specific Shape and Appearance Context,” Proceedings of the IEEE International Conference on
Robotics and Automation, ICRA, Karlsruhe, Germany (2013) pp. 2080–2087.

https://doi.org/10.1017/S0263574715000831 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000831

