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SUMMARY
One of the most difficult challenges in mobile robotics is
real-world navigation. A real world can change suddenly
and this change makes the robot relinquish planning actions
in advance. In order to overcome such a change, behavior-
based navigation was introduced. However, it had a
difficulty in planning deliberate actions and in communicat-
ing with humans.

We propose a new control strategy combining both the
merits of behavior-based and planner-based approaches.
The architecture consists of three major parts: Behaviors,
Planner, and Coordinator. The Planner plays two important
roles: 1) as a flexible human interface and 2) as the planner
itself. The Coordinator serves as an interface between
Behaviors and Planner and guides Behaviors to accomplish
meaningful tasks according to the guidelines from the
Planner and the Position estimator.

We also provide a brief description of the intelligent
mobile robot CAIR-2 and for ’95 IJCAI/AAAI Robot
Competition and Exhibition when the robot was placed first
in the Office Delivery event.

KEYWORDS: Mobile Robot; Navigation; Behaviors, Planner;
Coordinator.

1. INTRODUCTION
Mobile robots are rapidly increasing the application areas
for robotics in today’s world compared with a couple of
decades ago. One of the most difficult challenges in mobile
robotics is autonomous navigation in a real world. A real
world can change suddenly, so a robot in this environment
easily makes wrong estimates of which events can happen
and which events can produce unwanted side effects. This
forces the robots to relinquish planning actions in advance.
Traditional approaches (e.g., ordered lists of actions,
triangle tables, precedence diagrams, and and/or graph)
which were used to represent task plans1 before operation.
Even if they had more flexibility and intelligence, they
could not be applied in such an environment without the aid
of a program-like exception handler.

In order to overcome such uncertain and drastical
changes, behavior-based navigation was introduced. In this
paper, the behavior denotes a computational module that
rules the robot’s “behavior” that originally denotes “the

response of an individual, group, or species to its environ-
ment”. Though the term is also used for the original
meaning somewhere in this paper without notification, we
think such a confusion may not be serious since the
computational module and original “behavior” are closely
related. In most behavior-based navigation systems, each
behavior has its own goal and produces action commands
which are incorporated with the action commands generated
by other behaviors to produce an actual action command
that is used by the actuator. Since most behaviors were
designed to achieve only one simple and specific task and to
have minimal memory, behavior-based navigation could
produce a fast response. Hence this approach seemed to be
a better way to solve real world navigation problems.
Brooks introduced the subsumption architecture as one
example of behavior-based controls which showed success-
ful experimental results.2 This work has been a center of
attention because it was quite fast and seemed more
intelligent than the previous work because they processed
whole functions serially in a single control loop. Hence they
seemed dull regardless of their potential ability, but
behavior-based navigation had multiple control loops and
sensory requests which were usually written as a set of
concurrent processes. They thus seemed to have much more
flexibility. However, they had some drawbacks due to the
multiple control loops. Much effort was required to design
an arbitration mechanism to resolve control output conflicts
resulting from attempts to control the same actuator
simultaneously. Moreover, these behaviors had to cooperate
to accomplish a meaningful result, but it was difficult to
coordinate them in the most fruitful way. The problem is
that as complexity increases, interactions between behaviors
increase as well, the point where it becomes difficult to
predict the overall behavior of a system.3

We had learned some lessons from the experiments in
developing an outdoor navigation for the ’93 Taejon World
Exposition. Two of them indicated that action plans are
necessary for robots to achieve more sophisticated tasks and
a central coordinating mechanism is also necessary for
humans to give commands and to watch the robots’ states.
We thus introduced the notions of explicit plan representa-
tion and a central coordination mechanism into a
behavior-based robot. We have recognized that these
notions interfered with a certain reactivity, but they could be
desirable if a robot navigated in a partially known
environment. Fortunately, few experiments of navigation
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had been done in absolutely unknown environments such as
the planetary surfaces and the bottom of the sea. Most
experiments had been done in partially known environments
with many movable independent objects such as humans,
robots, and vehicles. In such environments, a robot had to
have a communication system with the objects. For
example, when a robot was in a trap, it could escape from
the trap with a human’s assistance through a communication
channel like voice. We tried to design a communication
system similar to that of humans; otherwise we would have
to learn how to command and how to receive the assistance
requests. Hence we decided to apply a topological map for
the representation of an environment.

For these reasons, we designed a new control strategy
combining both the merits of behavior-based and planner-
based approaches. More emphasis on the planner’s role may
weaken the reactivity, so we made behaviors play the major
role of navigator while the planner just recommended which
direction should be best. The architecture has three major
portions: Behaviors, Planner, and Coordinator. The Planner
plays two important roles as a flexible human interface and
the planner itself. It can interpret a sentence like “take a
right at the signal light” and build a topological map
corresponding to the sentence. Such a sentence can be
communicated to the planner through multimodal human
interfaces like voice and gesture. The Coordinator served as
an interface between Behaviors and Planner and guided
Behaviors to accomplish meaningful tasks according to
guidelines from the Planner and the Position estimator
which estimated a robot’s posture in the topological map. In
order to manage Behaviors the Coordinator made a wake-up
list which contained those behaviors which should be
activated. Since Behaviors are independent processes in the
view of an operating system, they are scheduled by an
operating system and only activated behaviors are able to
produce their control outputs. These control outputs can try
to control the same actuator simultaneously because they
are made without consideration for the other behaviors. In
order to resolve this conflict we designed a two-stage
blender which considered how to surmount the drawbacks
of integration and winner-take-all strategies.

In this paper, we will present the Intelligent Mobile Robot
CAIR-2. Especially we put great emphasis on an integrated
mobile robot control architecture based on behavior and
planner with flexible human interfaces. We also present the
ability of CAIR-2 at the ’95 IJCAI/AAAI Robot Competi-
tion and Exhibition4 when the robot was placed first in the
Office Delivery event. CAIR-2 lasted three months outdoors
for real world demonstration during the ’93 Taejon World
Exposition.

1.1. Related work
Brooks introduced the subsumption architecture,2 which
was layered and had multiple independent task-achieving
modules. Since it is quite fast and robust in comparison with
previous work, it has been the center of attention. Behavior-
based control is quite different in splitting the problem of
autonomous navigation because it is split by task rather than
by function. Traditional functional splitting attempted to
construct general-purpose functional modules, such as a

modeler and a planner, and placed them in a single control
loop. For example, the Stanford Cart and the CMU Rover
used the navigation system developed by Moravec which is
based on a two-dimensional grid map. Meaningful features
are extracted from multiple sensors, and then they are
plotted on this map. A best shortest path is then chosen for
movement. The cart would advance by 3 feet and then
repeat the above processing. The SHAKEY, SRI Inter-
national 1966–1972, Hilare, LAAS laboratory in Toulouse
1977–, and NAVLAB, CMU 1983–, can be placed in this
category. Some of them tried to build precise models of the
world and the navigation problem became the automatic
generation of abstract plans which were generated and
executed in simulated worlds where all the necessary
information was available, complete, and correct. On the
other hand, behavior-based control advocates the construc-
tion of behaviors that are independent processes and operate
in parallel. Individual behaviors are similar to traditional
approaches except they are simple and use minimal
memory.

Many behavior-based robots were implemented which
have the following features in common and, by which we
can roughly define the characteristics of the behaviors. The
first is that they usually are simple and fast; the second is
that they seem to have reactivity. These are both significant
advantages over traditional ones. The former is natural
because behaviors operate in parallel rather than in series;
therefore fast behaviors need not be delayed by slower ones.
Also these behaviors are task-specific rather than general-
purpose; therefore, the behaviors’ designers can take
advantage of the structure of the tasks in order to simplify
the behaviors. However, the latter has been the subject of a
controversy, since there are two commonly accepted
meanings for reactivity. The first definition is that a system
response to the input is sufficiently short. The second is that
a system minimizes the use of the internal state. The first
definition is self-evidently a desirable property for a robot
control system, but there is a growing consensus that the
second definition may not be the best way to achieve it
under all circumstances.5 We also allowed the use of
memory and many behaviors were implemented with
storages.6–8 In addition, a few behaviors were implemented
by using traditional AI techniques and although they could
not be reactive, they were able to handle high level
decisions. It has been claimed that traditional AI techniques
cannot be used to produce reactive behavior,9 but recent
researchers have challenged this claim.3,7,10

Since the late 1980s, some work has focussed on how a
higher-level deliberation process extends reactive systems
and there is growing consensus that either the planner-based
or the behavior-based system alone is insufficient. Also, the
line between the planner-based approach and the behavior-
based one becomes blurred.3,7,8,11,12

D. Payton, J. Rosenblatt, and D. Keirsey presented a set
of architectural concepts that addressed the needs for
integrating high-level planning activities with low-level
reactive behaviors8 by using a specialized behavior in order
to enable the vehicle to execute long-range traversal from
one specified location to another. In their cross-country
experiments performed with the ALV, they had been
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experimenting with two independent behaviors for road-
following and obstacle avoidance and found a difficulty of
sharing the information for each behavior because behavior
was designed to meet the goal of maintaining modularity
between behaviors. They also found that the explicit plan in
the road-following behavior was hard to handle for
unexpected situations. They then proposed a Fine-grained
behavior and Internalized plan in order to minimize
information loss between behaviors. Internalized plan used
a gradient description of a plan, so they could avoid
unnecessary abstraction.

On the other hand, M. Mataric tried to integrate a map
representation into a reactive, subsumption-based mobile
robot.11 This work needed no specialized behavior, so she
could remove the distinction between the control program
and the map. The robot’s sensors and its navigation behavior
were treated as atomic elements in the topological repre-
sentation. In this architecture, distributed over a collection
of behaviors, the map itself performs constant-time localiza-
tion and linear-time path planning. A. Saffiotti, E. Ruspini
and K. Konolige proposed a fuzzy controller for such a
mobile robot that could take abstract goals into considera-
tion.12 Since multiple behaviors want to control the same
actuator simultaneously, such a fuzzy blender can play an
important role in resolving these conflicts. Our approach is
an integrated approach to those works.

2. PROBLEM CONSIDERATIONS
We had learned some lessons from the experiments in
developing an outdoor navigation for the ’93 Taejon World
Exposition. The following paragraphs are the problem
considerations in the design processes of the proposed
control architecture:

Graceful Recovery of Robot’s Posture: Since it is
difficult to localize the position of a robot and to obtain
precise metric features, we adopted a topological map
which represents the world as a graph of nodes and arcs.
The nodes are distinctive places in the environment and the
arcs represent paths between places. We expanded a
topological map into a pseudo-sequential machine that is
represented as a tuple knode, percept, nodel and we regarded
it as navigation on a topological map. At a location a robot
can extract certain features, which can be handled as
percepts. If we obtain perfect features, navigation on a
topological map is equivalent to operation of finite state
automata. Unfortunately, it easily localizes a robot’s posi-
tion even if it navigates via a topological map.

We faced a few problems: all features are extracted with
uncertainty, some features can be missed, and some features
can be duplicated. A navigator must be able to handle these
problems, otherwise robots can never escape from a trap. As
an example, most robots (except DERVISH13) entered in the
AAAI ’94 Robot Competition had to retry several times due
to false estimated positions. Hence we propose the concept
of a fuzzy state which refers to the approximate position on
a map.

Cooperation: The programming of individual behavior
itself is known to be easy, but the programming of a
meaningful task with behaviors is not easy because these
behaviors must cooperate in the most efficient way. For this

reason, although several reactive or behavior-based
approaches were reported as successful, they applied only
for small application areas such as obstacle avoidance,
wandering without collision, and simple indoor navigation.
In addition, behind these successes were large workloads
which required developers to spend many hours testing and
re-configuring relationships between behaviors.

Who is responsible for the efficient conduct of the overall
physical action for a meaningful task? In the subsumption
architecture,2 interconnection wires have all responsibilities.
Behaviors are layered and higher level behaviors are able to
control inputs and outputs of lower level behaviors.
Therefore, every individual behavior must know the mean-
ing of the input and output signals of other behaviors, and
developers must re-wire behaviors’ signals whenever the
task to be executed is changed. We propose a Coordinator in
order to elicit cooperation between or among behaviors.

Uniform Appearance: We can say that the behavior-
based approach is superior to the previous approaches only
if a complex task splits into a number of simple tasks, and
then each simple task can be programmed and tested
individually. To do this, it must have a uniform interface
with the other components, and it can hide information
effectively. Consequently we permit only one structure of
behaviors.

Information Loss: In a non-layered architecture, vital
information can be lost. For example, suppose that you
designed two independent behaviours. Both create their own
output independently, so the output of one can not be
compatible with the other. Therefore, each behavior must
not abstract information too much before sending it to a
blending module. We propose a two-stage blender in order
to blend control outputs and to mediate the compatibility
with the other behavior.

3. INTEGRATED CONTROL ARCHITECTURE
The reason why the integration of both the planning and
reactivity is necessary to build an autonomous mobile robot
is straightforward. Before describing our control archi-
tecture, it is better to discuss how both are integrated. Figure
1 shows some possible approaches. Figure 1(a) shows a
conceptual model of Arkin’s the Autonomous Robot
Architecture6 that incorporated the motor schemas (beha-
vioral modules) within a planning framework. Since there
was an explicit mission planner, it was able to effectively
communicate with human operators and handle the sym-
bolic knowledge when necessary. Our approach adopted
these features. In such an approach, the emphasis on the
planner’s role tends to weaken the reactivity since it is
difficult to predict the response time of AI methods while a
robot operates in real-time. In order to avoid this problem
we designed some behaviors by using “any-kdimensionl”
algorithms10 that halt when they have reached a certain
threshold along such a dimension.

Figure 1(b) shows a Payton’s approach where one or
more behaviors were able to interpret internalized route
plans in the form of gradient field representations.8 They
can be treated as planners. One of them can be expanded to
a human interface if necessary.

Figure 1(c) shows a homogeneous framework where low-
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level control and high-level deliberation activities could be
tightly intermingled. Mataric introduced a distributed map
representation that merges directly into a homogeneous
subsumption-based system, thus eliminating the need to
separate the planning and excecution parts of the system.11

In this category, it is also possible to build a robot control
system by using the same representation method for both
levels.

3.1. The proposed control architecture
The proposed architecture is similar to that of Figure 1(a).
High-level Task Executor is a planner with a topological
map that is not concerned with locomotion details and acts
as a human interface which presents a robot’s state verbally
and obtains commands. It is important to mask the
information about behaviors; otherwise a human operator
must know all of the behaviors. So we designed High-level
Task Executor to hide whole information about behaviors
and to give multimodal human interfaces like voice, gesture,
and wireless control pads. Robots can be controlled by
simply sending topological descriptions through one of
these interfaces.

We designed the architecture in order to effect multiple
complex tasks; therefore, a certain behavior may be
activated or deactivated depending on the task. We designed
Coordinator to assume the responsibility for activation
control of behaviors. Once the Coordinator decides which
of behaviors are necessary for achieving a certain task, these
selected behaviors are activated by a real-time kernel. The
behaviors activated by the Coordinator take full responsibil-
ity for locomotion of a robot.

Individual behavior is a stand-alone and self-contained
task, so it needs not any other information from the other
modules, except from the sensors themselves. In other
words, the relations between behaviors are very weak in
comparison with the subsumption architecture where higher
level behaviors usually suppress input signals of lower
behaviors and inhibit output signals of lower behaviors. In
our case, behavior input and output signals never need to be
suppressed or inhibited.

However, this causes another problem. Because all
behaviors work independently, their control outputs conflict
with each other as a result of attempts to control the same
actuator simultaneously. In order to resolve these conflicts a

two-stage blender was designed to determine the merits of
a winner-take-all strategy and integration techniques such
as Potential Field Method or Fuzzy Logic.

In addition, there was shared memory to minimize
information loss between behaviors and sensory data queue
to provide various demands for all behaviors. Since the
instruction set consists of statements that reference the
locations on a topological map, the planner must know the
position. Position estimator was designed to predict a
robot’s position and orientation.

As described above the architecture has seven compo-
nents as shown in Figure 2. Almost half of them, Sensory
data queues, Behaviors, and Blender, are for behavior-based
control. The others are for planner-based control. The
Coordinator guides behaviors in accordance with the results
of the Planner.

3.2. Behavior-based control

3.2.1. Behavior. As stated above, a behavior works inde-
pendently without interaction with other behaviors. Because
individual behavior is usually designed to achieve only a
simple and specific task, it is important to coordinate
multiple behaviors in order to accomplish a meaningful
action. In order to interact with neighboring components
each behavior has six links* as shown in Figure 2. Each
behavior is able to obtain data from two input sources:
Sensory data queues and Shared memory. Sensory data
queues deal with raw sensory data and Shared memory deals
with the information made by behaviors. A behavior’s
results can be stored in Shared memory in order to minimize
the information loss between behaviors, but they also must
be sent to the Position estimator to predict the robot’s
position and orientation. Most behaviors produce their
control signals for two-stage blender in form of Vector or
Permission_Ring. There are behaviors that do not produce
any control outputs except by-products like topological
features. Figure 3 shows three kinds of behaviors.

The link from Coordinator to EDF-Based Real-Time
Kernel is not connected to behavior; however, in the view of
an operating system a behavior is a process, so it can be
scheduled or blocked by a real-time kernel. With our
proposed architecture, behaviors can produce control out-

* One of them is an indirected link.

Fig. 1. Integrated approaches: (a) Incorporation of the explicit planner within a behavior-based framework. (b) Homogeneous framework
with explicit planners. (c) Homogeneous framework without explicit planners.
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puts only when they are scheduled. In order to manage
behaviors the Coordinator sends wake-up or block signals in
accordance with the task.

3.2.2. Sensory data queues and shared memory. Before
explaining the Sensory data queues, let’s consider a
behavior that extracts a corridor from a certainty map made
by the latest 60 readings of an ultrasound sensor. Queue is
one of the best data stuctures for solving such a problem.
We have two choices to place the queue: inside or outside of
behavior. If it is placed in a behavior, it must run forever and
cannot pause or it will produce unwanted results while the
queue is being filled up. Hence we put the queue outside of
behaviors so that behaviors can produce their outputs
without delays for filling up the queue. In addition they can
minimize their internal states. To do this, we insert Sensory
data queues between the sensor and the behavior, even if it
is common knowledge that the behavior is connected
directly to the sensor and actuator. Therefore, the time

required to set up a queue can be saved and the time and the
space for handling a queue can also be saved if two or more
behaviors use the same sensor.

It is desirable that the response time is stable regardless of
the computation requirement. To do this, multiple behaviors
could be developed in accordance with the response time.
Therefore, if in a hurry, the behavior that requires fewest
readings would be activated even if the behavior that
requires more readings produces more precise results.

We implemented Sensory data queues as a circular queue,
but in the view of behaviors Sensory data queues is not a
queue but rather a stack because they are designed to set the
pointer of the queue to always indicate the latest readings.

Shared memory is used to store the information produced
by behaviors. It is a store and is given a memory block to
behavior on demand. Although it is a compound structure, it
is treated as an atomic element by semaphore. Therefore, it
can be asynchronous and the information in it is non-
consumable and can be overwritten. All incoming pieces of

Fig. 2. Control architecture of CAIR-2.

Fig. 3. Overview of Two Stage Blender and three kinds of behaviors.
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information are timed in order to keep the latest one and to
discard it when it is worn out.

3.2.3. Two stage blender. Multiple control signals coming
from activated behaviors would cause many conflicts. In
order to resolve them many methods have been derived for
use in the reactive robotics. They can be divided into two
categories: Integration and Winner-take-all:

Integration: One famous set of solutions integrates these
signals by using the potential field method, fuzzy logic or
vector summation.6,12,14 The control signals are easy to
distort when their physical dimensions are different or there
is a malfunction in some behaviors. Moreover, the behav-
iors’ outputs can be abstracted too much before being sent
to a blending module, so the blending module will face a
lack of information15; this demonstrated a limitation of the
potential field method for mobile robot navigation.

Winner-take-all: The other solution set is a winner-take-
all strategy which selects out of control signals and uses it
without modification.2,16 The selected signal easily dis-
regards minor but potentially critical information8 and
showed that a winner made undesirable control outputs, and
it is commented that this was caused by information loss
due to incompatibility between behaviors.

Since both cases have their drawbacks, we considered
them simultaneously when applied to the blender. Each
behavior has two kinds of output format: Permission_Ring
and Vector. Vector represents the desired direction and
velocity while Permission_Ring represents those directions
which are prohibited.

Before the navigation, the Coordinator decides the
importance of each behavior and endows it with a weighting
factor. Each behavior produces its output in one of two
forms. In the case of Vector, the desired orientation and
velocity are calculated and then multiplied by the weighting
factor. All orientations and velocities are summed up to
generate a single resultant vector

u=arctan 2(Sxi vi, Syi vi) (1)

v=Ï(Sxi vi )
2 +(Syi vi)

2 (2)

where Svi =1, (xi yi) is the output of behavior i and vi is the
weighting value of behavior i. The robot’s new direction and
velocity are then adjusted to u and v. This adjustment can be
cancelled and modified when the robot’s direction is
prohibited.

Certain behaviors can produce their output in the form of
Permission_Ring which is designed to represent those
directions in which a robot is prohibited to go. A
Permission_Ring is composed of 32 arcs of 11.25° in which
a confidence measure is stored. The confidence measure
denotes how many seconds are left before a collision with
obstacles may occur. More than 10 seconds is treated as 10
seconds. The time is more important than the distance to the
obstacle. For example, in a situation where an obstacle is
30 cm away and the diameter of a robot is 60 cm, the
physical distance between them is very short, so the robot is
in danger. However the logical distance varies in accordance
with the velocity of the robot. When it is 30 cm/sec, only
one second is left before collision, but when it is 3 cm/sec,

ten seconds are left. Therefore, safety depends on both the
distance and the velocity. Since multiple behaviors work,
multiple Permission_Ring are produced. They adjust their
coordination system. All arcs that are placed in the same
direction are merged into one arc by a min operation that
chooses the minimum value among them. Before applying a
min operation the confidence measures are slightly changed
according to the control frequency. In other words, all
behaviors do not operate synchronously which means that
the completion of a single loop of the control cycle takes
more or less time than the others. Therefore, the slower ones
must interpolate their value to adjust to the fastest one.

The desired velocities [vr, wr]
T are finally calculated by

the Vector and Permission_Ring. Direct delivery of the
velocities to the actuators causes a serious positioning error:
the higher the acceleration, the more wheel slippage occurs
due to friction. Moreover, it also leads to an electric power
problem. Mobile robots use batteries, however, and the
capability of batteries is limited and may be insufficient for
another action. A transient overload of actuators must be
avoided Therefore, we introduced an open-loop controller
for smooth locomotion.

The blender makes control signals every T seconds and it
assumes that the robot goes as far as Pr:

vr(sin(u+wr)2sin u)/wr

Pr = 2vr(cos(u+wr)2cos u)/wr T (3)
wr

However, the robot usually does not advance Pr because
this calculation is made without considering any dynamics.
The estimated trajectory should be Pc which might differ
from Pr. The difference between them is the error vector,
Pe:

xe cos ur sin ur 0
Pe = ye = 2sin ur cos ur 0 (Pr 2Pc) (4)

ue 0 0 1

The error vector Pe can be used in computing the control
signals in the next run. The following equation was
derived17 for mobile robots to track stable

Fv
wG=F vr cos ue +Kx xe

wr +vr(Ky ye +Ku sin ue)
G (5)

where, Kx, Ky, and Ku are positive constants.

3.3. Planner based control
We have shown that it is difficult to estimate the position of
a robot and easy to distort metric features like the distance
between places. One of the good solutions of the inevitable
problems of dealing with movement uncertainty in mobile
robots is the use of a topological map. Topological maps
represent the world as a graph of vertices and edges. The
vertices are distinctive places in the environment and the
edges represent paths between places. The vertices can be a
room, lobby and corridor. The map is represented by an
undirected graph T that is an ordered pair (S, E), where S is
a set of places and E is a set of multisets of two elements
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from S.
There are two components related to planning; Position

estimator and Planner itself. The Position estimator is to
estimate the position on a topological map. The Planner can
not make a plan completely before execution due to the
incompleteness of information about the environment,
therefore, we make a partial plan whenever new percepts
from sensors arrive.

3.3.1. Position estimator. Let’s consider that there is a
robot in a room and can obtain many topological features
necessary to confirm its position on a topological map while
it is moving to another room. The navigation thus is the
same as graph traveling, so we have expanded a topological
map into a pseudo sequential machine in order to consider
navigation as the operation of such a sequential machine
which can be represented as a function from S3 U into S,
where U is a power set of a finite nonempty set P of percepts
(topological features) coming from behaviors. A place in S
is treated as this machine’s state and a percept is treated as
an input. It can be exactly the same as with deterministic
finite automata if all possible percepts can be collected.
Unfortunately, the inputs are determined uncertainly and
they can be lost or duplicated, so we apply neither
nondeterministic nor deterministic sequential machines for
modeling navigation. William G. Wee introduced fuzzy
automata to handle fuzzy values and fuzzy states.18 We

adopted fuzzy automata to estimate the position of a robot.
Fuzzy sequential machines The position estimator is a
modified fuzzy sequential machine F, that is a system
(u, S, f ) where u is an input measure function from U to
[0, 1], S is a finite nonempty set of places, and f is a state
transition function from S3 u(U)3 S3 T into [0, 1] where T
indicates time. There is neither a start place nor an initial
distribution function because a priori information is not
given. Most sequential machines usually exclude the T since
they are stationary. However, in our case T is important
because percepts have not arrived in the order we want
because of the variance of the complexity. Therefore, we
cannot handle these percepts directly and we must devise a
tool for percepts. To do this, we considered the difficulties.
The first difficulty is that they are extracted with uncertainty.
The second is that features can be missed. The third is that
features can be duplicated. Finally, they are not obtained in
a deterministic order; in other words, the first percept in the
spatial order cannot arrive first in the temporal order.

Table I shows the desired percepts for each arc in the
graph shown in Figure 4. The table has three major
columns: Action, Stationary, and Transit. The action column
represents an arc from the place S to the place D and a
robot’s orientation is O which can be determined by a digital
compass attached to robot’s head. The stationary column
denotes the percepts that a robot can obtain in the place S,
where F, L, R, and B represent whether objects are in the

Table I. Desired percepts.

Action Stationary Transit

S O D F L R B S N P M L R W

c1 n r1 d o o 3 f c d
c1 s f1 o o d 3 r c w
c1 e c2 o d o 3 r f d o w
c2 n r2 d o o 3 c c d
c2 e c3 o d o 3 c r d x
c2 w c1 o d o 3 c r d x
c3 n r3 d o o 3 c c d
c3 e c4 o d o 3 c r d x
c3 w c2 o d o 3 c r d x
c4 s c7 o o 2 c o w
c4 w c3 o o 2 c o w
c5 s r4 d o o 3 c f d
c5 e c6 o d o 3 f r d x
c5 w f1 o d o 3 c r w
c6 s r5 d o o 3 c c d
c6 e c7 o d o 3 c r d x
c6 w c5 o d o 3 c r d x
c7 n c4 o o o 3 c c o w
c7 s c0 o o o 3 c c o w
c7 w c6 o o o 3 c c o o w
c8 n f1 o d o d 4 r r c w
c8 s r8 d o d o 4 f c r d
c8 e c9 o o d d 4 r f r o d w
c8 w r6 d d o o 4 c r f d
f1 n c1 o o o r c c w
f1 s c8 o o o r c c w
f1 e c5 o o o r c c w
r1 s c1 d r d
r2 s c2 d d r r d
r2 e r3 d d r c d
r3 s c3 d d r r d
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front, left, right, and rear view, respectively, S denotes the
property of the junction, and N, P, M represent the type of
the neighbors. The transit column denotes the percepts to be
obtained when a robot arrives at the place D where L, R, and
W represent which object had been recognized and dis-
appeared in the left, right, rear view. Symbols in these tables
are described in Table II.

All behaviors are able to send some topological features
to the Position estimator. These can be represented as a
stream of a percept pi which belongs to one of the classes of
percepts; in other words, one of {FLRBSNPM, LRW}, and i
denotes the temporally ordered sequence. They are not
ordered spatially, so they must be segmented to make an
element of the power set U. All percepts in Transit category
are used to segment this stream.

Given a segmented section, we remove the duplicated
features as follows:

f j
i(a)=Max j

k=i{pk |pk belongs to the class a} (6)

Next, we evaluate the input measure function u as follows.

u j
i (s, d, t)=O

kPP

{rk likelihood( f j
i(k), d(s, d, k))} (7)

where d(s, k) denotes the desired percept k at the arc (s, d)
and likelihood(a, b) is a likelihood measure function
between two percepts and SkPP{rk}=1.

State transition function. In navigating, suppose that a robot
takes a percept piPP. It can affect multiple states. This is
natural. For example, we are also confused in a strange
street. A man stands in a strange street and sees two red
buildings and he then decides to go to the left red building.
While walking, he obtains new information that can help to
confirm his decision. If the decision is right, the confidence
value will increase, otherwise he will worry about the
decision and eventually change his mind. In this case, the
man has two states for each red building. As information
collects, only one candidate remains. The following shows
how to increase the confidence value.

Whenever a new percept pi is arrived at, the input
measure function uj

i is re-evaluated and a state evaluation
function f is also re-evaluated as follows:

f (s, d, t)=(12r)uj
i(s, d, t)+rCV(s, t21) (8)

where CV is a certainty value for the place s and r is a
positive constant between 0 to 1. When the uj

i exceeds a
certain threshold, the time stamp t is increased and the CV
is updated as the value of the state evaluation function f like
this.

CV(d, t)=MaxsPS{ f (s, d, t)} (9)

At time t we use the estimated position of a robot as
follows:

Pest(t)=s such that 'sPS F(s, d, t)$Maxx, yPS{ f (x, y, t)} (10)

Fig. 4. Topical topological map with the description.

Table II. Percepts used in our architecture.

Stationary Transit

FLRBS NPM LR W

d found a door passed by a door passed a doorway
o found an open passed by an open
‘ ’ found a wall prohibited detected nothing
r in a room room
f foyer
c corridor
e passed a junction
x passed a junction if door opens
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3.3.2. Planner itself. Once the position is determined, a
planner must decide the destination. This work is relatively
simple and easy. We adopted the A* algorithm whose cost
function uses three pieces of information; Hard, Risk, and
Dist. Hard depends on the type of place and its neighbor, for
example, passing through a doorway is more difficult than
passing through a corridor. Risk reflects the dynamic feature
of an environment. The environment may change dras-
tically. Therefore, some paths can be broken without notice.
For this reason, Risk is introduced to reflect the number of
alternative paths. Dist, is the distance between nodes, but it
can be omitted since it is not given initially. A cost function
is described as follows:

Costij =r1 Hardij +r2 Riskij +r3 Distij (11)

where i and j are adjacent places.
Whenever new information is gathered, the cost function

is re-evaluated and the results are stored in a one-
dimensional array. Therefore, planning can be treated as
table look-up like this.

d=Des[s], where s is the current estimated place and d is
the place a robot goes next.

3.3.3. Simulation. Now, we present the performance of our
positon estimator. Table III shows the simulation results of
the Position estimator. We used the same instruction “move
to Room 1 from here (Room 0)” in the simulation, but used
different simulator’s parameters.

In the Scenario A, the simulator did not make any noise,
so the input measure function u could be 1.00. In the
Scenario B, R7’s door was sensed as a corridor, R6’s door
was not detected, and the other features were obtained with

20% noise. In the Scenario C, we used the same parameters
of Scenario B except R9’s door was not detected. R9’s door
was a very important feature since missing this feature
caused it to fail to recogize the place C9. However, the
simulator shows that overall performance was not degen-
erated even if the door was missed.

3.4. Coordinator
As mentioned above, the position estimator is waiting to
receive new percepts from behaviors and the planner just
recommends which direction is desirable. They both are
passive modules; in other words, they never produce control
signals for locomotion. Only behaviors are able to move the
robot. Once the destination is determined by the planner, the
coordinator decides which physical action needs to arrive at
the destination. Since such a physical action cannot be
achieved by a single behavior, the coordinator selects
multiple behaviors that should cooperate together to per-
form this action. To do this, it produces a wake-up table that
contained those behaviors which should be scheduled by a
real-time operating system. The wake-up table has three
columns for each physical action.

[1] Pre_activation

[2] Fire_condition

[3] Post_activation

Before explaining the above items, let’s consider a
situation that there is a robot in a room and it is trying to
leave the room. Its first task is to examine the room in order
to find a door. The second is to find a door, and then to leave
through the door. What is the most important task in this

Table III. Indoor navigation in a simulated environment

Scenario A Scenario B Scenario C

T Decision u CV Decision u CV Decision u CV

1 r8 ⇒ c8 1.00 0.70 r8 ⇒ c8 0.98 0.68 r8 ⇒ c8 0.98 0.68
r9 ⇒ c9 1.00 0.70 r9 ⇒ c9 0.98 0.68 r9 ⇒ c9 0.98 0.68
r0 ⇒ c0 1.00 0.70 r0 ⇒ c0 0.98 0.68 r0 ⇒ c0 0.98 0.68
r4 ⇒ c5 0.85 0.60 r4 ⇒ c5 0.82 0.58 r4 ⇒ c5 0.82 0.58

2 c0 ⇒ c9 1.00 0.91 c0 ⇒ c9 0.82 0.78 c0 ⇒ c9 0.82 0.78
c8 ⇒ r6 0.57 0.61 c7 ⇒ c6 0.75 0.57 c7 ⇒ c6 0.75 0.57
c9 ⇒ c8 0.50 0.56 c8 ⇒ r6 0.40 0.48 c8 ⇒ r6 0.40 0.48
c5 ⇒ f1 0.50 0.53 c9 ⇒ c8 0.32 0.43 c9 ⇒ c8 0.32 0.43

3 c9 ⇒ c8 1.00 0.97 c9 ⇒ c8 0.95 0.90
c5 ⇒ f1 1.00 0.86 c6 ⇒ c5 0.95 0.84
c6 ⇒ c5 1.00 0.82 c5 ⇒ f1 0.95 0.79
c8 ⇒ r6 0.57 0.57 cr ⇒ c2 0.60 0.54

4 c8 ⇒ f1 1.00 0.99 c8 ⇒ f1 0.77 0.81 c8 ⇒ f1 0.77 0.67
f1 ⇒ c1 0.50 0.61 f1 ⇒ c1 0.68 0.71 f1 ⇒ c1 0.68 0.59
c0 ⇒ c7 0.57 0.49 c1 ⇒ r1 0.55 0.53 c1 ⇒ r1 0.55 0.46
c1 ⇒ r1 0.32 0.37 co ⇒ c7 0.50 0.44 c0 ⇒ c7 0.50 0.41

5 f1 ⇒ c1 1.00 1.00 f1 ⇒ cl 0.90 0.87 f1 ⇒ c1 0.90 0.83
c1 ⇒ r1 0.82 0.76 c1 ⇒ r1 0.76 0.74 c1 ⇒ r1 0.76 0.71
c8 ⇒ f1 0.68 0.55 c8 ⇒ f1 0.57 0.48 c8 ⇒ f1 0.57 0.48
c7 ⇒ c4 0.50 0.50 c7 ⇒ c4 0.45 0.45 c7 ⇒ c4 0.45 0.44

6 c1 ⇒ r1 1.00 1.00 c1 ⇒ r1 0.92 0.91 c1 ⇒ r1 0.92 0.90
f1 ⇒ c1 0.75 0.69 f1 ⇒ c1 0.73 0.65 f1 ⇒ c1 0.73 0.65
r4 ⇒ c5 0.57 0.43 r4 ⇒ c5 0.52 0.40 r4 ⇒ c5 0.52 0.40
c2 ⇒ r2 0.50 0.40 c8 ⇒ f1 0.42 0.38 c8 ⇒ f1 0.42 0.37
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scenario? We thought it is to find a door. The coordinator
decides one or more behaviors as the representatives, which
make topological features belong to Transit column of Table
I. The Fire_condition denotes these representatives. In order
to assist these representatives, many behaviors are assigned
to the Pre_activation or the Post_activation according to
the state of the representatives. The Pre_activation denotes
a group of behaviors which are activated before the
representatives do not complete their own task. The Post_

activation denotes a group of behaviors which are activated
after the representatives finish the task. They complete the
action and prepare for the next action.

Table IV shows some entries of the wake-up table. In the
case of leaving a room, a door is the most important feature.
BH_AVOID_COLL, BH_AVOID_OBST and BH_OPEN_

SPACE_EXPLORER are activated to assist BH_FIND_DOOR

to find a door effectively. In other words, they move a robot
to the best place where a door can be easily found by the
vision system. Once a door is found, they are deactivated
and BH_EXIT_DOOR and BH_AVOID_COLL_AT_DOOR are
activated to pass through the door.

3.4.1. An Example: Task “Turn Left”. In this section we
will describe “Turn Left at the i th corner” in order to
present how architectural components actually cooperate to
complete a specific task. Such a task can be represented as
Figure 5 in the view of our proposed architecture.

In the figure, six behaviors are working to find corners, to
correct robot’s posture and to turn left. BH_AVOID_COLL

requests Sensory Data Queues to send one reading of
ultrasound sensor and infrared sensor respectively and
makes Permission_Ring which is sent to the second stage of
blender. BH_AVOID_OBST and BH_GO_FORWARD use
data obtained from both Shared memory and Sensory Data
Queues. Their control outputs are added into vector sum.
BH_FLOOR_TRACK and BH_FIND_OPEN don’t produce
any control outputs, but their symbolic information is stored
in the Shared memory. This informatin is used by the other
behaviors. For example, the number of opens is used by BH_

SET_DIRECTION in order to decide when it starts to turn
robot left. Most of the behavior’s symbolic information is
sent to Position estimator in order to estimate the robot’s
posture.

Table IV. Some entries of the wake-up table.

Action Pre_activate Fire_condition Post_activate

Exit Room BH_AVOID_COLL BH_FIND_DOOR BH_EXIT_DOOR

BH_AVOID_OBST BH_COLL_AT_DOOR2

BH_OPEN_SPACE1

Turn Left BH_AVOID_COLL BH_FIND_OPEN BH_SET_DIRECTION

BH_AVOID_OBST BH_AVOID_COLL

BH_FLOOR_TRACK BH_AVOID_OBST

BH_GO_FORWARD

Go Hallway End BH_AVOID_COLL BH_HALLWAY_END

BH_AVOID_OBST

BH_FLOOR_TRACK

BH_GO_FORWARD

1 BH_OPEN_SPACE_EXPLORER. 2 BH_AVOID_COLL_AT_DOOR.

Fig. 5. Architectural description of a task: “Turn ith Left”.
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4. EXPERIMENTAL RESULTS
When a robot navigates real space, several kinds of data are
involved such as velocity, position, and sensory data, so it is
difficult to present the result on the two dimensional space
like this paper. For this reason, many scientific and technical
societies offer another method like video proceedings, in
which more realistic and dynamic results can be presented.
Some of our results are also dynamic, so these can be
presented in a video.19

We performed many experiments to demonstrate the
ability of our architecture. Two of the major experiments
were in the ’93 Taejon World Exposition and the 4th Annual
Mobile Robot Competition sponsored by IJCAI and AAAI.
In this chapter, we present the robot competition and some
related results.

4.1. IJCAI Robot Competition
The Robot competition was held in Montreal, Canada, on 21
through 24 August 1995, in conjunction with the 1995
International Joint Conference on Artificial Intelligence.
The competition consisted of two separate events: (1) Office
Delivery and (2) Office Cleanup. We took part in the first
event.

In addition to the traditional goal-directed navigation, the
first event of the robot competition was designed to promote
the ability of robots to detect when there is a problem and
ask for help through effective robot-human interaction. The
event took place in a re-creation of a typical office
environment with partitioned offices as shown in Figure 6.
The robots were asked to follow a series of instructions that
told them to which room they were supposed to go. The
instructions consisted of statements such as “exit the room
and turn left”, “go to the end of the hallway and turn
right”.

4.1.1. CAIR-2’s run. At the final round, we set the
maximum velocity of CAIR-2 to half because CAIR-2 had

been placed first at the first preliminary round and we thus
believed that CAIR-2 was fast enough. Lower velocity can
give a lot of advantages such as safety and sensor accuracy.
CAIR-2 did the final round (about 51 meters) in 325
seconds. Hence, its velocity was about 15 cm per second.

The environment is similar, in size, shape and furnish-
ings, to the first floor of an office building containing a foyer
as well as offices. CAIR-2 starts in Room E with only one
exit and is given instructions verbally by speech recognition
on how to get to the goal room. The 6th instruction was
faulty and CAIR-2 must be able to overcome this. No
topological map as to the office environment is given.
CAIR-2 starts to wander around the room looking for an
exit marked with a landmark pattern. It recognizes target
patterns in the landmark using vision and keeps tracking the
target in real time while approaching the exit to adjust its
position and orientation. After confirming the position and
orientation several times, CAIR-2 starts to leave the room.
After that, CAIR-2 leaves the room safely and it speaks
“Exit Room” as a confirmation of its first subtask com-
pleted. Now it moves toward its goal room (Room D). It
knows it must make a right turn at the first junction to take
the hallway. It finds two doors using sonar and confirms by
saying “Found Door” until it reaches the next junction for
another right turn. It knows it is on the correct path to the
goal room so far. Measuring the distance from its body to
the left and right side walls using ultrasound, it keeps its
path around the center of the hallway. It finds a foyer and
again confirms it verbally. CAIR-2 now tries to find the third
right open where it is supposed to make a right turn as given
by initial instructions. However, it cannot find any third
open!

CAIR-2 activates a behavior responsible for finding any
mistake. It fails in finding any mistake and an alternative
path to the goal and concludes that the given instruction was
incorrect. CAIR-2 announces it verbally and that is the end
of the first phase of the task.

Fig. 6. The competition arena.
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The second phase of the task is rather straightforward and
similar to the first, except there is no incorrect instruction.
CAIR-2 finally approaches the goal room and finds the
entrance. CAIR-2 enters the room very carefully by keeping
his body at the center of the entrance. No single mistake.
CAIR-2 completed his mission better than we expected.
Figure 7 shows the final stage of CAIR-2’s run.

4.1.2. Behaviors. For the competition, we have used 22
behaviors. In the following, we describe some of them.

BH_AVOID_COLL: avoids the collision by keeping the
robot a safe distance from the obstacle using sonar and

infrared sensors. The format of the output is the
Permission_Ring.

BH_AVOID_COLL_AT_DOOR: is similar with BH_

AVOID_COLL, but more sophisticated and time
consuming. It tries to reconstruct its surrounding environ-
ment to remove false detections. It also produces the
output in the form of the Permission_Ring.

BH_AVOID_OBST: understands the locations of obstacles
and avoids them if possible. It uses up to 60 readings of
sonar and then builds a certainty grid with these sonar
readings. It also uses environmental features made by
BH_FLOOR_TRACK through Shared memory.

BH_OPEN_SPACE_EXPLORER: moves the robot to an
open space and let it wander around.

Fig. 7. Indoor Navigation: These pictures were taken during the IJCAI Robot competition by Pete Bonasso and they can be retrieved from
the URL http://www.ai.mit.edu/people/dmiller/ijcai/robots-95.html.
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BH_GO_FORWARD: measures the distance from the robot
body to the left and right side walls using sonar and try to
keep its path along the center of the hallway. It can correct
the orientation of robot when the computation is availa-
ble.

BH_PASS_FOYER: find the lobby and pass safely.
BH_SET_DIRECTION: change the direction of the robot

when the condition (the number of opens) meets.
BH_FIND_OPEN: find junctions and doors by sonar

sensors. We implemented three kinds of door finding
algorithms. The difference between them is how many
sensor readings are required. Therefore, a fast response
time can be accomplished if a faster algorithm can find
them. In addition, even if the faster one loses them, they
have another chance to be found by slower ones which are
more sophisticated and robust. This behavior does not
produce the control output but important information for
the other behaviors, for example, BH_SET_DIRECTION

needs the number of junctions and doors.
BH_HALLWAY_END: find the end of the hallway. It does

not produce the control output, but can send information
to the coordinator to initiate the next instruction when the
end of the hallway is found.

BH_ENTRAP: check the validity of the current instruction
and see if there is any mistake when the robot is trapped.
In case any mistake is detected they try to solve it.
Otherwise, deactivate all currently active behaviors and
announce the situation verbally.

5. CONCLUSIONS
In this paper, we presented an integrated robot control
architecture in order to maximize the usefulness in develop-
ing an intelligent system. We also presented a brief
description of the intelligent mobile robot CAIR-2 and the
IJCAI Robot competition as an experimental result.
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