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Abstract. A central topic in mathematical logic is the classification of the-

orems from mathematics in hierarchies according to their logical strength.

Ideally, the place of a theorem in a hierarchy does not depend on the repre-
sentation (aka coding) used. In this paper, we show that the standard repre-

sentation of compact metric spaces in second-order arithmetic has a profound

effect. To this end, we study basic theorems for such spaces like a continuous
function has a supremum and a countable set has measure zero. We show

that these and similar third-order statements imply at least Feferman’s highly

non-constructive projection principle, and even full second-order arithmetic or
countable choice in some cases. When formulated with representations (aka

codes), the associated second-order theorems are provable in rather weak frag-
ments of second-order arithmetic. Thus, we arrive at the slogan that

coding compact metric spaces in the language of second-order arithmetic can
be as hard as second-order arithmetic or countable choice.

We believe every mathematician should be aware of this slogan, as central

foundational topics in mathematics make use of the standard second-order

representation of compact metric spaces. In the process of collecting evidence
for the above slogan, we establish a number of equivalences involving Fefer-

man’s projection principle and countable choice. We also study generalisations
to fourth-order arithmetic and beyond with similar-but-stronger results.

1. Introduction and preliminaries

1.1. Aim. The study of compact metric spaces in mathematical logic generally
proceeds via ‘representations’ or ‘codes’ in the language of second-order arithmetic,
where the latter only has variables for natural numbers and sets of natural numbers.
In this paper, we collect evidence for the following slogan:

coding compact metric spaces in the language of second-order arithmetic can be as
hard as full second-order arithmetic or countable choice.

In particular, we identify a number of well-known theorems about compact metric
spaces that imply or are equivalent to strong axioms when formulated without
codes/representations, sometimes even full second-order arithmetic and countable
choice1. These basic statements include the supremum principle for (Lipschitz)
continuous functions, that countable sets have measure zero, the intermediate value
theorem, and even the existence of representations themselves via separability. By
contrast, when formulated with codes/representations, the associated second-order
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2 CODING IS HARD

theorems can be proved in rather weak fragments of second-order arithmetic. Thus,
our results provide an answer to to the following question by Friedman.

Are there any ordinary mathematical theorems involving third or-
der objects without presentations that have any inherent logical
strength? (original in all-caps, FOM mailing list, [21])

We believe that every mathematician should be aware of the above centred slo-
gan, as major foundational topics in mathematics, like Turing computability ([13,
18, 19, 53]), computable analysis ([6–8, 63]) and Reverse Mathematics ([16, 52, 58])
make essential use of second-order codes/representations. The associated classifi-
cation apparently depends greatly on this coding practise and ‘less coding-heavy’
alternatives should be considered, in our humble opinion.

A less foundational result in this paper is the observation that basic statements
about compact metric spaces, like that a (Lipschitz) continuous function is bounded
or the existence of discontinuous functions, are equivalent to a known2 fragment of
the Axiom of countable Choice, namely by Theorems 2.4 and 2.12.

An important point regarding the above centred slogan is that the results in this
paper are robust, i.e. we still obtain second-order arithmetic or countable choice for
many variations of the theorems at hand. Robustness is studied as a property of
logical systems in mathematical logic as follows in [37, p. 432].

[. . . ] one distinction that I think is worth making is the one between
robust systems and non-robust systems. A system is robust if it
is equivalent to small perturbations of itself. This is not a precise
notion yet, but we can still recognize some robust systems.

Finally, the main aim of this paper is to identify basic third-order statements about
compact metric spaces that imply strong axioms. Nonetheless, the associated proofs
provide templates that yield similar results for fourth- and higher-order statements.
For completeness, we study two examples in Section 3, among which the interme-
diate value theorem on connected metric spaces.

We provide a more detailed introduction in Section 1.2 while Section 1.3 lists
required definitions and axioms. Our main results are in Sections 2 and 3.

1.2. Introduction. While set theory provides a foundation for most of mathemat-
ics, so-called ordinary mathematics is often studied using the more frugal system
second-order arithmetic Z2 ([52, I-II]). A central topic is to identify the minimal
axioms needed to prove a given theorem of ordinary mathematics, i.e. which subsys-
tem of Z2 suffices for a proof. This is the aim of Reverse Mathematics ([16,52,58])
where a major result is that the majority of theorems of ordinary mathematics are
provable in rather weak fragments of Z2 carrying foundational import.

Now, the state-of-the-art described in the previous paragraph is an instance of
a central topic of mathematical logic, namely the classification of theorems from
mathematics in hierarchies according to their logical strength. Ideally, the place
of a theorem in these hierarchies does not depend too much on the representation
used. Since the language of Z2, called L2, only has variables for natural numbers
n ∈ N and sets X ⊂ N, higher-order objects have to be ‘represented’ or ‘coded’ via

2The fragment at hand is called QF-AC0,1 and not provable in ZF, i.e. the usual foundations
of mathematics without the Axiom of Choice (see [36] and Section 1.3.2).
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CODING IS HARD 3

second-order objects. Prominent third-order examples are continuous functions on
the reals, open and closed sets of reals, and compact metric spaces.

The goal of this paper is to identify basic third-order theorems that imply strong
axioms, including full second-order arithmetic and countable choice. In particular,
we study the following elementary statements for compact metric spaces (M,d)
where M is a subset of the Baire space.

(a) A compact metric space (M,d) is separable.
(b) A countable set in a compact metric space (M,d) has measure zero.
(c) A (Lipschitz) continuous function on (M,d) has a supremum.
(d) An open set in (M,d) equals the countable union of open balls.

When formulated with representations/codes, the associated second-order theorems
are provable in rather weak fragments of second-order arithmetic ([9, 52]). By
contrast, the third-order theorems in items (a)-(d) imply at least Feferman’s highly
non-constructive projection principle (see [20] and Section 2.1) and even full second-
order arithmetic or countable choice in some cases, as established in Section 2. In
light of the following quote by Friedman, it seems the aforementioned results are
both novel and surprising.

I have not seen any indication of an extension of say even ATR0 by
fundamental mathematical statements in types 1,2,3 in the classical
mathematical literature that carries any unusual logical strengths
like higher fragments of Z2 (added LaTeX notation, [22]).

To establish our results, we work in Kohlenbach’s base theory RCAω
0 of higher-order

Reverse Mathematics (abbreviated RM), introduced in [36]. We assume familiarity
with RCAω

0 and the associated RM of real analysis ([36, §2] or [45]).

To be absolutely clear, RCAω
0 is a weak logical system that we assume as a

‘background theory’. In the latter, we prove that the above statements (a)-(d)
imply or are equivalent to strong axioms, including even second-order arithmetic
Z2 and countable choice QF-AC0,1 (see Section 1.3.2 for the latter). Along the way,
we will obtain a number of elegant equivalences for Feferman’s projection principle
and countable choice QF-AC0,1 in Kohlenbach’s higher-order RM.

Finally, items (a)-(d) deal with compact metric spaces (M,d) where M is a
subset of the Baire space, i.e. these can be formulated in the language of third-
order arithmetic. As it turns out, the associated proofs provide a kind of template
that yields similar results for fourth- and higher-order arithmetic. We sketch such
results in Section 3, for completeness, noting that the third-order case is vastly
more natural from the point of view of ordinary mathematics.

In conclusion, the coding practise involving L2, the language of second-order
arithmetic Z2, can have a tremendous influence on the logical strength of basic
theorems. The results in this paper are novel since we show that this logical strength
can vary as much as Z2 itself, or even require countable choice. Moreover, items
(a)-(d) are rather elementary and found in many an undergraduate curriculum or
textbook. We believe that many variations on these results are possible and look
forward to the associated exploration with collaborators.

1.3. Preliminaries. We introduce the mostly standard definition of metric space
in higher-order arithmetic (Section 1.3.1) and some required axioms (Section 1.3.2).
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4 CODING IS HARD

We assume basic familiarity with the formalisation of the real numbers, which is
the same in second- and higher-order RM (see [52, II.5] or [36, §2]).

1.3.1. Metric spaces in higher-order order arithmetic. We discuss the definition of
metric space in higher-order arithmetic, as well as some related definitions. We
note that sets are given by characteristic functions, well-known from measure and
probability theory, and second-order RM, as can be gleaned from [52, X.1.12].

First of all, we shall study metric spaces (M,d) as in Definition 1.1. We assume
that M comes with its own equivalence relation ‘=M ’. We recall that the study of
metric spaces in second-order RM is at its core based on equivalence relations, as
stated explicitly in the two textbooks on RM, namely [52, I.4] or [16, §10.1]. Now,
the notation ‘F : M → R’ denotes a function F from M to the reals that satisfies
the following instance of the axiom of function extensionality:

(∀x, y ∈ M)(x =M y → F (x) =R F (y)). (EM )

In particular, each component of a metric d : M2 → R is assumed to satisfy (EM ).

Definition 1.1. A functional d : M2 → R is a metric on M if it satisfies the
following properties for x, y, z ∈ M :

(a) d(x, y) =R 0 ↔ x =M y,
(b) 0 ≤R d(x, y) =R d(y, x),
(c) d(x, y) ≤R d(x, z) + d(z, y).

We recall that compact metric spaces are at most the size of the set of reals
by [11, Theorem 3.13]. Motivated by this observation, we shall only study metric
spaces (M,d) with M ⊂ NN or M ⊂ R, except in Section 3. In the latter, we show
that if M has a higher rank, the associated theorems are much stronger.

A subset X ⊂ M is defined via its characteristic function 1X : M → {0, 1},
keeping in mind (EM ). Moreover, we use standard notation like BM

d (x, r) to denote

the open ball {y ∈ M : d(x, y) <R r}, while B
M

d (x, r) is the associated closed ball.
A set O ⊂ M is open if for x ∈ O, there exists N ∈ N with BM

d (x, 1
2N

) ⊂ O. A set
C ⊂ M is closed if the complement M \ C is open.

Secondly, the following definitions are mostly standard, where we note that a
different nomenclature is sometimes used in the logical literature.

Definition 1.2 (Compactness and around). For a metric space (M,d), we say that

• a set X ⊂ M is finite if there is N ∈ N such that for any pairwise different
x0, . . . , xN ∈ M , there is i ≤ N with xi ̸∈ X. We then write |X| ≤ N .

• (M,d) is countably-compact if for any sequence (On)n∈N of open sets in
M such that M ⊂ ∪n∈NOn, there is m ∈ N such that M ⊂ ∪n≤mOn,

• (M,d) is (open-cover) compact in case for any Ψ : M → R+, there are
x0, . . . , xk ∈ M such that ∪i≤kB

M
d (xi,Ψ(xi)) covers M ,

• (M,d) is sequentially compact if any sequence has a convergent sub-sequence,
• (M,d) is limit point compact if any infinite set in M has a limit point,
• a sequence (xn)n∈N in (M,d) is Cauchy if (∀k ∈ N)(∃N ∈ N)(∀m,n ≥

N)(d(xn, xm) < 1
2k
),

• (M,d) is complete in case every Cauchy sequence converges,
• (M,d) is totally bounded if for all k ∈ N, there are x0, . . . , xm ∈ M such
that ∪i≤mBM

d (xi,
1
2k
) covers M ,
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• (M,d) is separable if there is a sequence (xn)n∈N in M such that (∀x ∈
M,k ∈ N)(∃m ∈ N)(d(x, xm) < 1

2k
),

• (M,d) is bounded if (∃N ∈ N)(∀x, y ∈ M)(d(x, y) ≤ N),

It is well-known that for metric spaces, the compactness notions are equivalent
and that compact metric spaces are separable. We could study advanced notions
like the Lindelöf property, but stick with concepts studied in second-order RM.

1.3.2. Some axioms of higher-order arithmetic. We introduce some higher-order
axioms needed in the below. We assume basic familiarity with Kohlenbach’s base
theory RCAω

0 of higher-order RM (see [36, §2]).
First of all, the functional E in (∃2) is also called Kleene’s quantifier ∃2:

(∃E : NN → {0, 1})(∀f ∈ NN)
[
(∃n ∈ N)(f(n) = 0) ↔ E(f) = 0

]
. (∃2)

Related to (∃2), the functional µ2 in (µ2) is called Feferman’s µ (see [3]) and may
be found -with this symbol- in Hilbert-Bernays’ Grundlagen ([27, Supplement IV]):

µ(f) :=

{
n if n is the least natural number such that f(n) = 0

0 if f(n) > 0 for all n ∈ N
.

We have (∃2) ↔ (µ2) over RCAω
0 (see [36, §3]) and ACAω

0 ≡ RCAω
0 +(∃2) proves the

same sentences as ACA0 by [31, Theorem 2.5].

Secondly, the functional S2 in (S2) is called the Suslin functional ([36]):

(∃S2 : NN → {0, 1})(∀f ∈ NN)
[
(∃g ∈ NN)(∀n ∈ N)(f(gn) = 0) ↔ S(f) = 0

]
. (S2)

The system Π1
1-CA

ω
0 ≡ RCAω

0 + (S2) proves the same Π1
3-sentences as Π1

1-CA0 by
[48, Theorem 2.2]. By definition, the Suslin functional S2 can decide whether a
Σ1

1-formula as in the left-hand side of (S2) is true or false. We similarly define the
functional S2k which decides the truth or falsity of Σ1

k-formulas from L2; we also

define the system Π1
k-CA

ω
0 as RCAω

0 + (S2k), where (S2k) expresses that S2k exists.

We note that the operators νn from [10, p. 129] are essentially S2n strengthened to
return a witness (if existent) to the Σ1

n-formula at hand.

Thirdly, full second-order arithmetic Z2 is readily derived from ∪kΠ
1
k-CA

ω
0 , or from:

(∃E : (NN → N) → N)(∀Y : NN → N)
[
(∃f ∈ NN)(Y (f) = 0) ↔ E(Y ) = 0

]
, (∃3)

and we therefore define ZΩ
2 ≡ RCAω

0 + (∃3) and Zω
2 ≡ ∪kΠ

1
k-CA

ω
0 , which are conser-

vative over Z2 by [31, Cor. 2.6]. The functional from (∃3) is also called ‘Kleene’s
quantifier ∃3’, and we use the same convention for other functionals.

Fourth, many results in higher-order RM are established in RCAω
0 plus the fol-

lowing special case of the Axiom of (countable) Choice ([36,44]).

Principle 1.3 (QF-AC0,1). Let φ be quantifier-free and such that (∀n ∈ N)(∃f ∈
NN)φ(f, n). Then there is a sequence (fn)n∈N in NN with (∀n ∈ N)φ(fn, n).

The local equivalence between sequential and ‘epsilon-delta’ continuity cannot be
proved in ZF, but can be established in RCAω

0 +QF-AC0,1 (see [36]). Thus, it should
not be a surprise that the latter system is often used as a base theory too. Below,
we show that QF-AC0,1 is equivalent to various basic statements about compact
metric spaces, including that continuous functions are bounded on the latter. By
contrast, the aforementioned local equivalence deals with potentially discontinuous
functions on the reals.
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6 CODING IS HARD

Finally, certain equivalences in second-order RM require extra induction beyond
what is available in RCA0 (see [41]). We sometimes use extra induction in higher-
order RM, like the following fragment.

Principle 1.4 (Σ-IND). The induction axiom for φ(n) defined as (∃f ∈ NN)(Y (f, n) =
0) for any Y 2.

One readily3 shows that ACAω
0 + Σ-IND proves that finite sets of reals can be

enumerated as a finite sequence.

2. Main results

2.1. Introduction. In this section, we establish the results sketched in Section 1.2,
i.e. that basic theorems concerning compact metric spaces imply or are equivalent to
strong axioms, including Feferman’s projection principle, Z2, and countable choice.

First of all, Feferman introduces the ‘projection principle’ Proj1 in [20, §5] as a
third-order version of Kleene’s quantifier (∃3) from Section 1.3.2. Working over a
base theory akin to ACAω

0 , it is then shown that Proj1 implies various well-known
theorems of analysis, like the supremum principle. Moreover, Proj1 also yields Z2

when combined with (µ2). Thus, Proj1 can be said to be impredicative and highly
non-constructive. Now, Feferman’s language is slightly richer than that of ACAω

0

and the following axiom constitutes the higher-order RM version of Proj1:

(∀Y : NN → N)(∃X ⊂ N)(∀n ∈ N)[n ∈ X ↔ (∃f ∈ NN)(Y (f, n) = 0)]. (BOOT)

The name refers to the verb ‘to bootstrap’ as Π1
k-CA

ω
0 plus BOOT proves Π1

k+1-CA0.
Convergence theorems for nets are equivalent to BOOT, as well as the supremum
principle for certain weak continuity notions ([49,51]).

Secondly, we shall derive BOOT+QF-AC0,1 from the following basic third-order
statements and variations for M ⊂ NN, sometimes even obtaining equivalences.

• A compact metric space is separable (Section 2.2).
• In a compact metric space, a countable set has measure zero (Section 2.3).
• A Lipschitz continuous function on a compact metric space (M,d) has a
supremum (Section 2.4).

• An open set in a compact metric space (M,d) equals the countable union
of open balls (Section 2.5).

The third item generalised to M ⊂ NN × NN implies Z2 by Corollary 2.17. Our
formulations of the supremum principle can be found throughout the literature, as
evidenced by exact references in Section 2.4.

Finally, we shall work over ACAω
0 for convenience, but could in principle obtain

most results over RCAω
0 or RCAω

0 +WKL0 using the following trick.

Remark 2.1 (On the law of excluded middle). Our starting point is Kleene’s arith-
metical quantifier (∃2) from Section 1.3.2. By [36, Prop. 3.12], (∃2) is equivalent
over RCAω

0 to the statement

There exists an R → R-function that is not continuous.

3For finite X ⊂ M , let φ(n) express that there is w1∗ of length |w| = n consisting of distinct
elements of X.
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Clearly, ¬(∃2) is then equivalent to Brouwer’s theorem, i.e. the statement that all
R → R-functions are continuous. Now, if we wish to prove a given statement T
of real analysis about possibly discontinuous functions in RCAω

0 +WKL0, we may
invoke the law of excluded middle as in (∃2)∨¬(∃2). We can then split the proof of
T in two cases: one assuming ¬(∃2) and one assuming (∃2). In the latter case, since
(∃2) → ACA0, we have access to much more powerful tools (than just WKL0). In
the former case, since ¬(∃2) implies that all functions are continuous, we only need
to establish T restricted to the special case of continuous functions. Moreover, we
can use WKL0 to provide codes for all (continuous) functions (see [45, §2]). After
that, we can use the second-order RM literature to establish T restricted to codes
for continuous functions, and hence T . To be absolutely clear, the ‘law of excluded
middle trick’ is the above splitting of proofs based on (∃2) ∨ ¬(∃2).

2.2. Metric spaces and separability. We derive Feferman’s projection principle
BOOT from the basic statement a compact metric space is separable. The latter
expresses that the metric space at hand has a second-order code/representation,
following the coding of metric spaces in second-order RM ([9, 52]). We also derive
countable choice as in QF-AC0,1 from the aforementioned statement and even obtain
an elegant equivalence involving boundedness.

Secondly, we have the following theorem where the first item is a special case of
[9, Theorem 3.14.ii or 3.17.ii] without codes. As an aside, limit point compactness
goes back to Weierstrass, according to Jordan (see [33, p. 73]).

Theorem 2.2 (ACAω
0+Σ-IND). The following statement implies BOOT and QF-AC0,1.

• For any metric d : (NN × NN) → R and metric space (NN, d), sequential
compactness implies separability.

We can replace ‘sequential’ by ‘limit point’ or ‘countable’ or ‘open cover’.

Proof. The principle BOOT is equivalent to RANGE as follows:

(∀G : NN → N)(∃X ⊂ N)(∀n ∈ N)
[
n ∈ X ↔ (∃f ∈ NN)(G(f) = n)]. (RANGE)

Indeed, the forward direction is immediate, while for the reverse direction, define
G2 as follows for n0 and g1: put G(⟨n⟩ ∗ g) = n+1 if Y (g, n) = 0, and 0 otherwise.
Let X ⊆ N be as in RANGE and note that

(∀m ≥ 1)(m ∈ X ↔ (∃f ∈ NN)(G(f) = m) ↔ (∃g ∈ NN)(Y (g,m− 1) = 0)),

which is as required for BOOT after trivial modification.

Now fix G : NN → N and define d : (NN × NN) → R as follows: d(f, g) :=
| 1
2G(f) − 1

2G(g) | for f, g ̸= 00 . . . , d(00 . . . , f) = d(f, 00 . . . ) := 1
2G(f) for f ̸= 00 . . . ,

and d(00 . . . , 00 . . . ) := 0. Then (M,d) is a metric space for M = NN if we define
the equivalence relation ‘=M ’ as follows:

f =M g ≡
[
[f, g ̸= 00 · · · ∧G(f) = G(g)] ∨ f = g = 00 . . .

]
. (2.1)

Indeed, the first two items of Definition 1.1 hold by definition while for the third
item, observe that for f, g ̸= 00 . . . , we have

d(f, g) = | 1
2G(f) − 1

2G(g) | ≤ | 1
2G(f) − 1

2G(h) |+ | 1
2G(h) − 1

2G(g) | = d(f, h) + d(h, g),

for h ̸= 00 . . . ; also d(f, g) = | 1
2G(f) − 1

2G(g) | ≤ 1
2G(f) + 1

2G(g) = d(f, 00 . . . ) +

d(00 . . . , g). Moreover, d(f, 00 . . . ) = 1
2G(f) ≤ 1

2G(g) + | 1
2G(f) − 1

2G(g) | = d(g, 00 . . . )+
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d(f, g) for g ̸= 00 . . . ; we also have 0 = d(00 . . . , 00 . . . ) ≤ d(00 . . . , f) + d(f, 00 . . . )
for any f ∈ NN, i.e. Definition 1.1 is satisfied.

To show that (M,d) is sequentially compact, let (fn)n∈N be a sequence in M .
In case 00 . . . occurs infinitely many times or if (∃m ∈ N)(∀n ∈ N)(G(fn) ≤ m),
there is a trivial constant sub-sequence. In case (∀m ∈ N)(∃n ∈ N)(G(fn) > m),
let (gn)n∈N be a sub-sequence with G(gn) > n for all n ∈ N. Clearly, (gn)n∈N

converges to 00 . . . in (M,d).

To show that (M,d) is (countably) compact, note that any open ball containing
00 . . . covers all but finitely elements ofM . Here, Σ-IND seems needed to enumerate
the latter and obtain a finite sub-covering. Similarly, for an infinite set X ⊂ M ,
00 . . . is a limit point of X.

Regarding the first item, let (hm)m∈N be a sequence as provided by the separa-
bility of (M,d), i.e. (∀f ∈ M,k ∈ N)(∃m ∈ N)(d(f, hm) < 1

2k
). Then we have, for

any n ∈ N that

(∃f ∈ NN)(G(f) = n) ↔ [G(00 . . . ) = n ∨ (∃m ∈ N)(G(hm) = n)]. (2.2)

Since the right-hand side of (2.2) is arithmetical, RANGE follows from the first
item. To obtain QF-AC0,1, we recall that BOOT ↔ RANGE as established in the
first paragraph. By the latter, it suffices to establish that for G2, (∀n ∈ N)(∃f ∈
NN)(G(f) = n) implies (∃(fn)n∈N)(∀n ∈ N)(G(fn) = n). However, this readily
follows from (2.2). □

Clearly, the metric space (M,d) from the previous proof has a nice order struc-
ture, i.e. we could restrict to certain ordered metric spaces.

There is nothing special about Baire space in Theorem 2.2, by the following.

Corollary 2.3 (ACAω
0 +Σ-IND). The following item implies BOOT.

• For any metric d : [0, 1]2 → R and metric space ([0, 1], d), sequential com-
pactness implies separability.

We can replace ‘sequential’ by ‘limit point’ or ‘countable’ or ‘open cover’.

Proof. First of all, we note (the well-known fact) that ∃2 can convert a real x ∈ [0, 1]
to a unique4 binary representation. Similarly, an element of Baire space f ∈ NN

can be identified with its graph as a subset of N × N, which can be represented as
an element of Cantor space. Thus, BOOT is equivalent to the statement that for
any f : (R × N) → N, there is X ⊂ N such that for all n ∈ N:

(∃x ∈ [0, 1])(f(x, n) = 0) ↔ n ∈ X. (2.3)

The proof of Theorem 2.2 now goes through for ‘NN’ replaced by ‘[0, 1]’ everywhere.
One could also use the previous observations to define a mapping from [0, 1] to NN

and (mostly) copy the proof of Theorem 2.2. □

One could obtain QF-AC0,1 in the previous corollary, as for the theorem.

Finally, that the centred statement in Theorem 2.2 implies QF-AC0,1 is perhaps
not that surprising due to the ‘sequential’ nature of separability. By the following
theorem, the much weaker property of boundedness suffices to obtain QF-AC0,1.
We seem to need QF-AC0,1

fin as in item (b.1) which follows from the induction axiom.
Fragments of the latter are used in second-order RM in an essential way ([41]).

4In case of two binary representations, chose the one with a tail of zeros.
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Theorem 2.4 (ACAω
0 ). The following statements are equivalent.

(a) The axiom of countable choice as in QF-AC0,1.
(b) The combination of the following.

(b.1) The axiom QF-AC0,1
fin : for quantifier-free φ such that (∀n ∈ N)(∃f ∈

NN)φ(f, n), we have (∀k ∈ N)(∃(fn)n∈N)(∀n ≤ k)φ(fn, n).
(b.2) For any metric d : (NN × NN) → R and metric space (M,d) with

M ⊂ NN, sequential compactness implies boundedness.
(c) The combination of the following.

(c.1) The axiom QF-AC0,1
fin from item (b.1).

(c.2) For any metric d : (NN × NN) → R and metric space (M,d) with
M ⊂ NN, sequential compactness implies countable compactness.

Proof. First of all, apply QF-AC0,1 to ‘(M,d) is unbounded’ and note that the
resulting sequence yields a sequence (xn)n∈N such that d(x0, xn) > n for all n ≥ 1.
Clearly, such a sequence cannot have a convergent sub-sequence, as required for
item (b.2). Of course, QF-AC0,1 implies QF-AC0,1

fin as in item (b.1). Similarly, for

a countable covering (On)n∈N, applying QF-AC0,1 to ‘(∀n ∈ N)(∃x ∈ M)(x ̸∈
∪m≤nOn)’, one obtains a sequence that cannot have a convergent sub-sequence, i.e.

item (c.2) also follows from QF-AC0,1.

For the remaining implications, assume QF-AC0,1 is false, i.e. there is quantifier-
free φ with (∀n ∈ N)(∃f ∈ NN)φ(f, n), but there is no sequence (fn)n∈N with
(∀n ∈ N)φ(fn, n). Now define f ∈ M in case f(0) = n0 and f = ⟨n0⟩ ∗ g with
g = g0 ⊕ g1 ⊕ · · · ⊕ gn0 and (∀i ≤ n0)(φ(gi, i)). We put f =M g in case f(0) =
g(0) and define d : (NN × NN) → R as d(f, g) = |f(0) − g(0)|. Then (M,d) is
readily seen to be an unbounded and not countably compact metric space, using
QF-AC0,1

fin . To show that (M,d) is sequentially compact, let (fn)n∈N be a sequence
in M . In case (∀n ∈ N)(∃m ∈ N)(fm(0) > n), we obtain a sequence (gn)n∈N

with (∀n ∈ N)φ(gn, n), which contradicts our assumptions. Hence, we must have
(∃n0 ∈ N)(∀m ∈ N)(fm(0) ≤ n0). Now let n1 ≤ n0 be such that fm = n1 for
infinitely many m ∈ N. We thus obtain a sub-sequence of (fn)n∈N that is constant
inM , and hence trivially convergent. In conclusion, (M,d) is a sequentially compact
metric space that is unbounded and not countably compact, contradicting either of
the items from the theorem; QF-AC0,1 thus follows from items (c) or (d). □

We note that item (b.2) formulated with second-order codes is provable in ACA0

by [9, Theorem 3.17]. We could study total boundedness as well.

In conclusion, we have obtained Feferman’s projection principle as in BOOT
and countable choice as in QF-AC0,1 from the statement compact metric spaces are
separable, i.e. have a second-order code. The weaker statement that sequentially
compact spaces are bounded, is equivalent to countable choice QF-AC0,1, assuming
the finite version of the latter.

2.3. Countable and measure zero sets in metric spaces. In this section, we
show that basic properties of countable and measure zero sets in compact metric
spaces imply BOOT and QF-AC0,1, while also obtaining equivalences for the latter.
We first need some definitions as follows.

Definition 2.5. Let (M,d) be a metric space.
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• A set A ⊂ M is countable if there is Y : M → N that is injective on A, i.e.

(∀f, g ∈ A)(Y (f) =N Y (g) → f =M g), (2.4)

• A set A ⊂ M is strongly countable if there is a bijection Y : M → N on
A, i.e. we have (2.4) and (∀n ∈ N)(∃x ∈ A)(Y (x) = n); the latter means
that Y is surjective on A.

• A set A ⊂ M is enumerable if there is a sequence (xn)n∈N in M that
includes all the elements of A.

• For an open ball BM
d (x, r) = {y ∈ M : d(x, y) < r}, we put |BM

d (x, r)| = 2r.
• A set A ⊂ M is measure zero if for any ε > 0 there is a sequence of open
balls (In)n∈N such that ∪n∈NIn covers A and ε >

∑∞
n=0 |In|.

• A set A ⊂ M is effectively measure zero if there is a sequence of open balls
(In,k)n,k∈N such that for every k ∈ N, A ⊂ ∪n∈NIn,k and 1

2k
>

∑∞
n=0 |In,k|.

The notion of ‘effectively measure zero’ set can be found in mathematical logic
and second-order RM under a different name ([4, 42]).

We have previously studied the RM of Tao’s pigeon hole principle for measure
spaces from [59, §1.7] in [50]. This principle expresses that the countable union of
measure zero sets is also measure zero. For codes of closed sets, this principle is
provable in ACA0 by [50, Theorem 3.6]. The proof of the latter also yields that for
codes of closed sets, ‘measure zero’ implies ‘effectively measure zero’, working in
ACA0. We now have the following theorem.

Theorem 2.6 (ACAω
0+Σ-IND). The following statements imply BOOT and QF-AC0,1.

• For any metric d : (NN × NN) → R, a countable set in the metric space
(NN, d) can be enumerated.

• For any metric d : (NN ×NN) → R, a countable and closed set in the metric
space (NN, d) is effectively measure zero.

• For any metric d : (NN × NN) → R, a closed and measure zero set in the
metric space (NN, d) is effectively measure zero.

• For any metric d : (NN × NN) → R and a sequence (An)n∈N of closed and
effectively measure zero sets in (NN, d), ∪n∈NAn is effectively measure zero.

The first two items are equivalent to BOOT+ QF-AC0,1. We can restrict to arith-
metical sets and to metric spaces that are either ‘sequential’, ‘limit point’, ‘count-
able’ or ‘open cover’ compact.

Proof. For the first item, consider the same metric d as in the proof of Theorem 2.2
based on G2. The set A = {f ∈ NN : f ̸=1 00 . . . } is arithmetical and G is injective
on A. For (fn)n∈N an enumeration of A, we have that for any n ∈ N:

(∃f ∈ NN)(G(f) = n) ↔ [(∃m ∈ N)(G(fm) = n) ∨G(00 . . . ) = n]. (2.5)

Since the right-hand side is arithmetical, RANGE follows. Moreover, QF-AC0,1

follows in the same way as in the proof of Theorem 2.2. For the equivalence,
let G : M → N be injective on A ⊂ M and use BOOT to obtain X ⊂ N with
n ∈ X ↔ (∃x ∈ A)(G(x) = n) for any n ∈ N. Apply QF-AC0,1 to (∀n ∈ N)(∃x ∈
A)(n ∈ X → G(x) = n) to obtain the required enumeration.

Secondly, consider the same metric d as in the proof of Theorem 2.2 based on
G2. The set M is countable in the same way as in the previous paragraph. By
the second item, M is effectively measure zero and let BM

d (fn,k, rn,k) for n, k ∈ N
be the associated sequence of open balls. Now note that for k0 ∈ N, M is covered

https://doi.org/10.1017/jsl.2025.10 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2025.10


CODING IS HARD 11

by ∪n∈NB(fn,k0
, rn,k0

), which is only possible if all rn,k0
are at most 1

2k0+1 (as the

length of an open ball is double the radius). As a result, the balls BM
d (fi,k0

, ri,k0
)

only contain one point of M in case G(fi,k0
) ≤ k0 (and fi,k0

̸= 00 . . . ). Indeed,
assuming G(fi,k0) ≤ k0, the formula 1

2k0+1 > d(f, fi,k0) = | 1
2G(f) − 1

2
G(fi,k0

) | implies

G(f) =0 G(fi,k0
) and hence f =M fi,k0

. In particular, if (∃f ∈ NN)(G(f) = k0),
then there is fn0,k0

such that G(fn0,k0
) = k0 for some n0 ∈ N. In particular, we

obtain a version of (2.5), yielding BOOT + QF-AC0,1. That the latter implies the
second item is immediate given the enumeration provided by the first item.

Thirdly, any ball B(00 . . . , 1
2k+2 ) covers all but finitely many points in (M,d).

Using Σ-IND, we observe that M is measure zero; the third item yields BOOT +
QF-AC0,1 in the same way as in the previous paragraph.

Fourth, consider A from the first paragraph and define An := {f ∈ NN : f ̸=1

00 · · · ∧G(f) = n}, which is trivially closed. In case An = ∅, the latter trivially has
measure zero. In case f ∈ An, then B(f, 1

2k
) is a covering of An as required for the

latter being effectively measure zero. Then ∪n∈NAn = A, i.e. the fourth item also
yields BOOT+ QF-AC0,1, following the second paragraph. □

A historical predecessor of the Lebesgue measure is the Peano-Jordan measure.
The latter is connected to the Riemann integral ([23]) in the same way the former
is connected to the Lebesgue integral. The definition of ‘Peano-Jordan measure
zero’ amounts to ‘Lebesgue measure zero’ where we only allow a finite sequence
of intervals. In light of the previous proof, Theorem 2.6 also goes through for
the Peano-Jordan measure and related notions. Similarly, the Cantor-Bendixson
theorem (see [52, VI.1]) or the statement a non-enumerable set has a limit point,
yield equivalences as in Theorem 2.6.

Finally, even restricting to strongly countable sets does not yield principles prov-
able in ZF, but nice equivalences do follow.

Theorem 2.7 (ACAω
0 ). The following statements are equivalent.

• The axiom of countable choice as in QF-AC0,1.
• For any metric d : (NN × NN) → R, a strongly countable set in the metric
space (NN, d) can be enumerated.

• For any metric d : (NN × NN) → R, a strongly countable and closed set in
the metric space (NN, d) is effectively measure zero.

Proof. The third item is immediate from the second item and the latter follows
from the first item by applying QF-AC0,1 to ‘Y is surjective on A’ in the definition
of A being strongly countable. That the third item implies QF-AC0,1 follows from
the proof of Theorem 2.6. □

In conclusion, we have obtained BOOT and QF-AC0,1 from basic statements
about countable and measure zero sets. Weaker statements about strongly count-
able sets turn out to be equivalent to QF-AC0,1.

2.4. Continuous functions on metric spaces.

2.4.1. Introduction. In this section, we show that basic properties of (Lipschitz)
continuous functions on compact metric spaces like the supremum principle, imply
or are equivalent to strong axioms including BOOT, QF-AC0,1, and even full second-
order arithmetic. We study three versions of the supremum principle for continuous
f : M → R on a compact metric space (M,d).
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• The supremum supx∈B(x0,
1
2n ) f(x) is a sequence with variable n ∈ N.

• The supremum supy∈M f(x, y) is a function with variable x ∈ M .
• The supremum λf. supx∈M f(x) is a functional with variable f : M → R.

Each of these can be found in the literature ([46, 47, 57, 60, 61]). In particular, the
supremum norm on the Banach space C(M) of continuous functions, denoted

∥f∥∞ := sup
x∈M

f(x), (2.6)

is essentially λf. supx∈M f(x). The coding in second-order RM allows one to define
(2.6) in RCA0 by [52, IV.2.13]. Moreover, maximal functions from harmonic analysis
have the form supy∈M f(x, y) (see e.g. [57, p. 92] or [56, p. 198 and 208]) and occur
in (generalisations of) the Hardy-Littlewood theorem ([54, p. 48] and [55, p. 246]).
Similar results and observations are possible for the extreme value theorem.

2.4.2. The supremum as a sequence. We show that BOOT + QF-AC0,1 can be de-
rived from a most basic supremum principle, as in Principle 2.8. We establish nice
equivalences in Theorems 2.11-2.12 and Corollary 2.13.

Principle 2.8 (Supremum Principle). For any metric d : (NN × NN) → R and
sequentially compact (M,d) with M = NN, a continuous function f : M → R has a
supremum as in: (∀x ∈ M)(∃(yn)n∈N)(∀n ∈ N)

(
yn = sup

z∈B
M
d (x, 1

2n )
f(z)

)
.

We also study the sequential version of the supremum principle. Sequential
versions are studied in second-order RM in e.g. [14–16,24,25,29,30,35,52,65].

Principle 2.9 (Sequential Supremum Principle). For any metric d : (NN×NN) → R
and sequentially compact (M,d) with M = NN, let (fn)n∈N be a sequence of con-
tinuous M → R-functions. There is (yn)n∈N with (∀n ∈ N)(yn = supx∈M fn(x)).

We also study the associated extreme value theorem as follows.

Principle 2.10 (Maximum Principle). For any metric d : (NN × NN) → R and
sequentially compact (M,d) with M = NN, a continuous function f : M → R has a
maximum as in: (∀x ∈ M)(∃(xn)n∈N)(∀n ∈ N)

(
f(xn) = sup

z∈B
M
d (x, 1

2n )
f(z)

)
.

First of all, we have the following theorem.

Theorem 2.11 (ACAω
0 +Σ-IND). The following are equivalent.

• The Supremum Principle 2.8 restricted to f : M → [0, 1].
• The Sequential Supremum Principle 2.9 restricted to f : M → [0, 1].
• The projection principle BOOT.

We can restrict Principle 2.8 to Lipschitz continuity and we can replace ‘sequential’
by ‘limit point’ or ‘countable’ or ‘open cover’.

Proof. First of all, consider the same metric d as in the proof of Theorem 2.2 based
on G2. Define f : M → R as f(x) = 1

2G(x) for x ̸= 00 . . . and f(00 . . . ) = 0. Then

f is continuous on M with modulus H(x, k) := 1
2G(x)+k+1 . To establish Lipschitz

continuity, note that for x, y ̸= 00 . . . , we have by definition:

|f(x)− f(y)| = | 1
2G(x) − 1

2G(y) | ≤ d(x, y),

while the inequality |f(x) − f(y)| = 1
2G(x) ≤ d(x, y) holds if y = 00 . . . , i.e. f is

Lipschitz continuous as required. For x0 = 00 . . . , let (yn)n∈N be a sequence such
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that yn = sup
z∈B

M
d (x0,

1
2n )

f(z) as provided by Principle 2.8. By definition, we have

for any n ∈ N that

(∃f ∈ NN)(G(f) = n) ↔ [yn =R
1
2n ∨G(00 . . . ) = n], (2.7)

and RANGE follows as the right-hand side of (2.7) is arithmetical. Regarding Prin-
ciple 2.9, define fn(x) as f(x) in case G(x) ≥ n ∨ x = 00 . . . , and 0 otherwise.
The former is continuous with modulus H as above. Moreover, let (yn)n∈N be the
sequence provided by Principle 2.9. Then (2.7) again holds and RANGE follows.

Secondly, let (M,d) be as in Principle 2.8 and fix continuous f : M → [0, 1] and
x0 ∈ M . Use BOOT to obtain X0 ⊂ N × Q such that for n ∈ N, q ∈ Q ∩ [0, 1]:

(n, q) ∈ X0 ↔ (∃x ∈ B(x0,
1
2n ))(f(x) > q)

Clearly, the set X0 allows one to define the supremum required by Principle 2.8.
The modifications to obtain Principle 2.9 are straightforward. □

The absence of the maximum principle and the restriction to bounded functions
in Theorem 2.11 are both essential by the following theorem. Items (b.2), (d.2), and
(e.2) of Theorem 2.12 formulated with codes are provable in ACA0 (see [5, 9, 52]).

Theorem 2.12 (ACAω
0 ). The following are equivalent.

(a) The axiom of countable choice QF-AC0,1.
(b) The combination of the following.

(b.1) The axiom QF-AC0,1
fin .

(b.2) For any metric d : (NN × NN) → R and sequentially compact (M,d)
with M ⊂ NN, any continuous f : M → R is bounded on M .

(c) The combination of the following.

(c.1) The axiom QF-AC0,1
fin .

(c.2) For any metric d : (NN × NN) → R and sequentially compact (M,d)
with infinite M ⊂ NN, there exists a discontinuous f : M → R.

(d) The combination of the following.

(d.1) The axiom QF-AC0,1
fin .

(d.2) (Extreme value) For any metric d : (NN × NN) → R and sequentially
compact (M,d) with M ⊂ NN, for any continuous f : M → R with
supx∈M f(x) given, there is x0 ∈ M with f(x0) = supx∈M f(x).

(e) The combination of the following.

(e.1) The axiom QF-AC0,1
fin .

(e.2) (Dini). Let (M,d) be sequentially compact and let fn : (M × N) →
R be a monotone sequence of continuous functions converging to a
continuous function f : M → R. Then the convergence is uniform.

Proof. First of all, we assume QF-AC0,1 and prove the other items. Let (M,d) be
sequentially compact and let f : M → R be continuous. In case f is unbounded
on M ⊂ NN, we have (∀n ∈ N)(∃x ∈ M)(|f(x)| > n). Apply QF-AC0,1 to obtain a
sequence (xn)n∈N with f(xn) > n for n ∈ N. This sequence has a convergent sub-
sequence, say with limit z ∈ NN. Clearly, f is not continuous at z, a contradiction,
implying that f is in fact bounded, as required for item (b). To establish item (c),
suppose additionally that M is infinite, i.e. (∀N ∈ N)(∃x0, . . . , xN ∈ M)(∀i, j ≤
N)(xi =M xj → i =N j). Apply QF-AC0,1 to obtain a sequence of pairwise different
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elements in M , called (yn)n∈N. Now define f : M → R as

f(x) :=

{
n if (∃n ∈ N)(yn =M x)

0 otherwise

and note that it is unbounded and therefore discontinuous by item (b), i.e. item (c)
also follows from QF-AC0,1. To establish item (d), apply QF-AC0,1 to (∀k ∈ N)(∃y ∈
M)(supx∈M f(x) − 1

2k
< f(y)). The resulting sequence has a convergent sub-

sequence, say with limit z ∈ M , and f(z) = supx∈M f(x) follows by continuity. To
establish item (e), assume the convergence is not uniform, i.e.

(∃k ∈ N)(∀N ∈ N)(∃x ∈ M)(∃n ≥ N)(|fn(x)− f(x)| ≥ 1
2k
).

Fix such k ∈ N and apply QF-AC0,1 to the resulting formula, yielding (xn)n∈N and
g ∈ NN with g(n) ≥ n and |fg(n)(xn)−f(xn)| ≥ 1

2k
. This sequence has a convergent

sub-sequence, say with limit z ∈ M . The pointwise convergence of (fn)n∈N at z
then yields a contradiction, i.e. QF-AC0,1 yields item (e).

Now assume item (b) and let φ be quantifier-free such that (∀n ∈ N)(∃f ∈
NN)φ(f, n) but there is no witnessing sequence. Consider the metric space (M,d)
from the proof of Theorem 2.4 and define F : M → R by F (f) := f(0) for f ∈ M

and note that it is (vacuously) continuous on M . Using QF-AC0,1
fin , F is unbounded

on M , contradiction, and QF-AC0,1 follows. Moreover, since any function H :
M → R is (vacuously) continuous, item (c) also implies QF-AC0,1. To show that
item (d) implies QF-AC0,1, define G(f) := 1− 1

2f(0) and note that G is continuous

on (M,d) as above with supf∈M G(f) = 1, using QF-AC0,1
fin . Clearly, there is no

f ∈ M such that G(f) = 1. To show that item (e) implies QF-AC0,1, define
Fn(f) := f(0) if f(0) ≤ n and 0 otherwise. Clearly, (Fn)n∈N converges pointwise to
F (f) := f(0) and continuity on (M,d) as above is again straightforward. However,
the convergence cannot be uniform, and item (e) must imply QF-AC0,1. □

Due to the ‘sequential’ nature of the supremum in Principle 2.8, it is not that
surprising that one obtains QF-AC0,1. However, Theorem 2.12 only requires an
upper bound, a concept free of any ‘sequential-ness’. Following Theorem 2.4, we
could replace ‘bounded’ in Theorem 2.12 by ‘uniformly continuous’.

Finally, the previous results combine into the following elegant summary.

Corollary 2.13 (ACAω
0 +Σ-IND). The following are equivalent.

• BOOT+ QF-AC0,1

• The axiom QF-AC0,1
fin and the Sequential Supremum Principle 2.9.

As to related results, the Stone-Weierstrass theorem is studied in second-order
RM in e.g. [9, §4]; results similar to Corollary 2.13 are possible, but not as elegant.
Similarly, BOOT can be derived from the existence of an inverse for bi-Lipschitz
functions on compact metric spaces. Moreover, the intermediate value theorem for
chain connected and compact (M,d) with M ⊂ NN, is equivalent to QF-AC0,1. We
shall establish a more general result in Section 3

In conclusion, the basic supremum principle as in Principle 2.8 is equivalent
to BOOT + QF-AC0,1 with equivalences for the individual principles as well. By
contrast, Principle 2.8 formulated with second-order codes is provable in ACA0, as
noted above. One could obtain analogous results for the existence of the distance
function d(x,C) := infy∈C d(x, y), but the latter is an infimum anyway.
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2.4.3. The supremum as a function. In this section, we study a basic supremum
principle on N ≡ NN × NN as in Principle 2.14. Note that we assume the existence
of λx. supy∈NN f(x, y) as a function from Baire space to the reals. This notation is
found throughout textbooks and the literature, as discussed in Section 2.4.1

Principle 2.14. For any metric d : N2 → R and sequentially compact metric space
(N, d), and Lipschitz continuous f : N → R, the supremum supy∈NN f(x, y) and

infimum infy∈NN f(x, y) exist5 for any x ∈ NN.

We first show that Principle 2.14 implies the following generalisation of BOOT.

Principle 2.15 (BOOT2). For any Y : (NN × NN) → N, there is X ⊂ N with

(∀n ∈ N)[n ∈ X ↔ (∃f ∈ NN)(∀g ∈ NN)(Y (f, g, n) = 0)].

We note that BOOT2 → Π1
1-CA0 over RCAω

0 while ACAω
0 +BOOT2 proves Π1

2-CA0.
We now have the following implication.

Theorem 2.16 (ACAω
0 + Σ-IND). The supremum principle as in Principle 2.14

implies BOOT2. We can restrict to Lipschitz continuity and we can replace ‘se-
quential’ by ‘limit point’ or ‘countable’ or ‘open cover’.

Proof. First of all, in the same way as for BOOT ↔ RANGE in the proof of Theo-
rem 2.2, the principle BOOT2 is equivalent to the following

(∀G : N → N)(∃X ⊂ N)(∀n ∈ N)
[
n ∈ X ↔ (∃f ∈ NN)(∀g ∈ NN)(G(f, g) = n)].

We will use ‘h’ to denote elements of N and write G(h) = G(f, g) in case h = (f, g),
and where 0 := (00 . . . , 00 . . . ).

Now fix G : N → N and define d : (N ×N) → R as follows: d(f, g) := | 1
2G(f)

−
1

2G(g) | for f, g ̸= 0, d(0, f) = d(f, 0) := 1
2G(f)

for f ̸= 0, and d(0, 0) := 0. Then

(M,d) is a metric space for M = N if we define the equivalence relation ‘=M ’ as:

f =M g ≡
[
[f, g ̸= 0 ∧G(f) = G(g)] ∨ f = g = 0

]
.

Indeed, the first two items of Definition 1.1 hold by definition while for the third
item, observe that for f, g ̸= 0, we have

d(f, g) = | 1
2G(f)

− 1
2G(g) | ≤ | 1

2G(f)
− 1

2G(h)
|+ | 1

2G(h)
− 1

2G(g) | = d(f, h) + d(h, g),

for h ̸= 0; also d(f, g) = | 1
2G(f)

− 1
2G(g) | ≤ 1

2G(f)
+ 1

2G(g) = d(f, 0)+d(0, g). Moreover,

d(f, 0) = 1
2G(f)

≤ 1
2G(g) + | 1

2G(f)
− 1

2G(g) | = d(g, 0) + d(f, g) for g ̸= 0 . . . ; also

0 = d(0, 0) ≤ d(0, f) + d(f, 0) for any f ∈ N.

To show that (M,d) is sequentially compact, let (fn)n∈N be a sequence in M . In
case 0 occurs infinitely many times or if (∃m ∈ N)(∀n ∈ N)(G(fn) ≤ m), there is a
trivial constant sub-sequence. In case (∀m ∈ N)(∃n ∈ N)(G(fn) > m), let (gn)n∈N

be a sub-sequence with G(gn) > n for all n ∈ N. Clearly, (gn)n∈N converges to 0
in (M,d). To show that (M,d) is (countably) compact, note that any open ball
containing 0 covers all but finitely elements of M . We use Σ-IND to enumerate the
associated finite set. Similarly, for any infinite set X ⊂ M , 0 is a limit point of X.

5To be absolutely clear, we assume that there is Φ : NN → (NN × NN) such that Φ(x)(1) =
supy∈NN f(x, y) and Φ(x)(2) = infy∈NN f(x, y) for any x ∈ NN.
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Finally, consider F : N → R defined as F (f) := 1
2G(f)

for f ̸= 0 and F (0) = 0.

By the definition of the metric, F is Lipschitz. Now consider, for any n ∈ N:

(∃f ∈ NN)(∀g ∈ NN)(G(f, g) = n)

↔ (∃f ̸= 00 . . . )(∀g ∈ NN)(F (f, g) = 1
2n ) ∨ (∀g ∈ NN)(G(00 . . . , g) = n)

↔ (∃f ̸= 00 . . . )( 1
2n = infg∈NN F (f, g) = suph∈NN F (f, h)) ∨ (∀g ∈ NN)(G(00 . . . , g) = n).

Applying BOOT (provided by Theorem 2.11) to each disjunct of the final formula,
we obtain BOOT2. □

Let BOOTk for k ≥ 3 be the obvious generalisation of BOOT2 to k−1 quantifier
alternations. We note that BOOTk → Π1

k-CA0 over RCAω
0 while ACAω

0 + BOOTk

proves Π1
k+1-CA0. We now have the following corollary.

Corollary 2.17 (ACAω
0 + Σ-IND). The supremum principle as in Principle 2.14

implies BOOTk for k ≥ 2. We can replace ‘sequential’ by ‘limit point’ or ‘countable’
or ‘open cover’.

Proof. We prove BOOT3 from Principle (2.14); the general case is then straightfor-
ward. Fix H : (NN × NN × NN) → N and define G(f, g) := H(P (f)(1), P (f)(2), g)
where f =1 P (f)(1) ⊕ P (f)(2). We define (M,d) as in the proof of Theorem 2.16
using G : N → N; the former is again a sequentially compact metric space as in
the proof of Theorem 2.16. The function F : N → R from the proof of Theo-
rem 2.16 is again (Lipschitz) continuous. Let A(n) be the formula (∃g ∈ NN)(∀h ∈
NN)(H(00 . . . , g, h) = n) and consider the following, for any n ∈ N:

(∀f ∈ NN)(∃g ∈ NN)(∀h ∈ NN)(H(f, g, h) = n)

↔ (∀f ̸=1 00 . . . )(∃g ∈ NN)(∀h ∈ NN)(F ((f ⊕ g, h)) = 1
2n ) ∨A(n)

↔ (∀f ̸=1 00 . . . )(∃g ∈ NN)
[

1
2n = infh∈NN F ((f ⊕ g, h)) = supj∈NN F ((f ⊕ g, j))

]
∨A(n).

Applying BOOT2 to both disjuncts in the final formula, we obtain BOOT3. □

The maximum principle expresses that the supremum of a continuous function is
attained on a compact space. The following principle expresses that maxy∈M f(x, y)
and miny∈M f(x, y) exist as M → M -functions. The latter operators are found in
continuous optimisation with examples in [32] or [1, p. 160, 173, and 194].

Principle 2.18. For any metric d : N2 → R and sequentially compact metric space
(N, d), and continuous f : N → R, there is Φ : N → N2 such that for all x ∈ N,

(∀y ∈ M)
[
f(x,Φ(x)(1)) ≤ f(x, y) ≤R f(x,Φ(x)(2))

]
.

One readily derives BOOTk from the previous principle.

In conclusion, the basic supremum principle as in Principle 2.14 implies BOOTk

and Π1
k-CA0 for k ≥ 3. By contrast, Principle 2.14 formulated with second-order

codes is provable in ACAω
0 as (∃2) can define the supremum operator via the usual

interval-halving technique; the code A of the (complete separable) metric space Â

guarantees that quantifying over Â can be replaced by quantifying over A, which
is arithmetical by definition.
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2.4.4. The supremum as a functional. In this section, we study a supremum princi-
ple stating the existence of a supremum functional λf. supx∈M f(x) for continuous
M → R-functions. The latter amounts to the supremum norm ∥f∥∞ on C(M) as in
(2.6). In light of [9, Theorem 4.1], ACAω

0 proves the existence of such a supremum

functional on compact metric spaces that come with a code. By contrast, ZΩ
2 , a

conservative extension of Z2, is needed for the supremum functional.

Theorem 2.19 (RCAω
0 +Σ-IND). The following are equivalent.

(a) Kleene’s quantifier (∃3).
(b) The combination of the following.

(b.1) Kleene’s quantifier (∃2).
(b.2) For any metric d : (NN × NN) → R and sequentially compact (M,d)

with M = NN, there is Φ : (M → R) → R such that for any continuous
f : M → [0, 1], we have Φ(f) = supx∈M f(x).

We can restrict to Lipschitz continuity and replace ‘sequential’ by ‘limit point’ or
‘countable’ or ‘open cover’.

Proof. The ‘downward’ implication is straightforward as the usual interval-halving
technique using (∃3) readily yields supx∈M f(x) for bounded f : M → R. For the
upward implication, fix G : NN → N and consider the metric space (M,d) from
the proof of Theorem 2.11. Let f : M → R be the function f(x) := 1

2G(x) for
x ̸=M 00 . . . and f(00 . . . ) = 0, which is Lipschitz continuous as in the proof of the
latter. Now note that

(∃g ∈ NN)(G(g) = 0) ↔ [supx∈NN f(x) =R
1
2 ∨G(00 . . . ) = 0]. (2.8)

The right-hand-side of (2.8) is decidable using (∃2), i.e. (∃3) follows from item (b).
The final sentence is immediate in light of Theorem 2.12 and its proof. □

The restriction to bounded functions in Theorem 2.19 can be lifted, as follows.

Corollary 2.20. The theorem holds for the generalisation to f : M → R and
M ⊂ NN in item (b.2), if we add QF-AC0,1 to item (a) and QF-AC0,1

fin to item (b).

Proof. The corollary follows by Theorem 2.12. □

In conclusion, the supremum principle as in item (b.2) in Theorem 2.19 is equiv-
alent to (∃3). In light of [9, Theorem 4.1], ACAω

0 proves the existence of such a
supremum functional on compact metric spaces that come with a code.

2.5. Second-countability and metric spaces. We study the statement

compact metric spaces are second-countable, i.e. have a countable base

and show that it can be quite strong, implying Feferman’s projection principle and
countable choice.

First of all, the strength of the previous centred statement depends on which
definition of countable base one uses (compare [38, p. 78] and [17, p. 12]). For this
reason, we adopt Definition 2.21 where SC1 corresponds to the coding of open sets
in second-order RM ([52, II.5.6]) and SC2 corresponds to Dorais’ CSC-spaces from
second-order RM ([16, §10.8.1]).

Definition 2.21 (Second-countability). Let (M,d) be a metric space. We say that:

(SC1) (M,d) is SC1 in case there is a sequence of open sets (On)n∈N such that
for every open O ⊂ M , there is g ∈ NN with O = ∪n∈NOg(n),
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(SC2) (M,d) is SC2 in case there is a sequence of open sets (On)n∈N satisfying:
– for any x ∈ M , there is n ∈ N with x ∈ On,
– for any x ∈ M , if x ∈ On∩Om, there is k ∈ N with x ∈ Ok ⊂ On∩Om.

By Theorem 2.24, BOOT+QF-AC0,1 follows from the basic statement a compact
metric space is SC1 and special cases. By contrast, Theorem 2.26 shows that many
of the above results still go through if we restrict to SC2-spaces.

Secondly, the following principle expresses that sequentially compact metric
spaces are SC1. The associated principle for open sets of reals is studied in [43],
where it is conjectured to be weaker than BOOT.

Principle 2.22 (open0). For any metric d : (NN × NN) → R and sequentially
compact (M,d) with M ⊆ NN, and for any open set O ⊂ M , there are sequences
(xn)n∈N and (rn)n∈N such that O = ∪n∈NB

M
d (xn, rn).

The countable union in open0 amounts to the representation of open sets in
second-order RM as in [52, II.5.6]. Now, the latter representation can be effectively
converted into another representation based on continuous functions involving a
continuous modulus (see [52, II.7.1] and [34, Theorem 4.4]). Inspired by this ob-
servation, we let open1 be open0 restricted to open O ⊂ M for which there is a
continuous h : M → R with a continuous modulus such that x ∈ O ↔ h(x) > 0 for
any x ∈ M . Moreover, we have studied a different coding in [43, §6-7], as follows.

Definition 2.23 (R2-representation). An open set O ⊂ M in a metric space (M,d)
has an R2-representation if there is Ψ : M → R such that x ∈ O ↔ Ψ(x) > 0 and
x ∈ O → BM

d (x,Ψ(x)) ⊂ O for any x ∈ M .

Let open2 be Principle 2.22 restricted to open sets with an R2-representation.
The principle open2 for the real line is rather weak in light of [43, §6-7]. Despite
the differences among the principles openi, we have the following theorem.

Theorem 2.24 (ACAω
0 +Σ-IND). For i = 0, 1, 2, openi implies BOOT+QF-AC0,1.

We may replace ‘sequentially’ by ‘limit point’ or ‘countably’ in the former principles.

Proof. Fix G : NN → N and let (qn)n∈N be an enumeration of the set of rationals
Q without repetitions. We also let 0M be a new symbol, different by fiat from any
rational or element of Baire space. Up to coding, we define M as the union of
{0M}, Q, and NN. For x ∈ M , define H(0M ) = 0, H(x) := 2n + 1 if x = qn ∈ Q,
and H(x) = 2G(x) if x ∈ NN. Now define d : M2 → R as follows for x, y ∈ M :
d(0M , 0M ) = 0, d(x, 0M ) = 1

2H(x) for x ̸= 0M , and d(x, y) := | 1
2H(x) − 1

2H(y) | for
x, y ̸= 0M . As in the above proofs, (M,d) is a metric space that is sequentially,
limit point, and (countably) compact.

Define the set C ⊂ M as the union of {0M}∪Q. Taking convergence to be within
(M,d), we note that a sequence with elements in C that converges, must converge
to 0M or be eventually constant, i.e. C is closed. Define the open set O := M \ C
and let (xn)n∈N and (rn)n∈N be such that O = ∪n∈NB

M
d (xn, rn), as provided by

open0. Now consider the following

(∃x ∈ NN)(G(x) = n) ↔ [(∃i ∈ N)(G(xi) = n) ∨G(00 . . . ) = n],

which follows by the definition of (M,d). Thus, RANGE and QF-AC0,1 follow from
open0 in the same way as in the proof of Theorem 2.16. To obtain the same
result for open2, define Ψ : M → R as follows: Ψ(x) = 1

2H(x)+5 if x ∈ O and
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Ψ(x) = 0 otherwise. This constitutes an R2-representation of O, as required for
open2. Indeed, we have x ∈ O ↔ Ψ(x) > 0 by definition, while x ∈ O implies
{x} = B(x,Ψ(x)) ⊂ O. For open1, we observe that Ψ is continuous on M with
modulus Φ(x, k) = 1

2H(x)+k+5 , which in turn is continuous in x on M for any k ∈ N.

This again follows from the fact that d(x, y) < 1
2H(x)+5 implies x =M y. □

The following generalisation of open0 implies BOOTk for k ≥ 3, following the
proof of Corollary 2.17. Note that for an open set O ⊂ M ⊂ N, the projection
Of := {g ∈ NN : (f, g) ∈ O} is also open.

Principle 2.25. For any metric d : N2 → R and sequentially compact metric space
(M,d) with M ⊂ N, there exists Φ such that for any f ∈ NN and open O ⊂ M
Φ(C, f) is a code for the projection Of .

Finally, we show that some of our results still go through for SC2-spaces.

Theorem 2.26 (ACAω
0 ). Theorem 2.11 goes through restricted to SC2-spaces.

Proof. The proof of Theorem 2.11 makes use of the metric space (M,d) defined
above (2.1) based on M = NN and G2. It suffices to prove that this metric space
is SC2. To this end, let (On)n∈N be the following sequence of open sets: O2n

is {x ∈ M : G(x) = n} while O2n+1 is BM
d (00 . . . , 1

2n ). This sequence forms
a countable base as in SC2, as (∀x ∈ M)(∃n ∈ N)(x ∈ On) is trivial. In case
x ∈ On1 ∩ On2 , define k : (M × N2) → N as follows: k(x, n1, n2) = max(n1, n2) if
n1, n2 are odd and define k(x, n1, n2) = n1 in case n1 is even, and n2 otherwise. By
definition, we have x ∈ Ok(x,n1,n2) ⊂ On1

∩On2
, as required. □

Most results in this paper seem to go through with the restriction to SC2-spaces
in place. We note that the previous proof actually establishes the existence of a
strong countable base as in [16, Def. 10.8.2].

We finish this section with remarks on variations of the above results.

Remark 2.27 (Located sets). In second-order RM, a closed set C is called located
if d(x,C) = infy∈C d(x, y) exists as a (code for a) continuous function. By [9,
Theorems 3.10 and 3.17], ACA0 suffices to show that, formulated using codes closed
sets are located in sequentially compact metric spaces. By contrast, one readily
shows that BOOT follows from the statement that for any metric space (M,d) with
M ⊂ NN, every closed C ⊂ M , there exists Φ : M → R such that Φ(x) = d(x,C)
for any x ∈ M . Moreover, BOOTk follows from the existence of a distance function
in N of the form λx, y.d(x,Cy) where Cy = {z ∈ M : (y, z) ∈ C}.

Remark 2.28 (Urysohn and Tietze). The ‘original’ principle open from [43] is the
statement that an open set O ⊂ R has an RM-code as in [52, II.5.6]. As proved in
the former, open is equivalent to the associated versions of the Urysohn lemma and
the Tietze extension theorem. In the context of compact metric spaces, it seems
that the latter are (much) weaker than open0. This is no surprise as continuous
functions are not ‘elementary’ objects in the absence of a countable dense subset,
by the above.

In conclusion, basic statements about open sets in compact metric spaces, like
openi for i = 0, 1, 2, imply BOOT+QF-AC0,1. The former merely express that open
sets come with second-order codes as in the definition of SC1-space. By contrast,
Theorem 2.26 implies that the restriction to SC2-spaces is mostly inconsequential.
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3. Beyond the Baire space

3.1. Introduction. In this section, we study compact metric spaces (M,d) with
the restriction ‘M ⊂ NN’ from Section 2 lifted, i.e. M and d : M2 → R can be
fourth-order and beyond. As we will see, the proofs from Section 2 provide a
template for the proofs in this section. The associated fourth- and higher-order
theorems, like the supremum principle, are much stronger than in the third-order
case, but not as natural anymore, as discussed next in detail.

First of all, our motivation for dropping the restriction ‘M ⊂ NN’ is as follows.

• For a compact metric space (M,d), the associated compact metric space
C(M) of continuous M → R-functions, is a central topic of study. The
space C(M) evidently includes objects of higher type than M .

• For any compact metric space (M,d), the set M has at most the cardinality
of the continuum ([11, Theorem 3.13]), i.e. we do not increase the size of
M by dropping the restriction ‘M ⊂ NN’.

• The intuitive idea of metric spaces is that one studies ‘any set with a notion
of distance’. No restriction on the type of the objects involved is assumed.
Moreover, the Lebesgue spaces Lp or Skorokhod space D consist of possibly
discontinuous functions.

Despite these observations, we believe that compact metric spaces (M,d) with M
containing all NN → NN-mappings are much less natural than the spaces from
Section 2 for which M ⊂ NN, or the spaces mentioned in the above items.

Secondly, we sometimes use type-theoretic notation, like n0 for natural numbers
n ∈ N, f1 for elements of Baire space f ∈ NN, Y 1→1 for NN → NN-mappings, and
Z3 for mappings from NN → N to N. The system RCAω

0 is fundamentally based on
the language of all finite types, i.e. nothing new has to be introduced. Moreover,
RCAω

0 only has very basic axioms governing fourth-order and higher objects. We
shall use N to (symbolically) denote the collection of all NN → NN-mappings.

Thirdly, with the above notation, we can consider following generalisation of
Feferman’s projection principle.

Principle 3.1 (BOOT2
1). (∀Z3)(∃f1)(∀n0)[f(n) = 0 ↔ (∃Y ∈ N )(Z(Y, n) = 0)].

We observe that ZΩ
2 + BOOT2

1 proves comprehension for Π2
1-formulas. We shall

study the following statements about sequentially compact metric spaces (M,d)
with M ⊂ N = NN → NN and indicate generalisations to all finite types.

(a) The supremum principle for continuous functions on (M,d) is equivalent to
BOOT2

1 (Section 3.2) over a relatively strong base theory.
(b) The intermediate value theorem for chain connected (M,d) is equivalent to

the Axiom of countable6 Choice as in QF-AC0,N (Section 3.3).

We often only sketch the proofs in this section as they are a straightforward modi-
fication of the proofs in Section 2. The previous results suggest another motivation
for studying e.g. countable choice in higher-order RM: the resulting theorems are
fine-grained and provide an elegant hierarchy.

6The axiom QF-AC0,N is just QF-AC0,1→1 as follows: for a quantifier-free formula φ with
(∀n0)(∃Y 1→1)φ(Y, n), we have (∃(Yn)n∈N)(∀n0)φ(Yn, n).
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3.2. Comprehension. We show that the supremum principle for continuous func-
tions on compact metric spaces (M,d) with M = N as in Principle 3.2 is equivalent
to BOOT2

1 (Principle 3.1). Recall that N is the set of mappings from Baire space
to itself, i.e. the following principle is fourth-order.

Principle 3.2 (Supremum Principle). For any metric d : N 2 → R and sequentially
compact (M,d) with M = N , a continuous function f : M → [0, 1] has a supremum
as in: (∀x ∈ M)(∃(yn)n∈N)(∀n ∈ N)(yn = sup

z∈B
M
d (x, 1

2n )
f(z)).

Theorem 3.3 (ZΩ
2 ). The following are equivalent.

• The Supremum Principle 3.2 restricted to f : M → [0, 1].
• The projection principle BOOT2

1.

We can restrict to Lipschitz continuity and replace ‘sequential’ by ‘limit point’.

Proof. The principle BOOT2
1 is equivalent to RANGE2 as follows:

(∀G : N → N)(∃X ⊂ N)(∀n ∈ N)
[
n ∈ X ↔ (∃Y ∈ N )(G(Y ) = n)]. (RANGE2)

Indeed, for the reverse direction, fix Z : (N × N) → N and define G : N → N as
follows for n0 and Y 1→1: put G(Y ) = n + 1 if Z(λf.λm.Y (f)(2m + 1), n) = 0 for
2n = Y (00 . . . )(0), and 0 otherwise. Let X ⊆ N be as in RANGE2 and note that

(∀m ≥ 1)(m ∈ X ↔ (∃Y ∈ N )(G(Y ) = m) ↔ (∃W ∈ N )(Z(W,m− 1) = 0)),

which is as required for BOOT2
1 after some trivial modification.

Now fix G : N → N, let o1→1 be such that o(f) = 00 . . . for all f1, and define
N0 := N \ {o} using (∃3). Define d : N 2 → R as d(Y,W ) := | 1

2G(Y ) − 1
2G(W ) | for

Y,W ∈ N0, d(o, Y ) = d(Y, o) := 1
2G(Y ) for Y ∈ N0, and d(o, o) := 0. Then (M,d) is

a metric space for M = N if we define the equivalence relation ‘=M ’ as follows:

Y =M W ≡
[
[Y,W ∈ N0 ∧G(W ) = G(Y )] ∨ Y =1→1 W =1→1 o

]
,

using (∃3). As in the proof of Theorem 2.11, (M,d) is a sequentially/limit point
compact metric space. Again using (∃3), define F : M → R as F (Y ) = 1

2G(Y ) for
Y ∈ N0 and F (o) = 0, which is Lipschitz continuous as in the proof of Theorem 2.11.
For x0 = o, let (yn)n∈N be a sequence such that yn = sup

z∈B
M
d (x0,

1
2n )

F (z) as

provided by Principle 3.2. By definition, we have for any n ∈ N that

(∃Y ∈ N )(G(Y ) = n) ↔ [yn =R
1
2n ∨G(o) = n], (3.1)

and RANGE2 follows as the right-hand side of (3.1) is arithmetical.

Secondly, fix a continuous F : M → [0, 1] and x0 ∈ M and use BOOT2
1 to obtain

X0 ⊂ N2 such that for all n, k ∈ N

(n, k) ∈ X0 ↔ (∃x ∈ B(x0,
1
2n ))(F (x) > 1− 1

2k
)

Clearly, the set X0 allows one to define the supremum required by Principle 3.2. □

The previous proof amounts to the proof of Theorem 2.11 with all relevant types
‘bumped up by one’. For instance, we could formulate the theorem for open-cover
compact spaces assuming a suitable generalisation of Σ-IND. Moreover, one could
do the same for the other results in Section 2 or even replace ‘1 → 1’ by ‘σ → σ’,
for any finite type σ. For instance, QF-AC0,N is equivalent to the statement that
continuous functions are bounded on sequentially compact (M,d) with M ⊂ N .
We do not prove the latter result but obtain a nicer equivalence in Section 3.3. We
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do point out that the existence of the supremum norm ∥f∥∞ on the spaces from
Theorem 3.3 is equivalent to Kleene’s (∃4), which is (∃3) with all relevant types
bumped up by one. The same holds for all finite types mutatis mutandis. We stress
that there may be more optimal7 proofs of e.g. Theorem 3.3.

3.3. Axiom of countable Choice. We show that basic statements about sequen-
tially compact metric spaces (M,d) with M ⊂ N are equivalent to QF-AC0,N . This
includes the intermediate value theorem as in Principle 3.5. While equivalences for
QF-AC0,1 are not unheard of, the results in this section are entirely new.

First of all, we use the historical definition of connectedness, due to Cantor and
Jordan ([64]), as in the second item of Definition 3.4.

Definition 3.4 (Connectedness).

• A metric space (M,d) is connected in case M is not the disjoint union of
two non-empty open sets.

• A metric space (M,d) is chain connected in case for any w, v ∈ M and
ε > 0, there is a sequence w = x0, x1, . . . , xn−1, xn = v ∈ M such that for
all i < n we have d(xi, xi+1) < ε.

It is well-known that the items in Def. 3.4 are equivalent for compact metric spaces.

Principle 3.5. Let (M,d) be a sequentially compact and chain connected metric
space with M ⊂ N and let f : M → R be continuous. If f(w) < c < f(v) for some
v, w ∈ M and c ∈ R, then there is u ∈ M with f(u) = c.

We observe that the base theory in the following theorem is much weaker than
in Theorem 3.3.

Theorem 3.6 (ACAω
0 ). The following statements are equivalent.

(a) The axiom of countable choice as in QF-AC0,1→1.
(b) The combination of the following.

(b.1) The axiom QF-AC0,1→1
fin : for quantifier-free φ with (∀n0)(∃Y 1→1)φ(Y, n),

we have (∀k0)(∃(Yn)n∈N)(∀n ≤ k)φ(Yn, n).
(b.2) For any metric d : N 2 → R and metric space (M,d) with M ⊂ N ,

sequential compactness implies boundedness.
(c) The combination of the following.

(c.1) The axiom QF-AC0,1→1
fin from item (b.1).

(c.2) For any metric d : N 2 → R and metric space (M,d) with M ⊂ N ,
sequential compactness implies countable compactness.

(d) The combination of the following.

(d.1) The axiom QF-AC0,1→1
fin from item (b.1).

(d.2) The intermediate value theorem as in Principle 3.5.
(e) The combination of the following.

(e.1) The axiom QF-AC0,1→1
fin from item (b.1).

(e.2) For any metric d : N 2 → R and sequentially compact metric space
(M,d) with M ⊂ N , a (Lipschitz ) continuous F : M → R is bounded.

7An anonymous referee has kindly suggested the following modification of the proof of Theo-
rem 3.3 that avoids (∃3) : instead of only mapping o1→1 to 0, one maps all Y with Y (0...)(0) = 0

to 0; instead of mapping Y that are different from o to 1
2G(Y ) , one maps all Y with Y (0...)(0) ̸= 0

to 1
2G(Z) for Z(f)(n) := Y (f)(n+ 1).
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Proof. First of all, to obtain item (a) from the other items, let φ be quantifier-free
such that (∀n0)(∃Y ∈ N )φ(Y, n) but there is no sequence witnessing the latter.
Now define a metric space (M,d) with M ⊂ N as follows: let Y 1→1 ∈ M in case
Y (00 . . . )(0) = n0 and (∀i ≤ n0)(φ(λf.P (Y, i)(f), i)) where

P (Y, i)(f) := gi in case Y (f) = ⟨m⟩ ∗ g0 ⊕ · · · ⊕ gn0 .

Let (qn)n∈N be an enumeration of the rationals (without repetitions). We put
Y =M Z in case Y (00 . . . )(0) = Z(00 . . . )(0) and define d : N 2 → R as d(Y, Z) =
|qY (00... )(0) − qZ(00... )(0)|. Then (M,d) is readily seen to be an unbounded and

not countably compact metric space, using QF-AC0,1→1
fin . To show that (M,d) is

sequentially compact, let (Yn)n∈N be a sequence in M . In case (∀n ∈ N)(∃m ∈
N)(Ym(00 . . . )(0) > n), we obtain a sequence (Zn)n∈N with (∀n ∈ N)φ(Zn, n),
which contradicts our assumptions. Hence, we must have (∃n0 ∈ N)(∀m ∈ N)(Ym(0) ≤
n0). Now let n1 ≤ n0 be such that Ym(00 . . . )(0) = n1 for infinitely many m ∈ N.
We thus obtain a sub-sequence of (Yn)n∈N that is constant in M , and hence trivially
convergent. Thus, (M,d) is a sequentially compact metric space that is unbounded
and not countably compact, contradicting items (b) and (c); QF-AC0,1→1 now fol-
lows from the latter.

Regarding item (d), the chain connectedness of (M,d) is proved using QF-AC0,N
fin

as follows: fix Y, Z ∈ M, ε > 0 and consider d(Y,Z) = |qY (00... )(0) − qZ(00... )(0)|.
Let qY (00... )(0) = r0, r1, . . . , rk−1, rk = qZ(00... )(0) ∈ Q be a finite sequence such that

|ri−ri+1| < ε for i < k. Using QF-AC0,N
fin , there are Yi ∈ M such that qYi(00... )(0) =

ri for i < k, and chain connectedness of (M,d) follows. Now define F : M → R by
F (Y ) = 1

3qY (00... )(0), which is Lipschitz continuous since for Y, Z ∈ N :

|F (Y )−F (Z)| = | 13qY (00... )(0)− 1
3qZ(00... )(0)| = 1

3 |qY (00... )(0)−qZ(00... )(0)| ≤ 1
3d(Y, Z).

However, the range of F consists of rationals, i.e. it does not have the intermediate
value property. This shows that item (d) implies QF-AC0,N . Note that F is also

unbounded thanks to QF-AC0,N
fin , i.e. item (e) also follows.

For the remaining implactions, one uses the obvious proof-by-contradiction for
items (b)-(c), and (e), namely as in the proofs of Theorems 2.4 and 2.12. For

item (d), apply QF-AC0,N to the definition of chain connectedness for Y,Z ∈ M
with F (Y ) <R z <R F (Z) for fixed z ∈ R. The resulting sequence readily yields a
sequence with limit W ∈ M such that F (W ) =R z. □

With slight effort, one obtains the following corollary by ‘bumping down’ all
relevant types in the proof of the theorem.

Corollary 3.7 (ACAω
0 ). The following are equivalent.

(a) The Axiom of countable Choice QF-AC0,1.
(b) The combination of the following.

(b.1) The axiom QF-AC0,1
fin from Theorem 2.4.

(b.2) The intermediate value theorem as in Principle 3.5 for M ⊂ NN.

The previous equivalences are merely examples. One can similarly obtain equiv-
alences as in Theorem 3.6 involving the following items for sequentially compact
metric spaces (M,d), some of which are obvious by now.

• Chain connectedness implies connectedness for (M,d).
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• The previous item with ‘connectedness’ replaced by ‘has finitely many con-
nected components’ or ‘not totally disconnected/separated’.

• Locally constant M → R-functions are constant.
• Continuous M → {0, 1}-functions are constant.
• The approximate intermediate value theorem, i.e. with the consequent
weakened to (∀ε > 0)(∃Y ∈ M)(|F (Y )| < ε).

• If M is chain connected and |M | ≥ 2, then it is uncountable ([12, p. 82]).
• The principles ADS and CAC from the RM zoo (see [28]) generalised to
third-order orderings.

For instance, one readily splits M from the proof of Theorem 3.6 into two open
disjoints sets using an irrational number. As a more challenging result, a version
of Nadler’s fixed point theorem ([39]) should be equivalent to QF-AC0,1.

Finally, we show that Theorem 3.6 remains true if we restrict to well-known
special classes of metric spaces, as follows.

Definition 3.8. A metric space (M,d) is called:

• convex if for any x, y ∈ M with x ̸=M y, there is z ∈ M such that d(x, y) =
d(x, z) + d(z, y) ([2, p. 554]),

• UMP if for any x, y ∈ M with x ̸=M y, there is a unique z ∈ M such that
d(x, z) = d(z, y) ([40, p. 353]),

• (Gromov) hyperbolic if there is δ > 0 such that for all x, y, z, w ∈ M , we
have

(x, z)w ≥ min ((x, y)w, (y, z)w)− δ,

where (y, z)x = 1
2 (d(x, y) + d(x, z)− d(y, z)) is the Gromov product ([62,

p. 191]).
• Hadamard or CAT(0) if (M,d) is complete and for x, y ∈ M , there is
m ∈ M such that for all z ∈ M :

d(z,m)2 + d(x,y)2

4 ≤ d(z,x)2+d(z,y)2

2 . (3.2)

If equality holds in (3.2), the space (M,d) is called flat Hadamard.

Theorem 3.9. Theorem 3.6 holds restricted to convex, UMP, hyperbolic, or flat
Hadamard spaces.

Proof. The theorem is established if we can show that the metric space (M,d)
from the first paragraph of the proof of Theorem 3.6 satisfies the properties from
Definition 3.8. That this space is convex follows from the observation that for
Y,Z ∈ M with Z ̸=M Y , we have qY (00... )(0) ̸= qZ(00... )(0). Now consider the

midpoint m = 1
2 (qY (00... )(0) + qz(00... )(0)) and use QF-AC0,1→1

fin to find W ∈ M with
qW (00... )(0) = m, i.e. we have

d(Z, Y ) = |qY (00... )(0)−qZ(00... )(0)| = |qY (00... )(0)−m|+|m−qZ(00... )(0)| = d(Y,W )+d(W,Z)

as required for convexity. The midpoint W is clearly unique and trivially d(Y,W ) =
d(W,Z), i.e. we also obtain UMP. Moreover, one readily verifies that (3.2) holds
with equality for the midpoint W . To show that (M,d) is hyperbolic, one proceeds
via a tedious-but-straightforward case distinction for δ = 1. To show that (M,d)
is complete, one verifies that all Cauchy sequences are eventually constant in the
absence of the choice function as in QF-AC0,1→1. □
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In conclusion, we have obtained equivalences for QF-AC0,1→1 involving the in-
termediate value theorem in Theorem 3.6. It is fairly straightforward to generalise
these results for ‘1 → 1’ replaced by ‘σ → σ’, for any finite type σ.
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