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The formation process of a vortex pair generated by a two-dimensional starting jet has
been investigated numerically over a range of Reynolds numbers from 500 to 2000. The
effects of stroke ratio and nozzle configuration are examined. Only a single vortex pair can
be observed in the vorticity field generated by small stroke ratios less than 10 while the
leading vortex pair formed by larger stroke ratios eventually disconnects from the trailing
jet. The formation numbers (13.6 and 9.3) for a straight nozzle and an orifice nozzle
have been identified by the circulation criterion and they are further analysed by four
other criteria. Using the contraction coefficient, formation numbers can be transformed
into a universal value at about 16.5 for both nozzles. The effect of Reynolds number
on the formation number is found to be within 12 % for parallel flow cases but it will
increase up to 27 % for non-parallel flow cases due to shear-layer instability. A modified
contraction-based slug model is proposed, and it can accurately predict the total invariants
(e.g. circulation, hydrodynamic impulse and kinetic energy) shedding from the nozzle
edge. Analytical estimation of the formation number is further conducted by matching the
predicted total invariants to the Pierrehumbert model of steady vortex pairs. By assuming
that pinch-off starts when the vortex pair achieves the steady state, two analytical models
are proposed in terms of vortex impulse and translational velocity. The latter appears to be
more appropriate to predict the formation number for two-dimensional flows.

Key words: vortex dynamics, jets

1. Introduction
Vortices play important roles in the behaviour of complex flows in nature due to their
relevance to many basic components of transitional and turbulent flows. For example, a
counter-rotating vortex pair appearing in the wake of an air vehicle attracts the attention
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of investigators due to the potential hazard to the vehicles behind (Leweke, Le Dizes &
Williamson 2016). A two-dimensional vortex pair consisting of equal but opposite vorticity
can be theoretically modelled by two rectilinear line vortices of equal and opposite
circulation.

Gharib, Rambod & Shariff (1998) discovered a critical stroke ratio (i.e. L/D, where L
is the stroke length and D is the nozzle diameter) at around 4 in starting axisymmetric jets.
They defined this universal time as the formation number and explained the onset of vortex
ring pinch-off process using the Kelvin–Benjamin variational principle. Pinch-off happens
when the vortex generator is no longer able to deliver energy to the leading vortex ring at
a sufficient rate with the requirement that the translating vortex ring reaches a steady state
of maximum kinetic energy. In addition to the dynamical discussion of vortex invariants
(e.g. circulation, hydrodynamic impulse and kinetic energy), the appearance of pinch-off
can also be explained by the kinematic manifestation (Shusser & Gharib 2000) and the
instability in trailing shear layers (Zhao, Frankel & Mongeau 2000; Gao & Yu 2012). As a
result, vorticity accumulating in the trailing jet is absent eventually when the stroke ratio
is smaller than the formation number but is present when the stroke ratio is larger than the
formation number. This physical phenomenon has also been discussed in various scenarios
(Dabiri & Gharib 2004; Ai et al. 2005; Allen & Naitoh 2005; Gao et al. 2008; Fernando &
Rival 2016; Gao & Yu 2016b; Fernández & Sesterhenn 2017). It is noted that the influence
on the formation number is limited for a broad range of Reynolds numbers from 500 to
5000 (Rosenfeld et al. 1998, 2009). The appearance of Kelvin–Helmholtz instabilities in
the trailing jet would accelerate vortex pinch-off and thereby reduce the formation number
slightly (Zhao et al. 2000). Almost all formation numbers found in experiments lie in the
range from 3.6 to 4.5 (at about 4 ± 0.4) over a wide range of flow conditions (Gharib et al.
1998).

A vortex pinch-off in general was not observed in two-dimensional starting jets. In the
experimental studies of vortex dipoles (Afanasyev 2006) at Reynolds numbers of the order
of 102, a clear pinch-off was not observed up to a stroke ratio of 15 in the vorticity field
and 51 in flow visualization studies. In the numerical study of orifice-generated vortex
pairs (Pedrizzetti 2010) at a Reynolds number of 2000, a tendency for the leading vortex to
detach from the trailing shear layer was not observed. The longitudinal size of the leading
vortex was found to increase linearly up to a stroke ratio of 12.

Several studies have attempted to explain the absence of pinch-off in the formation of a
vortex pair. From the perspective of the kinematic argument, Pedrizzetti (2010) attributed
the reason to a lower translational velocity for the leading vortex than that for the trailing
shear layer. Similarly, Domenichini (2011) found that the curvature effect could induce
a faster moving vortex ring than a vortex pair. Subsequently, O’Farrell & Dabiri (2012)
demonstrated that the stability of the leading vortex is important to pinch-off because
vortex shedding was not observed in the two-dimensional family of Pierrehumbert vortex
pairs subjected to a prolate perturbation. Gao & Yu (2016a) suggested that shear-layer
instability would be more appropriate to explain the pinch-off of a vortex pair. Sadri &
Krueger (2016) not only confirmed the effect of vortex line curvature but also suggested
that the lack of vortex stretching may lead to the absence of pinch-off in the formation
of a vortex pair. The aforementioned studies indicate that the two-dimensional vortex pair
cannot in general satisfy the Kelvin–Benjamin variational principle.

However, the steady vortex pair has been theoretically shown to be at a state of the
maximum kinetic energy for a given hydrodynamic impulse (Arnold 1965). This implies
that the vortex pinch-off originally discovered in starting axisymmetric flows should be
theoretically feasible in two-dimensional flows. Thomson (1880) suggested that a vortex
should be in a state of maximum kinetic energy for a given circulation and hydrodynamic
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impulse if the motion is steady and stable. The existence of extremal kinetic energy
therefore should be the result of the stability problem for steady Euler flows. Kelvin’s
variational principle was mathematically proven by Arnold (1965). It was suggested
that a steady and stable solution for a class of two-dimensional incompressible inviscid
flows is the extremal of the kinetic energy with respect to the iso-vortical perturbations.
More details for this conclusion for a two-dimensional vortex pair can be found in
previous discussions (Turkington 1983; Saffman 1992). Subsequently, extending to one
of the simplest three-dimensional flows, Benjamin (1976) verified the Kelvin–Benjamin
variational principle for an axisymmetric vortex ring moving steadily in an inviscid
incompressible fluid. This flow was found to be at the maximum state of the kinetic energy
with a constraint of constant hydrodynamic impulse. From the statistical equilibrium
theory for two-dimensional flows as a Hamiltonian system, the final equilibrium state
(i.e. a state of maximizing entropy with constraints on invariants of motion) of
axisymmetric inviscid flows would satisfy the energy extremization in Kelvin’s variational
principle (Mohseni 2001). Recently, motivated by the works of Vallis, Carnevale & Young
(1989) and Shepherd (1990), Flierl & Morrison (2011) proposed a numerical algorithm
to obtain the stationary states of energy extrema in two-dimensional Euler flows at fixed
Casimir invariants. These findings generally suggest that a state of maximum energy would
also exist in the leading vortex of two-dimensional starting jets.

A pressure-based mechanism was used to identify the pinch-off process in unsteadily
axisymmetric jets (Lawson & Dawson 2013; Schlueter-Kuck & Dabiri 2016). This method
was found to be comparable to the Lagrangian coherent structure analysis. When the
leading vortex ring grew near to the formation number, a trailing pressure maximum
(i.e. the rear stagnation point) appeared behind the vortex core. This rear high-pressure
region works as a barrier to reject fluids from the trailing jet. As a matter of fact, the rear
boundary (i.e. the high-pressure region) would become stronger when the leading vortex
ring absorbs more and more vorticity from the trailing jet. This implies that a similar
situation may exist for the two-dimensional starting jet.

Afanasyev (2006) mentioned that the pinch-off could be observed at a dimensionless
time of 25 in numerical work using the viscous vortex particle method. Experimental
(Afanasyev 2006) and numerical (Pedrizzetti 2010) works only investigated the vorticity
growth of vortex pairs up to stroke ratios of 15 and 10, respectively. Thus, a larger stroke
ratio may be required to further investigate the vortex pair formation.

The main objective of our study is to examine the formation of a vortex pair at large
stroke ratios for a detailed investigation of the pinch-off in two-dimensional starting
jets. The stroke ratios considered are available over a wide range covering the universal
formation number. The nozzle configurations include both straight nozzle and orifice
nozzle.

The paper is organized as follows. The numerical set-up, verification and validation are
introduced in § 2. The classical and contraction-based slug models are introduced in § 3.
To study the critical formation number in two-dimensional flows, both local and global
analyses are used and described in § 4. In addition, the influence of Reynolds numbers on
the formation number is discussed. In § 5, the differences between two-dimensional and
axisymmetric formation numbers are discussed via detailed comparisons. The contraction-
based slug model used successfully in axisymmetric flows is modified and used to predict
the dynamical invariants of the total jet. In § 6, analytical models based on the vortex
impulse and vortex translational velocity are proposed to predict formation numbers for
the straight nozzle and orifice nozzle. The paper ends with brief concluding remarks
in § 7.
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Figure 1. Computational domains (not to scale) for (a) straight nozzle and (b) orifice nozzle. Sample meshes
(every sixth mesh point is shown in each direction) for (c) straight nozzle and (d) orifice nozzle.

2. Numerical method

2.1. Problem statement
The computational domains are presented in figure 1. A fluid column of stroke length L(t)
is pushed through a two-dimensional nozzle with a height H at the exit plane. The origin
of coordinates is located at the centre of the nozzle exit, and the symmetry axis is aligned
with the x direction. The distances from the nozzle exit to the upstream nozzle inlet and
downstream exit boundary are both fixed at 40H . The outer boundary is placed at a lateral
distance of 6H from the symmetry axis. A squared-off lip at the orifice is used to avoid
numerical singularities.

No-slip condition is enforced on the nozzle wall and the outer orifice plate. The pressure
outlet with zero gauge pressure is employed on the outer and downstream exits. The piston
motion is modelled as a time-dependent velocity inlet boundary (Rosenfeld, Rambod &
Gharib 1998; Zhu et al. 2023a,b). A uniform velocity profile is specified at the nozzle
inlet to control piston velocity Up(t). An impulsive velocity programme at the nozzle exit
is defined as

U0(t)

{
U for t � τ,
0 for t > τ,

(2.1)

where U is the constant velocity at the nozzle exit and τ is the jet discharge time. The
maximum stroke length and time-averaged exit velocity are Lm = ∫ τ

0 U0dt = Uτ and
U 0 = (τ )−1 ∫ τ

0 U0dt = U . The non-dimensional formation time is defined as t∗ = U 0t/H .
As listed in table 1, a total of 15 cases are simulated. Water is used as the working fluid,

with density ρ = 998.2 kg m−3 and dynamic viscosity μ= 1.003 × 10−3 kg m−1, s−1.
The same exit height H = 2 cm and jet velocity U = 5 cm s−1 for both the straight nozzle
and orifice nozzle provide the same momentum flux at the nozzle exit. To avoid the
possible occurrence of Kelvin–Helmholtz instability during jet discharge, a Reynolds
number (ReH = U 0 H/ν) of 1000 is chosen for all cases, where ν is the kinematic
viscosity. The onset of vortex pinch-off for the non-parallel flow cases would occur earlier
than for the parallel flow cases (Limbourg & Nedić 2021c). The chosen stroke ratios for the
orifice cases should be large enough to study the formation number in the present study.
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Case Geometry Lm/H

SN050 Straight nozzle 5
SN075 Straight nozzle 7.5
SN100 Straight nozzle 10
SN125 Straight nozzle 12.5
SN150 Straight nozzle 15
SN175 Straight nozzle 17.5
SN200 Straight nozzle 20
SN225 Straight nozzle 22.5
SN250 Straight nozzle 25
ON050 Orifice nozzle 5
ON075 Orifice nozzle 7.5
ON100 Orifice nozzle 10
ON125 Orifice nozzle 12.5
ON150 Orifice nozzle 15
ON175 Orifice nozzle 17.5

Table 1. Cases considered.

Therefore, the chosen stroke ratios for orifice cases are slightly smaller than those for cases
with the straight nozzle.

2.2. Mathematical formulation and numerical method
The two-dimensional, unsteady, incompressible and laminar Navier–Stokes equations are
solved by the commercial finite-volume package ANSYS Fluent (version 2020 R1). The
pressure-implicit with splitting of operators (PISO) algorithm with the non-iterative time
advancement scheme is used for pressure–velocity coupling. Second-order schemes are
employed in spatial and temporal discretization. In addition, the passive scalar is computed
by solving the convection–diffusion equation. Parameter C represents the mass fraction
concentration of the scalar. The fluids inside and outside the nozzle are defined with
C = 1 and C = 0 initially. The inflow at the nozzle inlet is defined with C = 1 during jet
discharge. The Schmidt number Sc = ν/Γc is fixed at 1 (Sau & Mahesh 2007), where Γc
is the scalar diffusivity. The computational domains are discretized by structured meshes.
The grid is uniform along the streamwise direction with a spacing �x = H/100. With
an average spacing �y = H/100, the total grid number along the transverse direction is
determined. The grids below the height of the nozzle wall are uniform with a refined
spacing �y = H/(100 × 1.4) to capture details in the boundary layer and shear layer. The
remanent grids above the height of the nozzle wall are stretched slightly in the transverse
direction. High-resolution simulations are employed with 4001 × 601 grid points outside
the nozzle. Sample meshes for the straight nozzle and orifice nozzle are partially shown
in figures 1(c) and 1(d). The time step is fixed at 0.001 s to ensure that the cell Courant
numbers are less than one for all cases.

2.3. Verification of numerical method
Cases for respective independent tests are listed in table 2. The tests are evaluated for the
streamwise vortex trajectory (x∗

v = xv/H ) for cases SN250 and ON175. For the domain-
independent tests shown in figure 2(a), the convergence of numerical results can be
observed as the domain size increases. The trajectory for the chosen domains deviates
less than 2 % from that for the larger domains 40H × 8H . For the grid-independent tests
in figure 2(b) and time-step-independent tests in figure 2(c), the numerical results are not

1007 A11-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.3


H. Zheng, L. Gao and S.C.M. Yu

Case Domain outside nozzle �x =�y Mesh outside nozzle Total cell number

SN250-SDS 40H × 4H H/100 4001 × 401 1.9 × 106

SN250-LDS 40H × 8H H/100 4001 × 801 3.5 × 106

SN250-CM 40H × 6H H/50 2001 × 301 6.7 × 105

SN050–SN250 40H × 6H H/100 4001 × 601 2.7 × 106

SN250-FM 40H × 6H H/150 6001 × 901 6.0 × 106

ON175-SDS 40H × 4H H/100 4001 × 401 2.3 × 106

ON175-LDS 40H × 8H H/100 4001 × 801 3.9 × 106

ON175-CM 40H × 6H H/50 2001 × 301 7.8 × 105

ON050–ON175 40H × 6H H/100 4001 × 601 3.1 × 106

ON175-FM 40H × 6H H/150 6001 × 901 7.0 × 106

Table 2. Grid sizes used for independent tests.

sensitive to the mesh and time-step choices. Comparing with the denser mesh 6001 × 901
or smaller time step 0.0005 s, the errors for the developed vortex pair are generally less
than 4 %. In short, the error and convergence for the present domain size, mesh and
time step suggest that the numerical set-up is sufficient to describe the vortex motion
adequately. To validate the numerical results, the evolution of the transverse trajectory
(y∗
v = yv/H ) starting at the nozzle edge is plotted in figure 2(d). The numerical result for

the straight nozzle satisfies the 2/3 power law (red dashed line) suggested by the roll-up
theory of a two-dimensional vortex sheet developed at the edge of a semi-infinite flat plate
(Saffman 1978).

2.4. Vortex invariants and vortex boundary
The main dynamical properties of the two-dimensional vortex motion are the circulation,
the hydrodynamic impulse and the kinetic energy. The quantities can be obtained by
the area integration inside the vortex core on the upper semi-plane (Batchelor 1967;
Saffman 1992), such as

Γv =
∫ ∫

ω dx dy, (2.2)

Iv = ρ

∫ ∫
yω dx dy, (2.3)

Ev = 1
2
ρ

∫ ∫
ωψ dx dy, (2.4)

where ω is the azimuthal vorticity and ψ is the stream function. It is noted that the
integrals of the vortex pair are different from those of the vortex ring (Gharib et al. 1998).
The cutoff level to determine the vortex core boundary is defined as 5 % of the local
maximum vorticity (Rosenfeld et al. 1998; Zhao et al. 2000; Sau & Mahesh 2007).
Sensitivity analysis had been made by the cutoff level of 2 %. The differences of the vortex
invariants are within 3 % for both nozzle configurations. Therefore, the vortex invariants
are found to be insensitive to the choice of the cutoff level. In addition, the pressure-
based method is used to further identify the rear vortex boundary (Lawson & Dawson
2013). The features of the vortex boundary in the pressure field are found to be accurate by
comparing with the Lagrangian vortex boundary (Baskaran & Mulleners 2022). Based on
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Figure 2. Numerical tests on vortex trajectories for (a) domain sizes, (b) grid sizes and (c) time steps. (d)
Validation with Saffman theory. Abbreviations: SDS/LDS, CM/FM and STS/LTS represent small/large domain
size, coarser/finer mesh and small/large time step.

the maximum in the centreline pressure, the trailing pressure maximum at the vortex rear
boundary is determined along the symmetry axis (e.g. the blue dashed lines in figure 3a,
b). Moreover, the vortex centre (red dashed lines) and front boundary (yellow dashed
lines) can also be identified by this pressure-based method. This method can locate the
rear boundary before a clear vorticity separation appears between the leading vortex and
the trailing jet, as shown in figure 3(c). Based on the cutoff of vorticity level together
with the pressure-based method, the vortex boundary can be identified over a wide range
of non-dimensional time for the calculation of vortex invariants throughout the entire
studies.

3. Slug model for total invariants
The invariants of the motion were introduced in unbounded inviscid incompressible flows,
such as circulation, impulse and energy. The classical slug model was originally developed
to predict total circulation shedding from the sharp edge of an axisymmetric straight nozzle
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Figure 3. Pressure-based vortex boundary (case SN250). (a,b) The pressure normalized by the maximum and
(c,d) the vorticity contours normalized by local maximum (from 0.05 to 1, with 10 levels). Results at (a,c)
t∗ = 20 and (b,d) t∗ = 50. Blue, red and yellow dashed lines represent the rear, the centre and the front of the
vortex.

(Didden 1979). By definition, the rate of circulation change is equal to the vorticity flux at
the nozzle exit plane during jet discharge, i.e.

dΓslug

dt
=

∫ ∞

0
uxω dy =

∫ ∞

0
ux

(
∂uy

∂x
− ∂ux

∂y

)
dy =

∫ ∞

0
ux
∂uy

∂x
dy + 1

2
U 2

outlet , (3.1)

where Uoutlet is the centreline velocity at the nozzle exit. Considering the uniform
assumption of streamwise velocity and the parallel-flow assumption for a straight nozzle,
the transverse velocity component uy would be zero, leading to an approximated form:

dΓslug = 1
2

U 2dt. (3.2)

This slug model for the total circulation was extended to estimate the hydrodynamic
impulse and kinetic energy for a parallel starting jet (Gharib et al. 1998), such as

dIslug = 1
4
πρU 2 D2dt, (3.3)

dEslug = 1
8
πρU 3 D2dt, (3.4)

where D is the diameter of a circular nozzle. However, this model deviates from the
real situation with a time-dependent streamwise velocity profile due to the growth
of the boundary layer inside the nozzle (Rosenfeld et al. 1998). Thus, this model
performs worse at a later time for parallel starting jets. In addition, this model
was less successful in the cases of non-parallel flows generated by a circular orifice
(Krieg & Mohseni 2013). The reason was attributed to the significant transverse velocity
associated with the over-pressure effect at the nozzle exit (Krueger 2005).

To overcome the disadvantage of the slug model in orifice-generated flows,
a modification for axisymmetric flows was proposed based on the contraction
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coefficient defined at the vena contracta originally for two-dimensional jets
(Limbourg & Nedić 2021a). The contraction coefficient is defined as the ratio of the area
of the vena contracta A� to the area of the nozzle exit A, such as

Cc = A�
A

= D2
�

D2 = U

U�
= L

L�
. (3.5)

According to mass conservation, the quantities at the nozzle exit can be transformed into
those at the downstream vena contracta (subscript �). The contraction-based slug model
for impulsively axisymmetric starting jets can thus be expressed as

Γ� = 1
2

L�U� = 1
2

LU × 1/C2
c , (3.6)

I� = 1
4
πρL�U�D2

� = 1
4
πρLU D2 × 1/Cc, (3.7)

E� = 1
8
πρL�U

2
� D2

� = 1
8
πρLU 2 D2 × 1/C2

c . (3.8)

Determination of the contraction coefficient Cc for orifice cases was related to the orifice-
to-tube diameter ratio (Limbourg & Nedić 2021a). It is noted that this contraction-based
model with suggested value Cc = 0.9 was available for parallel flows with considerable
boundary layer (Limbourg & Nedić 2021b). Thus, this contraction-based model may be
used to predict total invariants for both an axisymmetric straight nozzle and orifice nozzle.

For impulsively two-dimensional flows (Afanasyev 2006), the slug-flow model can be
written as

Γslug2 = 1
2

LU, (3.9)

Islug2 = ρL HU, (3.10)

Eslug2 = 1
2
ρL HU 2. (3.11)

With the consideration of contracted flows generated by the two-dimensional orifice
nozzle, the two-dimensional slug model can be rewritten as

Γ�2 = 1
2

L�U� = 1
2

LU × 1/C2
c , (3.12)

I�2 = ρL�H�U� = ρL HU × 1/Cc, (3.13)

E�2 = 1
2
ρL�H�U

2
� = 1

2
ρL HU 2 × 1/C2

c , (3.14)

where the contraction coefficient follows the relations

Cc = H�
H

= U

U�
= L

L�
. (3.15)

The slug model (3.9)–(3.11) and the contraction-based slug model (3.12)–(3.14) for two-
dimensional flows are evaluated in § 5.
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Figure 4. Normalized vorticity fields for the straight nozzle at stroke ratios of (a,b) 7.5, (c,d) 10 and (e,f ) 15.
The vorticity field has 10 levels from 0.05 to 1.

4. Two-dimensional formation number
According to the definition of critical stroke ratio for the pinch-off process (Gharib
et al. 1998), the existence of a trailing jet after jet discharge is crucial to describe the max-
imum energy state of the leading vortex. To examine the effect of stroke ratio on the exis-
tence of a trailing jet, comparisons of the vorticity fields at the instant slightly larger than
the maximum stroke ratio (t∗ = Lm/H + 2.5) and at a much later moment (t∗ = Lm/H +
12.5) are presented in figures 4 and 5 for the straight nozzle and orifice nozzle, respectively.
Vorticity fields are normalized by the local maximum. As shown in figures 4(a,c,e) and
5(a,c,e), the starting jet includes a leading vortex ring and a trailing jet without any
separations between them at around the maximum stroke ratio. The trailing jet is eventually
absent when the stroke ratio is small (see figures 4b and 5b). On the other hand, shear layers
separating from the leading vortex pair can be observed in figures 4(d) and 5(d) when
the stroke ratio is large. This result implies a critical formation number at around 10 for
the two-dimensional starting jets generated by either the straight nozzle or orifice nozzle.
With the increase in stroke ratio, the vortex pair grows in size and becomes more difficult
to disconnect completely from the trailing jet in the vorticity field (figures 4f and 5f ).

The absence of a clear pinch-off in a previous simulation (Pedrizzetti 2010) might
be due to the limited stroke ratio (up to 10). As stated in experimental results (Gharib
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Figure 5. Normalized vorticity fields for the orifice nozzle at stroke ratio of (a,b) 7.5, (c,d) 10 and (e,f ) 15.
The vorticity field has 10 levels from 0.05 to 1.

et al. 1998), a complete pinch-off might require non-dimensional time up to two times
the formation number for an axisymmetric jet. A clear pinch-off for vortex pairs before
the termination of jet discharge was also not observed in the present studies. Therefore,
cases with larger stroke ratio could be meaningful for better understanding of the whole
pinch-off process in starting jets. Additionally, a clear pinch-off for vortex dipoles was also
not observed by the visualization in the experiment for stroke ratio up to 51 (Afanasyev
2006). This might be due to the low Reynolds numbers (of the order of hundreds). It is also
noted that a clear pinch-off also could not be found in axisymmetric jets at low Reynolds
numbers even though the vortex ring has attained the maximum circulation level (Bi &
Zhu 2020).

The appearance of a trailing jet in the present simulations is different from the initial
absence of a trailing jet in the experiments of non-parallel planar starting jets generated
by a rectangular nozzle with an aspect ratio of 40 (Steinfurth & Weiss 2020). In their
experiments, the leading vortex ring could absorb all vorticity from the nozzle exit up
to a formation time of 12. Vortex pinch-off was not observed. This may be due to the
initial absence of a trailing jet. The result was explained by the effects of high normalized
over-pressure (greater than 1) at the nozzle exit. The present orifice cases are with low
normalized over-pressure p∗

over = (pexit − p∞)/ρU 2 ≈ 0.5, where pexit and p∞ are the
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Figure 6. Development of normalized vortex circulation (a,c) and maximum vortex circulation versus stroke
ratio (b,d) for straight nozzle (a,b) and orifice nozzle (c,d).

pressure at the nozzle exit centre and the pressure at the ambient fluid. It is noted that the
absence of a trailing jet was also not observed in experiments of non-parallel axisymmetric
jets with low over-pressure of about 0.4 by Krieg & Mohseni (2013). Therefore, the
appearance of a trailing jet and absence of significant vortex growth in the present studies
might be due to the low magnitude of over-pressure.

To quantify the growth of the vortex pair, the evolution of vortex circulation is presented
in figure 6. Before the trailing pressure maximum appears, the vortex circulation can
be approximated by the total circulation. The vortex circulation is normalized as Γ ∗

v =
Γv/U H . As shown in figure 6(a,c), the leading vortex pair continuously absorbs vorticity
from the trailing jet even after the termination of piston motion. Due to the self-induced
velocity, the vortex pair eventually disconnects from the trailing jet and starts its decaying
stage. This process also can be found in the formation of the leading vortex ring (Rosenfeld
et al. 1998). For the orifice cases, the shear layer is more unstable than that for the
straight nozzle. Although the Kelvin–Helmholtz instability is not observed during the jet
discharge, secondary vortices in the trailing jet appear for cases ON150 and ON175 due to
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Figure 7. Development of normalized vortex energy (a,c) and vortex energy at t∗ = 60 versus stroke ratio
(b,d) for straight nozzle (a,b) and orifice nozzle (c,d).

the perturbation caused by the termination of jet discharge (see figure 5f ). Thus, the vortex
circulation can increase rapidly by vortex pairing.

The maximum vortex circulation for each case is plotted in figure 6(b,d). For straight
nozzle cases, the growth rate of vortex circulation becomes smaller with the increase
of stroke ratio. This convergent tendency suggests a limiting situation in vortex pair
formation, which is analogous to tube-generated vortex ring formation (Gharib et al.
1998). For the orifice cases, the increase of slope can be explained by the vortex pairing
with the trailing vortex. After the pairing, the leading vortex moves faster due to the
increased circulation strength. This process leads to a significant decrease in the growth
of vortex circulation after Lm/H = 15. This result therefore agrees with the trend of the
limiting situation in vortex formation analogous to orifice-generated vortex ring formation
(Limbourg & Nedić 2021c).

To further examine the state of the vortex pair, the evolution of vortex energy is
presented in figure 7. The vortex energy is normalized as E∗∗

v = Ev/ρΓ 2
v . Large and

small values of the normalized energy are represented by thin and thick vortex pairs
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(Pierrehumbert 1980). As shown in figure 7(a,c), the vortex core develops into a thick core
with decreasing non-dimensional energy. The thickest state of a vortex pair is generally
enhanced and postponed by the increasing stroke ratio. The vortex pairing process of large-
stroke-ratio orifice cases (cases ON150 and ON175) greatly thickens the leading vortex
core within a short time. The trailing jet for case ON175 is more energetic on account of the
longer jet discharging time, leading to an earlier vortex pairing. During the post-formation
stage where the leading vortex becomes stable and decays steadily after a complete pinch-
off, vortex pairs generated by non-parallel jets settle to a constant state of energy faster than
those of parallel jets. The convergence of vortex energy with respect to a nearly constant
vortex impulse after a complete pinch-off from the trailing jet satisfies the suggestion
of Kelvin’s variational principle. For the energy at t∗ = 60, the vortex energy for straight
nozzle cases converges to a universal value of about 0.068 (figure 7b). For the orifice cases,
the universal energy is at about 0.076 (figure 7d). The universal energy of steady vortex
rings was also observed in experiments (Gharib et al. 1998). A thicker straight-nozzle-
generated vortex core (i.e. smaller non-dimensional energy) than the orifice-generated
vortex core also could be found in starting axisymmetric jets (Rosenfeld, Katija & Dabiri
2009; Krieg & Mohseni 2021). This might be explained by the thicker shear layer of
straight nozzle cases and slower vortex motion due to the absence of the over-pressure
effect.

On account of the aforementioned similarities between vortex ring formation and vortex
pair formation, the formation number (i.e. the onset of pinch-off) will be further studied
in two-dimensional flows. Five criteria are presented here, including three local analyses
(total circulation, vortex velocity and induced velocity criteria) and two global analyses
(entrainment and circulation ratio criteria). The formation numbers will be identified by
the circulation criterion first and subsequently they will be further analysed by the other
four criteria.

4.1. Circulation criterion
The formation number F may be determined by the circulation criterion (Gharib et al.
1998) when the total circulation Γ ∗

t = Γt/U H becomes equal to the maximum vortex
circulation (Rosenfeld et al. 1998). In terms of locally maximum vortex circulation Γ ∗

vmax
for each case, the difference between cases SN225 and SN250 is 5 % while that for
cases ON150 and ON175 is about 4 %. The differences are small enough to approximate
maximum vortex circulation with errors of about 5 % by averaging these two cases
(i.e. the two highest values in vortex circulation) for both nozzles. As shown in figure 8,
the formation numbers (red arrows) are found by the intersection of total circulation (black
solid line) and maximum vortex circulation (blue dashed line). The formation numbers are
about 13.6 and 9.3 for the straight nozzle and orifice nozzle, respectively. These are much
larger than the 4 and 2 for axisymmetric jets (Gharib et al. 1998; Limbourg & Nedić
2021c).

For the non-parallel jet, the formation number of 7 found in Gao & Yu (2016a) is smaller
than that found in the present study. The smaller value may be attributed to the trailing jet
instability at higher Reynolds number (Zhao et al. 2000; Gao & Yu 2012).

4.2. Entrainment criterion
To examine the entrainment property of starting jets, the area of scalar-carrying fluid is
shown in figure 9. The area A∗

sc = Asc/H2 is computed inside the jet boundary which
is defined above a threshold of 1 % for scalar concentration (Sau & Mahesh 2007). The
jet area increases linearly for the impulsive piston motion. After the termination of piston
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Figure 8. Circulation criterion to determine formation number for (a) straight nozzle (total circulation obtained
from case SN250 and vortex circulation obtained from the average of cases SN225 and SN250) and (b) orifice
nozzle (total circulation obtained from case ON175 and vortex circulation obtained from the average of cases
ON150 and ON175).

motion, the slopes become nearly constant (figure 9a,c). The increase can be attributed
to diffusion and mixing of ambient fluids. A constant slope for the rate of area change
for Lm/H � F and a decreased slope for Lm/H > F (Sau & Mahesh 2007) are found.
The different growth rates of dA∗

sc/dt∗ in terms of stroke ratio can be explained by the
fact of the different mixing abilities between the leading vortex and the trailing jet. More
and more vorticity would be accumulated in the trailing jet with the increase of stroke
ratio for Lm/H > F . As a consequence, the relative contribution of the leading vortex to
the total entrainment decreases as the stroke ratio increases. As shown in figure 9(b,d),
the growth rates of dA∗

sc/dt∗ decrease significantly after the critical formation time. This
situation in two-dimensional flows is similar to the situation in axisymmetric flows (Sau
& Mahesh 2007). Based on the intersection of the fitted lines (blue dashed lines), the
formation numbers (13.4 for the straight nozzle and 9.6 for the orifice nozzle) can be
determined with a prior knowledge of the formation number. The differences between the
circulation criterion and the entrainment criterion are about 1 % and 3 % for the straight
nozzle and the orifice nozzle, respectively.

4.3. Kinematic criterion
A kinematic criterion in terms of the translational velocity was also proposed in previous
studies for axisymmetric jets (Mohseni & Gharib 1998; Shusser & Gharib 2000). Pinch-
off starts when the vortex ring velocity equals a specific velocity (e.g. the jet velocity near
the leading vortex). A specific value N is defined as the ratio of this particular velocity to
the space-averaged velocity at the nozzle exit. This specific value N in parallel jets is 0.5
from a Hamiltonian theory for vortex rings (Mohseni & Gharib 1998) or about 0.6 from the
analytical model with a closure from experimental results (Shusser & Gharib 2000). By the
fourth-order central-difference approximation, the vortex velocity can be determined from
the vortex trajectory. Moreover, the normalized vortex translational velocity is defined
as U∗

v = Uv/U . Based on the formation numbers found from the circulation criterion,
the value N can be identified to be about 0.49 (figure 10a) and 0.58 (figure 10b) for the
straight nozzle and orifice nozzle, respectively. Thus, our results for vortex pair formation
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Figure 9. Development of normalized area of scalar-carrying fluid (a,c) and normalized growth rate of the
area versus stroke ratio (b,d) for straight nozzle (a,b) and orifice nozzle (c,d).

can generally agree with the suggestions (Mohseni & Gharib 1998; Shusser & Gharib
2000) and measurements (Limbourg & Nedić 2021d) for axisymmetric flows.

Recently, another kinematic criterion was proposed for axisymmetric jets (Krieg
& Mohseni 2021). Pinch-off starts when the characteristic vortex velocity reaches a
characteristic feeding velocity of 2U . The characteristic vortex velocity is also commonly
referred to as the induced velocity U∗

cmax (= Ucmax/U ). Velocity U∗
cmax is the maximum

velocity along the centreline. The streamwise location of the induced velocity is
determined by the streamwise trajectory of the vortex pair. Based on the formation
numbers obtained from the circulation criterion, the induced velocity criteria are found
to be about 1.75U and 2.12U for the straight nozzle (figure 11a) and orifice nozzle
(figure 11b), respectively.

4.4. Maximum circulation criterion
The ratio of the maximum vortex circulation to maximum total circulation Γ ∗

vmax/Γ
∗

tmax is
defined to examine the efficiency of starting jets on vortex formation. The ratio decreases
as the stroke ratio increases due largely to the existence of the trailing jet from small
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Figure 10. Development of vortex translational velocity for (a) straight nozzle (case SN250) and (b) orifice
nozzle (case ON175).
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Figure 11. Development of induced velocity for (a) straight nozzle (case SN250) and (b) orifice nozzle
(case ON175).

formation time (such as t∗ = 1). Based on the formation number obtained from the
circulation criterion, the circulation ratio criterion is defined when the ratio reaches a
critical value. A universal ratio of about 72 % is found to be appropriate for both nozzle
configurations in two-dimensional flows (see figure 12). Therefore, this criterion is not
similar to the kinematic criterion due to its independence of the nozzle configuration. The
formation number represents a critical circulation ratio for vortex formation in starting jets.
This criterion agrees well with the experiment for non-parallel two-dimensional starting
jets with a critical ratio of about 71 % (Gao & Yu 2016a).

Considering the contraction effect, the transformed formation number has been used to
unify the classical formation number for the straight nozzle and orifice nozzle (Limbourg
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Figure 12. Circulation ratio versus stroke ratio for (a) straight nozzle and (b) orifice nozzle.

& Nedić 2021b), such as

F� = U�tcri tical

H�
= Utcritical

H
× 1/C2

c = F × 1/C2
c , (4.1)

where the contraction coefficient Cc is 0.9 suggested for the straight nozzle
(Limbourg & Nedić 2021b) or 0.76 for the orifice nozzle. The contraction coefficient Cc
is obtained from the steady simulation and identified from the lowest transversal position
along the streamline passing the inner corner of the orifice plate. Quantity tcri tical is the
physical time corresponding to the critical formation time. Based on (4.1), the present
formation numbers of 13.6 and 9.3 (F) will become 16.8 and 16.1 (F�) for the straight
nozzle and orifice nozzle, respectively. Therefore, the transformed formation number (F�)
of 16.5 with deviation ±0.4 can effectively unify the critical formation time for the straight
nozzle case and orifice case. In additional, with the use of the contraction coefficient,
two kinematics criteria also can be universal for both nozzle configurations. For the first
kinematic criterion (§ 4.3), the critical translational velocity of about 0.44U� is universal
for the straight nozzle and orifice nozzle. This conclusion agrees well with the experiments
for axisymmetric jets (Limbourg & Nedić 2021d). For the second kinematic criterion
(§ 4.3), the critical induced velocity of about 1.60U� is also found to be nearly independent
of the nozzle configuration. The deviations for both straight nozzle and orifice nozzle are
within 0.03U�.

4.5. Effects of Reynolds number
Some studies indicated that the development of vortex circulation (i.e. the formation
number and the scaling law for axial and radial trajectories) is nearly independent of
the Reynolds number for laminar vortex rings (Didden 1979; Gharib et al. 1998). The
insignificant influence on the formation number of laminar vortex rings has been examined
by a series of simulations over a range of Reynolds numbers from 500 to 5000. It is noted
that the Reynolds number would play an important role to the velocity profile at the nozzle
exit plane (Rosenfeld et al. 1998, 2009). To evaluate the dependence of formation number
on the Reynolds number, several more cases are simulated as listed in table 3. To avoid
any possible developments of transitional or turbulent flows, the Reynolds numbers are
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Case �x =�y ReH Γ ∗
tmax Γ ∗

vmax F

SN250-Re500 H/100 500 21.0 9.6 12.0
SN250 H/100 1000 20.2 10.1 13.8

SN250-Re1600 H/180 1600 19.1 10.1 14.7
SN250-Re2000 H/180 2000 18.5 9.7 14.7
ON175-Re500 H/100 500 16.4 8.8 9.1

ON175 H/100 1000 18.2 10.1 9.5
ON175-Re1600 H/180 1600 19.3 8.5 7.7
ON175-re2000 H/180 2000 19.6 7.6 6.8

Table 3. Cases studied for the dependence of the formation number on the Reynolds number.
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Figure 13. Effects of the Reynolds number on the evolution of total circulation and vortex circulation for (a)
straight nozzle and (b) orifice nozzle.

chosen up to 2000. Due to more shear-layer instabilities for higher Reynolds numbers
(e.g. 1600 and 2000), finer meshes with an average grid spacing of H/180 in streamwise
and transverse directions are used to provide more precise results for the straight nozzle
and the orifice nozzle. The evolutions of total circulation and vortex circulation are
presented in figure 13. According to the circulation criterion, the formation numbers are
identified for different Reynolds numbers, as summarized in table 3.

As can be seen in figure 13(a), the total circulation generated by the straight nozzle
would be larger for smaller Reynolds number (Rosenfeld et al. 1998). This can be attributed
to the viscous effect which produces a thicker boundary layer within the nozzle with higher
vorticity. Similar reason contributes to higher vortex circulation initially. However, the
vortex circulation for case SN250-Re500 gradually becomes smaller than that for other
cases with the straight nozzle due to the viscous diffusion. The greater total circulation
and smaller maximum vortex circulation for case SN250-Re500 bring down the formation
number slightly to 12. As indicated by table 3, the maximum vortex circulation is identical
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for cases SN250 and SN250-Re1600. Therefore, the influence of Reynolds number on
the local maximum of vortex circulation is limited. However, the formation number for
case SN250 is smaller due to larger total circulation increase rate. The final increase of
vortex circulation generated by the vortex pairing with the secondary vortex appearing
after the jet discharge is excluded to identify the formation number for cases SN250-
Re1600 and SN250-Re2000. This is because the local maximum of vortex circulation
has already been achieved. This phenomenon is different from that of the non-parallel
flow cases which still have a continuous increase of vortex circulation before the vortex
pairing. The difference may be explained by the stronger shear-layer instability for orifice
cases. Stronger secondary vortex for case SN250-Re2000 contributes to a faster pinch-
off and smaller vortex circulation in comparison with case SN250-Re1600. However,
due to the smaller total circulation increase rate, the formation number for case SN250-
Re2000 is maintained. It is noted that the formation number could be increased slightly
with the Reynolds number for the straight nozzle due to a decrease in total circulation.
In comparison with the formation number of 13.6 for the straight nozzle, the differences
produced by the Reynolds numbers from 500 to 2000 are within 12 %. This range agrees
well with the comparable difference of about 10 % in experiments and simulations for
axisymmetric jets (Gharib et al. 1998; Rosenfeld et al. 1998).

Different from the situation for the straight nozzle, the total circulation for the orifice
cases could be enhanced with the increasing Reynolds number due to greater transverse
velocity gradient at higher Reynolds numbers (see figure 13b). The increase of vortex
circulation becomes smaller as the Reynolds number increases. This leads to similar
vortex circulation for cases ON175, ON175-Re1600 and ON175-Re2000 initially and
smaller vortex circulation for case ON175-Re500. Therefore, the formation number for
case ON175-Re500 is smaller than that at Reynolds number of 1000. Higher Reynolds
number induces more shear-layer instabilities (e.g. double vortex pairing for case ON175-
Re1600 and triple vortex pairing for case ON175-Re2000). This leads to a faster pinch-off
and smaller formation number identified by the local maximum vortex circulation during
a constant state after the first vortex pairing. The onset of pinch-off can appear earlier
by up to 27 % (in comparison with the formation number of 9.3) due to the appearance
of secondary vortices in the trailing jet. This result agrees well with previous findings in
simulations for axisymmetric jets (Zhao et al. 2000). Additionally, the formation numbers
for cases ON175-Re1600 and ON175-Re2000 also agree with the range found by earlier
experiments with the orifice nozzle and Reynolds numbers from 1490 to 3380 (Gao & Yu
2016a).

5. Two-dimensional flows versus axisymmetric flows
After determining the range of formation numbers in the preceding sections, we focus on
the difference in the formation number between the axisymmetric and two-dimensional
cases. Slower vortex motion in two-dimensional flows has been attributed to be the
reason (Pedrizzetti 2010; Domenichini 2011). For more quantitative discussions on the
differences between axisymmetric and two-dimensional flows, two axisymmetric cases
(case ASN100 for the straight nozzle and case AON100 for the orifice nozzle) with
stroke ratio Lm/D = 10 are further simulated for comparisons. As shown in figure 14,
the translational velocity of the vortex rings is far greater than the translational velocity
of the vortex pairs, as may have been expected. The oscillation of vortex velocity may be
attributed to the vorticity redistribution during the pinch-off process and the non-circular
geometry of the vortex core at the post-formation process (Danaila & Helie 2008). To
examine the factors influencing the translational velocity, the self-induced velocity of a
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Figure 14. Development of (a) normalized streamwise trajectory and (b) normalized translational velocity of
the leading vortex.

curved vortex filament can be estimated by the Biot–Savart law (Lim & Nickels 1995):

u = Γ κ

4π
ln

(
Rc

a

)
b, (5.1)

where κ is the local curvature; Rc is the radius of curvature; a is the radius of the vortex
core; and b is the unit vector along the binormal direction. At the initial formation time
(t∗ < 1), the vortex core is small enough to provide a constant term ln(Rc/a) (Wu, Ma &
Zhou 2007). The vortex circulation may be evaluated by the total circulation in the initial
formation. Based on the numerical results, the vortex pair would have larger circulation
but smaller translational velocity during the initial formation in comparison with the
vortex ring. This result suggests that the local curvature is more important than the vortex
circulation in estimating vortex translational velocity even though they are of the same
order in the Biot–Savart law.

The velocity formula for the steady vortex can be used to further understand the faster
motion of vortex rings. For two-dimensional flows, the translational velocity of a vortex
pair considered as two point vortices can be expressed by (Saffman 1992)

Uv = Γv

4πyv
. (5.2)

For axisymmetric flows, the vortex ring velocity depends on its core thickness when the
curvature of the vortex tube is considered. The translational velocity of a thin-cored vortex
ring can be expressed by a second-order formula as (Fraenkel 1972)

Uv = Γv

4πyv

{
ln

(
8
ε

)
− 1

4
+ ε2

[
15
32

− 3
8

ln
(

8
ε

)]}
︸ ︷︷ ︸

I

, (5.3)

where mean core radius ε is defined as the ratio of the core radius a to ring radius yv .
A universal energy of a steady thin vortex ring was found to be 0.33 (Gharib et al. 1998;
Limbourg & Nedić 2021c), leading to a specific ratio ε of about 0.5 in the family of steady
vortex rings (Norbury 1973). Thus, the term I in equation (5.3) represents the effect of
core size and is equal to approximately 2.4. Based on the results of vortex circulation
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t∗ Case Geometry Γ ∗
v y∗

v U∗
v

12 SN100 Straight nozzle 5.74 0.87 0.53
12 ON100 Orifice nozzle 7.12 0.86 0.66
12 ASN100 Straight nozzle 3.64 0.87 0.80
12 AON100 Orifice nozzle 3.37 0.91 0.71
30 SN100 Straight nozzle 5.33 0.87 0.49
30 ON100 Orifice nozzle 6.89 0.91 0.60
30 ASN100 Straight nozzle 2.96 1.01 0.56
30 AON100 Orifice nozzle 3.08 1.06 0.56

Table 4. Estimated translational velocity using equations (5.2) and (5.3).
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Figure 15. Evolution of normalized total invariants: (a,d) circulation, (b,e) impulse and (c,f ) energy for straight
nozzle (a–c) and orifice nozzle (d–f ).

and transverse trajectory, the velocities at t∗ = 12 and t∗ = 30 are calculated for vortex
pairs and vortex rings as listed in table 4. The magnitude of the calculated velocity at
both instants approximately agrees with the translational velocity obtained from numerical
results (figure 14b). At t∗ = 12, the circulation is larger for vortex pairs than for vortex
rings while the difference in transverse trajectory is negligible. However, the velocity of
the vortex ring is larger. This suggests the important effect of the local curvature.

As expected, total invariants are different between axisymmetric flows and two-
dimensional flows. They are reflected in the velocity distribution over the nozzle exit.
This influence on total invariants and the accuracy of the contraction-based slug model

1007 A11-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.3


Journal of Fluid Mechanics

(equations (3.6)–(3.8) for axisymmetric flows and equations (3.12)–(3.14) for two-
dimensional flows) are evaluated in figure 15. The contraction coefficient Cc for the
axisymmetric flow is found to be 0.73 from the steady simulation. Therefore, the difference
of Cc for the two-dimensional flow and axisymmetric flow is negligible, in accord with
previous discussions (Limbourg & Nedić 2021a,b). Here, the results for the axisymmetric
flow are approximately predicted by the two-dimensional Cc.

First, an evaluation of circulation prediction is conducted. It is noted that the formulas of
circulation prediction are identical for two-dimensional and axisymmetric flows (equations
(3.6) and (3.12)). As can be seen in figure 15(a,d), the contraction-based slug model
can approximately predict the total circulation of axisymmetric flows at small time
(e.g. t∗ < 4). A better estimation than that of the classical slug model (corresponding to
a smaller slope of invariant growth) can be observed as in a previous study (Limbourg &
Nedić 2021a). However, the development of boundary-layer thickness brings increasing
deviation between the numerical result and the contraction-based model. Due to a
reduction of boundary-layer thickness, the contraction-based model can appropriately
predict total circulation in two-dimensional flows. The relative error for the prediction
of the straight nozzle case at t∗ = 10 (which is the end of the piston motion and is
around the critical formation time) is −11%. In addition, the contraction-based slug model
can also provide approximate predictions for orifice cases in both two-dimensional and
axisymmetric flows. The relative error for the two-dimensional prediction of the orifice
case at t∗ = 10 is −18%.

For the prediction of total impulse I ∗
t = It/ρD3U and total energy E∗

t = Et/ρD3U2

for axisymmetric flows, the contraction-based slug model (blue dashed lines in figure 15)
can generally provide accurate descriptions. Although the initial over-pressure effect on
total impulse cannot be included, the error for prediction is insignificant at later time
(e.g. t∗ > 6). However, due to the two-dimensional nature, the contraction-based slug
model for two-dimensional flows (red dashed lines) predicts larger slopes than that of
axisymmetric flows for total impulse I ∗

t = It/ρH2U and total energy E∗
t = Et/ρH2U 2.

This overestimated behaviour of the slug model is not found in two-dimensional flows. In
reality, the total momentum and total energy are lower for two-dimensional flows due to
slower vortex motion. In comparison with the difference in total circulation between two-
dimensional and axisymmetric flows, larger differences can be observed for total impulse
and total energy. This can be attributed to the two-dimensional characteristic for circulation
and the three-dimensional characteristic for impulse and energy in axisymmetric
flows.

To improve the contraction-based slug model for two-dimensional flows, a modified
coefficient Cm is proposed for impulse and energy formulas. Equations (3.13) and (3.14)
are rewritten as

I�2m = ρL HU × 1/Cc × 1/Cm, (5.4)

E�2m = 1
2
ρL HU 2 × 1/C2

c × 1/Cm, (5.5)

where the modified coefficients are 2.2 and 2.0 for the straight nozzle and orifice nozzle,
respectively. As shown in figure 15, the modified contraction-based slug model for two-
dimensional flows (red dotted lines) can appropriately predict the total impulse and total
energy. The relative errors of the total invariants predicted by the modified contraction-
based slug model (equations (3.12), (5.4) and (5.5)) can be found in table 5. Errors are
obtained by time averaging between t∗ = 5 and t∗ = 10.
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Dimension Geometry Γ ∗
t I ∗

t E∗
t

Two-dimensional Straight nozzle −10 % −7 % 18 %
Two-dimensional Orifice nozzle −19 % −5 % 2 %

Table 5. Time-averaged relative errors for the modified contraction-based slug model.

6. Analytical estimation of two-dimensional formation number
For axisymmetric flows, an asymptotic matching procedure was proposed to analytically
estimate the formation number. The total invariants described by the slug model
were matched to a model of steadily isolated vortex rings such as the Norbury–
Fraenkel model (Norbury 1973) or Kaplanski–Rudi model (Kaplanski & Rudi 2005).
Ultimately, the critical time scale was obtained by an additional closure assumption,
for example, a universal vortex energy in non-dimensional form (Gharib et al. 1998), a
specific vortex velocity normalized by the initial jet velocity (Mohseni & Gharib 1998;
Shusser & Gharib 2000) or a volume constraint of vortex ring bubble (Linden & Turner
2001). In addition, the contraction-based slug model was used to predict the formation
number (Limbourg & Nedić 2021d).

For two-dimensional flows, a family of steady vortex pairs (Pierrehumbert 1980) may
be used to further predict the formation number. To the best of the authors’ knowledge,
the asymptotic matching procedure has not been studied for two-dimensional starting jets.
A parameter A0 = A0/A1 was typically used to identify the member in the Pierrehumbert
model, where A0 is the minimum distance of the core boundary from the symmetry axis
and A1 is the maximum distance from the symmetry axis. However, distance A0 only can
be identified when the leading vortex pair moves far away from the trailing jet. This is
owing to the influence of the trailing jet during jet discharge from the nozzle. Instead,
another geometrical parameter γ = yv/A1 can be used to determine the vortex member
in the current study. As shown in figure 16(a), vortex pairs generated by various nozzle
configurations and stroke ratios eventually reach a universal value at γ = 0.49 (averaged
from all cases). This result generally agrees with the conclusion from figure 7 and the
suggestion of a universal vortex ring generated by various starting jets (Gharib et al. 1998).

The Pierrehumbert model provides a one-to-one correspondence between the
geometrical parameter γ and the non-dimensional vortex energy E∗∗

v (square symbols
in figure 16b). The relation may be approximated by a quartic polynomial (blue dotted
line) as

E∗∗
v = 10.875γ 4 − 26.434γ 3 + 24.032γ 2 − 8.898γ + 1.186. (6.1)

It is noted that the Pierrehumbert vortex with γ = 0.49 and E∗∗
v = 0.11 has overestimated

the non-dimensional vortex energy of the simulated vortex pairs with differences of 62 %
and 45 % for the straight nozzle and orifice nozzle, respectively.

Combining the proposed slug model (equations (3.12), (5.4) and (5.5)) and the definition
of vortex energy normalization (E∗∗

v = Ev/ρΓ 2
v ), the relation between stroke ratio and

vortex energy can be represented as

L

H
= 2C2

c

Cm E∗∗
v

. (6.2)

The required stroke ratio to generate a particular vortex pair can be estimated from (6.1)
and (6.2). The limiting cases of vortex pairs are a thick axis-touching vortex for γ → 0.413
and a thin vortex for γ → 1. For the limiting cases at γ → 0.413, the limiting stroke ratio
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Figure 16. (a) Evolution of parameter yv/A1 and (b) comparison of simulated vortices with those from the
Pierrehumbert family.

should be at about 11.5 for the straight nozzle and 9.0 for the orifice nozzle. These results
suggest the minimum stroke ratio to generate the theoretically thickest vortex pair.

To estimate the formation number, an additional assumption is required. The pinch-
off would start when the vortex pair becomes steady. Two models on the basis of this
assumption are proposed in terms of the vortex impulse and vortex velocity.

First, an impulse-based model to predict the onset of pinch-off is proposed based on
momentum conservation and the assumption of the steady state of a vortex pair. The vortex
impulse (Batchelor 1967) can be expressed as

Iv = ρyvΓv. (6.3)

When the vortex pair is assumed to be bounded in a circular vortex bubble moving with
velocity Uv , the vortex impulse can be approximately expressed as

Iv = ρπ A2
1Uv. (6.4)

Combining equations (5.2), (6.3) and (6.4) yields

y2
v

A2
1

= 1
4
. (6.5)

Therefore, a critical geometrical parameter γ = 0.5 can be obtained from the impulse-
based model for a steady vortex pair. This result agrees with the numerical results shown
in figure 16(a). Based on equation (6.1), the critical value of vortex energy is at about 0.12.
Inserting this result into equation (6.2) produces critical stroke ratios of 6.1 and 4.8 for the
straight nozzle and orifice nozzle, respectively. Although the matching process of vortex
impulse allows a prediction of the geometrical parameter, the predictions of the formation
numbers are far away from the numerical results due to the error of the Pierrehumbert
model in terms of the vortex energy.

Second, the velocity-based model proposes the onset of pinch-off when the vortex
velocity reaches the jet velocity near the vortex rear boundary (Shusser & Gharib 2000).
With the assumption of jet half-width equalling the transverse trajectory of the vortex pair,
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Geometry Impulse model Velocity model Formation number (simulation)

Straight nozzle 6.1 (−55 %) 10.2 (−25 %) 13.6
Orifice nozzle 4.8 (−48 %) 7.3 (−22 %) 9.3

Table 6. Relative errors for analytical models.

the momentum conservation of jet flows allows

HU = 2yvUv. (6.6)

Combining equations (3.12), (5.4) and (6.3) yields

yv = 2Cc H

Cm
. (6.7)

Substituting equation (6.7) into equation (6.6) yields

Uv = CmU

4Cc
. (6.8)

Combining equations (3.12), (5.2) and (6.7) yields

Uv = Cm LU

16πC3
c H

. (6.9)

Combining equations (6.8) and (6.9) yields

L

H
= 4πC2

c . (6.10)

Therefore, critical stroke ratios of 10.2 and 7.3 are found for the straight nozzle and orifice
nozzle, respectively. The relative errors of formation number prediction are presented in
table 6. In comparison with the dynamical model in terms of the vortex impulse, the
kinematic model would be more appropriate to predict the formation numbers and reduce
the errors by half.

7. Concluding remarks
Numerical studies on two-dimensional impulsively starting jets have been conducted to
examine the formation of laminar vortex pairs. The main objective of the current work
is to explore the universal formation number and corresponding estimation by respective
analytical models.

Based on the pressure-based method, the vortex boundary can be identified before
a complete pinch-off from the trailing jet. More information on the vortex invariants
can therefore be quantified. The local maximum of vortex circulation converges to a
maximum with the increase of stroke ratio, suggesting a limiting formation of vortex pairs.
Kelvin’s variational principle is satisfied after a complete pinch-off which appears after the
termination of the piston motion. The vortex energy increases gradually and finally reaches
a limiting value.

Two-dimensional formation numbers (13.6 and 9.3) for the straight nozzle and orifice
nozzle are analysed by five criteria including three local analyses (total circulation,
vortex velocity and induced velocity criteria) and two global analyses (entrainment and
circulation ratio criteria). Typical formation numbers can be transformed into a universal
value of about 16.5 for both nozzles by the consideration of contraction for non-parallel
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jets. The influence on the formation number is examined over a range of Reynolds numbers
from 500 to 2000. In comparison with the formation number of 13.6 for the straight
nozzle, differences due to the Reynolds numbers from 500 to 2000 are within 12 %. For the
orifice cases, the formation number can generally be reduced up to 27 % by the increase
of Reynolds number due to the appearance of trailing shear-layer instability.

Comparing the self-induced velocity of a vortex pair with that of a vortex ring, the
curvature significantly accelerates axisymmetric vortex motion and contributes more
influence than the circulation. As a result, slower vortex movement can be found in two-
dimensional flows and therefore it will augment the formation number in comparison
with axisymmetric flows. Slower vortex pairs resist the development of the boundary
layer inside the nozzle, leading to a reduction of total circulation for the straight nozzle.
Therefore, the contraction-based slug model appropriately predicts the total circulation of
the straight nozzle for two-dimensional flows but fails for axisymmetric flows at a later
time. The contraction-based slug model can approximately predict the total circulation of
the orifice for both two-dimensional and axisymmetric flows. To remedy the limitation
of the contraction-based slug model in total impulse and total energy predictions, a
modification on two-dimensional flows is proposed and the results are found to perform
properly with maximum errors less than 20 %.

Analytical estimation of two-dimensional formation number is conducted by matching
total invariants predicted by the proposed slug model to the Pierrehumbert model of
steady isolated vortex pairs. On the basis of an assumption of steady vortex motion,
two analytical models are proposed in terms of the vortex impulse and vortex velocity.
Although the impulse-based model performs worst for the formation number prediction
due to the limitation of the Pierrehumbert model, it could accurately predict the universal
geometrical parameter of a steady vortex pair produced by starting flows. In comparison
with the impulse-based model, the kinematic model could provide appropriate estimations
and significantly reduce the errors to about −25 %.

This study identifies the existence of pinch-off in laminar flows and proposes analytical
estimations for the universal formation number in two-dimensional vortex formation. More
instability effects at a high Reynolds number possibly have a marked influence on the
pinch-off process. Further numerical and experimental studies could better address the
problem and are therefore suggested here.
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