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Lara Bossinger, Bosco Fŕıas-Medina, Timothy Magee and Alfredo Nájera Chávez

Abstract

We introduce the notion of a Y -pattern with coefficients and its geometric counterpart:
an X -cluster variety with coefficients. We use these constructions to build a flat degener-
ation of every skew-symmetrizable specially completed X -cluster variety X̂ to the toric
variety associated to its g-fan. Moreover, we show that the fibers of this family are strati-
fied in a natural way, with strata the specially completed X -varieties encoded by Star(τ)
for each cone τ of the g-fan. These strata degenerate to the associated toric strata of
the central fiber. We further show that the family is cluster dual to Aprin of Gross,
Hacking, Keel and Kontsevich [Canonical bases for cluster algebras, J. Amer. Math. Soc.
31 (2018), 497–608], and the fibers cluster dual to At. Finally, we give two applications.
First, we use our construction to identify the toric degeneration of Grassmannians
from Rietsch and Williams [Newton-Okounkov bodies, cluster duality, and mirror
symmetry for Grassmannians, Duke Math. J. 168 (2019), 3437–3527] with the
Gross–Hacking–Keel–Kontsevich degeneration in the case of Gr2(C5). Next, we use
it to link cluster duality to Batyrev–Borisov duality of Gorenstein toric Fanos in the
context of mirror symmetry.
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1. Introduction

1.1 Overview
In [GHK15], Gross, Hacking and Keel began a systematic study of cluster varieties from the
perspective of mirror symmetry and the minimal model program. Together with Kontsevich,
they used this geometric approach in [GHKK18] to settle various important and long-standing
conjectures in cluster theory. The insights of [GHK15, GHKK18] reveal a strong link between
cluster theory and toric geometry. One of the main purposes of this paper is to explore the
connections between these theories. In particular, we pursue the idea that compactifications of
A-cluster varieties are a generalization of toric varieties associated to polytopes, while partial
compactifications of X -cluster varieties generalize toric varieties associated to fans. Recall that
toric degenerations of compactified A-cluster varieties were studied in great detail in [GHKK18].
They arise from positive polytopes, which define a family of graded rings, and hence projective
varieties. Here we develop a theory of toric degenerations for partially compactified X -cluster
varieties. Both the partial compactifications and the toric degenerations arise from a fan con-
struction rather than a polytope construction. More precisely, given a special completion X̂ of
X (in the sense of [FG16]) of complex dimension n, we construct for each seed s a flat family

X̂s

π

��
An

C

(1.1)

defining a degeneration of X̂ with the following properties:
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– the fiber over (1, . . . , 1) is X̂ ;
– if X̂ has no frozen directions then the fiber over (0, . . . , 0) (also called the central fiber) is

the toric variety associated to the cluster complex Δ+
s ;

– if X̂ has frozen directions then the fiber over (0, . . . , 0) is the toric variety associated to a
fan contained in a superpotential cone. The fan structure comes from the cluster structure;

– in both cases the cluster variety X degenerates to the dense torus inside the toric central
fiber.

One of the key ideas is to make a distinction between coefficients and frozen variables,
concepts that are usually identified. We think of coefficients as parameters deforming the muta-
tion formulas: deformation parameters for the families. Frozen variables are A-cluster variables
associated to frozen directions; they relate to the geometry of individual fibers rather than the
deformations of these fibers. This approach allows us to consider the toric varieties in the central
fibers as a very degenerate class of cluster varieties.

To construct the family X̂s we develop the notion of a Y -pattern with coefficients and
its geometric counterpart: X -cluster varieties with coefficients. Moreover, we develop cluster
duality for cluster varieties with coefficients and prove that our degeneration is cluster dual in
this generalized sense to the Gross–Hacking–Keel–Kontsevich Aprin-degeneration of A-cluster
varieties. By doing so, we solve simultaneously two problems in cluster theory. On the one hand,
we find a way to include coefficients in the Y -mutation formula. This was an aim of Fomin and
Zelevinsky (private communication) when they developed the foundations of cluster algebras. On
the other hand, we define spaces that are cluster dual to A-cluster varieties with coefficients, a
problem posed in [GHKK18, § 7] which we are about to describe. Let As be an A-cluster variety
with initial seed s. In [GHK15] the authors introduced a family Aprin,s → An

C
of deformations of

As. The space Aprin,s and the fibers At over closed points t ∈ An
C

are themselves cluster varieties
with coefficients. In [GHKK18, § 7] the authors predicted the existence of a cluster dual A∨

t to
the fibers but stated it was unclear how the coefficients should be handled under dualization.
Consider the Langlands dual seed s∨. Inside X̂s∨ there is an X -cluster variety with coefficients
Xs∨ . The restriction of π to Xs∨ gives a map Xs∨ → An

C
with fiber Xt over t. We show that

the varieties Xs∨ and Aprin,s are cluster dual as cluster varieties with coefficients. Moreover, we
show that the fibers Xt are exactly the wanted cluster duals A∨

t . For more details the reader is
referred to § 3, in particular Remark 3.27.

This is the first of a series of papers. In a sequel, along with M.-W. Cheung, we will explore
how the notion of cluster duality with coefficients is related to Batyrev–Borisov duality in the
context of mirror symmetry. Further, we will show that the toric degeneration of the Grassman-
nian given by [RW19] coincides with the toric degeneration given by the Aprin-construction for
all Grk (Cn).

1.2 Toric degenerations
For the past 25 years, constructions of toric degenerations have been of increasing interest in alge-
braic geometry, with particular development in representation theory (we refer to the overview
[FFL16] and references therein). The core idea is to glean information about varieties of inter-
est by passing through the world of toric geometry, where otherwise difficult questions become
readily approachable. If we construct a flat family whose generic fiber is isomorphic to the vari-
ety of interest while a special fiber is a toric variety, this allows us to deduce properties of the
generic fiber from the special fiber (e.g. degree, Hilbert-polynomial or smoothness). Typically
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for polarized projective varieties (Y,L) this is realized using Newton–Okounkov bodies, where a
valuation on the section ring of L determines a convex body generalizing the toric notion of a
Newton polytope (see e.g. [Oko98, LM09, KK12, And13]).

Cluster varieties (and their compactifications) entered the stage of toric degenerations in
[GHKK18, RW19]. In both aforementioned papers the authors construct toric degenerations
using polytopes (in a broad sense) related to section rings of ample line bundles over compactified
cluster varieties. While [RW19] use Newton–Okounkov bodies for Grassmannians directly, the
construction given in [GHKK18] is more general and is expected to recover toric degenerations
of many representation theoretic objects. For example, the case of flag varieties is addressed in
[Mag20, BF19, GKS16, GKS20].

We take a slightly different approach in this paper and construct toric degenerations asso-
ciated to fans naturally occurring in cluster theory. The theory developed in this paper can be
used to understand the relation between the approach taken in [GHKK18] and that of [RW19].
We illustrate this in the example of Gr2(C5) (see § 7.1), and in a sequel we will treat the general
case.

1.3 The geometric setting
In the world of toric geometry, there are two main combinatorial devices encoding toric varieties:
fans and polytopes. A fan gives a recipe for gluing affine schemes together to construct the toric
variety. A polytope gives a graded ring in terms of a basis of homogeneous elements and relations.
So, it gives a projective toric variety equipped with an ample line bundle and a vector space
basis for each homogeneous component of the section ring of this line bundle. A philosophical
take-away of this paper is that X -varieties compactify with a fan construction, while A-varieties
compactify with a polytope construction.

Take as a starting point the scattering diagram description of A- and X -varieties introduced
in [GHKK18]. The same scattering diagram (living in X trop (R)) encodes both A and X , but in
different ways. We outline both below.

The scattering diagram tells us how to write down a basis of global regular functions on
A, whose elements are called ϑ-functions, as well as the structure constants for multiplying
these ϑ-functions. That is, the scattering diagram encodes O(A), together with a distinguished
vector space basis. This generalizes the toric notion that the cocharacter lattice M of T∨ is a
distinguished vector space basis for O(T ), where T ∼= (C∗)n is an algebraic torus and T∨ is the
dual torus. To address projective varieties compactifying A, Gross, Hacking, Keel and Kontsevich
introduce positive polytopes Ξ in X trop (R) (see [GHKK18, Definition 8.6]). Positivity is precisely
what is needed for the integer points (ϑ-functions) of Ξ to define a graded ring. The result is a
polarized projective variety (Y,L) together with a basis of ϑ-functions for the section ring of L.
In the Aprin-construction, they then give a flat family of deformations of A over An, with central
fiber simply the torus TN,s ⊂ A associated to the seed s. The ϑ-functions extend canonically to
Aprin,s, yielding a toric degeneration of (Y,L).

On the other side of the picture, a subset of the scattering diagram (known as the g-fan)
has a simplicial fan structure. The key idea here is to exploit this fan structure. In the atlas for
the X -variety itself, there is a torus for every maximal cone of the g-fan. Specifically, given a
maximal cone G (a g-cone) with dual cone C (a c-cone), we have the torus

TM,G := Spec (C [C(Z)gp]) ,
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where C(Z) is the monoid of integral points in C and C(Z)gp is its group completion. These tori
are glued by the X -mutation formula, with the (non-zero) monoid generators of C(Z) giving rise
to an X -cluster. From the perspective of toric geometry, it is far more natural to glue the affine
spaces

An
M,G := Spec (C [C(Z)])

by X -mutation. The resulting space is a partial compactification of X : the special completion X̂
of [FG16]. Refinements Σ of the g-fan similarly yield partial compactifications.

Rather than deforming global sections of line bundles as for the compactification of A, we
can deform the gluing of patches An

M,G . To define these deformations, we introduce the notion of
X -cluster varieties with coefficients, see § 3.2. As an important case of this notion, we describe
how to deform the gluing in a manner dual to the deformation of ϑ-functions in Aprin.

Definition 1.1. Fix an initial seed s0, with associated g-cone G0, and take principal coefficients
t1, . . . , tn at s0. Let R = C [t1, . . . , tn]. The X -cluster variety with coefficients in R and its special
completion are the R-schemes

XG0 :=
⋃
G
TM,G(R) and X̂G0 :=

⋃
G

An
M,G(R)

with patches glued birationally via the mutation formula with coefficients (5.1).

Below we summarize some of our main results.

Theorem 1.2 (Proposition 5.7, Theorem 5.8, Proposition 5.11, Corollary 5.13). The family

X̂G0 → Spec(R) is a flat toric degeneration of X̂ to the toric variety defined by the g-fan, realized

here with G0 as the positive orthant. Generic fibers of this family are isomorphic and smooth.

Theorem 1.3 (Propositions 5.3, 5.4). The X -variablesXi;G extend canonically to homogeneous

rational functions on X̂G0 . The degree of the extension of Xi;G is its c-vector ci;G , and

in the central fiber the extension restricts to the monomial whose exponent vector is this

c-vector.

Theorem 1.4 (Theorems 6.2, 6.3). The fibers of X̂G0 → Spec (R) are stratified, with each stra-

tum encoded by Star(τ) for some cone τ of the g-fan. These strata V (τ)t are again specially

completed X -varieties with coefficients, and the stratum V (τ)t degenerates to the toric stratum

V (τ) defined by Star(τ) in the central fiber.

We can replace the g-fan with any refinement Σ and obtain results analogous to each of the
theorems above (see Remark 5.9).

In the toric setting, fans and polytopes are both used to compactify tori. Here, we find fans
compactifying X -varieties and polytopes compactifying A-varieties. This is completely natural
in the scattering diagram description of cluster varieties, as discussed above. But there are other
reasons to expect different types of compactifications for the two flavors of cluster varieties. First,
A-variables are ϑ-functions, globally regular on A, while X -variables are only locally defined. In
fact, as observed in [GHK15], X -varieties may not have many global functions at all. From this
perspective, A-varieties are primed for a polytope-Proj construction, while it is more natural to
think of an X -variety in terms of an atlas of affine schemes. Moreover, it is usually hopeless to

2153

https://doi.org/10.1112/S0010437X2000740X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2000740X


L. Bossinger et al.

attempt to compactify an X -variety with a Proj construction as X -varieties are generally not
separated [GHK15, Remark 2.6], while Proj of a graded ring is always separated.

Remark 1.5. That said, there are many interesting cases where theA- and X -varieties are isomor-
phic. Namely, if there is a unimodular p∗-map [GHK15, Equation (2.1)], then we have isomorphic
A- and X -varieties. However, the different ways of viewing this space lead to very different com-
pactifications. In this case, our family Xs0 of Definition 5.6 is just Aprin,s0 , with p giving fiberwise
identifications of At and Xt. But X̂s0 and the partial compactifications of Aprin,s0 considered in
[GHKK18] differ.

We would like to emphasize here that X -varieties, although generally non-separated, are
indeed spaces of interest. They are nice in many other ways: they are, for instance, smooth
log Calabi–Yau varieties equipped with a positive structure. They entered center stage through
the work of Fock and Goncharov, particularly [FG06]. Here, a stacky version of the X -variety
serves as the moduli stack of framed G-local systems on a marked surface with boundary,
where G is a split semisimple algebraic group with trivial center. Furthermore, Fock and
Goncharov describe how the positive real points of the X -variety define higher Teichmüller
spaces, while tropical points define lamination spaces. They study Teichmüller and lamina-
tion spaces further in [FG07], where they exhibit a canonical pairing between X (respectively
A) Teichmüller spaces and A (respectively X ) lamination spaces. Moreover, in [FG16] they
introduce completions of Teichmüller spaces for decorated surfaces with marked points in the
boundary. They prove that the set of positive points of a specially completed X -cluster vari-
ety gives a completion of the corresponding Teichmüller space with boundary components
corresponding to simple laminations. In this context, X -cluster varieties provide a formalism
for quantizing such Teichmüller spaces following the approach of Chekhov and Fock [FC99].
Le studies higher Teichmüller and lamination spaces à la Thurston in [Le16] and similarly
gives a compactification of higher Teichmüller space with projective laminations. Allegretti
and Bridgeland relate the moduli stacks mentioned above for G = PGL2(C) to projective
structures on the corresponding surfaces in [AB20]. On the algebraic side of the picture, clus-
ter variables associated to finite type X -cluster varieties have been studied in great detail
in [She19].

1.4 The algebraic foundations
At the heart of cluster theory there are two central notions: cluster patterns and Y -patterns.
These are certain recurrences extensively studied by Fomin and Zelevinsky in [FZ02, FZ03a,
FZ03b, FZ07]. The geometric incarnation of a cluster pattern (respectively Y -pattern) is an
A-cluster variety (respectively X -cluster variety). To define a cluster algebra with coefficients
one considers a cluster pattern with coefficients in a Y -pattern. Such a cluster algebra lives in an
ambient field F = K(x1, . . . , xn) of rational functions. By construction, Y -patterns are clusters
of elements of the coefficient field K and cluster patterns are clusters of functions in F generating
the cluster algebra. The geometric considerations discussed above suggest that there should exist
a notion of a Y -pattern with coefficients, which we define as follows.

Every seed of such a pattern is given by a triple (y,p, B), where (p, B) is a Y -seed in some
semifield P and (y, B) is a Y -seed in a universal semifield with coefficients in QP (see (2.1)).
Then (y′,p′, B′) is the mutation in direction k of (y,p, B), if (p′, B′) is the usual Y -mutation in
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direction k of (p, B) and y′ = (y′1, . . . , y′n) is given by

y′j :=

⎧⎨⎩y
−1
j if j = k,

yj

(
p
[[bkj ]]
k + p

[[−bkj ]]
k y

− sgn(bkj)
k

)−bkj

if j �= k,

where p[[±bkj ]]
k are certain expressions in P (see Definition 2.8 below, respectively § 2.4 for more

details). As expected such a pattern lives in an ambient field of rational functions. Indeed,
x-cluster variables are functions on an A-cluster variety, while the y-variables are local functions
on an X -cluster variety.1

We prove similar to the case of cluster patterns with coefficients, that Y -patterns with coef-
ficients satisfy separation formulas in Theorem 2.33. Further, in Theorem 2.34 we show that the
periodicities of Y -patterns with coefficients agree with those of the coefficient-free case.

1.5 An example
We illustrate our theory in the smallest non-trivial example. Let Σ be the complete fan in R2

depicted in Figure 1. It is defined by the rays spanned by (1, 0), (0, 1), (−1, 1), (−1, 0) and (0,−1).
This fan is the g-fan of an X -cluster variety of type A2. There are two geometric objects naturally
associated to the fan Σ:

(i) the toric variety TV(Σ);
(ii) the special completion of the corresponding X -cluster variety.2

Both these varieties are obtained by gluing affine spaces isomorphic to A2
C

via birational
transformations. The cluster gluing can be deformed to obtain the toric gluing. To see this, we
describe the family π : X̂s → A2

C
(see Definition 5.6) explicitly and show how it simultaneously

embodies both of the aforementioned geometric objects. The family X̂s is an R-scheme for R =
C[t1, t2] glued from five affine spaces Uσ0 , . . . , Uσ4 each one isomorphic to A2

R. These affine spaces
are in one-to-one correspondence with maximal cones (or g-cones) σ ∈ Σ. Figure 1 captures the
local coordinates of the affine pieces defining X̂s (in the algebraic language we will refer to
this data as the Y -seeds of the Y -pattern with principal coefficients). They are depicted in
their associated g-cones. Explicitly, each affine piece Uσi is the spectrum of the polynomial ring
generated by the Y -cluster variables of the underlying Y -seed. We have,

Uσi := Spec
(
R[Xi

1, X
i
2]
)
,

where we set Xj := X0
j . The dashed arrows in Figure 1 indicate the expressions of the variables

Xi
j in terms of the initial variables X1, X2. The pull-backs of the gluing morphisms are obtained

from these. For example, Uσ0 ��� Uσ1 is given by

R[X1
1 , X

1
2 ]→ R[X1, X2], where X1

2 �→ X−1
2 and X1

1 �→ X1(t2X2 + 1).

From this family we can recover the toric and the cluster gluing associated with the fan Σ from
above as fibers by specifying values for the coefficients (t1, t2).

1 Due to the Laurent phenomenon, Fomin and Zelevinsky’s x-cluster variables are global functions. There is not
a general Laurent phenomenon for Fomin and Zelevinsky’s y-variables; therefore, they are not global functions.
However, they are always regular functions in at least one torus of the cluster atlas.
2 The usual X -variety is also naturally associated to Σ by gluing complex tori instead of affine spaces.
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Figure 1. Visualization of X̂s defined by a Y -pattern with principal coefficients in type A2.
For more details see Table 2.

(i) The special completion X̂s is the (1, 1)-fiber of the family. In particular, it is a C-scheme
glued from affine pieces Uσj |ti=1. It can be read from Figure 1 by specifying t1 = t2 = 1. For
example, the affine piece corresponding to σ1 is Uσ1 |ti=1 = Spec

(
C[X1

1 , X
1
2 ]
)

with gluing
Uσ0 |ti=1 ��� Uσ1 |ti=1 given by

C[X1
1 , X

1
2 ]→ C[X1, X2], where X1

2 �→ X−1
2 and X1

1 �→ X1(X2 + 1).

It can be verified that we obtain the usual cluster transformations for the X -cluster variety
this way.

(ii) The toric variety TV(Σ) is the (0, 0)-fiber of the family. Hence, it is the C-scheme glued
from affine pieces Uσj |ti=0 and is encoded in Figure 1 by specifying t1 = t2 = 0. The affine
piece Uσ1 |ti=0 for example, is Spec

(
C[X1

1 , X
1
2 ]
)

with gluing Uσ0 |ti=0 ��� Uσ1 |ti=0 given by

C[X1
1 , X

1
2 ]→ C[X1, X2], where X1

2 �→ X−1
2 and X1

1 �→ X1.

Note that all variables degenerate to monomials. Further, the gluing morphisms indicated
by the dashed arrows in Figure 1 degenerate to the classical toric gluing as described, e.g.
in [CLS11, § 3.1]. In this case the toric variety TV(Σ) is the blow-up of P1 × P1 in a point.

The toric variety associated to the polytope P (see Figure 9) whose face-fan is Σ is the
central fiber of the corresponding Aprin-family. Both TV(Σ) and TV(P ) are toric Fano vari-
eties and they are in fact Batyrev-dual. We elaborate on this example in § 7.2, and we will
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explore the connection between cluster duality and Batyrev duality in general in a sequel with
M.-W. Cheung.

A natural question to ask is: which kind of fans can arise in cluster theory? This problem
is closely related to the representation theory of quivers. For instance, in [DWZ10, FK10] the
reader can find a representation-theoretic approach to g-vectors (which are the primitive integer
vectors spanning the g-cones). For a representation theoretic approach to c-vectors (the primitive
integer vectors spanning the cones dual to the g-cones) the reader can consult [Fu17, Naj15,
Naj13, NS14]. It is therefore desirable to understand the relationship between toric varieties and
quiver representations. Another combinatorial approach to study these fans along with their
richer structure of a scattering diagrams is given in [Rea17, Rea20]. Moreover, the reader might
also want to consult [Bri17] for an approach to scattering diagrams closer to representation
theory.

We would like to stress that X -mutation formulas with principal coefficients can be obtained
using the approach of [LR20] where the authors construct symplectic groupoids integrating log-
canonical Poisson structures on X -cluster varieties and their special completions. In their setting
the deformation of the toric gluing is obtained using Hamiltonian flows of the groupoid charts.
It is a very interesting problem to explore the relation of our approach and that of [LR20].

1.6 Structure of the paper
We try to make this paper as self contained as possible and seek to overcome the discrepancy
between the algebraic and the geometric notation in cluster theory by writing this paper in a
bilingual fashion. Therefore, we survey some of the algebraic and geometric foundations of the
theory we will use.

In § 2 we develop the algebraic foundations of the paper. Namely, we introduce the notion of
a Y -pattern with coefficients in complete generality. We study the periodicities of these patterns
and obtain their separation formulas. For convenience of the reader we also recall some basic
facts of cluster theory as developed by Fomin and Zelevinsky in [FZ02, FZ07].

Sections 3 to 7 have a geometric focus. We start § 3 by recalling some basic facts of cluster
varieties as presented in [GHK15] (see § 3.1). In § 3.2 we introduce a new notion of cluster varieties
with coefficients, and we study cluster duality in this setting in § 3.3. This is followed by a detailed
discussion of the case of principal coefficients in § 3.4. All throughout § 3 we translate some of
the results in § 2 from an algebraic language to a geometric one. Readers with more interest in
the geometry might consider reading this paper from § 3 in a first read. However, the general
algebraic features of Y -patterns with coefficients analyzed in §§ 2.4 to 2.7 are of great importance
and might also be interesting to geometers.

The succeeding § 4 is dedicated to the tropical geometry of cluster varieties and the special
completion X̂ . We recall necessary notions from [FG09a] in § 4.1 and from [NZ12] in § 4.2.

In § 5 we construct toric degenerations of X̂ . We review the construction of toric varieties
via fans in § 5.1. In § 5.2 we introduce the degeneration, and show that it is indeed a flat family
over An

C
with generic fibers being isomorphic.

Moreover, in § 6 we study the stratification of X̂ and show that the cluster strata of X̂
degenerate to the toric strata of the central fiber.

In § 7 we present detailed examples and applications of the theory developed in this paper.
In particular, we treat the example of the Grassmannian Gr2(C5) and of the del Pezzo surface
of degree five.

2157

https://doi.org/10.1112/S0010437X2000740X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2000740X


L. Bossinger et al.

2. Y -patterns with coefficients

In this section we define Y -patterns with coefficients and study their basic properties. This
concept will be used throughout the paper.

The section is structured as follows: in § 2.1 we summarize preliminaries on semifields and
in § 2.2 we recall coefficient-free cluster patterns and Y -patterns as introduced by Fomin and
Zelevinsky. In § 2.3 we remind the reader about cluster patterns with coefficients (as in [FZ07]).
In particular, we recall the definition of g-vectors and F -polynomials. In § 2.4 we define
Y -patterns with coefficients. Finally in § 2.5 we treat periodicities and separation formulas of
the latter.

2.1 Semifields
We summarize below the necessary background on semifields and introduce relevant notions that
are being used throughout the rest of the paper. For a natural number n let

[1, n] := {1, . . . , n}.

For x any real number, set

sgn(x) :=

⎧⎨⎩
−1 if x < 0,
0 if x = 0,
1 if x > 0.

Further, let [x]+ := max(x, 0), and extend to [(x1, . . . , xn)]+ :=
(
[x1]+ , . . . , [xn]+

)
.

Definition 2.1. A semifield is a quadruple (P,⊕, ·, 1) that satisfies the axioms of a field, with
the exception that there might not exist a neutral element nor inverses for the operation ⊕,
called the auxiliary addition.

Example 2.2 (Tropical semifields). Let I be a set. The free abelian group (written multiplica-
tively) with generating set {pi : i ∈ I} can be endowed with the structure of a semifield by
setting (∏

i∈I

pai
i

)
⊕
(∏

i∈I

pbi
i

)
:=

∏
i∈I

p
min(ai,bi)
i .

We denote the resulting semifield by Trop(pi : i ∈ I) and call it the tropical semifield generated
by {pi : i ∈ I}.

Example 2.3 (Universal semifields). Let S be a set and Q(S) be the field of rational functions on
commuting variables s ∈ S with coefficients in Q. The universal semifield Qsf(S) is the subset of
Q(S) formed by the elements that can be expressed as a ratio of two subtraction-free polynomials,
i.e. polynomials in Z>0[S]. Hence, Qsf(S) is a semifield with respect to the usual operations of
multiplication and addition.

Universal semifields satisfy the following universal property that will be used frequently.
When S is finite this property is precisely [BFZ96, Lemma 2.1.6]. The proof of the infinite case
is a straightforward generalization of [BFZ96, Lemma 2.1.6].
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Lemma 2.4 (Universal property of universal semifields). Let P be a semifield, S a set and ϕ :
S → P a function of sets. Then there exists a unique morphism of semifields Qsf(S)→ P, such

that s �→ ϕ(s) for all s ∈ S.

Example 2.5. The expression x2 − x+ 1 ∈ Qsf(x). Indeed, x2 − x+ 1 can be expressed as the
ratio (x3 + 1)/(x+ 1). Notice that by the universal property in Lemma 2.4 this expression as a
rational function is unique.

It was shown in [FZ07, p. 5] that the group ring ZP associated to any semifield P is a domain.
We let QP be the field of fractions of ZP. Notice that any field of rational functions of the form
QP(u1, . . . , u�) contains a semifield QPsf(u1, . . . , u�) of subtraction-free rational functions. Explic-
itly, an element h ∈ QPsf(u1, . . . , u�) is a rational function f/g where f and g are polynomials
in u1, . . . , u� with coefficients in Z>0[P] ⊂ ZP. In particular,

QPsf(u1, . . . , u�) = Q>0[P](u1, . . . , u�) ⊂ Qsf(P ∪ {u1, . . . , u�}). (2.1)

Therefore, QPsf(u1, . . . , u�) satisfies the following universal property.

Corollary 2.6 (Universal property of QPsf(u1, . . . , u�)). Let P′ and P be semifields, p1, . . . ,

p� ∈ P′ and P→ P′ a function of the underlying sets. Then there exists a unique morphism of

semifields QPsf(u1, . . . , u�)→ P′ such that ui �→ pi for all i ∈ [1, �].

Proof. Let P ∪ {u1, . . . , u�} → P′ be the extension of P→ P′ given by sending ui to pi for i ∈ [1, �].
The claim then follows by restricting the unique morphism of semifields

Qsf(P ∪ {u1, . . . , u�})→ P′

of Lemma 2.4 to QPsf(u1, . . . , u�) exploiting (2.1). �

Notation 2.7. Given elements p1, . . . , p� of a semifield P′, a function of the underlying sets P→ P′

and f ∈ QPsf(u1, . . . , u�) we denote by

fP(p1, . . . , p�)

the image of f under the morphism QPsf(u1, . . . , u�)→ P′ given by the universal property of
QPsf(u1, . . . , u�).

Definition 2.8. Let p be an element of P. We define p+ and p− as

p+ :=
p

p⊕ 1
and p− :=

1
p⊕ 1

. (2.2)

Notice that the expression p+ (respectively p−) is in general very different from the expres-
sion p+1 (respectively p−1). We will introduce a mutation formula that involves both kinds of
expressions. Therefore, to avoid confusion we use the notation for p ∈ P and x ∈ R:

p[[x]] :=

⎧⎪⎨⎪⎩
p− if x < 0,

1 if x = 0,

p+ if x > 0.
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Example 2.9. The notation introduced in Definition 2.8 is particularly transparent for tropical
semifields. For example, let p = p2

1p
−1
2 ∈ Trop(p1, p2). Then we have p[[x]] = p+ = p2

1 for x ∈ R>0,
p[[0]] = 1, and p[[x]] = p− = p2 for x ∈ R<0.

2.2 Reminder on cluster and Y -patterns
In this section we recall the notion of (coefficient-free) cluster patterns, originally called exchange
patterns in [FZ02]. At the same time we recall the notion of (coefficient-free) Y -patterns as
introduced in [FZ07].

Throughout §§ 2.2 and 2.3 we fix a semifield (P,⊕, ·, 1) and a positive integer n. Further,
for § 2.2 we fix the ambient field F , which is isomorphic to rational functions in n independent
variables with coefficients in Q. In § 2.3 we generalize F to have coefficients in QP.

Definition 2.10. A (skew-symmetrizable) labeled seed (respectively labeled Y -seed) is a pair
(x, B) (respectively (y, B)), where

– B = (bij) is a skew-symmetrizable (n× n)-matrix, called an exchange matrix,
– x = (x1, . . . , xn) is an n-tuple of elements in the ambient field F forming a free generating

set, i.e. F ∼= Q(x1, . . . , xn),
– respectively y = (y1, . . . , yn) is a n-tuple of elements of P.

The tuple x is called a cluster and its components x1, . . . , xn cluster variables. The
components y1, . . . , yn of y are referred to as Y -variables.

Notice that a skew-symmetric (respectively skew-symmetrizable) matrix determines a quiver
(respectively valued quiver). Therefore, we will often talk about quivers instead of matrices.

Definition 2.11. Let (x, B) be a labeled seed (respectively (y, B) a labeled Y -seed) and k ∈
[1, n]. The mutation in direction k of (x, B) (respectively (y, B)) is the labeled seed (x′, B′)
(respectively labeled Y -seed (y′, B′)), where the following hold:

– B′ = (b′ij) is the usual mutation of B in direction k, that is

b′ij :=

⎧⎨⎩−bij if i = k or j = k,

bij + sgn (bik) [bikbkj ]+ else;
; (2.3)

– x′ = (x′1, . . . , x′n), where x′j := xj for j �= k and

x′k :=
∏
x

[bik]+
i +

∏
x

[−bik]+
i

xk
∈ F ; (2.4)

– respectively y′ = (y′1, . . . , y′n), where

y′j :=

⎧⎨⎩y
−1
j if j = k,

yj(1⊕ y− sgn(bkj)
k )−bkj if j �= k.

(2.5)

Lemma 2.12. Mutation of labeled seeds (respectively Y -seeds) is involutive. That is, (x′, B′) is

the mutation in direction k of (x, B) if and only if (x, B) is the mutation in direction k of (x′, B′)
(and equivalently for Y -seeds).
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To construct cluster patterns and Y -patterns of rank n one has to consider the n-regular tree
Tn. The edges of Tn are labeled by the numbers 1, . . . , n in such a way that the n edges incident
to the same vertex receive different labels. We write v ∈ Tn to express that v is a vertex of Tn.
Moreover, we assume that Tn is endowed with a distinguished vertex v0 called the initial vertex.

Definition 2.13. A cluster pattern (respectively Y -pattern) of rank n is an assignment v �→
(xv, Bv) (respectively v �→ (yv, Bv)) of a labeled seed (respectively labeled Y -seed) to each v ∈ Tn

such that (xv′ , Bv′) (respectively (yv′ , Bv′)) is the mutation in direction k of (xv, Bv) (respectively
(yv, Bv)) whenever v, v′ ∈ Tn are vertices joined by an edge labeled by k. The elements of a cluster
pattern (respectively Y -pattern) are written as follows:

Bv = (bvij), xv = (x1;v, . . . , xn;v), respectively yv = (y1;v, . . . , yn;v).

Remark 2.14. Notice that a cluster (and similarly a Y -pattern) is completely determined by its
value at a single vertex. In particular, considering an initial assignment v0 �→ ((y1, . . . , yn), Bv0)
of a Y -seed to the initial vertex v0, the rest of the Y -pattern is obtained by iterating the mutation
formula (2.5). We will later make use of this observation.

2.3 Reminders on cluster patterns with coefficients
In this section we recall Fomin and Zelevinsky’s extension of the notion of cluster pattern to
cluster pattern with coefficients as introduced in [FZ07]. We want to treat cluster patterns and
Y -patterns on an equal footing in the sense that both kinds of patterns can be endowed with
coefficients. Therefore, we will make very small changes to the original nomenclature used by
Fomin and Zelevinsky.

Definition 2.15. A (skew-symmetrizable) labeled seed with coefficients3 is a tuple (x,p, B):

– (p, B) is a labeled Y -seed in P;
– x = (x1, . . . , xn) is an n-tuple of elements in the ambient field F forming a free generating

set, i.e. F ∼= QP(x1, . . . , xn).

Remark 2.16. In § 2.4 we will combine two Y -patterns v �→ (yv, Bv) and v �→ (pv, Bv) to obtain
the notion of a Y -pattern with coefficients. The two Y -patterns play different (non-symmetric)
roles in Definition 2.27: one is the coefficient Y -pattern, for which we reserve the notation (p, B),
while the other one is the Y -pattern that will be endowed with coefficients, denoted by (y, B).
This explains the use of (p, B) in Definition 2.15 opposed to (y, B).

Definition 2.17. Let (x,p, B) be a labeled seed with coefficients and take k ∈ [1, n] with
p = (p1, . . . , pn). The mutation in direction k of (x,p, B) is the labeled seed with coefficients
(x′,p′, B′), where (p′, B′) is the mutation in direction k of the Y -seed (p, B) and x′ = (x′1, . . . , x′n)
with x′j := xj for j �= k and

x′k :=

p−k
∏

i:bik<0

x−bik
i + p+

k

∏
i:bik>0

xbik
i

xk
∈ F . (2.6)

3 Observe that this is precisely [FZ07, Defintion 2.3], where (x,p, B) is simply referred to as a labeled seed. We
slightly modify the nomenclature in order to distinguish from the coefficient-free case introduced in Definition
2.10.
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Definition 2.18. A cluster pattern with coefficients of rank n is an assignment v �→ (xv,pv, Bv)
of a labeled seed with coefficients to each v ∈ Tn such that (xv′ ,pv′ , Bv′) is the mutation in
direction k of (xv,pv, Bv) whenever v, v′ ∈ Tn are vertices joined by an edge labeled by k. The
elements of a cluster pattern with coefficients are written as

xv = (x1;v, . . . , xn;v), pv = (p1;v, . . . , pn;v) and Bv = (bvij).

The following theorem is [FZ02, Theorem 3.1].

Theorem 2.19 (Laurent phenomenon). Let v �→ (xv,pv, Bv) be a cluster pattern with coeffi-

cients and xv0 = (x1, . . . , xn) the initial cluster. Then for j ∈ [1, n] and v ∈ Tn:

xj;v ∈ ZP[x±1
1 , . . . , x±1

n ].

Definition 2.20. A cluster pattern with principal coefficients at vertex v0 refers to a clus-
ter pattern with coefficients v �→ (xv,pv, Bv) with P = Trop(p1, . . . , pn) as underlying semifield,
where pv0 = (p1, . . . , pn).

Definition 2.21. The Laurent polynomials

XFZ
j;v ∈ Z[x±1

1 , . . . , x±1
n ; p1, . . . , pn]

are the cluster variables of a cluster pattern with principal coefficients (by [FZ07, Proposition
3.6]). Further, we have the F -polynomials Fj;v defined as

Fj;v(p1, . . . , pn) := XFZ
j;v (1, . . . , 1; p1, . . . , pn) ∈ Z[p1, . . . , pn]. (2.7)

Remark 2.22. The superscript FZ is used to avoid confusion: in the next sections we adopt the
standard geometric notation in which cluster variables are denoted by A and y-variables by X.
In § 3 we provide an explicit dictionary between the algebraic and geometric framework. See
Remark 3.8, Notation 3.13, Remark 3.23 and Notation 3.38.

Definition 2.23 [FZ07, Proposition 6.1]. Every Laurent polynomial XFZ
j;v is homogeneous with

respect to the Zn-grading in Z[x±1
1 , . . . , x±1

n ; p1, . . . , pn] given by deg(xi) = ei and deg(pj) = −bj ,
where e1, . . . , en is the standard basis of Zn and bj is the jth column of Bv0 . The degree of XFZ

j;v

is called the g-vector associated to j and v denoted

gj;v ∈ Zn.

2.4 Y -patterns with coefficients
In analogy with the previous section we introduce a generalization of Y -pattern to Y -pattern with
coefficients. We study their periodicities in § 2.5 and obtain separation formulas for Y -patterns
with coefficients, which turn out to be very similar to the separation formulas for cluster patterns
with coefficients presented in [FZ07, § 3].

To have labeled Y -seeds on an equal footing with labeled seeds we endow them similarly
with coefficients as follows.

Definition 2.24. A (skew-symmetrizable) labeled Y -seed with coefficients (in P) is a triple
(y,p, B), where the following hold:
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– (p, B) is a Y -seed in P;
– (y, B) is a Y -seed in some universal semifield QPsf(u1, . . . , u�).

We define analogously the mutation of labeled Y -seeds with coefficients below.

Definition 2.25. Let (y,p, B) be a labeled Y -seed with coefficients, where y = (y1, . . . , yn),
p = (p1, . . . , pn) and B = (bij). For k ∈ [1, n], the mutation in direction k of (y,p, B) is the
labeled Y -seed with coefficients (y′,p′, B′), where the following hold:

– (p′, B′) is the mutation in direction k of (p, B); and
– y′ = (y′1, . . . , y′n), where

y′j :=

⎧⎨⎩y
−1
j if j = k,

yj

(
p
[[bkj ]]
k + p

[[−bkj ]]
k y

− sgn(bkj)
k

)−bkj

if j �= k.
(2.8)

See Definition 2.8 for the p[[x]] notation.

Remark 2.26. Unlabeled Y -seeds with coefficients are obtained by identifying labeled Y -seeds
with coefficients that differ from each other by simultaneous permutations of the components in
p, in y, and of the rows and columns of B. In a similar fashion, one obtains unlabeled seeds,
unlabeled Y -seeds and unlabeled seeds with coefficients as in [FZ07, Definition 4.1].

It is straightforward to prove that mutation of Y -seeds with coefficients is involutive. This
implies that the following notion of Y -pattern with coefficients is well defined. The underlying
semifield for such a pattern is QPsf(u1, . . . , u�).

Definition 2.27. A Y -pattern with coefficients is an assignment v �→ (yv,pv, Bv) of a labeled
Y -seed with coefficients to each v ∈ Tn such that (yv′ ,pv′ , Bv′) is the mutation in direction k of
(yv,pv, Bv) whenever v, v′ ∈ Tn are vertices joined by an edge labeled by k. The components yv

are written as (y1;v, . . . , yn;v).

A particular choice of coefficients for cluster patterns is introduced in [FZ07]. We extend it
to Y -patterns as follows.

Definition 2.28. A Y -pattern with principal coefficients at vertex v0 refers to a Y -pattern with
coefficients v �→ (yv,pv, Bv) with P = Trop(p1, . . . , pn) as underlying semifield for coefficients,
where pv0 = (p1, . . . , pn).

Recall from [FZ07, Definition 3.10] the rational functions for Y -patterns

Yj;v ∈ Qsf(y1, . . . , yn). (2.9)

They are the components of the (coefficient-free) Y -pattern v �→ ((Y1;v, . . . , Yn;v), Bv) with values
in Qsf(y1, . . . , yn) and ((y1, . . . , yn), B0) as initial labeled Y -seed at v0. In analogy, we have the
following definition for the case with coefficients. We fix for the rest of the section an initial
exchange matrix B0.
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Definition 2.29. Fix an initial Y -seed of coefficients ((p1, . . . , pn), B0). We define the rational
functions

Ỹj;v ∈ QPsf(y1, . . . , yn) (2.10)

as the components of the Y -pattern with coefficients v �→ ((Ỹ1;v, . . . , Ỹn;v),pv, Bv) whose ini-
tial labeled Y -seed with coefficients is ((y1, . . . , yn), (p1, . . . , pn), B0) at v0. Notice that Ỹj;v

depends on ((p1, . . . , pn), B0). Nevertheless, we will omit this in the notation since we think
of ((p1, . . . , pn), B0) as fixed once and for all. We illustrate this definition in Example 2.31.

In later sections we will specify this definition to the case of Y -patterns with principal
coefficients. To make notation lighter we denote QPsf(y1, . . . , yn) by S from now on. The following
result provides a way to compute Ỹj;v from Y S

j;v and pj;v (see Notation 2.7).

Lemma 2.30. Fix an initial vertex v0 and let pj := pj;v0 for all 1 ≤ j ≤ n. Then for every vertex

v ∈ Tn and every j ∈ [1, n] we have

Ỹj;v =
Y S

j;v(p1y1, . . . , pnyn)
pj;v

. (2.11)

Proof. The statement is clear for the initial vertex v0 and all i ∈ [1, n]. Let v, v′ ∈ Tn be connected
by an edge with label k and assume that (2.11) holds for v and for all j. We have to prove that
(2.11) also holds for v′ and all j. The case j = k follows from pj;v′ = p−1

j;v , Yj;v′ = Y −1
j;v and

Ỹj;v′ = Ỹ −1
j;v . So we assume that j �= k. Since (2.11) holds for v we have the following:

Y S
j;v′(p1y1, . . . , pnyn) = Y S

j;v(p1y1, . . . , pnyn)(1 + Y S
k;v(p1y1, . . . , pnyn)− sgn(bkj))−bkj

= pj;vỸj;v(1 + (pk;vỸk;v)− sgn(bkj))−bkj .

We distinguish two cases as follows.

Case 1. If bkj ≤ 0 we apply the Y -pattern mutation formula (2.5) and obtain

Y S
j;v′(p1y1, . . . , pnyn)

pj,v′
=
Ỹj;v(1 + pk;vỸk;v)−bkj

(1⊕ pk;v)−bkj
= Ỹj;v(p−k;v + p+

k;vỸk;v)−bkj ,

which is exactly what we wanted to prove.
Case 2. If bjk > 0 we proceed in an analogous way. �

Example 2.31. We identify the vertices of the two-regular tree T2 with the integers by fix-
ing v0 = 0. In Table 1 we illustrate both, a Y -pattern and a Y -pattern with coefficients in
type A2 (i.e. B0 corresponds to an orientations of a Dynkin diagram of type A2). Comput-
ing only five mutations of the initial Y -seed with coefficients, we observe that for all i ∈ Z the
labeled Y -seeds (with and without coefficients) at a vertex i and i+ 5 are equal as unlabeled
Y -seeds.

2.5 Separation formulas and periodicities
In this section we analyze properties of Y -patterns with coefficients in complete generality (unless
specified otherwise).
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Table 1. A Y -pattern v �→ ((p1;v, p2;v), Bv) and the corresponding Y -pattern with coefficients
v �→ ((Ỹ1;v, Ỹ2;v), (p1;v, p2;v), Bv) in type A2 introduced in Definition 2.29 (see also Remark 2.16).
Observe that the first four columns coincide with the first three columns of [FZ07, Table 1] upon
change of notation.

v Bv p1;v p2;v Ỹ1;v Ỹ2;v

0
(

0 1−1 0

)
p1 p2 y1 y2

� μ2

1
(

0 −1
1 0

)
p1(p2 ⊕ 1)

1
p2

y1(p2y2 + 1)
p2 ⊕ 1

1
y2

� μ1

2
(

0 1−1 0

) 1
p1(p2 ⊕ 1)

p1p2 ⊕ p1 ⊕ 1
p2

p2 ⊕ 1
y1(p2y2 + 1)

p1p2y1y2 + p1y1 + 1
y2(p1p2 ⊕ p1 ⊕ 1)

� μ2

3
(

0 −1
1 0

) p1 ⊕ 1
p1p2

p2

p1p2 ⊕ p1 ⊕ 1
p1y1 + 1

y1y2(p1 ⊕ 1)
y2(p1p2 ⊕ p1 ⊕ 1)
p1p2y1y2 + p1y1 + 1

� μ1

4
(

0 1−1 0

) p1p2

p1 ⊕ 1
1
p1

y1y2(p1 ⊕ 1)
p1y1 + 1

1
y1

� μ2

5
(

0 −1
1 0

)
p2 p1 y2 y1

We apply the universal property of Qsf(y1, . . . , yn) to the tropical semifield with y1, . . . , yn ∈
Trop(y1, . . . , yn). As elements of Trop(y1, . . . , yn) are Laurent monomials in y1, . . . , yn, the
rational function Yj;v in (2.9) yield Laurent monomials:

Y
Trop(y1,...,yn)
j;v (y1, . . . , yn) =

n∏
i=1

y
cij;v

i =: ycj;v . (2.12)

Definition 2.32. The vector cj;v = (c1j;v, . . . , cnj;v) ∈ Zn in (2.12) is called the c-vector
associated to j and v.

As a consequence of Lemma 2.30 we obtain for Y -patterns the analog of Fomin and Zelevin-
sky’s separation formulas for cluster patterns. To state this result we consider the F -polynomials
in (2.7) associated to the initial matrix B.

Theorem 2.33 (Separation formulas). For every j and v we have the following:

Ỹj;v =
( n∏

i=1

(F
−bv

ij

i;v )P(p1, . . . , pn)
)( n∏

i=1

(F
bv
ij

i;v )S(p1y1, . . . , pnyn)
)

ycj;v . (2.13)

Proof. We denote the exchange matrix Bv = (bij) and by Fi;v the F -polynomial associated to i
and v. Recall that by [FZ07, Proposition 3.13]

Yj;v =
n∏

i=1

y
cij;v

i

n∏
i=1

F
bij

i;v .
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Hence, the universal property of Qsf(y1, . . . , yn) applied to S � p1y1, . . . , pnyn gives

Y S
j;v(p1y1, . . . , pnyn) =

n∏
i=1

(piyi)cij;v

n∏
i=1

(F bij

i;v )S(p1y1, . . . , pnyn). (2.14)

By the universal property of Qsf(y1, . . . , yn) applied to P � p1, . . . , pn we have

pj;v =
n∏

i=1

p
cij;v

i

n∏
i=1

(F bij

i;v )P(p1, . . . , pn). (2.15)

We obtain the desired formula dividing (2.14) by (2.15) and then using (2.11). �

Note that only the first factor on the right hand side of (2.13) involves the auxiliary addition
in P.

Theorem 2.34. The Y -pattern v �→ ((Y1;v, . . . , Yn;v), Bv) and the Y -pattern with coefficients

v �→ ((Ỹ1;v, . . . , Ỹn;v),pv, Bv) share the same periodicities. That is,

Yi;v = Yj;v′ if and only if Ỹi;v = Ỹj;v′ .

Proof. Using the universal property of Qsf(y1, . . . , yn) the coefficient Y -pattern v �→ (pv, Bv) can
be obtained from the Y -pattern v �→ ((Y1;v, . . . , Yn;v), Bv) by specifying yi �→ pi. In particular,
Yi;v = Yj;v′ implies pi;v = pj;v′ . Now we can use Lemma 2.30 to conclude that Yi;v = Yj;v′ implies
Ỹi;v = Ỹj;v′ .

For the reverse implication we use the universal property of QPsf(y1, . . . , yn) applied to
Qsf(y1, . . . , yn). We fix y1, . . . , yn ∈ Qsf(y1, . . . , yn) and the map P→ Qsf(y1, . . . , yn) sending every
p ∈ P to 1. The induced morphism of semifields QPsf(y1, . . . , yn)→ Qsf(y1, . . . , yn) sends Ỹi;v to
Yi;v for all i and v. �

2.6 Geometric coefficients and frozen directions
So far we have considered patterns in which all n directions are mutable. However, it is very
useful to consider patterns in which there are frozen (or non-mutable) directions. Indeed, this
formalism can be used to describe in a simplified way cluster patterns with coefficients in a
tropical semifield (see Lemma 2.39 below). Further, frozen directions can be used to construct
partial compactifications of cluster varieties as discussed in [GHKK18, § 9]. In this subsection we
let m ∈ N be an arbitrary positive integer.

Definition 2.35. A cluster pattern with coefficients of rank n with m frozen directions is an
assignment v �→ (xv,pv, Bv), where the following hold:

– v ∈ Tn;
– xv is a cluster of size n+m;
– pv is a Y -seed of size n+m;
– Bv is a skew-symmetrizable (n+m)× (n+m)-matrix;
– for every pair of vertices v, v′ ∈ Tn joined by an edge labeled by k ∈ [1, n], we have that

(xv′ , Bv′) = μk(xv, Bv).

We can define in an analogous way Y -patterns with coefficients of rank n and m frozen directions,
and the coefficient-free version of these concepts.
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Observe that given a cluster pattern (or a Y -pattern) of rank n without frozen directions one
can declare some of these directions to be frozen to obtain a cluster pattern of lower rank with
frozen directions. Similarly, given a cluster pattern (or a Y -pattern) with coefficients of rank n
and m frozen directions we can decide to unfreeze some directions to obtain a pattern of rank
> n and with fewer frozen directions.

Definition 2.36. A cluster pattern has geometric coefficients if the underlying semifield P is a
tropical semifield.

Notation 2.37. Let B = (bij) be a (n+m)× (n+m)-square matrix. We introduce the following
notation to denote four distinguished submatrices of B:

– the upper-left matrix Bul := (bi,j)1≤i,j≤n, an n× n submatrix;
– the lower-left matrix Bll := (bn+i,j)1≤i≤m, 1≤j≤n, an m× n submatrix;
– the upper-right matrix Bur := (bi,n+j)1≤i≤n, 1≤j≤m, an n×m submatrix;
– the lower-right matrix Blr := (bn+i,n+j)1≤i,j≤m, an m×m submatrix.

Definition 2.38. Let v �→ (xv,pv, Bv) be a rank n cluster pattern with geometric coefficients
in P = Trop(p1, . . . , pm). For every v ∈ Tn we define

xext
v := (x1;v, . . . , xn;v, p1, . . . , pm),

and refer to it as the extended cluster. Further, let Bext
v be the (n+m)× (n+m)-matrix defined

as follows:

– (Bext
v )ul = Bv;

– (Bext
v )ll = (av

ij), where pj;v =
∏m

i=1 p
av

ij

i for every j ∈ [1, n];
– (Bext

v )ur = −(Bext
v )T

ll , where AT denotes the transpose of a matrix A;
– (Bext

v )lr is the zero (m×m)-matrix.

Lemma 2.39. The assignment v �→ (xext
v , Bext

v ) defines a (coefficient-free!) cluster pattern of rank

n with m frozen directions.

Proof. This follows from the discussion at the end of [FZ07, § 2]. �

Warning: We use Lemma 2.39 frequently to interpret cluster patterns with geometric coef-
ficients as coefficient-free cluster patterns with frozen directions. As an important special case,
a cluster pattern with principal coefficients of rank n can be treated as a coefficient-free cluster
pattern of rank n with n frozen direction. However, the meaning in geometry of coefficients is
very different from the meaning in geometry of frozen directions. We systematically think of
coefficients as parameters deforming the mutation formulas. Frozen directions are just directions
in which we do not perform mutations and they can be used to partially compactify cluster
varieties. We discuss these ideas extensively in § 3.

Example 2.40. Let v �→ (xv,pv, Bv) be the cluster pattern with principal coefficients at v0 of
type A2. We follow the recipe of Definition 2.38 using the ingredients from Table 1: the matrices
Bv are in the second column and the monomials pi;v ∈ Trop(p1, p2) can be read from columns
three and four specifying ⊕ as in Example 2.2.
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Figure 2. Quivers associated to a type A2 cluster pattern with principal coefficients at v0. The
boxes refer to frozen vertices.

The matrices Bext
vi

for i ∈ [0, 4] are incidence matrices of the quivers shown in Figure 2. We
enclose in a box the vertices corresponding to the rows of the matrices (Bext

v )ll. Observe that
they change according to the matrix mutation in (2.3), as Lemma 2.39 predicts.

Example 2.41. This example corresponds to the cluster structure on the coordinate ring of the
affine cone of the Grassmannian Gr2(C5) (for more details see § 7.1). Consider the cluster pattern
v �→ (xv,pv, Bv) of type A2 with geometric coefficients in Trop(p12, p23, p34, p45, p15). Let

xv0 = (x1, x2), pv0
= (p−1

12 p23p
−1
34 , p34p

−1
45 p15) and Bv0 =

(
0 −1
1 0

)
.

The associated (7× 7)-matrix Bext
v0

is the incidence matrix of the quiver shown in Figure 6,
identifying x1 = p13 and x2 = p14. The corresponding extended cluster is

xext
v0

= (p13, p14, p12, p23, p34, p45, p15).

2.7 Comparison of cluster and Y -patterns with coefficients
We explain how every cluster pattern with coefficients v �→ (xv,pv, Bv) gives rise to a Y -pattern
with coefficients in a natural way. For each v ∈ Tn let Bv = (bvij). We define

ỹj;v :=
n∏

i=1

x
bv
ij

i;v (2.16)

for each v ∈ Tn and j ∈ [1, n]. Moreover, let ỹv = (ỹ1;v, . . . , ỹn;v).

Remark 2.42. Notice that (2.16) still makes sense when we have trivial coefficients, i.e. pi;v = 1
for all i ∈ [1, n] and all v ∈ Tn. Moreover, we can extend the definition of the ỹ for cluster patterns
with coefficients and frozen directions.

Lemma 2.43. The assignment v �→ (ỹv,pv, Bv) is a Y -pattern with coefficients.

Proof. For pairs of vertices v, v′ ∈ Tn joined by an edge labeled by k we have to show

ỹj;v

(
p
[[bv

kj ]]

k;v + p
[[−bv

kj ]]

k;v ỹk;v

)−bv
kj

= ỹj;v′ .

To make notation lighter let bvij = bij and bv
′

ij = b′ij for all i, j ∈ [1, n]. Since b′ik = −bik for all
i ∈ [1, n] the result follows for j = k. So we assume j �= k. Notice that if bkj = 0 then b′ij = bij
for all i ∈ [1, n]. In particular, ỹj,v′ = ỹj,v, which is what we need to prove. Therefore, we assume
bjk �= 0 and distinguish two cases.
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Case 1. If bkj < 0, we have the following:

ỹj;v

(
p
[[bkj ]]
k;v + p

[[−bkj ]]
k;v ỹk;v

)−bkj

=
n∏

i=1

x
bij

i;v

(
p−k;v + p+

k;v

n∏
i=1

xbik
i;v

)−bkj

=
n∏

i=1

x
bij

i;v

((
p−k;v

∏
i:bik<0

x−bik
i;v + p+

k;v

∏
i:bik>0

xbik
i;v

) ∏
i:bik<0

xbik
i;v

)−bkj

= x
−bkj

k;v′
∏
i�=k

x
bij

i;v

∏
i:bik<0

x
−bikbkj

i:v =
n∏

i=1

x
b′ij
i;v′ = ỹj;v′ .

Case 2. If bkj > 0, the proof is done in exactly the same way. �

Remark 2.44. Given a cluster pattern with coefficients v �→ (xv,pv, Bv) in [FZ07, Equation (3.7)]
the authors define ŷv = (ŷ1;v, . . . , ŷn;v), where

ŷj;v := pj;v

n∏
i=1

x
bv
ij

i;v . (2.17)

They prove in [FZ07, Proposition 3.9] that v �→ (ŷv, Bv) is a Y -pattern. If the cluster pattern
with coefficients v �→ (xv,pv, Bv) has frozen directions then the Y -pattern v �→ (ŷv, Bv) has the
same frozen directions. Moreover, observe that (2.17) is also well defined for cluster patterns
with trivial coefficients.

If the cluster pattern v �→ (xv,pv, Bv) has geometric coefficients we can consider the cluster
pattern with frozen directions v �→ (xext

v , Bext
v ) afforded by Lemma 2.39. Let v �→ (ŷext

v , Bext
v )

be the Y -pattern with frozen directions given by [FZ07, Proposition 3.9] applied to the cluster
pattern with frozen directions v �→ (xext

v , Bext
v ). Similarly, let v �→ (ỹext

v , Bext
v ) be the Y -pattern

with frozen directions (and trivial coefficients) given by Lemma 2.43 applied to v �→ (xext
v , Bext

v ).
Then ŷext

v = ỹext
v for all v.

Remark 2.45. In the context of cluster varieties the patterns defined by the ŷ and ỹ are both very
useful. The former will define a map p : A → X between cluster varieties with frozen directions
(see Definition 3.16); the latter a map p : Ap → Xp of cluster varieties with coefficients and
frozen directions.

3. Cluster duality for cluster varieties with coefficients

In this section we give a geometric perspective of cluster and Y -patterns with coefficients. One
of the most important ideas we want to communicate is the following:

we make a distinction between frozen variables and coefficients.

A cluster variety with n mutable directions and m frozen directions is a scheme over C built
by gluing complex tori isomorphic to (C∗)n+m via the usual mutation formulas. The coefficients
we introduce live in a ring R of form C[p±1

1 , . . . , p±1
r ] in case they are invertible, respectively of

form C[p1, . . . , pr] if they are not invertible. A cluster variety with (geometric) coefficients, with
n mutable directions and m frozen directions is a scheme over R obtained by gluing schemes of
the form Spec(R[z±1

1 , . . . , z±1
n+m]). To glue these schemes we consider mutations with coefficients,

which we think of as deformations of the usual mutation formulas. On the A-side, the notions
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of frozen variables and coefficients interact with each other as explained in § 2.6: on the one
hand, the coefficients are organized in a Y -pattern; on the other, A-cluster variables associated
to frozen directions give rise in a natural way to a Y -pattern in a tropical semifield. In this case
the mutation formulas of the cluster pattern with frozen directions will be exactly the same as
the mutation formulas of the cluster pattern with coefficients in the Y -pattern associated to
the frozen A-variables. However, the disparity between coefficients and frozen variables becomes
more evident when we consider X -cluster varieties since X -cluster variables associated to frozen
directions usually change after applying a mutation in a mutable direction. Moreover, it is cru-
cial to make this distinction to discover the correct notion of duality for cluster varieties with
coefficients. This notion of duality was predicted in [GHKK18, § 7, Definition 7.15] and here we
develop it in full detail.

In [GHK15, GHKK18] A-cluster varieties with (geometric) coefficients are considered as
A-cluster varieties with frozen directions. Therefore, they are treated as schemes over C. In § 3.2
we develop a new perspective and treat them as schemes over Spec(R). Further, we introduce the
concept of X -cluster varieties with coefficients and cluster varieties with specified coefficients.
The former are schemes over Spec(R) while the latter are schemes over C. Moreover, in § 3.3
we show how the results of the previous section lead to the notion of cluster duality for cluster
varieties with coefficients and with specified coefficients.

3.1 Reminders on cluster varieties
Cluster patterns and Y -patterns define schemes over C by interpreting the mutation formulas as
birational maps between algebraic tori (see [GHK15, p. 149]). For this geometric perspective, it
is convenient to fragment the notion of a seed (respectively Y -seed) into two parts, one changes
under mutation while the other remains unchanged.

We introduce some new nomenclature. We believe this makes it easier to work with the
algebraic and geometric settings simultaneously.

Definition 3.1. The (skew-symmetrizable) fixed data Γ consists of the following:

– a finite set I of directions with a subset of unfrozen directions Iuf;
– a lattice N of rank |I|;
– a saturated sublattice Nuf ⊆ N of rank |Iuf|;
– a skew-symmetric bilinear form {·, ·} : N ×N → Q;
– a sublattice N◦ ⊆ N of finite index satisfying

{Nuf, N
◦} ⊂ Z and {N,Nuf ∩N◦} ⊂ Z;

– a tuple of positive integers (di : i ∈ I) with greatest common divisor 1;
– M = Hom(N,Z) and M◦ = Hom(N◦,Z).

We say that Γ is skew-symmetric if di = 1 for all i ∈ I.

Definition 3.2. An N -seed for Γ is a tuple s = (ei ∈ N : i ∈ I) such that {ei : i ∈ I} is a basis
of N and further the following hold:

– {ei : i ∈ Iuf} is a Z-basis of Nuf;
– {diei : i ∈ I} is a Z-basis of N◦;
– the elements vi := {ei, ·} ∈M◦ are non-zero for every i ∈ Iuf.
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Consider the dual basis {e∗i ∈M : i ∈ I} of M . The associated M◦-seed is the tuple (fi :
i ∈ I), where {fi : i ∈ I} is a basis of M◦ given by

fi := d−1
i e∗i ∈M◦.

For a fixed N -seed s we define the matrix εs := (εij)i,j∈I by εij := {ei, ej}dj . For the pairing
given by evaluation we use the notation

〈·, ·〉 : N ×M◦ → Q.

Definition 3.3. Given an N -seed s and k ∈ Iuf, the mutation in direction k of s is the N -seed
μk(s) = (e′i : i ∈ I) given by

e′i :=

{
ei + [εik]+ek i �= k,

−ek i = k.
(3.1)

The mutation in direction k of the associated M◦-seed is (f ′i : i ∈ I), where

f ′i :=

⎧⎪⎨⎪⎩
−fk +

∑
j

[−εkj ]+fj i = k,

fi i �= k.

(3.2)

Unlike the mutations introduced in the preceding section, notice that mutation of N -seeds
is not an involution, i.e. μk(μk(s)) �= s. This motivates the following definition.

Definition 3.4. The oriented tree
−→
Tn is the canonical orientation of Tn determined by the

following conditions:

– the n edges incident to v0 are oriented in outgoing direction from v0;
– every vertex v �= v0 has one incoming edge and n− 1 outgoing edges.

We write v k−→ v′ ∈−→Tn to indicate that the edge in between the vertices v, v′ of
−→
Tn is oriented

from v to v′ and labeled by k.

Definition 3.5. Let n = |Iuf|. An N-pattern is the assignment v �→ sv of an N -seed sv to every
v ∈−→Tn, such that sv′ = μk(sv) whenever v k−→ v′ ∈−→Tn. We let s0 := sv0 be the initial N -seed.

In what follows we identify a vertex v ∈−→Tn with the N -seed sv and write sv ∈−→Tn.

Definition 3.6. Let Γ be fixed data, s an N -seed and k ∈ Iuf. The A-cluster mutation is the
birational map on the torus TN◦ := Spec C[M◦]

μk;s : TN◦ ��� TN◦

specified by the pull-back formula at the level of characters of TN◦ by

μ∗k;s(z
m) := zm(1 + zvk)−〈dkek,m〉, (3.3)

for every zm ∈ C[M◦] = C[TN◦ ]. Similarly, the X -cluster mutation is the birational map on the
torus TM := Spec C[N ]

μk;s : TM ��� TM
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specified by the pull-back formula

μ∗k;s(z
n) := zn(1 + zek)−[n,ek]s , (3.4)

for every zn ∈ C[N ] = C[TM ], and [·, ·]s : N ×N → Q the bilinear form given by

[ei, ej ]s = εij .

Remark 3.7. To make notation lighter we denote the A- and X -mutation by the same symbol.
The kind of tori that we are considering tells us which kind of mutation we have to consider.
These mutation formulas are also called cluster transformations.

Remark 3.8. We can pass from the geometric framework of this section to the algebraic
framework of the last section as follows:

– set I = [1, n+m] and Iuf = [1, n];
– the set of frozen directions is Ifr := I \ Iuf (see § 2.6);
– the skew-symmetrizable matrix B = (bij)(i,j)∈Iuf×Iuf

is the transpose of the (sub-)matrix
associated to [·, ·]s, i.e. for all i, j ∈ Iuf:

bij = εji;

– to construct a coefficient-free Y -pattern with frozen directions we take as ambient semifield
P = Qsf(ze1 , . . . , zen+m). The initial Y -seed is ((ze1 , . . . , zen+m), B);

– to construct a coefficient-free cluster pattern with frozen directions we take as ambient field
F = Q(zf1 , . . . , zfn+m). The initial seed is ((zf1 , . . . , zfn+m), B).

Definition 3.9. Fix an N -pattern v �→ sv. For every seed s ∈−→Tn let TN◦,s be a torus isomor-
phic to TN◦ endowed with the basis of characters {zfi ∈ C[M◦] : s = (ei : i ∈ I)}. We define the
birational map μs0,s : TN◦,s0 ��� TN◦,s as

μs0,s :=

{
Id if s = s0,

μkl;sl
◦ · · · ◦ μk0;s0 if s �= s0,

where s0
k0−→ s1

k1−→ · · · kl−→ sl+1 = s is the unique oriented path from s0 to s. For two seeds
s, s′ ∈−→Tn we define

μs,s′ := μs0,s′ ◦ μ−1
s0,s : TN◦,s ��� TN◦,s′ . (3.5)

By construction μs′,s′′ ◦ μs,s′ = μs,s′′ . We define the analogous transformations for the tori TM,s.

Lemma 3.10 [GHK15, Proposition 2.4]. Let I be a set and {Si : i ∈ I} be a collection of integral

separated schemes of finite type over a locally Noetherian ring R, with birational maps fij :
Si ��� Sj for all i, j, verifying the cocycle condition fjk ◦ fij = fik as rational maps and such

that fii = Id. Let Uij ⊂ Si be the largest open subscheme such that fij : Uij → fij(Uij) is an

isomorphism. Then there is a scheme

S =
⋃
i∈I

Si

obtained by gluing the Si along the open sets Uij via the maps fij .
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Remark 3.11. In [GHK15, Proposition 2.4] the authors prove Lemma 3.10 when R is a field
because this is the generality they need. In the next section we will take R to be a (Laurent)
polynomial ring, which is Noetherian. The proof of [GHK15, Proposition 2.4] is based on [GD60,
Proposition 6.5.4] and [GD60, Proposition 8.2.8]. Both results hold in the more general case in
which R is a locally Noetherian ring. Therefore, the same proof can be used to prove Lemma
3.10.

Definition 3.12. Fix an N -pattern. We apply Lemma 3.10 to the collection of tori
{TN◦,s : s ∈−→Tn} and the birational maps μs,s′ to define the scheme

AΓ,s0 :=
⋃

s∈−→Tn

TN◦,s.

This is the A-cluster variety associated to Γ and s0. In a completely analogous way we define
the X -cluster variety associated to Γ and s0

XΓ,s0 :=
⋃

s∈−→Tn

TM,s.

We say that a cluster variety (of any kind) has frozen directions if I\Iuf �= ∅.

Notation 3.13. The characters of the torus TM (respectively TN◦) are of the form zn (respectively
zm) for n ∈ N (respectively m ∈M◦). Fix an N -pattern, from now on we use the following
identifications relating the notation of §§ 2 and 3:

Yi;v = Xi;sv = zei;sv and xi;v = Ai;sv = zfi;sv .

However, notice that the identification Xi;s = zei;s (respectively Ai;s = zfi;s) is only valid on the
torus TM,s (respectively TN◦,s). We refer to the symbols Xi;s (respectively Ai;s) as X -cluster
variables (respectively A-cluster variables).

Remark 3.14. In this paper (coefficient-free) cluster varieties are schemes over the complex num-
bers. It is possible to work over more general rings of definition such as Z. This is the approach
taken for example in [FG09b]. The varieties considered in this paper are simply the C-points of
such Z-schemes.

Remark 3.15. We will write μk instead of μk;s since the tori we glue already tell us which s we
are considering.

There is a fundamental map relating A- and X -cluster varieties. It is induced by the skew-
symmetric bilinear form {·, ·} as follows. There are two natural maps

p∗1 : Nuf → M◦ and p∗2 : N → M◦/N⊥
uf

n �→ (n1 �→ {n, n1}) n �→ (n2 �→ {n, n2})
for n1 ∈ N◦, respectively n2 ∈ Nuf ∩N◦.

Definition 3.16. A p∗-map is a map N →M◦, such that the following diagram commutes.
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Different choices of such a map differ by different choices of maps N/Nuf → N⊥
uf . A map

p∗ : N →M◦ gives a map p : TN◦,s → TM,s for every seed s. We can see from Lemma 2.43 and
Remark 2.44 that p commutes with the cluster transformations. Therefore, it further extends to
a globally defined map p : AΓ,s0 → XΓ,s0 .

Remark 3.17. For simplicity assume we are in the skew-symmetric case and fix an N -seed s =
(ei : i ∈ I) in an N -pattern with s = sv. We can choose p∗(ei) = {ei, ·} = eiB

T
v = bi, the ith

column of the matrix εT
s = Bv (see Remark 3.8). Comparing to Remark 2.45 and the ŷi;v defined

in (2.17) this corresponds to

p∗(Xi;s) = p∗(zei) = zbi =
∏
j∈I

(zfj )bji =
∏
j∈I

A
bji

j;s = ŷi;v.

3.2 Cluster varieties with coefficients
In what follows we give a new perspective on A-cluster varieties with coefficients treating them
as schemes over (Laurent) polynomial rings. Further, we introduce the concept of X -cluster
varieties with coefficients and cluster varieties with specified coefficients.

We fix the tropical semifield P = Trop(p1, . . . , pr). In particular, recall that P is a free abelian
group generated by p1, . . . , pr written multiplicatively.

Definition 3.18. Let Γ be fixed data and sv0 = (ei : i ∈ I) an initialN -seed (in this situation we
will usually call the pair (Γ, sv0) initial data). A Y -pattern v �→ (pv, Bv) of rank |Iuf| is compatible
with Γ and sv0 if the initial matrix Bv0 = (bij) is the transpose of the matrix associated to [·, ·]sv0

(see Remark 3.8).

Let R be either C[p1, . . . , pr] or C[p±1
1 , . . . , p±1

r ].4 In particular, Spec(R) is either an algebraic
torus or an affine space. For a lattice L we denote

TL(R) := Spec(C[L∗]⊗C R) = TL ×C Spec(R).

In particular, the coordinate ring of TL(R) is isomorphic to R[L∗], where L∗ = Hom(L,Z).
Recall that for every p ∈ P, we have p+ and p−, which are monomials in p1, . . . , pr, from

Definition 2.8.

Definition 3.19. Let Γ be fixed data, s an N -seed, p ∈ P and k ∈ Iuf. The associated A-cluster
mutation with coefficients is the birational map

μk;s;p : TN◦(R) ��� TN◦(R)

specified by the pull-back formula

μ∗k;s;p(z
m) := zm(p− + p+zvk)−〈dkek,m〉, (3.6)

4 In § 4 (see Figure 3) we elaborate on the difference between invertible and non-invertible coefficients.
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for every zm ∈ R[M◦]. Similarly, the associated X -cluster mutation with coefficients is the
birational map

μk;s;p : TM (R) ��� TM (R)

specified by the pull-back formula for every zn ∈ R[N ]:

μ∗k;s;p(z
n) := zn(p− + p+zek)−[n,ek]s . (3.7)

Using the above mutations with coefficients we construct cluster varieties with coefficients.
Before defining them, first note that given fixed data Γ, an initial N -seed s0 = (ei : i ∈ I) and
a compatible Y -pattern v �→ (pv, Bv), then for every seed s ∈−→Tn we obtain a birational map
μs0,s : TN◦,s0(R) ��� TN◦,s(R) analogously to Definition 3.9:

μs0,s :=

{
Id if s = s0,

μkl;sl;pkl;vl
, ◦ · · · ◦ μk0;s0;pk0;v0

if s �= s0,

taking the unique oriented path from s0 to s, s0
k0−→ s1

k1−→ · · · kl−→ sl+1 = s. For s, s′ ∈−→Tn we
define

μs,s′ := μs0,s′ ◦ μ−1
s0,s : TN◦,s(R) ��� TN◦,s′(R). (3.8)

We define the birational transformation μs,s′ : TM,s(R) ��� TM,s′(R) for s, s′ ∈−→Tn in a com-
pletely analogous way. For both kinds of tori the cocycle condition μs′,s′′ ◦ μs,s′ = μs,s′′ follows
by definition.

Definition 3.20. Consider fixed data Γ, an initial N -seed s0 = (ei : i ∈ I) and a compatible
Y -pattern v �→ (pv, Bv). We apply Lemma 3.10 and Remark 3.11 to the tori {TN◦,s(R) : s ∈−→Tn}
and the A-cluster mutation with coefficients μs,s′ to define the A-cluster variety with coefficients
as the scheme

AΓ,s0,pv0
:=

⋃
s∈−→Tn

TN◦,s(R).

In a completely analogous way using the tori {TM,s(R) : s ∈−→Tn} and the X -cluster mutation with
coefficients we define the X -cluster variety with coefficients

XΓ,s0,pv0
:=

⋃
s∈−→Tn

TM,s(R).

We say that a cluster variety with coefficients has frozen directions if I \ Iuf �= ∅.

Remark 3.21. Similarly to the coefficient-free case, we write μk;p instead of μk;s;p.

Remark 3.22. Note that the notion of initial data for cluster varieties with coefficients coincides
with the notion of initial data in the coefficient-free case. Moreover, the map p∗ : N →M◦ defined
in Definition 3.16 relies only on the notion of initial data. Hence, we obtain as above for every
seed s a map p : TN◦,s(R)→ TM,s(R) via the pull-back on characters zm ∈ R[M◦] given by p∗.
In view of Lemma 2.43 this extends to a map

p : AΓ,s0,pv0
→ XΓ,s0,pv0

.
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Remark 3.23. Remark 3.8 extends to cluster and Y -patterns with coefficients in P:

– the associated Y -pattern with coefficients and frozen directions lives in

QPsf(ze1 , . . . , zen+m) = Q(p1, . . . , pr)sf(ze1 , . . . , zen+m);

– the associated cluster pattern with coefficients and frozen directions lives in

QP(zf1 , . . . , zfn+m) = Q(p1, . . . , pr, z
f1 , . . . , zfn+m).

Considering Remark 3.8, Notation 3.13 and Remark 3.23 we obtain the following.

Lemma 3.24. The A-cluster mutation with coefficients corresponds to cluster mutation with

geometric coefficients, and the X -cluster mutation with coefficients corresponds to Y -mutation

with geometric coefficients.

Proof. We only prove the statement on the X -side, the proof on the A-side is analogous. We
have to check that formula (3.7) is equivalent to formula (2.8) for P = Trop(p1, . . . , pr). This
follows at once from the following computation:

μ∗k;p(z
e′k) = ze′k(p− + p+zek)−εik =

{
zek(p−z−ek + p+)−εik if εik > 0,

zek(p− + p+zek)−εik if εik ≤ 0. �

Remark 3.25. We can view cluster varieties with coefficients as schemes over C via the canonical
inclusion C ↪→ R. On the A-side frozen variables can be thought of as coefficients as explained
in § 2.6. Therefore, an A-cluster variety with coefficients considered as a scheme over C has the
structure of a coefficient-free A-cluster variety with frozen directions. We just have to construct
an appropriate Γ following Definition 2.38. However, this is not the case on the X -side because
X -variables associated to frozen directions may change after mutation in a non-frozen direction.

Let Γ be fixed data, s0 an initial N -seed and v �→ (pv, Bv) a compatible Y -pattern. Let L be
either the lattice N◦ or M . The canonical inclusion

TL ↪→ TL(R) = TL ×C Spec(R)

induces a left action of the group scheme TL on TL(R). Explicitly, this action is given by the
canonical projection TL ×C Spec(R)→ Spec(R). Moreover, if s, s′ ∈−→Tn we have the following
commutative diagram.

TL,s(R)
μs,s′

������������

�����������
TL,s′(R)

������������

Spec(R)

This implies that we can glue these morphisms to obtain morphisms of schemes as follows.

AΓ,s0,pv0

πA ������������
XΓ,s0,pv0

πX������������

Spec(R)

(3.9)
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Notice that these morphism are flat. Indeed, as flatness is a local property to verify it we can
restrict to TL,s(R). The induced map of rings R→ R[L∗] is flat, so both πA and πX are flat
morphisms of schemes.

Definition 3.26. Let λ ∈ Spec(R) be a fixed parameter. The A-cluster variety with speci-
fied coefficients AΓ,s0,pv0 ,λ is the fiber π−1

A (λ). We define the X -cluster variety with specified
coefficients XΓ,s0,pv0 ,λ as the fiber π−1

X (λ).

Notice that if λ ∈ Spec(R) is a closed point then AΓ,s0,pv0 ,λ is a scheme over C in a canonical
way. In particular, if 1 = (1, . . . , 1), then

AΓ,s0,pv0 ,1 = AΓ,s0 and XΓ,s0,pv0 ,1 = XΓ,s0 .

More generally, letM = {∏r
i=1 p

ai
i ∈ P : ai ≥ 0} and p ∈ P. Fix a morphism of monoids φ :M→

C. The mutation with specified coefficients associated to μk;p and φ is the birational map

μk;φ(p) : TN◦ ��� TN◦

given by the pull-back formula

μ∗k;φ(p)(z
m) := zm(φ(p−) + φ(p+)zvk)−〈dkek,m〉,

for every zm ∈ R[M◦]. We define in an analogous way the X -mutation with specified coefficients.
If λ = (λ1, . . . , λr) is a closed point of Spec(R) and φ :M→ C is defined by φ(pi) = λi then

AΓ,p,λ =
⋃

s∈−→Tn

TN◦,s,

where the tori TN◦,s are glued by μk;φ(p). Similarly, we have

XΓ,p,λ =
⋃

s∈−→Tn

TM,s,

where the tori TM,s are glued with the mutations with specified coefficients.

Remark 3.27. In [GHK15] the authors introduce the cluster varieties At for t ∈ Cr and call them
cluster varieties with general coefficients. These varieties are obtained specifying Definition 3.26
to the case of principal coefficients and identifying the parameters p1, . . . , pr with the complex
values φ(p1) = t1, . . . , φ(pr) = tr. In [GHKK18, § 7, p. 555], Gross, Hacking, Keel and Kontsevich
mention that it is not clear how to dualize the birational gluing maps forA-varieties with specified
coefficients as it is not obvious how the parameters should be treated. The formalism developed
in this section is meant to solve this problem. We would like to mention that At and At′ are
isomorphic if t, t′ ∈ Spec(R) are generic closed points. We prove the analogous result for the
X -side in Proposition 5.11 below.

3.3 Cluster duality with coefficients
As explained in [GHK15], the A- and X -mutation formulas are canonically dual to each other.
In this subsection we recall this duality and extend it to the context of cluster varieties with
coefficients and specified coefficients.
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Definition 3.28. The Langlands dual of Γ is the fixed data Γ∨ given by the following.

– I∨ = I and Iuf
∨ = Iuf;

– N∨ = N◦;
– (Nuf)∨ = Nuf ∩N◦;
– {·, ·}∨ = d−1{·, ·}, where d := lcm(di : i ∈ I);
– (N∨)◦ = dN ;
– d∨i = dd−1

i for all i ∈ I;
– M∨ = M◦ and (M∨)◦ = d−1M .

The Langlands dual of s is s∨ := (diei : i ∈ I). The Fock–Goncharov dual cluster varieties of
AΓ,s and XΓ,s are

A∨
Γ,s := XΓ∨,s∨ and X∨

Γ,s := AΓ∨,s∨ .

Remark 3.29. Notice that if B is the initial matrix associated to Γ and s then −BT is the initial
matrix associated to Γ∨ and s∨. In particular, in the skew-symmetric case we have Γ∨ = Γ and
s∨ = s. Moreover, Γ (respectively s) is equal to (Γ∨)∨ (respectively (s∨)∨) up to the morphism
of lattices dN → N given by n �→ d−1n.

Definition 3.30. Every pair (n,m) ∈ N◦ ×M◦ with 〈n,m〉 = 0 defines a mutation5

μ(n,m) : TN◦ ��� TN◦

specified by the formula

μ∗(n,m)(z
m′

) := zm′
(1 + zm)〈m

′,n〉,

for every zm′ ∈ C[M◦]. The dual mutation is defined as the birational map

μ(m,−n) : TM∨ ��� TM∨

associated to the pair (m,−n) ∈ Hom(N◦ ×M◦,Z) = M◦ ×N◦ = M∨ ×N∨.

The A-cluster mutation (3.3) associated to Γ and s is μ(−dkek,vk), and the X -cluster mutation
(3.4) associated to Γ∨ and s∨ is μ(vk,dkek). This explains the duality between A- and X -cluster
varieties.

Definition 3.31. Let p ∈ Trop(p1, . . . , pr) and (n,m) ∈ N◦ ×M◦. The mutation associated to
(n,m) with deformation parameter p is the birational map

μ(n,m);p : TN◦(R) ��� TN◦(R)

defined at the level of characters for every zm′ ∈ R[M◦] by

μ∗(n,m);p(z
m′

) := zm′
(p− + p+zm)〈m

′,n〉. (3.10)

Let φ :M→ C be a map + of monoids. The mutation associated to (n,m), φ and p is

μ∗(n,m);φ(p)(z
m′

) := zm′
(φ(p−) + φ(p+)zm)〈m

′,n〉. (3.11)

5 In this context, a mutation is a birational map μ : T ��� T of algebraic tori preserving the canonical volume
form of T .
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We define a notion of duality for (3.10) and (3.11) that generalizes Definition 3.30. Moreover,
this notion of duality specializes to the duality between AΓ,s and XΓ∨,s∨ when we take trivial
coefficients, i.e. R = C.

Definition 3.32. Let v �→ (pv, Bv) be an initial Y -pattern. The Y -pattern v �→ (p∨
v , B

∨
v ) is

defined by setting

p∨
v0

= pv0 and B∨
v0

= −BT
v0
.

Let pv = (p1;v, . . . , pn;v) be a Y -seed of the initial Y -pattern. The mutation dual to μ(n,m);pk;v
is

μ(m,−n);p∨k;v
: TM∨(R) ��� TM∨(R).

Explicitly, at the level of characters μ(m,−n);p∨k;v
is given by

zn′ �→ zn′
((p∨k;v)

− + (p∨k;v)
+z−n)〈n

′,m〉

for every zn′ ∈ R[N∨]. Similarly, the mutation dual to μ(n,m);φ(pk;v) is

μ(m,−n);φ(p∨k;v) : TM∨ ��� TM∨ .

Observe that if the Y -pattern v �→ (pv, Bv) is compatible with Γ and s then the Y -pattern
v �→ (p∨

v , B
∨
v ) is compatible with Γ∨ and s∨.

Definition 3.33. The duals of AΓ,s0,pv0
and XΓ,s0,pv0

are

A∨
Γ,s0,pv0

:= XΓ∨,s∨0 ,p∨
v0

and X∨
Γ,s0,pv0

:= AΓ∨,s∨0 ,p∨
v0
.

3.4 Cluster varieties with principal coefficients
We specify the constructions given in §§ 3.2 and 3.3 to the case of principal coefficients.

Definition 3.34. The fixed data with principal coefficients Γprin associated to given fixed data
Γ is specified by the following:

– the indexing set Ĩ is a disjoint union of two copies of I;
– the set of unfrozen indices Ĩuf is the subset Iuf of the first copy of I;
– Ñ := N ⊕M◦;
– Ñuf := Nuf ⊕ 0;
– the skew-symmetric bilinear form {·, ·} : Ñ × Ñ → Q is given by

{(n1,m1), (n2,m2)} := {n1, n2}+ 〈n1,m2〉 − 〈n2,m1〉;

– Ñ◦ := N◦ ×M ;
– the same di as for Γ .

Moreover, the N -seed s defines the Ñ -seed s̃ = ((e1, 0), . . . , (en, 0), (0, f1), . . . (0, fn)).

Definition 3.35. The A-cluster variety with principal coefficients associated to Γ and s is the
A-cluster variety with coefficients

Aprin := AΓprin,s̃.
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Remark 3.36. In light of Remark 3.25, Aprin can be viewed as a coefficient-free A-cluster vari-
ety with frozen directions. In [GHKK18] the authors define the cluster variety Xprin as the
(coefficient-free) X -cluster variety associated to (Γ∨)prin and (̃s∨). From the framework developed
above we can see that

Xprin is cluster dual to Aprin as a scheme over C, i.e.
as a coefficient-free cluster variety with frozen directions.

The dual of Aprin as a cluster variety with coefficients, denoted by X , is a very interesting
object and the main object of study throughout the rest of the paper.

We conclude this section with definitions and notation that will be useful in the remainder
of the paper. So far our notation for cluster varieties includes the subscript Γ . From now on
we drop this subscript and denote AΓ,s0 simply by A, respectively AΓ,s0,pv0

by Apv0
. We use

analogous notation for X -cluster varieties.

Definition 3.37. A rational function on a cluster variety (of whichever type) is called a cluster
monomial if it is a Laurent monomial in the variables of some seed.

Notation 3.38. Let Ai;s be a cluster variable of A. By the Laurent phenomenon (Theorem 2.19)
the Ai;s are global regular functions on A. We denote by Ãi;s the extension of Ai;s to Aprin,s0 .
These extensions are again globally regular. Explicitly, in the language of the preceding section
we have

XFZ
i;v = Ãi;sv .

We extend this notation to cluster monomials. Similarly, ifXi;s is an X -cluster variable associated
to X , we let X̃i;s denote the extension of Xi;s to Xs0 . Like the X -variables themselves, these
extensions are only locally defined.

We often want to express functions in terms of the variables of the initial seed s0. We
introduce the following notation for this purpose.

Notation 3.39. Let V be a cluster variety of whichever type, with or without frozen directions
and coefficients. Let f be a function on any torus in the atlas of V. We denote by μ∗s0

(f) the
pull-back of f to the initial torus associated to s0, given by iterated mutations.

4. Tropical duality, the g-fan and the special completion of X
In this section we recall some basic facts about the tropical geometry of cluster varieties. We
explain how two important results in this area (tropical duality of [NZ12] and the fan structure of
the cluster complex, see [GHKK18, Theorem 2.13]) lead very naturally to the special completion
X̂ of the X -variety (see [FG16]).

4.1 Tropicalization
Cluster varieties have a particularly rich theory of tropicalization. As described in [GHK15],
cluster varieties are a very special class of log Calabi–Yau varieties. As such, we can describe the
tropicalization of a cluster variety in terms of divisorial discrete valuations and view the tropical
space as encoding the cluster variety’s log geometry. Meanwhile, in [FG09a] Fock and Goncharov
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described cluster varieties as positive schemes. From this perspective, we can apply a functor of
points and ask for the P-points of a cluster variety, for any semifield P. In particular, we can take
P to be a tropical semifield (see [FG09a, § 1.1]). These perspectives are discussed and related in
[GHKK18, § 2]. For us it will be enough to recall the following facts.

– For every lattice L, the P-points of TL are given by

T trop
L (P) ∼= L⊗Z P,

where ⊗ is the tensor product of abelian groups.
– Mutation μk : TL,s ��� TL,s′ induces a piecewise linear isomorphism

μtrop
k : T trop

L,s (P)→ T trop
L,s′ (P).

In particular, the inclusions of cluster charts TN◦ ↪→ A and TM ↪→ X induce bijections of
P-points:

T trop
N◦ (P) ∼= Atrop(P) and T trop

M (P) ∼= X trop(P).

We often consider Z and R endowed with the auxiliary addition given by x⊕ y := min(x, y)
for x, y ∈ Z or R. Whenever we write X trop(Z) (respectively X trop(R)), we implicitly mean taking
the tropical points with respect to Z (respectively R) with the aforementioned semifield structure.
In particular, tropicalizing a mutation is given by the usual tropicalization of a rational function
(replace + by min, and · by +).

Remark 4.1. Let V be a cluster variety. Even if Vtrop(Z) and Vtrop(R) can be identified as sets
with Z and R, respectively, these tropical spaces do not have a natural notion of addition.
However, they possess in a natural way the structure of an N-torsor (we can multiply tropical
points by elements of N) and a piecewise linear structure.

4.2 Tropical duality
Fix an initial exchange matrix B corresponding to an initial N -seed s (see Remark 3.8). Recall
the definitions of g- and c-vectors (Definitions 2.23 and 2.32, respectively). Let us recall a list
of fundamental results concerning these vectors.

Definition 4.2. Let v ∈ Tn. The c-matrix CB
v is the square matrix whose jth column is the

c-vector cj;v. Similarly, the g-matrix GB
v is the square matrix whose jth column is the g-vector

gj;v.

Theorem 4.3 (Sign-coherence of c-vectors [GHKK18, Corollary 5.5)]. For each i ∈ [1, n] and

v ∈ Tn the c-vector ci;v is non-zero and has either all entries non-negative or all entries

non-positive.

Theorem 4.4 (Tropical duality [NZ12]). For any skew-symmetrizable initial exchange matrix

B and any v ∈ Tn, we have

(GB
v )T = (C−BT

v )−1. (4.1)

Remark 4.5. Nakanishi and Zelevinsky proved Theorem 4.4 provided sign coherence of
c-vectors holds. Special cases of Theorem 4.3 were known before the most general case was
tackled in [GHKK18].
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Figure 3. Comparison of g-fan Δ+
F and cluster complex Δ+ for A3 quiver with one frozen

direction. Here Q = 1← 2← 3 and F = {1}. A schematic of the g-fan appears on the left and
corresponds to the case in which A1 is non-invertible. The cluster complex is on the right,
corresponding to an invertible A1 variable.

Corollary 4.6. Let v ∈ Tn. The g-vectors gB
1;v, . . . ,g

B
n;v span a rational strongly convex poly-

hedral cone GB
v of dimension n in Rn. The dual cone

(GB
v

)∨ = C−BT

v is the rational polyhedral

cone spanned by the c-vectors c−BT

1;v , . . . , c−BT

n;v .

Theorem 4.7 [GHKK18, Theorem 2.13]. For any initial data the cones GB
v are the maximal

cones of a possibly infinite simplicial fan.

This was originally conjectured by Fock and Goncharov in [FG16, Conjecture 1.3], and lead
to the notion of the special completion of an X -variety as we will see below. In their proof of
Theorem 4.7, Gross, Hacking, Keel and Kontsevich build scattering diagrams for cluster varieties
(see [GHKK18, § 1], [GS11, KS14] where the authors use the term wall crossing structures). They
show that a subset of the scattering diagram (called the cluster complex ) has a generalized fan
structure, with chambers full-dimensional simplicial cones when there are no frozen directions.
They then identify these chambers with the cones GB

v . When there are frozen directions, the
chambers in the scattering diagram are no longer strongly convex.6 This lack of strong convexity
corresponds to invertibility of frozen A-variables. Allowing these frozen variables to vanish par-
tially compactifies A, and correspondingly cuts a convex subset Ξ out of the scattering diagram.7

This subset Ξ inherits a fan structure from the scattering diagram, and the maximal cones of
this fan are precisely the cones GB

v . More precisely, we have the following definition.

Definition 4.8. Let Δ+ be the (Fock–Goncharov) cluster complex associated to the initial data
(Γ, v0) without frozen directions (see [GHKK18, Definition 2.9]). Let F ⊂ I be a subset of the
index set. We denote by Δ+

F the subfan of Δ+ consisting of cones that can be linked to the initial
cone by iterated mutations at vertices in I \ F . We call Δ+

F the g-fan associated to the initial
data (Γ ′, v0) obtained from (Γ, v0) by freezing F ⊂ I.

See Figure 3 for an example in type A3.

Remark 4.9. We do not lose any generality in the above definition by starting in the case without
frozen directions, since we can reduce to this case by simply unfreezing all directions.

6 This is why we say generalized fan, as in [CLS11, Definition 6.2.2].
7 Ξ is usually described as

{
W trop ≥ 0

}
, where W : A∨ → C is the Landau–Ginzburg potential associated to this

partial compactification of A.
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Remark 4.10. Until this point we have been working with labeled clusters and labeled Y -seeds.
Notice that the cones GB

v and GB
v′ are equal whenever the unlabeled cluster associated to v is

equal to the unlabeled cluster associated to v′ (see Remark 2.26). Algebraically this corresponds
to the periodicity of the cluster pattern associated to B and geometrically to the redundancies
in the atlas of A. By [Nak19, Theroem 5.9] the periodicity of the cluster pattern associated
to B is the same as the periodicity of the Y -pattern associated to B. Further, by Theorem
2.34 and [CL20, Proposition 6.1] we know that any cluster or Y -pattern with coefficients with
initial matrix B has the same periodicity as its coefficient-free counterpart. Therefore, to avoid
redundancies, we can index the tori in the atlas of a cluster variety (of either type A or X , with
or without coefficients) by the maximal cones of the corresponding g-fan rather than vertices of
Tn, e.g. we can replace ‘TN◦,s for s ∈−→Tn’ by ‘TN◦,G for G ∈ Δ+

F (max)’, where Δ+
F (max) denotes

the set of maximal cones of Δ+
F .

We are now prepared to describe the special completion of an X -variety. By the above
discussion, we have a fan whose maximal cones are G ∈ Δ+

F (max), and along with it we have
the dual cones C. This brings to mind the construction of toric varieties via fans, a construction
which we review in § 5.1.

Let SG be the monoid of M◦-points of C. The monoid algebra C [SG ] is a polynomial algebra
in n algebraically independent variables. We write

An
M◦,G := Spec (C [SG ]) and TM◦,G := Spec

(
C
[
Sgp
G
])
,

where Sgp
G is the group completion of the monoid SG .

Definition 4.11. The special completion of the X -cluster variety XΓ∨ = A∨ is

X̂Γ∨ :=
⋃

G∈Δ+
F (max)

An
M◦,G ,

the scheme with the patches An
M◦,G glued by the usual X -mutation formula (3.4).

Remark 4.12. Observe that this definition treats cluster varieties with and without frozen direc-
tions together. Additionally, by starting with the Langlands dual data Γ∨, we obtain the special
completion X̂Γ of XΓ .

We elaborate on this definition. We take advantage of Remark 4.12 to treat the special
completion X̂Γ , which allows us to drop the superscript ◦. Explicitly, the birational map μk :
An

M,G ��� An
M,G′ restricts to an isomorphism

An
M,G \ ({Xk = 0} ∪ {Xk = −1}) ∼=−→ An

M,G′ \ ({X ′
k = 0

} ∪ {X ′
k = −1

})
,

and we glue An
M,G to An

M,G′ along these subsets. To see that this restriction is indeed an
isomorphism, we show that μ∗k identifies the rings

AG := C
[
X±1

k , Xi�=k, (Xk + 1)−1
]

and AG′ := C
[
X ′

k
±1
, X ′

i�=k,
(
X ′

k + 1
)−1

]
.

Note that it does not matter whether we adjoin (Xk + 1)−1 or (X−1
k + 1)−1 as a generator of AG

since (X−1
k + 1)−1 = Xk(Xk + 1)−1 and X±1

k is in AG .
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Applying μ∗k to generators of AG′ gives the polynomial ring

C

[
X±1

k , Xi�=k

(
1 +X− sgn εik

k

)−εik

,
(
X−1

k + 1
)−1

]
,

and since this ring contains the elements (1 +Xk)±1 and (1 +X−1
k )±1, we can always cancel the

factor (1 +X− sgn εik
k )−εik , leaving Xi�=k. So

C

[
X±1

k , Xi�=k

(
1 +X− sgn εik

k

)−εik

,
(
X−1

k + 1
)−1

]
= AG ,

and μk restricts to an isomorphism of the open subschemes described above.

Remark 4.13. It is well known that X -cluster varieties are generally not separated (see e.g.
[GHK15, Remark 4.2]). However, with only one exception, special completions of X -cluster vari-
eties are never separated. The one exception is type A1, where we simply obtain P1. In all other
cases, let p be the point in An

M,G given by Xk = −1, Xi�=k = 0, and q the point in An
M,G′ given

by X ′
k = −1, X ′

i�=k = 0. Note that p and q are not identified since they lie in the complement of
the gluing locus. But, any (complex analytic) neighborhood of one must contain the other.

5. Toric degenerations of the special completion of X
In this section we build toric degenerations of specially completed X -varieties (with and without
frozen directions). We then discuss properties of both the fibers and the total space. The toric
degenerations we construct here are flat families over An = Spec (C [t1, . . . , tn]) whose central
fibers are toric varieties. The idea is to take the An-patches in the atlas for X̂ and alter the
way they glue together. So each fiber of the family will have the same collection of An-patches,
but we introduce coefficients to the mutation formula (3.4), i.e. to the transition functions. This
modified mutation formula is the specialization of (2.8) to the case of principal coefficients.

Remark 5.1. For expository purposes, we restrict to the skew-symmetric case. All of our results
hold in the skew-symmetrizable case too.

Before getting into this discussion, we briefly recall the construction of toric varieties via
fans. The discussion here closely follows portions of [Ful93, CLS11, Oda88].

5.1 Fans for toric varieties
A fan is a combinatorial object that gives an explicit recipe for building a toric variety as a
scheme. It is in essence a pictorial representation of an atlas, where the building blocks (affine
schemes) are drawn as cones and gluing is given by intersection of cones.

We start with a lattice N ∼= Zn, the cocharacter lattice of the defining torus T . The fan will
live in NR := N ⊗ R. We call the fan Σ, and the associated toric variety TV(Σ). By definition,
Σ is a collection of strongly convex rational polyhedral cones in NR satisfying certain properties,
which we detail after explaining the italicized terms. A rational polyhedral cone in NR is the
R≥0-span of a finite number of integral vectors. It is strongly convex if does not contain a non-
zero linear subspace. Observe that every face of a polyhedral cone is again a polyhedral cone, no
matter the codimension of the face. Now for Σ to be a fan, it must satisfy the following:

– if σ ∈ Σ, and τ is a face of σ, then τ ∈ Σ as well;
– if σ, σ′ ∈ Σ, then their intersection σ ∩ σ′ is a face τ of each.
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σ

σ′

τ

m
-m −σ′∨

σ∨
τ∨

σ′∨

Figure 4. Two adjacent cones σ, σ′ ⊂ NR with σ ∩ σ′ = τ on the left and their dual cones
σ∨, σ′∨ ⊂ τ∨ ⊂MR on the right.

Remark 5.2. In much of the literature, e.g. [Ful93, CLS11], fans are assumed to consist of a
finite collection of cones. The resulting toric varieties are then schemes of finite type over C.
Most cluster varieties are only locally of finite type, so unsurprisingly, we do not require our
fans to have finitely many cones. Toric varieties with infinite fans are treated in [Oda88]. Both,
toric varieties and cluster varieties are schemes of finite type precisely when the fan (g-fan in
the cluster case) is finite. Observe that a cluster variety is of cluster finite type (meaning there
are only finitely many seeds) precisely when it is a finite type scheme over C.

Given a fan Σ in NR, every cone σ ∈ Σ defines an affine scheme in the atlas for TV(Σ)
as follows. Let M = Hom (N,Z) and consider the dual cone σ∨ ⊂MR. Its integral points live
in M , so are characters of T . These integral points σ∨ ∩M form a submonoid of M , denoted
Sσ. The affine patches in the atlas for TV(Σ) are spectra of the monoid rings C [Sσ]. We write
Uσ := Spec (C [σ∨ ∩M ]).

Every face of σ is the intersection of σ with some hyperplane m⊥, where m ∈ σ∨ ∩M . If τ is
a face of σ, then σ∨ ⊂ τ∨ and Sτ = Sσ + Z≥0 (−m) (see Figure 4). Then C [Sτ ] is the localization
of C [Sσ] by the character zm. This gives an embedding Uτ ↪→ Uσ.

If τ is a common face of σ and σ′, then the inclusions of Uτ ↪→ Uσ and Uτ ↪→ Uσ′ glue the
affine patches Uσ and Uσ′ along Uτ , just as the inclusion of τ into σ and σ′ glues the cones σ and σ′

together. More precisely, if τ = σ ∩ σ′ then σ ∩m⊥ = τ = σ′ ∩m⊥ for some m ∈ σ∨ ∩ −σ′∨ ∩M ,
and we have

Uσ ←↩ (Uσ)zm = Uτ = (Uσ′)z−m ↪→ Uσ′ .

5.2 Toric degenerations of X̂
Consider fixed data Γprin as in Definition 3.34 and fix an initial g-cone G0. Let F ⊂ I be the set
of frozen directions. In view of Remarks 3.23 and 4.10 set ti := pi = pi;G0 and Xi = Xi;G0 := yi

for all 1 ≤ i ≤ n. Then the mutation formula (3.7) specializes for X -variables with principal
coefficients to

μ∗k
(
X̃i;G′

)
=

⎧⎨⎩X̃
−1
i;G if i = k,

X̃i;G
(
t[sgn(εik)ck;G ]+ + t[− sgn(εik)ck;G ]+X̃

− sgn(εik)
k;G

)−εik

if i �= k.
(5.1)
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Table 2. Example in type A2. Our convention agrees with [FZ07, Tables 1–4], note only that
we are considering geometric notation and hence the matrices εs = BT

s .

s εs Cs t1;s t2;s X̃1;s X̃2;s

0
(

0 −1
1 0

)
( 1 0

0 1 ) t1 t2 X1 X2

� μ2

1
(

0 1−1 0

) (
1 0
0 −1

)
t1

1
t2

X1(t2X2 + 1)
1
X2

� μ1

2
(

0 −1
1 0

) (−1 0
0 −1

) 1
t1

1
t2

1
X1(t2X2 + 1)

t1t2X1X2 + t1X1 + 1
X2

� μ2

3
(

0 1−1 0

) (−1 0
−1 1

) 1
t1t2

t2
t1X1 + 1
X1X2

X2

t1t2X1X2 + t1X1 + 1
� μ1

4
(

0 −1
1 0

) (
1 −1
1 0

)
t1t2

1
t1

X1X2

t1X1 + 1
1
X1

� μ2

5
(

0 1−1 0

)
( 0 1

1 0 ) t2 t1 X2 X1

We can use sign coherence of c-vectors (Theorem 4.3) to rewrite the i �= k case. If the sign of
ck;G coincides with sgn(εik), then for i �= k (5.1) simplifies to

μ∗k
(
X̃i;G′

)
= X̃i;G

(
t|ck;G | + X̃

− sgn(εik)
k;G

)−εik

. (5.2)

If ck and εik have opposite signs we instead obtain

μ∗k
(
X̃i;G′

)
= X̃i;G

(
1 + t|ck;G |X̃− sgn(εik)

k;G
)−εik

. (5.3)

Here |ck;G | denotes the positive c-vector, i.e. |ck;G | = (|ck1;G |, . . . , |ckn;G |) ∈ Zn
≥0. An example in

type A2 is given in Table 2.
In order to talk about degrees of X -variables with principal coefficients we consider the usual

Zn
≥0-grading on the polynomial ring in n variables X1, . . . , Xn. We extend this notion to a Zn-

grading on the ring of rational functions C(X1, . . . , Xn). For h = f/g with f and g non-zero
homogeneous polynomials let deg(h) := deg(f)− deg(g). We call this the standard grading. In
the case of Aprin by Definition 2.23, Remark 3.17 and Notation 3.38 we see that −deg(ti) = bi =

deg(p̃∗ (Xi)). Motivated by the desire to construct a family fiber-wise dual to Aprin, we therefore
set

deg (ti) := −deg(X̃i).

Note that for R = C[t1, . . . , tn] this gives us the notion of the standard Zn-grading also on
R(X̃1, . . . , X̃n).

Proposition 5.3. The pull-back to s0 of an X -variable with principal coefficients

μ∗s0

(
X̃i;G

)
∈ R(X̃1, . . . , X̃n)
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is homogeneous with respect to the standard Zn-grading. Its degree is the c-vector of Xi;G with

respect to s0:

deg
(
μ∗s0

(X̃i;G)
)

= ci;G .

Proof. This follows from Lemma 2.30 by specializing to principal coefficients. We have

pi;G =
n∏

j=1

p
cji;G
j = tci;G .

Consider the expression Yi;G (p1y1, . . . , pnyn) in the numerator of (2.11), with yi = Xi and pi = ti.
Since by definition we have deg(tiXi) = 0 for all i, we deduce deg(Yi;G (t1X1, . . . , tnXn)) = 0.
Then as by (2.11)

μ∗s0

(
X̃i;G

)
=
Yi;G(t1X1, . . . , tnXn)

tci;G ,

it follows that deg(μ∗s0
(X̃i;G)) = −deg (tci;G ) = ci;G . �

On account of Proposition 5.3, it is natural to ask whether there is any special relationship
between μ∗s0

(X̃i;G) and X̃ci;G := X̃
ci1;G
1 · · · X̃cin;G

n . The answer is yes, and the following proposition
makes this relationship precise.

Proposition 5.4. The pull-back μ∗s0
(X̃i;G) of an X -variable with principal coefficients satisfies

lim
t→0

μ∗s0

(
X̃i;G

)
= X̃ci;G . (5.4)

Moreover, μ∗s0
(X̃i;G) is the unique homogenization of the coefficient-free expression μ∗s0

(X̃i;G)|t=1

of degree ci;G satisfying (5.4).

Proof. For G = G0, (5.4) is clear. Suppose now that it holds for some arbitrary g-cone G. We
show that it must hold for all g-cones G′ sharing a facet with G as well. Take G′ to be related
to G by mutation in direction k. Using (5.1), we can express X̃i;G′ in terms of X̃1;G , . . . , X̃n;G ,
and then take the t→ 0 limit. First note that (2.5) gives us the following mutation formula for
c-vectors:

c′i =

{
−ci if i = k

ci + sgn (εik) [εikck]+ if i �= k.
(5.5)

For i = k we have

lim
t→0

μ∗s0

(
X̃k;G′

)
= lim

t→0
μ∗s0

(
μ∗k(X̃k;G′)

)
= lim

t→0
μ∗s0

(
X̃−1

k;G
)

= X̃−ck;G = X̃ck;G′ .

Now take i �= k. First suppose εik and ck;G have the same sign. Then

lim
t→0

μ∗s0

(
X̃i;G′

)
= lim

t→0
μ∗s0

(
μ∗k(X̃i;G′)

)
= lim

t→0
μ∗s0

(
X̃i;G(t|ck;G| + X̃

− sgn(εik)
k;G )−εik

)
= X̃ci;G+|εik|ck;G = X̃ci;G′ .
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If εik and ck;G have opposite signs, we have

lim
t→0

μ∗s0

(
X̃i;G′

)
= lim

t→0
μ∗s0

(
μ∗k(X̃i;G′)

)
= lim

t→0
μ∗s0

(
X̃i;G(1 + t|ck;G|X̃− sgn(εik)

k;G )−εik

)
= X̃ci;G = X̃ci;G′ .

This establishes (5.4).
We move on to uniqueness. The coefficient-free expression μ∗s0

(X̃i;G)|t=1 is a rational function
in C(X̃1, . . . , X̃n). Write

μ∗s0

(
X̃i;G

)∣∣∣
t=1

=
f(X̃1, . . . , X̃n)

g(X̃1, . . . , X̃n)
=:

f(X̃)

g(X̃)
.

Assume there are two homogenizations of μ∗s0
(X̃i;G)|t=1 such that (5.4) holds. The key observation

is that if (5.4) holds for some homogenization, then for this homogenization there must be exactly
one monomial in each f and g that does not pick up a (non-trivial) tn coefficient.8 The result
follows immediately from here.

For the observation, first suppose (f(X̃, t)/g(X̃, t)) ∈ R(X̃1, . . . , X̃n) is some arbitrary
rational function in X̃i and ti. Given a path γ : [0, 1]→ Cn with γ(1) = 0, the limit

lim
t

γ→0

f(X̃, t)

g(X̃, t)

picks out the summands of f and g that vanish most slowly along γ. The result, if it exists, is
a new rational function whose numerator is a partial sum coming from f and denominator is a
partial sum coming from g. If this limit is a non-zero Laurent monomial, then the partial sums
contain exactly one term. We are interested in the case where this limit is the monomial X̃ci;G

for every such γ. Take γ and γ′ with

lim
t
γ,γ′→ 0

f(X̃, t)

g(X̃, t)
= X̃ci;G .

Associated to γ we have the summands X̃nf of f and X̃ng of g, with nf , ng ∈ Zn
≥0 and

X̃nf

X̃ng
= X̃ci;G .

We similarly associate X̃n′
f and X̃n′

g to γ′. There are two cases to consider: either X̃nf divides
X̃n′

f , respectively vice versa, or neither divides the other. Suppose X̃nf divides X̃n′
f . Then

to homogenize f , we have to multiply X̃n′
f by the coefficient tn

′
f−nf . In this case, assuming

n′
f − nf �= 0, there cannot exist a path along which the summand X̃nf vanishes more quickly

than the summand X̃n′
f . So we must have X̃nf = X̃n′

f , and hence X̃ng = X̃n′
g as well.

On the other hand, suppose neither X̃nf nor X̃n′
f divides the other. Let nf = (nf ;1, . . . , nf ;n)

and n′
f = (n′f ;1, . . . , n

′
f ;n). Set d =

∑
i[nf ;i − n′f ;i]+ei and d′ =

∑
i[n

′
f ;i − nf ;i]+ei. Both are non-

zero. In homogenizing f , X̃nf must obtain a coefficient of (at least) td and X̃n′
f a coefficient of

td
′
. Any additional factors of t the two summands obtain must match. Therefore, X̃ng and X̃n′

g

8 Assuming of course that the homogenizations of f and g are relatively prime.
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must obtain these coefficients as well. Along any path γ′′ contained in the hyperplane td = td
′
,

we will have

lim
t
γ′′→0

tdX̃nf + td
′
X̃n′

f

tdX̃ng + td′X̃n′
g

=
X̃nf + X̃n′

f

X̃ng + X̃n′
g
.

Perhaps after considering additional summands (in the case that some other summand vanishes
more quickly along γ′′), we find that the limit along some path is not a Laurent monomial. This
contradicts our assumption and proves the claim. �

Remark 5.5. The above proposition tells us we have a canonical homogenization of cluster
variables. Note that this in turn gives a homogenization of all cluster monomials.

We are now prepared to describe toric degenerations of X̂ .

Definition 5.6. We define X̂G0 to be the scheme over R with affine patches

UG := Spec
(
R
[
X̃1;G , . . . , X̃n;G

])
and gluing given by (5.1). By analogy, we denote by XG0 the scheme obtained by instead gluing
U±
G := Spec(R[X̃1;G±1, . . . , X̃n;G±1]). Recall from Remark 4.10 that the schemes XG0 and Xs0

are isomorphic.

The open subschemes along which UG and UG′ are glued have a very similar description to
those discussed below Definition 4.11. To simplify notation, let ck = ck;G and c′k = ck;G′ for two
adjacent g-cones G and G′ sharing a facet contained in c⊥k . On the level of rings we set

AG = R

[
X̃±1

k;G , X̃i;G ,
(
t[sgn(εik)ck]+ + t[sgn(εik)ck]+X̃

− sgn(εik)
k;G

)−1
]

i�=k

.

Note that sgn(εik)ck = sgn(ε′ik)c
′
k and μ∗k(X̃

− sgn(ε′ik)

k;G′ ) = X̃
− sgn(εik)
k;G . Then applying μ∗k to genera-

tors of AG′ yields

μ∗k
(
X̃∓1

k;G′

)
= X̃±1

k;G , (5.6)

μ∗k
(
X̃i;G′

)
= X̃i;G

(
t[sgn(εik)ck]+ + t[− sgn(εik)ck]+X̃

− sgn(εik)
k;G

)−εik

, (5.7)

μ∗k
(
t[sgn(ε′ik)c′k]+ + t[− sgn(ε′ik)c′k]+X̃

− sgn(ε′ik)

k;G′

)−1
=
(
t[sgn(εik)ck]+ + t[− sgn(εik)ck]+X̃

− sgn(εik)
k;G

)−1
.

(5.8)

Only (5.7) needs further consideration. If −εik > 0, we can use (5.8) to recover X̃i;G from (5.7).
Meanwhile, if −εik < 0, the term within parenthesis is in R[X±1

k;G ], so we can use (5.6) to recover
(5.7). On the other hand, the expressions on the right hand side of (5.6), (5.7) and (5.8) are all
in AG , so μ∗k defines an isomorphism of AG and AG′ . Geometrically, we are gluing the subschemes

UG \
({

X̃k;G = 0
}⋃{

t[sgn(εik)ck]+ + t[− sgn(εik)ck]+X̃
− sgn(εik)
k;G = 0

}
i�=k

)
, (5.9)

UG′ \
({

X̃k;G′ = 0
}⋃{

t[sgn(ε′ik)c′k]+ + t[− sgn(ε′ik)c′k]+X̃
− sgn(ε′ik)

k;G′ = 0
}

i�=k

)
. (5.10)
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To see that Definition 5.6 makes sense, we also need to verify that the cocycle condition holds.
But this follows immediately from Theorem 2.34. Now observe that the fiber over 1 is precisely
X̂ , and the restriction of X̃i;G to this fiber is Xi;G .

Proposition 5.7. The family π : X̂G0 → Spec (R) is a flat family.

Proof. This follows from the definition of X̂G0 . Flatness is a local property, so we are free to
restrict to affine patches. The induced map of rings R→ R[X̃1;G , . . . , X̃n;G ] is flat for every G, so
X̂G0 → Spec (R) is a flat morphism of schemes. �

Theorem 5.8. The flat family X̂G0 → Spec (R) is a toric degeneration of X̂ to TV(Δ+
F ).

Proof. We have already noted that the fiber over 1 is X̂ and shown flatness. We only need to
check that the central fiber X̂0 is indeed TV(Δ+

F ). Clearly, we can identify the affine patches of
X̂0 associated to maximal cones of Δ+

F with those of TV(Δ+
F ); in both cases we have a copy of An

for every maximal cone of Δ+
F . We just need to demonstrate that the gluing of these patches in

X̂0 coincides with the gluing in TV(Δ+
F ). This amounts to verifying the following two things:

(i) the overlap of neighboring affine patches in X̂0 and TV(Δ+
F ) agree;

(ii) the transition functions on these overlaps agree.

For TV(Δ+
F ), SG is the monoid of integral points in the dual cone C. The non-identity

generators of this monoid are precisely c1;G , . . . , cn;G , with ck;G normal to the facet of G spanned
by {gi;G}i�=k. If G′ shares this facet with G, then in TV(Δ+

F ) the subscheme of An
G overlapping

An
G′ is the localization

(
An
G
)
X̃k;G

= An
G \ {X̃k;G = 0}.

To establish (i), we need to see that specializing t = 0 in (5.9) results in precisely the same
subset of An

G being removed. The first piece removed in (5.9) is exactly {X̃k;G = 0}, so we have
to show that nothing else is removed when t = 0. When εik and ck have the same sign,

t[sgn(εik)ck]+ + t[− sgn(εik)ck]+X̃
− sgn(εik)
k;G = t|ck| + X̃

− sgn(εik)
k;G .

For t = 0 we eliminate the locus {X̃− sgn(εik)
k;G = 0}. If the exponent is positive, we have already

removed this. If it is negative, the locus is empty. On the other hand, when εik and ck have
opposite signs,

t[sgn(εik)ck]+ + t[− sgn(εik)ck]+X̃
− sgn(εik)
k;G = 1 + t|ck|X̃− sgn(εik)

k;G .

When t = 0 in this case, we eliminate the locus {1 = 0}, which is obviously empty. This
establishes (i).

For (ii), note that elements of SG correspond to functions on TV(Δ+
F ) that restrict to char-

acters on the defining torus of TV(Δ+
F ). Specifically, they are the characters whose exponent

vectors are integral points of C. On intersections, the relations between elements of SG and SG′

are precisely the relations between their exponent vectors, living in C and C′, respectively. The
first part of Proposition 5.4 and Remark 5.5 show that the X -monomials on the patches An

G and
An
G′ of X̂0 are related in the same way. �

Remark 5.9. The key idea here is that by restricting to a domain of linearity in X trop (R) we
find ourselves in the cozy world of toric varieties, where relations between generators are as

2190

https://doi.org/10.1112/S0010437X2000740X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2000740X


Toric degenerations of cluster varieties and cluster duality

straightforward as vector addition. When we cross a wall of the scattering diagram, we relate
generators by mutation instead. As we approach the central fiber, mutation relations revert back
to the toric version where we simply add exponent vectors. It is not necessary to insist that
the patches we glue by mutation be copies of An. We can repeat the construction with different
compactifications of the cluster tori. If we consider a refinement Σ of the g-fan, we can take our
‘patches’ to be the toric varieties associated to subfans whose support is a domain of linearity.
This gives a different partial minimal model X̂Σ of X . Mutation gives the gluing of these patches
as before, and the family is a toric degeneration of X̂Σ to TV(Σ). We will see examples of this in
a sequel with M.-W. Cheung, with such compactifications and their toric degenerations arising
as duals to compactified A-varieties and the Aprin-family.

We can use the family X̂G0 to give a new notion of c-vector analogously to the definition of
g-vectors given in [GHKK18, Definition 5.6].

Definition 5.10. Let f ∈ R(X1, . . . , Xn) be a homogeneous rational function on X̂G0 . We define
the c-vector of f at G0 (or at s0) by cG0(f) = cs0(f) := deg(f) and the c-vector at G0 of a cluster
monomial on X as the c-vector at G0 of its extension to X̂G0 .

We now turn our attention to the fibers of the family.

Proposition 5.11. For u,u′ ∈ (C∗)n the two fibers X̂u and X̂u′ of the family X̂G0 → Spec (R)
are isomorphic.

Proof. For a given g-cone G let UG |t=u denote by a little abuse of notation the affine patch
Spec(C[X̃1;G , . . . , X̃n;G ]) of X̂u. Similarly, let UG |t=u′ be Spec(C[X̃ ′

1;G , . . . , X̃
′
n;G ]) of X̂u′ . We define

an isomorphism ψG : UG |t=u′ → UG |t=u by the pull-back on functions:

ψ∗
G : C[X̃1;G , . . . , X̃n;G ]→ C[X̃ ′

1;G , . . . , X̃
′
n;G ], where X̃i;G �→ u′ci;G

uci;G X̃
′
i;G ∀i.

Let G′ be the g-cone related to G by mutation in direction k, i.e. sharing the facet in c⊥k . We have
to show that this isomorphism commutes with the gluing given by μk. The transition functions on
intersections of the affine patches in X̂u are obtained by specializing t = u in (5.1) and similarly
for X̂u′ . We show commutativity on the level of rings, i.e. ψ∗

G ◦ μ∗k(X̃i;G′) = μ∗k ◦ ψ∗
G′(X̃i;G′) for

every i ∈ [1, n]. For i = k by (5.1) and (5.5) we have

ψ∗
G ◦ μ∗k

(
X̃k;G′

)
= ψ∗

G
(
X̃−1

k;G
)

=
uck;G

u′ck;G X̃
′−1
k;G

=
u′ck;G′

uck;G′ X̃
′−1
k;G = μ∗k

(
u′ck;G′

uck;G′ X̃
′
k;G′

)
= μ∗k ◦ ψ∗

G′
(
X̃k;G′

)
.

For i �= k we distinguish two cases as follows.
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Case 1. If sgn(εik) �= sgn(ck;G), note that ci;G′ = ci;G + sgn(εik)[εikck;G ]+ = ci;G , then

ψ∗
G ◦ μ∗k

(
X̃i;G′

)
= ψ∗

G
(
X̃i;G(1 + u|ck;G |X̃− sgn(εik)

k;G )−εik

)
=

u′ci;G

uci;G X̃
′
i;G

(
1 + u|ck;G |

(
u′ck;G

uck;G X̃
′
k;G

)− sgn(εik)
)−εik

|ck;G |=− sgn(εik)ck;G=
u′ci;G

uci;G X̃
′
i;G
(
1 + u′|ck;G |X̃ ′

k;G
− sgn(εik)

)−εik

ci;G′=ci;G
=

u′ci;G′

uci;G′ X̃
′
i;G
(
1 + u′|ck;G |X̃ ′

k;G
− sgn(εik)

)−εik

= μ∗k

(
u′ci;G′

uci;G′ X̃
′
i;G′

)
= μ∗k ◦ ψ∗

G′
(
X̃i;G′

)
.

Case 2. If sgn(εik) = sgn(ck;G) note that ci;G′ = ci;G + sgn(εik)[εikck;G ]+ = ci;G + sgn(εik)εikck;G .
This is used in the step labeled by � below. We compute the following:

ψ∗
G ◦ μ∗k

(
X̃i;G′

)
= ψ∗

G
(
X̃i;G(u|ck;G | + X̃

− sgn(εik)
k;G )−εik

)
=

u′ci;G

uci;G X̃
′
i;G

(
u|ck;G | +

(
u′ck;G

uck;G X̃
′
k;G

)− sgn(εik)
)−εik

|ck;G |=sgn(εik)ck;G=
u′ci;G

uci;G X̃
′
i;G

(
1

u− sgn(εik)ck;G
+

u′−sgn(εik)ck;G

u− sgn(εik)ck;G
X̃

′−sgn(εik)
k;G

)−εik

=
u′ci;G

uci;G X̃
′
i;G

(
u′−sgn(εik)ck;G

u− sgn(εik)ck;G

(
1

u′−sgn(εik)ck;G
+ X̃

′−sgn(εik)
k;G

))−εik

=
u′ci;G+sgn(εik)εikck;G

uci;G+sgn(εik)εikck;G
X̃ ′

i;G
(
u′|ck;G | + X̃

′−sgn(εik)
k;G

)−εik

�
= μ∗k

(
u′ci;G′

uci;G′ X̃
′
i;G′

)
= μ∗k ◦ ψ′∗

G
(
X̃i;G′

)
.

�

Proposition 5.12. X̂G0 → Spec (R) is an open morphism.

Proof. Openness is a local property of morphisms so we are free to restrict to affine patches.
We just need to see that Spec(R[X̃1;G , . . . , X̃n;G ])→ Spec (R) is open. But this is clear, see e.g.
[Sta18, Lemma 037G]. �

Corollary 5.13. For u ∈ (C∗)n the fiber X̂u is smooth. In particular, X̂ is smooth.

Proof. First, we observe that X̂0 is smooth. The g-fan is simplicial, with the generators of each
maximal cone forming a Z-basis of M . This implies smoothness for the toric central fiber [Oda88,
Theorem 1.10]. By [GD66, Theorem 12.1.6(iii)], the set of x ∈ X̂G0 such that X̂π(x) is smooth is
open in X̂G0 . So, by Proposition 5.12, the set of u ∈ Spec (R) such that X̂u is smooth is open
in Spec (R). Then there is an open neighborhood of 0 having smooth fibers. The claim follows
from Proposition 5.11. �
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6. Strata and their degenerations

The results of the last section show that X̂t (for a given t ∈ Cn) is constructed from a fan much
the same way as a toric variety. Unsurprisingly then, X̂t is naturally stratified in a manner
reminiscent of the usual stratification of a toric variety by lower dimensional toric subvarieties.
In fact, the affine patches An

G defining X̂t are toric varieties, and the restriction of X̂t strata to
An
G gives exactly the toric strata of An

G . To get the full strata for X̂t, we simply glue together toric
strata from different affine patches via the extended X̂G0 mutation formula. The main results of
this section are that this does indeed yield a stratification of X̂t, the resulting strata are lower
dimensional X̂ -cluster varieties with specified coefficients, and these strata degenerate precisely
to the toric strata of the central fiber X̂0 = TV(Δ+

F ).
Let us start by fixing terminology and briefly reviewing the toric description, following [Ful93,

§ 3.1]. We say a scheme Y is stratified by subschemes of type P if there is a collection S of
subschemes Yi of type P (called strata) such that

Y =
⋃
S
Yi

and for every pair (Yi, Yj) of elements of S, Yi ∩ Yj is also in S. For example, we discuss below
how every toric variety is stratified by toric varieties: the torus orbit closures. Alternatively,
though this is not the approach we adopt, we can stratify toric varieties by tori (torus orbits)
viewing ∅ as a torus of dimension −1.9

Let TV(Σ) be the toric variety associated to a fan Σ. Let N be the cocharacter lattice of the
defining torus and M its character lattice. For every cone τ in Σ, we have a torus orbit O(τ),
which itself is a torus. We denote the closure of O(τ) by V (τ). Then V (τ) is a toric variety, and
it is what we refer to as a toric stratum. The torus O(τ) is Spec(C[τ⊥ ∩M ]), so the fan for V (τ)
lives in (τ⊥ ∩M)∗ ⊗ R. Let N(τ) := (τ⊥ ∩M)∗ be the quotient of N by the group completion
of τ ∩N . The fan for V (τ), denoted Star(τ), is built from the cones of Σ containing τ as a face.
If σ is such a cone, we take its image σ̄ in N(τ)⊗ R. The collection of these σ form a subfan of
Σ, and their images σ̄ form the fan Star(τ) in N(τ)⊗ R.

To realize V (τ) as a closed subscheme of TV(Σ), we work with the defining affine patches.
In V (τ), these have the form Spec(C[σ̄∨ ∩ τ⊥ ∩M ]). Note that σ̄∨ ∩ τ⊥ ∩M is the same as
σ∨ ∩ τ⊥ ∩M , and Spec (C [σ∨ ∩M ]) is a defining affine patch of TV(Σ). We have Spec(C[σ∨ ∩
τ⊥ ∩M ]) ↪→ Spec(C[σ∨ ∩M ]) via the projection of rings:

C[σ∨ ∩M ]→ C[σ∨ ∩ τ⊥ ∩M ], zm �→
{
zm if m ∈ σ∨ ∩ τ⊥ ∩M,

0 otherwise.

Since the defining affine patches of X̂t are precisely the maximal affine toric varieties making
up TV(Δ+

F ), these affine patches are stratified as described above. But how do the strata of
different patches relate? Extending the toric analogy, if we fix a cone τ in Δ+

F , do the associated
strata in distinct affine patches glue together to form a closed subscheme of X̂t? And if so,
does this subscheme inherit any structure from X̂t, particularly structure encoded by a tropical
version of Star(τ)?

9 There is an analogous stratification of X̂t is by lower dimensional X -varieties with specified coefficients, rather
than their special completions.
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In [FG16] Fock and Goncharov give results in this direction for X̂ = X̂1. Specifically, they
show that if we take an M -seed s, freeze some directions and set the corresponding X -variables
to 0, we obtain an X -cluster variety as an immersed subscheme at the boundary of X̂ . This line
of reasoning extends directly to the case of coefficients and is a central argument in Theorem 6.2.
The other key ingredient is Cao and Li’s result [CL20, Theorem 6.2]. Stated in the terminology
of this paper it is as follows.

Theorem 6.1 [CL20]. Let (Γ, v0) be arbitrary skew-symmetrizable initial data with frozen

directions. Then any two clusters containing the same subset {A1, . . . , Aa} of A-cluster vari-

ables can be connected to each other by iterated mutation without exchanging any of the cluster

variables in {A1, . . . , Aa}.

This result leads to the stratification of X̂t by specially completed X -varieties with speci-
fied coefficients, an upgrade on X̂t \ Xt having immersed specially completed X -varieties with
specified coefficients.

Theorem 6.2. Let X̂t be a specially completed X -variety with specified coefficients, and let

τ be a k-dimensional cone in Δ+
F . Then τ defines a codimension k closed subscheme V (τ)t

of X̂t for each t. Moreover, V (τ)t is again a specially completed X -variety with specified

coefficients t.

Proof. On the affine patches defining X̂t we still have the inclusion

Spec
(
C
[
σ∨ ∩ τ⊥ ∩M

])
↪→ Spec

(
C
[
σ∨ ∩M])

for all cones σ of Δ+
F containing τ . Note that τ is the R≥0-span of k-many g-vectors. Then for

any g-cone G containing τ , τ⊥ is the R-span of the (n− k)-many c-vector generators of C = G∨
that are orthogonal to τ .

Take σ to be an m-dimensional cone of Δ+
F with τ ⊂ σ ⊂ G. Then C[σ∨ ∩ τ⊥ ∩M ] is just

C[Xi1 , . . . , Xim−k
, X±1

im−k+1
, . . . , X±1

in−k
]. Here the first m− k terms are the X -variables associated

to generators of C that are orthogonal to τ but not σ, while the remaining terms correspond
to generators orthogonal to both τ and σ. There are two extreme cases. When σ = τ , we have
σ∨ ∩ τ⊥ = τ⊥. Then

Spec
(
C
[
σ∨ ∩ τ⊥ ∩M

])
= Spec

(
C
[
X±1

i1
, . . . , X±1

in−k

])
,

which will be a torus in the atlas of the X -variety associated to τ . We call it TM,G(τ). On the
other side of the spectrum, when σ = G we have

Spec
(
C
[
σ∨ ∩ τ⊥ ∩M

])
= Spec

(
C
[
Xi1 , . . . , Xin−k

])
.

This will be the corresponding copy of An−k in the atlas of this X -variety’s special completion
with specified coefficients. Call it An−k

M,G (τ).
Mutation is given by crossing walls of Δ+

F . The relevant mutations here correspond to
walls containing τ , and mutation directions correspond to indices of τ⊥. Specifically, if we
set I(τ) := {i1, . . . , in−k}, the relevant mutation directions are Iuf(τ) := I(τ) \ F . Observe the
following.
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(i) Since we will never mutate at j /∈ I(τ), by the mutation formula (5.1) we have

μ∗k
(
X̃j;G′

)
= X̃j;G

(
t[sgn(εjk)ck;G ]+ + t[− sgn(εjk)ck;G ]+X̃

− sgn(εjk)
k;G

)−εjk

for all j /∈ I(τ).
(ii) For i ∈ I(τ), the mutation formula (5.1) is independent of X̃j;G for all j /∈ I(τ).

On account of (i), we can consistently set X̃j;G = 0 for all j /∈ I(τ) and all g-cones G containing
τ . By (ii), doing so will not alter the relations among the variables we have not set to 0: those
indexed by I(τ). Now fix some G0 ⊃ τ . By the preceding discussion, if we set X̃j;G = 0 for
j /∈ Iuf(τ), G ⊃ τ , and restrict the indices of our exchange matrix ε at G0 to I(τ), what we
obtain will be an immersed (n− k)-dimensional X -variety with specified coefficients Xt(τ)G0

glued from the tori TM,G(τ) mutation equivalent to TM,G0(τ). Replacing TM,G(τ) with An−k
M,G(τ)

gives its special completion X̂t(τ)G0 .
Now let G′0 be another g-cone containing τ . If G0 and G′0 are connected by mutation in

Iuf(τ), then Xt(τ)G0 = Xt(τ)G′
0

and X̂t(τ)G0 = X̂t(τ)G′
0
. If, on the other hand, G0 and G′0 were

only connected by mutation in Iuf (rather than Iuf(τ)) then mutation in Iuf would glue Xt(τ)G0

with Xt(τ)G′
0

and X̂t(τ)G0 with X̂t(τ)G′
0

in the ambient space X̂t. But Xt(τ)G0 and Xt(τ)G′
0

would
be distinct immersed X -cluster varieties with specified coefficients (and their special completions
would likewise be distinct), and we would not have the claimed stratification. However, the
content of [CL20, Theorem 6.2] is precisely that G0 and G′0 are connected by mutation in Iuf(τ).
That is, X̂t(τ)G is independent of G, and is exactly the immersed subscheme given by Star (τ).
We call it V (τ)t. �

From this perspective, we have a family of specially completed X -varieties with specified
coefficients, which are in turn stratified by specially completed X -varieties with specified coef-
ficients. The X̂t degenerate to toric varieties, which themselves are stratified by toric varieties.
It would be very satisfying then if the X̂t strata degenerate to the toric strata. In fact, from the
description of the X̂t strata given above, it is almost immediate that this occurs. Taking t to 0
in (5.1) yields the following result.

Theorem 6.3. Let X̂t and V (τ)t be as in Theorem 6.2. Then V (τ)t degenerates to the toric

stratum V (τ) of the toric central fiber.

7. Examples and applications

In this section we give examples of toric degenerations of compactified cluster varieties, and we
relate the A and X degenerations in these examples.

7.1 Rietsch–Williams degeneration of Grassmannians
In [RW19], Rietsch and Williams study Newton–Okounkov bodies for the anticanonical divisor of
the Grassmannian. For a given seed in the underlying cluster algebra they construct a valuation
using flow polynomials and Postnikov’s plabic graphs10 (see [Pos06]). By [And13, Kav15] the
Newton–Okounkov bodies (rational polytopes in this case) induce toric degenerations of the

10 In this setting plabic graphs encode cluster seeds consisting of only Plücker coordinates. We refer to [RW19,
§ 3] for details.
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Figure 5. Grec
3,5 with perfect orientation, as in [RW19, Figure 7].

Grassmannian. Further, they show that the Newton–Okounkov polytopes are in fact equal to
polytopes arising from a Landau–Ginzburg potential introduced by Marsh and Rietsch in [MR20].

Below we relate the Rietsch–Williams construction to the X - and Aprin-families for Gr2(C5).
Passing though X , we show that the Rietsch–Williams toric degeneration is precisely the Aprin-
family of [GHKK18]. We identify both the Newton–Okounkov body ΔRW and the superpotential
polytope ΓRW of [RW19] with the superpotential polytope ΞGHKK of [GHKK18], giving a new
proof of the equality of the Rietsch–Williams polytopes. We will treat the general case of Grk (Cn)
in a forthcoming paper by Bossinger, Cheung, Magee and Nájera Chávez. We use the notation
introduced in [RW19]. The strategy is as follows.

(i) Identify the Marsh–Rietsch potential on qX◦ ⊂ Gr2(C5) with the Gross–Hacking–Keel–
Kontsevich potential on its mirror X◦ via an isomorphism of qX◦ ∼→ X◦. This identifies ΓRW

with ΞGHKK and it identifies as well the uncompactified families X and Aprin.
(ii) Use this isomorphism to reinterpret the Rietsch–Williams flow polynomials for Plücker

coordinates on qX◦ as polynomials in the X -variables of X◦.
(iii) Extend the flow polynomials to X and identify the Rietsch–Williams valuation valG (pij)

of each Plücker coordinate pij with c (pij). This identifies ΔRW with ΞGHKK, and estab-
lishes that the toric degeneration of the compactification Gr2(C5) in [RW19] matches the
[GHKK18] toric degeneration Aprin.

In the affine cone C(Gr2(C5)) of Gr2(C5) take the divisors Di,i+1 := {pi,i+1 = 0} for i ∈ Z/5Z
and let D be their union. The A-cluster variety we are considering is the complement of D in
C(Gr2(C5)). We discussed this cluster variety briefly in Example 2.41 to illustrate how to pass
from a cluster pattern with geometric coefficients to a higher rank coefficient-free cluster pattern
with frozen directions. Let qX◦ denote the image of A in Gr2(C5). It inherits a cluster structure
from A. Consider the plabic graph Grec

3,5 with perfect orientation as shown in Figure 5.
Faces of the plabic graph, labeled by Young diagrams μ, are associated with variables xμ.

The flow model assigns to every Plücker coordinate pij ∈ C[C(Gr2(C5))] a polynomial in the
variables xμ. This yields the flow polynomials (see [RW19, Example 6.11]):

Flow(p12) = 1, Flow(p13) = x ,

Flow(p14) = x x , Flow(p15) = x x x ,

Flow(p23) = x x , Flow(p24) = x x x (1 + x ),
Flow(p25) = x x x x (1 + x + x x ), Flow(p34) = x x x x2 ,

Flow(p35) = x x x x x2 (1 + x ), Flow(p45) = x x x x x2x2 .

(7.1)

We interpret Flow(p12) = 1 as a normalization. Dividing every Plücker coordinate by p12

allows us to think of them as functions on qX◦ rather than A. In light of this, we view the
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Figure 6. Cluster determined by the monomials of (7.1).

arguments of Flow as functions on qX◦. We will reinterpret the flow polynomials in terms of
X -variables, and then extend the resulting functions to X . Observe that the flow polynomials
in (7.1) which are actually monomials determine the cluster depicted in Figure 6.

We take this to be the initial cluster and write s0 for the initial seed. Throughout this
example, cluster variables written without a subscript specifying the seed will come from this
seed. So when we write, for instance, Xi, we will mean Xi;s0 .

The Plücker coordinates are A-variables, and we want to express them in terms of
X -variables. To do this, we make use of a map p : A → X (see Definition 3.16). Recall that
this map p is defined in terms of pull-backs of functions. On character lattices of cluster tori, it is
given by a map p∗ : N→M that agrees with n �→ {n, · } up to a choice of map N/Nuf → N⊥

uf .
11

Recall that Ai = zfi and Xi = zei . For e13 and e14, we compute

p∗ (X13) =
p12p34

p14p23
,

Flow (p12) Flow (p34)
Flow (p14) Flow (p23)

= x ,

p∗ (X14) =
p13p45

p15p34
,

Flow (p13) Flow (p45)
Flow (p15) Flow (p34)

= x .

(7.2)

The remaining pull-backs depend on the choice of map N/Nuf → Nuf
⊥, and we will compare

the Marsh–Rietsch and Gross–Hacking–Keel–Kontsevich potentials in order to make this choice.
From the [GHKK18] perspective, each component Di,i+1 of D defines a ϑ-function ϑi,i+1 on the
mirror X of A. If s is a seed optimized12 for the frozen index i,i+1 (see [GHKK18, Definition 9.1,
Lemma 9.3]), the ϑ-function ϑi,i+1 is given by ϑi,i+1 = z−ei,i+1;s = X−1

i,i+1;s. We can mutate from s

to s0 to express ϑi,i+1 in terms of the variables of the initial seed. The potential WGHKK : X → C
is the sum of the ϑ-functions associated to each component Di,i+1 of D. It is straightforward to
compute these ϑ-functions in terms of the X -variables of s0:

ϑ12 = X−1
12 ,

ϑ23 = X−1
23 +X−1

23 X
−1
13 ,

ϑ34 = X−1
34 +X−1

34 X
−1
14 ,

ϑ45 = X−1
45 ,

ϑ15 = X−1
15 +X−1

15 X
−1
14 +X−1

15 X
−1
14 X

−1
13 .

(7.3)

Next, the Marsh–Rietsch potential WMR on qX◦ × C∗ also has a summand Wi associated
to each component of D, and the potential WMR|q=1 : qX◦ → C is the sum of the Wi. See

11 As the exchange matrix in this example is skew-symmetric, A∨ = X and the superscript ◦ for lattices becomes
unnecessary.
12 This refers to the vertex vi,i+1 being a sink in our case.

2197

https://doi.org/10.1112/S0010437X2000740X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2000740X


L. Bossinger et al.

[RW19, Equations 10.1 and 10.2]. We can choose the map N/Nuf → N⊥
uf such that p∗ (ϑi+1,i+2)

is the summand Wi = pi+1,i+3/pi+1,i+2 of [RW19, Equation 10.2]. For each i we compute
Flow(Wi) = Flow(pi+1,i+3)/Flow(pi+1,i+2) and obtain

Flow(W5) = x ,

Flow(W1) = x (1 + x ) ,

Flow(W2) = x (1 + x ) ,

Flow(W3) = (x x x x x x )−1,

Flow(W4) = x (1 + x + x x ) .

(7.4)

Note that functions on qX◦ are functions on A fixed by the C∗-action of simultaneous scaling.
We have a ϑ-basis for O(A) from X trop(Z). The slice (X◦)trop (Z) corresponding to functions
fixed by this action gives a ϑ-basis for O(qX◦). Explicitly, let

a = a12f12 + a13f13 + a14f14 + a15f15 + a23f23 + a34f34 + a45f45

be an arbitrary element of M ∼= X trop(Z). Then a ∈ (X◦)trop (Z) if and only if

a12 + a13 + a14 + a15 + a23 + a34 + a45 = 0.

Dually, we identify (qX◦)trop (Z) with the quotient of N by

1 = e12 + e13 + e14 + e15 + e23 + e34 + e45.

Observe that p∗ (N) = 1⊥ ⊂M and Z · 1 = ker (p∗), so p∗ induces an isomorphism

p̄∗ : (qX◦)trop (Z) ∼→ (X◦)trop (Z) , (7.5)

i.e. an isomorphism p̄ : qX◦ ∼→ X◦. We have the following commutative diagrams.

Below, we identify the xμ with functions on X◦, and conclude that Flow is precisely
(
p̄−1

)∗.
Given a function F on X (denoted with a capital letter), denote by f (in lowercase) the associated
function

(
p̄−1

)∗ (p∗ (F )) on X◦. For example, for every X -variable Xij we obtain a function on
X◦ denoted xij = (p̄−1)∗ ◦ (p∗(Xij)).

In light of (7.2), we make the identifications

x = x13 and x = x14.

Next, comparing (7.3) and (7.4), we set

x = xc(ϑ12) = x−1
12 , x = xc(ϑ23) = x−1

23 x
−1
13 ,

x = xc(ϑ34) = x−1
34 x

−1
14 , x = xc(ϑ15) = x−1

15 x
−1
14 x

−1
13 .

Finally, observe

c (X13) + c (X14) + c (ϑ12) + c (ϑ23) + c (ϑ34) + c (ϑ45) + c (ϑ15) = −1 ∈ ker(p∗).
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With this in mind, we set

x∅x x x x x x = 1 and x∅ = xc(ϑ45) = x−1
45 .

With these identifications, it is immediate that Flow =
(
p̄−1

)∗. We can now extend all flow
polynomials to the family Xs0 deforming X◦ (as opposed to the family deforming X ). The
coefficients satisfy the same relations as the x variables. The monomials in (7.1) extend directly,
e.g.

˜Flow (p13) = x̃−1
12 = x̃ .

The extensions of the three remaining flow polynomials are

˜Flow(p24) =
x̃34x̃45 (1 + t13x̃13)

x̃13
= x̃ x̃ x̃ (1 + t x̃ ),

˜Flow(p25) =
x̃45 (1 + t13x̃13 + t13t14x̃13x̃14)

x̃13x̃14
= x̃ x̃ x̃ x̃ (1 + t x̃ + t t x̃ x̃ ),

˜Flow(p35) =
x̃45 (1 + t14x̃14)

x̃12x̃14
= x̃ x̃ x̃ x̃ x̃2 (1 + t x̃ ).

Remark 7.1. Note that the homogeneous degree of the extension, i.e. its c-vector, is precisely
Rietsch–Williams’ valuation valG of [RW19, Definition 8.1].

On account of (7.5), the family Xs0 deforming X◦ is the Aprin,s0-family for qX◦, with p̄ iden-
tifying the fibers of the two families. As mentioned in Remark 1.5, the partial compactifications
of these families on the other hand are different. Since the uncompactified families agree, we
have a choice to make here. Rietsch and Williams describe the Grassmannian in terms of a
Newton–Okounkov body for the anticanonical divisor: the integral points of the New-
ton–Okounkov body give a basis of global sections for the anticanonical bundle. This is how
we view the A-side of the picture, so the relevant partial compactification and toric degeneration
here is [GHKK18]’s Aprin,s0 . Indeed, as the Grassmannian is separated, this toric degeneration
can not be X̂s0 . The functions and valuations however come from Xs0 , with p̄ allowing us to
identify the uncompactified families.

We complete the identification of the two pictures as follows. Fixing q = 1 in [RW19,
Equation (10.1)] gives the potential WMR|q=1 : qX◦ → C on qX◦ rather than qX◦ × C∗. From the
Gross–Hacking–Keel–Kontsevich potential WGHKK : X → C (see [GHKK18, p.506]) we obtain
wGHKK : X◦ → C given as a sum of ϑ-functions on X◦. It pulls back to the Marsh–Rietsch
potential on qX◦:

p̄∗ (wGHKK) = WMR|q=1.

Identifying potentials identifies the polytopes defined by these potentials:

p̄∗ (ΓRW) = ΞGHKK.

Compare [RW19, Definition 10.10] and [GHKK18, Equation 8.7]. Finally, on account of Remark
7.1, Flow =

(
p̄−1

)∗ identifies the g-vector of a ϑ-function on qX◦ with the valuation of the function:
the c-vector of

(
p̄−1

)∗ (ϑ) on X◦. So, taking p̄ : qX◦ → X◦ rather than p̄−1 : X◦ → qX◦, we also have

p̄∗ (ΔRW) = ΞGHKK.
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See [RW19, Definition 8.2]. This explains from the [GHKK18] point of view the equality of the
polytopes Γ and Δ in [RW19].

7.2 Del Pezzo surface of degree five
The point of this example is to indicate a potential connection between cluster duality for cluster
varieties with coefficients and Batyrev duality for Gorenstein toric Fano varieties. Recall that
Batyrev introduced a method for constructing mirror families of Calabi–Yau varieties in [Bat94],
taking families of anticanonical hypersurfaces in a pair of Gorenstein toric Fano varieties. The
pair of Fanos are the toric varieties associated to a pair of (polar) dual reflexive polytopes, or
equivalently to a reflexive polytope and its face-fan. As described in the introduction, outside of
the toric world these two descriptions are inequivalent, and the one relevant here is the latter.

There is a natural bounded polytope P ⊂ X trop
Γ∨ (R) we can associate to a finite type A-cluster

variety without frozen directions. First, we build a simplex in each chamber by taking the convex
hull of the origin and the g-vectors generating the chamber. Then we take P to be the union of
these simplices. After identifying X trop

Γ∨ (R) with M◦
R

by a choice of seed, if P is convex, then it is
a reflexive polytope whose unique integral interior point is the origin.13 The g-fan is the face-fan
of P . Suppose we compactify the A-cluster variety using P and produce a toric degeneration
using [GHKK18]’s Aprin,s construction, having central fiber TV(P ). Then TV(P ) is a Gorenstein
toric Fano variety, and the central fiber TV(Δ+) of X̂s is the Batyrev dual Gorenstein toric Fano.
While the general fibers of X̂s are non-separated, and a fortiori not Fano, we are really interested
in a family of hypersurfaces in these fibers. These hypersurfaces may remain well-behaved away
from the central fiber. This observation will be explored and generalized in the sequel with
M.-W. Cheung. Below we study the case of the del Pezzo surface of degree five. This surface
can be realized as a compactification of the A-cluster variety associated to the A2 quiver (see
[GHKK18, Example 8.31]). We review this construction. For more details on the degree five del
Pezzo surface we refer the reader to [Dol12, § 8.5].

The del Pezzo surface of degree five S is isomorphic to a surface obtained by blow-up of
the projective plane P2 at four points q1, q2, q3, q4 in general position. It is well-known that S
contains ten (−1)-curves, four corresponding to the exceptional divisors and six corresponding
to the strict transforms of lines joining pairs of points, and the incidence graph of these curves
is given by the Petersen graph.

Once we choose an anticanonical divisor consisting of curves forming a cycle, one can contract
two non-consecutive curves to obtain a toric model of S. Without loss of generality, we can assume
that the anticanonical cycle is the inner cycle in the Petersen graph. Considering Figure 7, we
obtain the five toric models contracting the curves {E4, E2}, {E2, �14}, {�14, �24}, {�24, �23} and
{�23, E4}. Here, Ei stands for the exceptional divisor associated to the point qi and �ij stands
for the strict transform of the line in P2 joining qi and qj . These models are isomorphic to the
blow-up of P1 × P1 at one point and are related by performing an elementary transformation at
one point lying on a curve of self-intersection zero in the cycle. For example, Figure 8 shows how
the toric model associated to {E2, �14} can be obtained from the model associated to {E2, E4}
by performing an elementary transformation at a point lying on �34.

Another important feature about the del Pezzo surface of degree five is that it is isomor-
phic to a linear section of the Grassmannian variety Gr2(C5) (see [Dol12, Proposition 8.5.1]).

13 We make the identification with M◦
R so that we can talk about convexity here, as X trop

Γ∨ (R) does not have a
linear structure.
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Figure 7. Petersen graph associated to the surface S.

Figure 8. Elementary transformation between two toric models of S.

We use this property to prove that the del Pezzo surface of degree five is a compactification of
the A-cluster variety constructed from a type A2 quiver. Note that we can recover the defining
equations of Gr2(C5) with respect to the Plücker embedding considering triangulations of the
five-cycle, with Plücker coordinates associated to lines in the triangulations (see [FZ02, p. 8]).
Considering all possible mutations we obtain the equations:

p13p24 = p23p14 + p12p34,

p14p25 = p15p24 + p12p45,

p24p35 = p34p25 + p23p45,

p13p25 = p12p35 + p15p23,

p14p35 = p45p13 + p15p34.
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Now consider the variety Y ⊂ P9 defined by V (p12 − p23, p23 − p34, p34 − p45, p45 − p15) and take
the intersection of Gr2(C5) ⊂ P9 with Y . The intersection, denoted by T , is defined by the
following equations in Y ∼= P5:

p13p24 = p12p14 + p2
12,

p14p25 = p12p24 + p2
12,

p24p35 = p12p25 + p2
12,

p13p25 = p12p35 + p2
12,

p14p35 = p12p13 + p2
12.

(7.6)

One verifies computationally that T is a smooth irreducible surface. To construct the canon-
ical divisor of T we do the following. We consider D1 = V (p12 − p23), D2 = V (p23 − p34),
D3 = V (p34 − p45), and D4 = V (p45 − p15) as divisors in Gr2(C5). Notice that all of them are
linearly equivalent. In this way we have T = ∩4

i=1Di. Let D = D1 +D2 +D3 +D4. We write
the anticanonical divisor of Gr2(C5) as

∑
i∈Z/5Z

Di,i+1, where Di,j = V (pij). Note that the
components here are also linearly equivalent to the Di above. Then by the adjunction formula

KT = (KGr2(C5) +D)|T = OGr2(C5)(−Di,j)|T . (7.7)

Therefore, ωT
∼= OT (−1) and then −KT is an ample divisor. Since all del Pezzo surfaces of degree

five are isomorphic, we conclude that T is isomorphic to S. So, without loss of generality we may
assume that the equations of (7.6) define S.

Now, identifying Plücker coordinates with A-cluster variables as follows

A1 := p13, A2 := p14, A3 := p24, A4 := p25, A5 := p35, (7.8)

and taking the divisor H = V (p12), it follows from (7.7) that H is an anticanonical divisor on
S. Then U = S\H is a log Calabi–Yau surface defined by the equations Ai−1Ai+1 = Ai + 1 for
i ∈ Z/5Z. Note that such equations are the exchange relations for the A-cluster variety obtained
from a type A2 quiver.

We can describe the above, and deformations of it, using the notion of a positive polytope,
see [GHKK18, Definiton 8.6].

Warning: To be in harmony with [GHKK18, Example 8.31], we flip the orientation of the
A2 quiver relative to previous examples, where orientation was chosen for ease of comparison
with [FZ07, Tables 1–4]. This change is the source of the difference in wall placement between
Figures 1 and 9.

The cones of the g-fan are domains of linearity of X trop (R). So, we can take the convex hull
of the g-vectors that generate each cone together with the origin. We define the polytope P as
the union of these convex hulls, see Figure 9.

To describe the family of projective varieties, we view the integral points of P and its dilations
as giving a ϑ-function basis for a graded R-algebra, where R = C[t1, t2]. Following [GHKK18,
Example 8.31], we call the ϑ-function associated to the interior point ϑ0, and the remainder
ϑ1, . . . , ϑ5 starting with the point at (1, 0) and proceeding counter-clockwise. Observe that for
i �= 0, ϑi is the extension of Ai (from (7.8)) to Aprin. We take ϑ0 to be a homogenization variable,
much like p12 in (7.6). The graded R-algebra is generated in degree one by these six ϑ-functions.
The relations between degree one generators are given by homogenizing the wall-crossing relations
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1 + t1A2

1 + t2A
−1
1

1 +
t1t2A2

A1

Figure 9. The A2 scattering diagram and the polytope P . The integral points of P , shown as
filled circles, correspond to ϑ-function generators of a graded algebra. The scattering functions
shown include principal coefficients. To recover the g-fan, simply forget the scattering functions
and wall directions.

(i.e. the mutation relations in Aprin), giving the following:

ϑ1ϑ3 = t1ϑ0ϑ2 + ϑ2
0,

ϑ2ϑ4 = t2ϑ0ϑ3 + ϑ2
0,

ϑ3ϑ5 = ϑ0ϑ4 + t1ϑ
2
0,

ϑ4ϑ1 = ϑ0ϑ5 + t1t2ϑ
2
0,

ϑ5ϑ2 = ϑ0ϑ1 + t2ϑ
2
0.

(Again, see [GHKK18, Example 8.31].) The central fiber in this family, i.e. when t1 = t2 = 0, is
simply the toric variety TV(P ) associated to P . Observe that P is the polytope 5a in [CLS11,
§ 8, Table 2], and TV(P ) the associated Gorenstein toric Fano.

Meanwhile, the g-fan also gives us a compactification and toric degeneration of the X -variety
associated to the A2 quiver. This is described in § 1.5, albeit for the opposite orientation of this
quiver.14 In this case the central fiber is the toric variety TV(Δ+) associated to the underlying fan
Δ+ of Figure 9. Note that TV(Δ+) is the del Pezzo surface of degree seven. It is straightforward
to verify that Δ+ is the normal fan of the polytope 7a of [CLS11, § 8, Table 2]. The polytopes 5a
and 7a are polar dual, and the central fibers TV(P ) and TV(Δ+) of the two families are Batyrev
dual toric Fanos. Our hope, which we will explore in further work with M.-W. Cheung, is that
general fibers of the two families have the right to be called Batyrev dual as well. We formalize
this hope with the following question.

Question 7.2. Does there exist a family Ft of Calabi–Yau hypersurfaces in X̂t satisfying the
following:

(i) Ft degenerates in X̂s to a family of anticanonical hypersurfaces in TV(Δ+); and
(ii) the Calabi–Yau hypersurfaces of Ft are mirror to generic anticanonical hypersurfaces in the

minimal model for At determined by P?

14 The two choices obviously give isomorphic spaces.
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8701, Col. Ex Hacienda San José de la Huerta, 58089 Michoacán, Mexico

Timothy Magee timothy.magee@kcl.ac.uk

Department of Mathematics, Faculty of Natural & Mathematical Sciences, King’s College
London, Strand, London WC2R 2LS, UK
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CONACYT-Instituto de Matemáticas UNAM Unidad Oaxaca, León 2, altos, Oaxaca de
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