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The experimental and numerical investigation presented by Bertsch et al. (Phys. Rev.
Fluids, vol. 5, 2020a, p. 054202) describes the self-sustained oscillations induced by the
interaction of two impinging jets in microfluidic devices. While the oscillatory regime
induced by interacting jets has been studied in detail, the physical mechanism behind these
oscillations remains still undetermined. The present paper focuses on two-dimensional
oscillators subjected to a fully developed inlet flow, as in Bertsch et al. (Phys. Rev. Fluids,
vol. 5, 2020a, p. 054202) and in contradistinction with Pawlowski et al. (J. Fluid Mech.,
vol. 551, 2006, pp. 117-139), who focused on plug inlet flow. The linear global stability
analysis performed confirms the existence of an oscillating global mode, whose spatial
structure qualitatively coincides with that computed numerically by Bertsch et al. (Phys.
Rev. Fluids, vol. 5, 2020a, p. 054202), suggesting that the physical mechanism from
which the oscillations would originate is predominantly two-dimensional. The interaction
of the oscillating mode with a steady symmetry-breaking mode is examined making
use of the weakly nonlinear theory, which shows how the system exhibits hysteresis in
a certain range of aspect ratios. Lastly, sensitivity analysis is exploited to identify the
wavemaker associated with the global modes, whose examination allows us to spot the
core of the symmetry-breaking instability at the stagnation point and to identify the
Kelvin—Helmholtz instability, located in the jets interaction region, as the main candidate
for the origin of the oscillations observed in fluidic devices.
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1. Introduction

Fluidic devices based on networks of jets interacting with each other, as X-junction or
cross-slot flows, exhibit a series of complex phenomena, which may collaborate, giving
rise to various physical instabilities. The understanding of their dynamical properties
may lead to new building blocks of fluidic networks, that can be used for mixing or
connecting purposes, such as, for instance, purely hydrodynamic DC-AC converters.
While in many engineering applications, instabilities are seen as endangering features to
be avoided, resulting in entire parametric regions to be discarded or in the need for efficient
control strategies, the example of fluidic devices illustrates a radically different view:
symmetry-breaking and dynamic (resulting in self-sustained oscillations) bifurcations
can be harnessed for the design of new elementary building blocks for microfluidic
circuitry, like DC-AC converters or switching devices, with promising applications in
their automation.

Recently Bertsch et al. (2020a,b) provided a detailed experimental and numerical
description of the self-sustained oscillatory regime induced by the interaction of two
impinging jets in microscale feedback-free fluidic devices operating in laminar flow
conditions. While this work presents some similarities with the experimental observations
proposed by Tesar (2009) Denshchikov, Kondrat’ev & Romashov (1978) and Denshchikov
et al. (1983), it differs from the latter for the dimensions (micrometre vs. centimetre
range) and the operating conditions (laminar vs. turbulent jets). Bertsch et al. (2020a)
studied the evolution of the self-oscillation frequency when the main geometric parameters
of the cavity were changed. The frequency was shown to be proportional to the
averaged flow velocity imposed at the symmetric inlets and inversely proportional to
the distance between the jets. The oscillatory instability was experimentally seen to be
of a supercritical nature with oscillations starting above a precise instability threshold.
Although several plausible candidates were proposed by Bertsch et al. (2020a), no physical
mechanism could be precisely identified from which the self-sustained oscillations would
originate.

Cross-slot flows are also known to show hysteresis. Burshtein, Shen & Haward (2019)
experimentally showed that hysteretic behaviours due to symmetry-breaking transitions
appear in X-junction flows with proper geometrical parameters, for which no oscillations
are observed. There are similarities in the microchannel geometries between the case
described by Burshtein et al. (2019) and Bertsch et al. (2020a), with microchannels
crossing at right angles in both cases and liquid flows at relatively low values of the
Reynolds number. However, in the geometry considered by Burshtein er al. (2019) all
channels have comparable dimension, whereas in Bertsch et al. (2020a) there are two
facing narrow channels which open into wider channels. In Bertsch et al. (2020a)
oscillations were observed only in the cases where the wider channels have dimensions
at least three times larger than the narrow channels, which differs significantly from
Burshtein et al. (2019). Such a consideration underlines the importance of the distance
separating the inlets in cross-slot geometries in the destabilization mechanism.

The present work aims to answer two main questions arising from different observations
presented in Bertsch et al. (2020a) and Burshtein et al. (2019): (i) to identify the physical
mechanism governing the self-sustained oscillatory regime studied in Bertsch ez al.
(2020a); (i1) to investigate the existence of a range of geometrical parameters in which
steady symmetry-breaking conditions could directly interact with this dynamic instability.

With these objectives, we consider here a two-dimensional (2-D) X-junction with
straight lateral channels and two symmetric inlets, where a fully developed flow is
imposed, separated by a certain distance. Despite the simplistic geometry, a 2-D flow
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not only allows one to perform a faster computational analysis but it also often makes
it possible to capture the main physical features of interest of the three-dimensional (3-D)
problem. Since the principal geometrical parameter, the distance between the two jets, is
kept in this crude dimensional reduction from three to two dimensions, we may expect
that our 2-D analysis reveals the dominant physical mechanism behind the oscillatory
instability observed in three dimensions. Steady symmetry-breaking instabilities are also
expected in two dimensions (Pawlowski et al. 2006; Liu et al. 2016), even if of a different
nature than the intrinsically 3-D one presented in Burshtein er al. (2019). An exhaustive
stability analysis is here conducted using the tools of the classic linear global stability and
sensitivity analysis as well as the weakly nonlinear theory based on amplitude equations,
whose fundamental aspects are briefly summarized by Meliga, Chomaz & Sipp (2009q).

In the following we recall from Meliga et al. (2009a) only the salient points: when
a steady flow loses its stability, e.g. owing to the variation of a control parameter, it
bifurcates towards a new state, that may be either steady or unsteady. If a single eigenmode
is responsible for the instability, the weakly nonlinear dynamics close to the threshold
will occur in the one-dimensional slow manifold. The only degree of freedom is then the
amplitude of the unstable eigenmode, which is governed by an amplitude equation. When
multiple eigenmodes are simultaneously responsible for the destabilization of the steady
base flow, the dimension of the slow manifold is equal to the number of bifurcating modes,
and the normal form involves one degree of freedom per bifurcating mode, leading to a
system of coupled amplitude equations. Such cases are known as multiple codimension
bifurcations and require the tuning of multiple independent control parameters for the
various global modes to be simultaneously neutral. The normal form describes the weakly
nonlinear interactions between unstable modes and reduces the dynamics of the whole
fluid system to a low-dimensional model.

As stated above, in our numerical investigation we opt for a fully developed inlet flow.
This choice is made by analogy with Bertsch et al. (2020a), but in contradistinction with
previous work by Pawlowski et al. (2006), who carried out a thorough stability analysis
of the very same flow configuration, with the only difference that a plug inlet flow was
examined. These authors discovered the existence of a steady symmetry-breaking global
mode and an oscillating global mode, which can be unstable in different regions of a
stability map, given as Reynolds number versus aspect ratio. However, they did not discuss
the origin of the oscillatory regime and they did not report the presence of hysteretic
behaviour.

The present paper is organized as follows. In §2 the flow configuration and the
governing equations describing the fluid motion inside a 2-D microfluidic cavity with
an imposed fully developed inlet flow are introduced. In § 3 the numerical approaches
adopted are described. In § 4 the steady symmetric base flow is determined, while the
tools of the linear global stability analysis are employed to derive the associated stability
chart, where the two control parameters, Reynolds number and aspect ratio, are varied in a
wide range. The nonlinear global mode interaction emerging from the stability analysis
is then discussed in § 5 making use of the weakly nonlinear theory and the multiple
scale technique. The resulting bifurcation diagram is validated in § 6. Sensitivity analyses
are carried out in § 7, which is devoted to the understanding of the physical mechanism
behind the various instabilities observed. We finally analyse the effect of a different inlet
velocity profile by applying the weakly nonlinear model to the flow case of plug inlet
profiles, revisiting the analysis of Pawlowski er al. (2006). Conclusions are presented
in§9.

913 A51-3


https://doi.org/10.1017/jfm.2021.51

https://doi.org/10.1017/jfm.2021.51 Published online by Cambridge University Press

A. Bongarzone, A. Bertsch, P. Renaud and F. Gallaire

a2,

a2,

982,

LOltf

Figure 1. Microfluidic oscillator cavity with straight output channels explored in this work. Notation: inlet
width w, gap size s, overall length 2L,,,;, walls 9£2,,, outlets d52,, x-axis of symmetry at y = 0, 9§2;, and y-axis
of symmetry at x = 0, 9£2,. Here U denotes the mean value of the velocity profile imposed at the inlets, 9£2;.

2. Flow configuration and governing equations

Let us consider the 2-D X-junction (also called cross-junction) presented in figure 1. An
incompressible fluid with density p and dynamic viscosity u enters the device through
two facing inlets of width w, denoted by 9£2;, and it is allowed to flow out along the two
symmetric arms of the main lateral channel. The two symmetric inlets mimic the action
of two inlet channels separated by a distance s to create two facing jets when they reach
the lateral channel. Outlets, 052, are provided at both ends of the channel, at a distance
Lous, far away from the intersection. In figure 1, £2 denotes the fluid domain, while U is
the average velocity of the fluid at the inlet channels. Taking advantage of the geometric
symmetries of this microfluidic oscillator, the computational domain can be reduced to a
quarter of the full domain, with y- and x-axes of symmetry 02, and 9£2, respectively.
Proper boundary conditions for the fluid problem, listed in §§ 4 and 5, are then imposed at
082, and 0£2;. As sketched in figure 1, a fully developed flow is imposed at the inlets at
y = =£s/2. This assumption, removing the influence of the inlet channel length, allows us
to reduce the number of geometrical parameters, simplifying the parametric analysis.

The introduction of the dimensionless variables (the star denotes the dimensional
quantities)
* * *
X=—, y=—, u=—, v=U—, p:p—, t= ! (2.1)
U pU? w/U
leads to the definition of the aspect ratio AR = s/w and of the nabla operator, Vg =
{8/0x, (1/AR)(3/dy)}T. The fluid motion within the microfluidic oscillator cavity, £2, is
governed by the 2-D incompressible Navier—Stokes equations, whose non-dimensional

form reads as

u 1
— 4+ (- Vap)u+ Varp — —Apru =0, 2.2)
ot Re

Vag-u=0. 2.3)

In (2.2) and (2.3), u = {u, v}T is the velocity field, p is the pressure field and Re = pUw/ 1
is the Reynolds number. The no-slip boundary condition is imposed at the rigid solid
wall, 082y, u|yg, = 0, while an outflow boundary condition is imposed at the outlet, d2,,
(—pI + (1/Re)V ggu) - n = 0, where n is the unit normal to 92, and I is the identity
tensor. At the inlet, d§2;, a fully developed parabolic velocity profile is imposed, i.e.

3 T
ulyo, = {o, —5(1 —4x2)} . (2.4)
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Figure 2. Computational domain considered in the global stability analysis, weakly nonlinear study and
sensitivity analysis. Here w = 1, Ly = 5w, L3 = 20w, L,,; = 70w and s = 1. Number of elements per unit
length used for the various line with different thickness: ny, na, n3 and ny.

3. Numerical approach

Two different numerical approaches are adopted in the present paper. The numerical
scheme used to derive the global stability chart, § 4, to analyse the weakly nonlinear global
mode interaction, § 5, and to perform sensitivity analysis, § 7, is a finite element method
based on the FreeFem++ software (Hecht et al. 2011). The mesh refinement is controlled
by the vertex densities on both external and internal boundaries. Regions where the mesh
density varies are depicted in figure 2. The unknown velocity and pressure fields {u, p}T
are spatially discretized using a basis of Taylor—-Hood elements (P>, P1). The matrix
inverses are computed using the UMFPACK package (Davis & Duff 1997). The steady
base flow is obtained by the classic iterative Newton method, while eigenvalue calculations
are performed using the ARPACK package (Lehoucq, Sorensen & Yang 1998). For other
details, see Sipp & Lebedev (2007), Meliga et al. (2009a), Meliga & Gallaire (2011) and
Meliga, Gallaire & Chomaz (2012). With reference to figure 2, five different meshes,
denoted M1-MS5, exhibiting different boundary vertex densities, n;, have been used to
assess convergence in the numerical result. In the following we will focus on the mesh
MS to present all results. A detailed convergence analysis of meshes M1-M5 is given in
appendix A.

The results obtained from the weakly nonlinear investigation are then compared with
direct numerical simulations (DNS) in §6. The open-source code Nek5000 (Lottes,
Fischer & Kerkemeier 2008) has been used to perform the DNS. The spatial discretization
is based on the spectral element method. The full 2-D geometry (without imposing any
symmetry conditions) is divided in macro boxes; each macro box is then characterized by
an imposed number of quadrilateral elements, along the two Cartesian coordinates x and
v, within which the solution is represented in terms of Nth-order Lagrange polynomials
interpolants, based on tensor product arrays of Gauss—Lobatto—Legendre quadrature point
in each spectral element; the common algebraic Py/Py—_» scheme is implemented, with
N fixed to 7 for velocity and 5 for pressure. The domain is thus discretized with a
structured multiblock grid consisting of 4920 spectral elements, which largely guarantees
the convergence. The time integration is handled with the semi-implicit method, already
implemented in Nek5000; the linear terms in (2.3)—(2.2) are treated implicitly adopting
a third-order backward differentiation formula, whereas the advective nonlinear term is
estimated using a third-order explicit extrapolation formula. The semi-implicit scheme
introduces restriction on the time step (Karniadakis, Israeli & Orszag 1991); therefore, an
adaptive time step is set to guarantee the Courant—Friedrichs—Lewy constraint. See Bertsch
et al. (2020a) for more details.
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4. Steady base flow and linear global stability analysis
The flow field ¢ = {u, p}" is decomposed in a steady base flow, g, = {uo, po}T and a small
perturbation ¢, = {u1, p1}7, of infinitesimal amplitude €.

4.1. Steady base flow

The base flow, g, = {uo,po}T, is sought as a steady solution of the nonlinear
Navier—Stokes equations,

1
(up - Var)uo + Varpo — EAARVO =0, Vag-up=0, 4.1)

with the boundary conditions,

3 T
=0, wulsg = {0, -3a —4x2)} :
4.2)

1
uolpe, =0, (—Pol-i- —VARu0> -n
Re 992,

The steady base-flow velocity fields, ug(x, y) and vo(x, y), are characterized by symmetry
and antisymmetry properties with respect to the y- and x-axes of symmetry, 02, and 952y,
ie.

uo(xs y) = uo(x9 _)’) = —M()(—x, )’)’ (43)
vo(x, y) = —vo(x, —y) = vo(—x, ), (4.4)

which translate in the following boundary conditions imposed at d£2;, and 9£2,:

dug dvg

— =0, uolae, =0, = 0. 4.5)
ay 082y

volas, =0, —
dx 982,

An approximate guess solution satisfying the required boundary conditions is first
obtained by solving the associated Stokes problem, where the advective term is neglected.
The solution of the steady nonlinear equation, g, is then obtained using an iterative
Newton method (Barkley, Gomes & Henderson 2002; Barkley 2006). Here the iterative
process is carried out until the L2-norm of the residual of the governing equations for g,
becomes smaller than 1 x 10712,

Figure 3 shows the symmetric spatial structure of the magnitude of the steady velocity
field for Re = 22.65 and AR = 6.98. As observed in figure 3, the y-velocity component is
dominant in the central region, near the two inlets. The two facing jets collide and the fluid
is repulsed and advected downstream, towards the two outlets. A stagnation point is thus
present at x =y = 0 owing to the symmetry properties. We also observe the presence
of four symmetric recirculation regions close to the channel inlets and resulting from
the presence of walls, where a no-slip boundary condition is enforced. Heading towards
the channel outlets, the flow approaches a fully developed flow. The present base-flow
configuration is qualitatively comparable to that recently observed in the 3-D experimental
and numerical investigations carried out by Bertsch ef al. (2020a).
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Figure 3. Steady base flow for Re = 22.65 and AR = 6.98. Colour map: magnitude of the velocity field. White
lines: streamlines associated with the steady base flow. Red dashed lines: boundaries of the four symmetric
recirculation regions. The solution in the full flow domain is rebuilt using the symmetry properties. Only the
central portion, x € [—25, 25], is shown here.

4.2. Global eigenmode analysis
At leading order in €, q; = {uy, pl}T is an unsteady solution of the linearized
Navier—Stokes equations around the €%-order solution (steady base flow),
uy 1
o + (uo - Var)ui + (uy - Var)uo + Varpr — ITeAARul =0, Var-u =0,
(4.6)
with the boundary conditions,

=0, wulse =0. 4.7)

1
ui - nlyo, =0, (—P11+ —VARul) ‘n
Re

392,
The system can be written in a compact form as
(Bd; + A)gq, =0, (4.8)
where the matrices .4 and B read as
1
A — [Car(uo, +) = R—eAAR Var) g 0 , (4.9)
T 0 0
Vir 0

with 7 being the identity matrix and Cag the €’-order symmetric advection operator,
Car(a,b) = (a - Vagr)b + (b - Vag)a. We thus look for a first-order solution which takes
the normal mode form

g1 =4, +cc., (4.10)

where c.c. denotes the complex conjugate. Substituting (4.10) in (4.8), the e-order system
reduces to the generalized eigenvalue problem

[(o +iw)B+ Alg, = 0. (4.11)

In figure 4 the eigenvalues are displayed for different Reynolds numbers and aspect ratio
values. In order to build the full eigenvalue spectrum using the reduced computational
domain, we explored all the possible symmetries and antisymmetries of the perturbation
velocity field u; by imposing different axis boundary conditions analogous to (4.5). From
the stability chart displayed in the (Re, AR) plane of figure 4(b), it emerges that the steady
base flow is stable below a critical aspect ratio, whose value is found to be approximately
AR ~ 1.75 for a Reynolds number Re = 230 (maximum value investigated in the
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Figure 4. (a) Eigenvalues displayed in the (o, ) plane for Re = Rec, = 22.65 and AR = AR, = 6.98. A pair
of complex eigenvalues, denoted by B together with a pure real eigenvalue, A, are found to be simultaneously
marginally stable for the present combination of parameters. Eigenvalues on the left side of the spectrum are
not physical and correspond to spurious modes, whose presence is due to the influence of outlet boundary
conditions. The position of eigenvalues A, B and C is not affected by L,, in the range L, € [30, 100].
(b) Marginal stability curves corresponding to the modes A and B and to a second steady mode C as a function
of Re and AR. A codimension-2 point, C3, is found for Re = Rec, = 22.65 and AR = ARc, = 6.98.

present study). Analogously, the base flow is stable below a Reynolds number Re ~ 8
for an aspect ratio AR = 70 (maximum value considered here). As depicted in figure
4(b), a codimension-2 point, C», is found for Re = Rec, = 22.65 and AR = AR¢c, = 6.98,
where two different global modes, mode A, non-oscillating, and mode B, oscillating and
characterized by a Strouhal number Stc, = fw/U = w/2n = 0.016, are simultaneously
marginally stable. This evidence motivates the weakly nonlinear analysis (WNL) presented
in § 5, which aims to investigate the interaction between modes A and B. The presence of
a second steady mode, denoted by C, is also observed. From the linear analysis, a second
codimension-2 point appears between the oscillating mode B and the second steady mode
C, however, at a parameter setting (Re, AR) = (62, 4), mode A is far above its threshold,
which jeopardizes the use of the linear and weakly nonlinear stability tools. Further
considerations about the effect of the second steady mode C are provided in appendix
B, while hereinafter we will focus on global modes A and B and their global interactions.

As a side remark to figure 4(b), an extrapolation of the marginal stability curve
associated to mode C suggests that it would cross the curve of mode A for Re > 100.
Nevertheless, the eigenvalue calculation performed in the range Re € [100, 230] (not
visible in 4b) showed that, for Re = 230 and AR = 1.75, the stability boundary is still
delimited by mode A (C does not cross A). Indeed the two curves for modes A and C seem
to approach two asymptotes (as well as the curve for mode B), whose actual existence
could be confirmed by higher Reynolds calculations, which are however beyond the scope
of this work.

The symmetry properties which characterized the two global modes A and B, reading

W (x,y) = =il —y) = =i} (—x,p), ey =vi e -y =vi(—xy), 412)
WP y) = —uf(x, —y) = uf(—x,y), vf @ y) = vl —y) = —vP(-x.y). @13
lead to the following axis boundary conditions:

v v
W} lag, =0, 8—1 =0, ulse, =0, a—xl =0, (4.14)
982y, 082y
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v B dub
a = 0’ Ul |an = 09 E
082y, 082,

uPlag, =0, =0. (4.15)

For a given global mode, q;, we also compute the corresponding adjoint global mode,
tﬂ which will be used in § 5 and which satisfies the adjoint eigenvalue problem,
[(o —iw)B" + AT} = 0, (4.16)

where A" and BT are the adjoint operators of the linear operator A and the mass matrix
B, obtained by integrating by parts system (4.6) and expressed as

1

;

i _ [Cap(uo, ©) — —Aar  —Var +_(Z 0

_A_(AR o1 Re . ) B _(O NE 4.17)
AR

Here CZ r(a, b) is the adjoint advection operator, which is not symmetric and which reads

as CZR(a, b) = —(a-Var)"b+ (b Var)a. The adjoint boundary conditions are defined
so that all boundary terms arising from the integration by parts are nil. Thus, we obtain

=0, ujlag, =0, (418

N + 1
uIIaQW =0, (u- n)uI + (pII + R—eVuI) .n

082,
(?UAT BU‘Lﬁ
it a0, =0, o =0, e, =0, . =0, (4.19)
Y 1o, 992,
avBt 3l
B 50, =0, 1 =0, e, =0, ! =0. (4.20)
ay 082, dx 9082
h v

We checked a posteriori that both direct and adjoint problems have an identical spectrum
and the direct and adjoint modes satisfy the bi-orthogonality property (see Meliga et al.
2009a).

Figures 5 and 6 show the spatial structure of the velocity fields along the x- and y-axis
associated with the direct and adjoint global modes A and B, respectively. While the
direct modes are normalized using the value of the y-velocity field, 91, in a generic grid
point, i.e. (x,y) = (0.5,0), the adjoint modes are normalized such that (cﬂ, Bq,) =1,
where (,) is the inner product defined by (a, b) = |, o @ - bds2, the star * denotes the
complex conjugate and - indicates the canonical Hermitian scalar product in C". This
normalization will simplify the expression of the various coefficients derived in §5. In
figure 5(b,d) the real part velocity components of the oscillating mode along the x- and
y-axis are represented. Their spatial structure is qualitatively analogous to that recently
presented in the 3-D study performed by Bertsch et al. (2020a), which confirms that this
kind of instability arises in both 2-D and 3-D problems for proper combinations of control
parameters, Re and AR, and which suggests that the same physical mechanism is behind the
origin of the self-sustained oscillations regime. As mentioned by Bertsch et al. (2020a), the
structure of the perturbation velocity fields of mode B in the left and right output channels
and their well-defined wavelength is typical of sinuous shear instabilities, like the famous
one characterizing the unsteady flow past a circular cylinder (Ding & Kawahara 1999;
Barkley 2006; Sipp & Lebedev 2007). From the analysis of the corresponding adjoint
mode (see figure 6b,d), we see that the spatial structure of the adjoint is localized in the
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Figure 5. Spatial structure of the x- and y-velocity components associated with the direct global modes A and
B at the codimension-2 point, C; = (Rec,, ARc,) = (22.65, 6.98). (a,c) Plots of the x- and y-velocity fields
corresponding to the direct steady mode A. (b,d) Real part of the x- and y-velocity fields corresponding to the
direct oscillating mode B.

Figure 6. Spatial structure of the x- and y-velocity components associated with the direct and adjoint global
modes at the codimension-2 point, C; = (Rec,, ARc,) = (22.65, 6.98). (a,c) Plots of the x- and y-velocity
fields corresponding to the adjoint steady mode A. (b,d) Real part of the x- and y-velocity fields corresponding
to the adjoint oscillating mode B.

central region, near the two inlets. In classic shear instabilities of open flow, a downstream
localization of the global mode and an upstream localization of the adjoint global mode
resulting from the convective non-normality of the linearized Navier—Stokes operator
(Chomaz 2005) is observed. Identifying two downstream directions towards the outlets
and two upstream directions corresponding to the inlets, a similar characteristic is found.
This evidence motivates the detailed investigation, presented in § 7, of the nature of this
instability, which, from the knowledge of the authors, remained undetermined so far.

Concerning the steady global mode A (see figure Sa,c), it represents a steady
symmetry-breaking condition with respect to the x-axis of symmetry. Given the
symmetries of mode A, this steady instability corresponds to two possible new steady
configurations (bi-stability), symmetric with respect to the x-axis. It leads to a positive
off-set of the stagnation point above the x-axis (respectively a negative off-set below the
x-axis) in the y-direction (at x = 0); the two recirculation regions above (respectively
below) the axis become smaller than the two below (respectively above) the axis. The
corresponding adjoint mode (see figure 6a,c) maintains a structure similar to that of the
direct mode.

The existence of a steady symmetry-breaking global mode and an oscillating global
mode, which can be unstable in different regions of a stability map is also qualitatively
consistent with the numerical analysis proposed by Pawlowski et al. (2006), who examined
the same 2-D configuration with the only difference that a plug inlet profile was considered
(see § 8 for further comments about the influence of a plug inlet velocity profile).
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5. Weakly nonlinear formulation
5.1. Presentation

Since a codimension-2 point, C> = (Rec,, ARc,) = (22.65, 6.98), is found from the linear
stability analysis, we present in this section a WNL in order to investigate the mode
interaction between the steady mode A and the oscillating mode B. In other words,
we implement an asymptotic expansion where the two modes have the same order of
magnitude. The departure from criticality, in terms of Reynolds number and aspect ratio,
is assumed to be of order €2. Hence, we introduce the two order one parameters, § = €25
and & = €2&, such that

1 1 2% 1 1 2~
i S, — = + e°@. 6.1
Re  Rec, AR  ARc,

In the spirit of the multiple scale technique, we introduce the slow time scale 7 = €°t,
with 7 being the fast time scale defined in (2.1). Hence, the entire flow field is expanded as

g={u v pl = qo +€q; + 62q2 + e3q3 +O(eh). (5.2)

In order to easily write the equations at the various order in € in a compact form, it is
useful to introduce the following expansion for the nabla operator, V:

3 1 9" 3 1 9" T
VaAR=3{——=—{ =1—, —bt +e2alo, —
dx AR dy 0x ARc, dy ay

= Vare, + €2V + O(€). (5.3)

The definition of the Laplacian follows as

Aar = VigVar = (Vare, +€@Va) (Vare, +€°@Vy)

32 1 92 5 2 32 ) 3
=|—+4+——]+c¢ —— = ApRr.. + €20 Agar,.. +O(€”). (5.4)
<8x2 ARZC2 3y2) ARc, 0y? © #A%G

Substituting the expansions defined above in the governing equations (2.2) and (2.3) with
their boundary conditions, a series of problems at the different orders in € are obtained.

5.2. Order €°: steady base flow

At order €” the system is represented by the nonlinear equations for the steady symmetric
base flow (4.1) with boundary conditions (4.2)—(4.5). The solution, computed for Rec, and
ARc, via iterative Newton’s method, was described in § 4.1.

5.3. Order €: linear global stability

At leading order in € the system is represented by the unsteady Navier—Stokes equations
linearized around the base flow for Rec, and ARc,, whose solution has been presented

in §4.2. In this framework, the solution of the leading order system is assumed to be
composed of the sum of the two global modes, A and B,
g1 = ADG} + BD)GE " +c.c), (5.5)

that destabilized the steady state q,. In (5.5) the amplitude A(T), which varies with the
slow time scale T, and the associated normalized eigenfunction are purely real, while the
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amplitude B(T) and eigenfunction for mode B are complex. Introducing (5.5) in the e-order
system, a generalized eigenvalue problem for mode A and B, whose general form reads as
(iwB + A)q, = 0, is retrieved. We remark that at the codimension-2 point both modes
are marginally stable, therefore, their growth rates are nil, 64 = op = 0 in C;, while the
oscillation frequency of mode B is w = 0.10157.

5.4. Order €*: base-flow modifications, mean-flow corrections, mode interaction and
second-harmonic response

At order €2 we obtain the linearized Navier—Stokes equations applied to ¢, = {u2, p2}7,
(Bo; + A)g, = Fo, (5.6)

with the boundary conditions

=0, wlye =0, (5.7

1
u =0, —pod + ——V u|-n
20082, ( P2 Rec, ARc, 2) o

and forced by a term F> depending only on zero- and first-order solutions,

5A ) 3V upo — X ic
F= |~ ARC2NO+$C2 wARcy 40 = @V apo — 5 Ca (0, u0) = 3CaRe, (U1, 41)

—aVy - ug

(5.8)

where C, is the e2-order symmetric advection operator, Cy(a,b) = (a-Vy)b+ (b -
Vw)a, while CARC2 (a,b) = (a- VARcz)b + (b - VARCZ)“- Terms proportional to § and
o arise from the Reynolds number and aspect ratio variations with respect to the
codimension-2 point definition and they act on the base flow. The last term in the
y-component of (5.8) is due to the transport of the first-order solution ¢; by itself.
Introducing the first-order normal form (5.5) in the forcing term expressed in (5.8), the
different contributions can be individualized to give

~ ~ ~ A2 ~ |RI2 ~R2 . ~ .
Fr=8F,+aFs + A2 Fy + BPFY +(BF; 2+ ABF, ¢ +cc). (5.9)

Fy={FL )T

Looking at (5.9), we recognize the second harmonic for mode B, which is pulsating
at 2w #w and, thus, it does not resonate and does not need the imposition of any
compatibility condition. In principle, all the other terms could be classified as resonating
terms in mode A or B for which the forced problem results to be singular and, hence, it
is necessary to verify the solvability condition or Fredholm alternative. However, we can
make use of the symmetry properties of the various forcing terms, as recently proposed in
Camarri & Mengali (2019), to show that some of these conditions are implicitly satisfied.
Indeed, the first four forcing terms, having w = 0, are characterized by the symmetries at
the x- and y-axis, i.e.
. 0F]

=0, Fi lag, =0, =0, (5.10)

ox
82 992,

OF.
dy

J
Fyylas, =0,

which does not coincide with the axis boundary conditions for mode A given in (4.14).
Consequently, the solvability condition for A is naturally satisfied by symmetry properties.
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(a)3.49 10 (b)

Figure 7. Second-order responses corresponding respectively to (a,b) base-flow modifications due to the
Reynolds number and aspect ratio variations with respect to the codimension-2 point, C», (c,d) mean-flow
correction associated to mode A and B, respectively, (e, f) harmonic interaction between the steady mode A and
the oscillating mode B and second harmonic for mode B.

The same argument is applicable to the last terms oscillating in w, arising from direct
competition between modes A and B, which is characterized by the symmetries

. 9FB . IF,E
Fylagy =0, =2 =0, Flle,=0, —Z| =0, (I
Y 982, 982y

that differ from the boundary conditions for mode B given in (4.15) and automatically
satisfy the solvability condition. It follows that, using the mentioned symmetry
considerations, no solvability condition needs to be imposed at the 2-order. We thus look
for a second-order solution having the expression

~ 2 . .
@ =530 + ags + A% + |BIPY + (B2 2 + ABB @ +cc),  (5.12)

where each single response is evaluated by means of a global resolvent technique (Garnaud
et al. 2013; Viola, Arratia & Gallaire 2016).

All the second-order responses are displayed in figure 7 in terms of their x-velocity
component. As shown in figure 7(f), the second-harmonic response for the global mode
B is essentially periodic in space with a wavelength twice that of the direct mode (see
figure 5b,d), while the interaction between A and B (see figure 7e) is nearly periodic in
space with a wavelength close to that of the direct mode B within a central region near the
jets collision, where the direct mode A mainly acts, and it vanishes far away as mode A
vanishes too (see figure 5a,c).

5.5. Order €*: amplitude equations

At the €*-order we derive the system of amplitude equations which describe the weakly
nonlinear global mode interaction of A and B. The problem at order € is similar to the one
obtained at order €2, as it indeed appears as a linear system forced by the previous order
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solutions, englobed in F3,

(B, + A)g3 = F3, (5.13)
and subjected to the boundary conditions,
u3lse, =0, (—psl + VARc2u3) -n| =0, uwuslpe =0. (5.14)
ReC2 902,

The €3-order forcing term, 3, by substituting the first- and second-order solutions, reads
as

F3

~ o ~ ~
—0ru| — 8AAR, UL + ——— AARc, U1 — &V op1 — aCqy (g, ur) — Care, (U1, u2)
2 Rec, 2 2

—aVau
0A . SN L LB sEA 2 FAIB?
=——Bq§‘+A(3 Y HaF )+ AF, +ABPF,
~ A2 .
+ {|:——BqB + BGFEY 4 aFP)  BPBFIE | A2 T B] e 4 c.c.}

+ N.R.T,, (5.15)

where N.R.T. gathers all the non-resonating terms, not relevant for the further analysis and
omitted thereafter. The first term in the y-component of (5.15) corresponds to the slow time
evolution of the amplitudes A(7") and B(T') with the slow time scale T = €21. The last term
is due to the advection of the leading order solution by the second-order solution and vice
versa. All the other terms arise from the Reynolds number and aspect ratio variation acting
on the e-order solution. As standard in multiple scale analysis, in order to avoid secular
terms and solve the expansion procedure at the third order, a compatibility condition must
be enforced through the Fredholm alternative (Friedrichs 2012).

The compatibility condition imposes the amplitudes A(T) and B(T) to obey the relations

< = e +and - 1aA® — xaA|B)?, (5.16)
i (6¢p + ang)B — up|B|"B — xpBA~, (5.17)

where the physical time scale 7 has been reintroduced, § = €28 =1 /Rec, — 1/Re,
o =e’qd=1/AR—1 /ARc, and the various coefficients, whose values are reported in
appendix A, are computed as scalar products between the adjoint global modes &I and the

. ~i . .
resonant forcing terms F 3, i.e. for instance,

AAT A5A ~Bi 7B
@LFS) o @FYY

A = — ={q, . F3), B=—F%—7 =14 7:3 )s (5.18)
@ By @, B

since q1 , BqA (}fT, B(}If ) = 1 due to the normalization introduced in §4.2. The
detailed expression of each normal form coefficient is provided in appendix A. Equations
(5.16) and (5.17) differ from the classic Stuart-Landau equations, describing the pitchfork
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and Hopf bifurcations of single modes, by the two coupling terms, x4A|B|> and ypBAZ,
coming from third-order nonlinearities. The structure of system (5.16) and (5.17) is well
known in literature and is analogous to that derived by Meliga et al. (2012), where a
formally equivalent analysis is performed to investigate weakly nonlinear interactions for
mode selection in swirling jets.

5.5.1. Stability analysis of the amplitude equations

Here we perform the stability analysis of the amplitude (5.16) and (5.17). Recalling that
the amplitude A is purely real, as well as all the coefficients associated with its equation,
while amplitude B and the related amplitude equation coefficients are complex, so that we
can turn to polar coordinates, i.e. B = |B| e'®5, and split the modulus and phase parts of
(5.16) and (5.17),

dA
< = (o +anA - 11aA> — xaA|B)?, (5.19)
d|B| 3 2
o (8¢Br + anp,)|B| — usr|BI” — xBr|B|A”, (5.20)
do
d—f = (8¢pi + angi) — il Bl — xmiA>. (5.21)

System (5.19) and (5.20) presents different possible equilibria (Kuznetsov 2013). Below
the threshold the system is stable and the trivial equilibrium with A = |B| = 0 is retrieved.
Two other possible equilibria correspond to (A #0, |B| = 0) (pitchfork bifurcation for
mode A) or (A = 0, |B|] #0) (Hopf bifurcation for mode B). The single mode pitchfork and
Hopf bifurcations are easily found, removing the coupling terms by setting x4 = xp =0
and looking for a stationary solution of (5.19) and (5.20), dA/d¢ = d|B|/dt = 0. This leads
to the classic solutions

0la + 8¢pr +
A2 _ A nNA ’ |B|2 _ CBr nBr'

HA UBr
The non-trivial equilibrium with (A #0, |B| #0) is obtained reintroducing the coupling
terms and investigating the existence of a parameter region in which both modes coexist.

Indeed, looking for a stationary solution dA/dt = d|B|/dt = 0, we obtain the system

Ha XA A2 — SCA +ana
[XBr um} {|B|2} = {6¢Br+an3,}’ (5.23)

(5.22)

which admits a physical solution only for Re and AR values for which A> > 0 and |B|*> > 0.
Solving (5.23), we obtain

_ (8%a +ana)up, — xa(8¢p, +ang,)
ILAB, — XAXB, ’

A? (5.24)
_ (88p, +anp,)ua — xB,(85a + ana)
ILAIB, — XAXB, '

The general relation for the phase of mode B at large time, which varies linearly in time,
reads as

|B|? (5.25)

Ppli+o0 = [(8Cai + ansi) — ppil BI> — xmiA’lt, (5.26)
meaning that the frequency at large time will saturate to the following prescribed
valued, function of the Reynolds number and aspect ratio variation with respect to the
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codimension-2 point, Cy:

Olis oo = 0, + [(8Cpi + anpi) — upilBI* — xpiA%]. (5.27)

Combining all these ingredients, the bifurcation diagram proposed in figure 8(a—c)
presents a complex series of bifurcations. The stability of the various branches was
numerically assessed by time marching (5.19) and (5.20) using the Matlab function
ode23. As depicted in figure 8(b) for a fixed value of aspect ratio, AR = 6.5 < ARc,,
the steady mode A bifurcates first at Reps = 23.85 (pitchfork bifurcation PA) breaking
the symmetry of the base flow with respect to the x-axis, d£2;. The oscillating mode
B then bifurcates from the x-symmetry-breaking pitchfork bifurcation at Resyp = 24.63
through a secondary Hopf bifurcation (SHB). Notwithstanding the subcritical nature of
this bifurcation, which makes it unstable, such a bifurcated branch is fundamental for
the emergence of the self-sustained oscillation regime, through a backward bifurcation of
mode A (BA) at Repy = 24.35. The sub-criticality of the system in the range Repsy < Re <
Respp leads to an hysteretic behaviour where either the steady mode A or the oscillating
mode B can dominate, depending on the initial conditions to which the system is subjected.
Figure 8(a) shows the full weakly nonlinear map predicted by the normal form (5.16)
and (5.17) in the (Re, AR)-plane around the codimension-2 point. Lastly, as shown in
figure 8(c), above ARc, only the oscillating mode B, which settles into a limit cycle via
classic Hopf bifurcation (HB), exists. In this range, the self-sustained oscillations regime
is observed above a certain Reynolds number.

6. Comparison with DNS

In this section the results derived in §5 via WNL are compared with DNS. The full
nonlinear unsteady dynamics represented by the system of governing equations (2.2) and
(2.3) with its boundary conditions is solved using the open-source code Nek5000, as
described in § 3.
In addition to the fluid governing equations, Nek5000 allows us to easily introduce a

further advection—diffusion equation describing the dynamics of a passive scalar, @,

i Vo ! AP 6.1

ot tu P ©.D)
which enables us to reproduce the presence of two dyes continuously injected through the
inlets, in order to visualize the instantaneous flow configuration (Bertsch et al. 2020a).
The Péclet number, Pe, appearing in (6.1) has been set to Pe = 100, a value which ensures
a good numerical stability and a satisfactory flow visualization at the same time for all the
explored cases. Concerning this passive scalar equation, Dirichlet boundary conditions are
imposed at the two inlets (@ |y—_s2 = 0, @|y=;2 = 1) to reproduce the injection of two
different dyes, while outflow conditions are set at the outlets; no flux is allowed through
the solid walls.

6.1. Regime comparison

In figure 9 the nonlinear map of figure 8(a) for a specific value of aspect ratio in the
region characterized by the hysteretic behaviour, i.e. AR = 6.5, is recalled. Different DNS,
covering the range of Reynolds numbers from the stable region (Re < Repy = 23.85)
to the region dominated by the oscillating mode B (Re > Resyp = 24.63) were performed.
The investigated cases are indicated in figure 9 with symbols. The results extracted from
the DNS are presented in figures 10 and 11.

913 A51-16


https://doi.org/10.1017/jfm.2021.51

https://doi.org/10.1017/jfm.2021.51 Published online by Cambridge University Press

Impinging jets: hysteresis and self-sustained oscillations

(a) 8.0

7.5

AR 7.0

6.5

Stable

6.0

26 27 28 29 30

(b)0.15

0.10

0.05

. . | . 4 _ AR=75
23 24 25 26 20 21 22 23 24 25 26
Re Re

0"

Figure 8. (a) Weakly nonlinear map predicted by the normal form (5.16) and (5.17) in the (Re, AR)-plane.
Green and blue dotted lines indicate the linear marginal stability curves for mode A and B, respectively, as
presented in § 4.2. In the black region the steady mode A prevails, while the oscillating mode B dominates in the
wide grey region. A region of hysteresis, highlighted in a light grey shade, is found for AR smaller than ARc, . (b)
Bifurcation diagram as a function of the Reynolds number for a fixed value of aspect ratio, AR = 6.5 < ARc,.
Dashed and dot—dashed lines mean unstable branches, while solid lines denote stable branches. The vertical red
dotted lines represent the thresholds for the pitchfork bifurcation of mode A (PA), the backward bifurcation of
mode A (BA) and the secondary Hopf bifurcation of mode B (SHB). The light grey shaded region corresponds
to the hysteresis range of (a). (¢) Bifurcation diagram as a function of the Reynolds number for a fixed value of
aspect ratio, AR = 7.5 > ARc,. The vertical red dotted lines represent the thresholds for the Hopf bifurcation
for mode B.

O Stable
\AMode 4
OMode B
®A4orB

AR=6.5

Self-sust. oscillations

17
23.85 24.35 24.63 Re

Figure 9. Nonlinear map of figure 8(a) for a specific value of aspect ratio in the region characterized by the
hysteretic behaviour, i.e. AR = 6.5. Cases investigated by performing DNS are indicated by symbols. The red
diamond (Re = 24.55) corresponds to a case in which the existence of the hysteresis region has been checked
using the same control parameters, AR and Re, but different initial conditions, given by the final steady state
or limit cycle of the two closest simulations, whose Reynolds numbers have been increased or decreased,
respectively, as sketched by the green arrows.
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()

-3.2%
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Figure 10. Snapshots of the flow patterns in terms of dye concentrations observed at large time, (a—d) once
the steady state (stable base flow or symmetry breaking for mode A) is reached or, alternatively, (e, f) once the
limit cycle for mode B is fully established, for the various Reynolds numbers indicated by white squares in
figure 9. The white dashed lines represent the axes of symmetry characterizing the steady base flow. The flow
configuration for Re = 24.55 is shown in figure 11.

(a)3425 1.0
0.8

0.6

ro 0.4
0.2
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Figure 11. Snapshots of the flow patterns in terms of dye concentrations observed at large time for AR = 6.5
and the same Reynolds number, Re = 24.55 (hysteresis region), but with different initial conditions: (a) the
new steady state (symmetry-breaking condition) obtained for Re = 24.4 is used as an initial condition; (b) a
time instant of the unsteady solution corresponding to Re = 24.7 (limit cycle for mode B) is imposed as an
initial condition. Streamlines and arrows are used to visualize the velocity fields associated with the steady and
oscillating configurations, respectively.

All the numerical simulations displayed in figure 10 were started from zero initial
conditions. Figure 10(a) shows the steady state obtained for Re = 22, which confirms that
the steady base flow is stable for Re < Repy = 23.85, indeed no symmetry breaking can be
observed. For Re = 24, 24.2 and 24.4 (which lies in the hysteresis range), we retrieved that
the steady mode A first bifurcates via a pitchfork bifurcation. The symmetry with respect
to the x-axis is lost, the position of the stagnation point lies below the x-axis of symmetry
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Figure 12. (a) Oscillation frequency, extracted from the y-velocity component at (x,y) = (0.5, 0), versus
Reynolds number for AR = 6.5. The solid black line indicates the WNL. The dotted black line and plus signs
represent the LGS. The dashed black line and circles are associated with the DNS performed. (b) Amplitude
of modes A and B extracted from DNS and compared with the bifurcation diagram obtained from the WNL
analysis for AR = 6.5. Symbols and green arrows in (b) correspond to those introduced in figure 9 and are
associated to the DNS presented above.

and the size of the recirculation regions differs on either side of the x-axis of symmetry
082y. For Re > Resgp = 24.63, i.e. Re = 24.7, 24.84, 25 and 27, only the self-sustained
oscillation regime is observed.

In order to confirm the existence of the hysteretic behaviour found in §5.5.1, the
solutions obtained at large time for Re = 24.4 (asymmetric steady configuration) and
Re = 24.7 (limit cycle for the self-oscillations) are used as initial conditions for two more
simulations, where the Reynolds number is fixed to Re = 24.55 in both cases (filled red
diamond and green arrows in figure 9). The results of this numerical procedure are given
in figure 11. We clearly see in figure 11(a,b) that depending on the initial conditions
imposed on the system, for this fixed value of Re = 24.55 within the hysteresis region,
both modes can emerge. Other simulations (not shown) performed in the upper region of
figure 8(a), i.e. for Re = 25 and AR = 7.5 and 8, confirm the supercritical nature of the
Hopf bifurcation associated to mode B (HB).

Next, global linear stability and WNL are both compared with the DNS in terms of the
amplitude of modes A and B and oscillation frequency for the self-sustained oscillatory
regime.

6.2. Frequency comparison

Figure 12(a) shows that, near the threshold, the linear global stability analysis (LGS), the
WNL and DNS agree well and prescribe the correct oscillation frequency. However, if
the LGS soon diverges from the DNS, as extensively described in the literature (Barkley
2006), the WNL theory, applied to the problem presented in this paper provides a
wider range of Reynolds numbers in which the model follows the DNS trend with a
satisfactory agreement, showing an error of 3 % for Re = 40 against the 13.2 % of the
LGS. Additionally, it needs to be underlined that the results shown in this section refer
to an aspect ratio of AR = 6.5, hence, a double off-set (in terms of Re and AR) with
respect to the codimension-2 point, C,, is considered in the WNL curve of figure 12.
Indeed, the precision of the asymptotic expansion prediction increases as |[Re — Rec,| and
|AR — ARc, | decrease.
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6.3. Amplitude comparison

In figure 12(b) we compare the amplitude of modes A and B extracted from the DNS with
those prescribed by the WNL model. The total flow solutions in the steady and oscillatory
regimes evaluated via weakly nonlinear formulation read as

winy = uo + Au + 5ub + aul + A2, (6.2)

. 2 .
uﬁ,NL =ug + (Bu? e +cc)+ Sug + oul + |B|2u|23‘ + (Bzulg2 e 4 cc). (6.3)
Specifying (6.2) and (6.3) for the y-velocity components, v‘év’gL, at the x-axis of symmetry
(y = 0), given the symmetries of the various terms, we have vA(x, 0)war, = Av‘[‘ (x,0) and
vB(x, 0)war = (vi (x, 0) e'" + c.c.). Then selecting the point x = 0.5, used to normalize
the global modes (vf]‘ (0,5,0) =1 and v? (0.5, 0) = 1), we derive the simple expressions

vA4(0.5, 0)war = A, (6.4)

v8(0.5, 0)ywnr = 2|B| cos(wt + Pp), (6.5)

which allow us to easily compare the amplitudes A and |B| from the WNL model with
those extracted from the DNS, v(0.5, 0)pns. Figure 12(b) shows not only a qualitative but
also a quantitative agreement between DNS and WNL, which captures well the hysteretic
behaviour of the flow for AR < ARc, (sufficiently close to ARc,).

6.4. Evolution of the oscillation frequency with the aspect ratio

A linear dependence of the self-oscillations on the inverse of the spacing between the jets,
s, which highlights the importance of the distance s in the oscillatory phenomenon, was
observed in Bertsch et al. (2020a), who proposed the scaling law

U
f~—, (6.6)
s

where the slope, derived by fitting the experimental data, was seen to be approximatively
1/6, which is also consistent with the measurements made by Denshchikov et al.
(1978) on large-scale facing jets in turbulent flow conditions. Given the definition of
the Strouhal number introduced in § 4.2, St = fw/U, and the aspect ratio AR = s/w, the
non-dimensional form of the scaling law (6.6) reads as

1
St iR’ (6.7)
where the subscript g is used to denote the frequency associated with the oscillating mode
B. It follows that in our 2-D model, (6.6) translates in a linear dependence of the Strouhal
number on 1/AR. Moreover, according to such a law, the variation of St with Re is not
predominant.

In order to verify whether the evolution of the oscillation frequency in our 2-D flow
behaves similarly to that of the 3-D one studied in Bertsch et al. (2020a), we performed a
series of DNS fixing Re, i.e. Re = Rec, = 22.65, and varying AR (> ARc,). A quantitative
comparison of DNS and the WNL model is shown in figure 13.

In this context, it is important to note that the parameter 1 /AR in (6.7) naturally appears
in the weakly nonlinear formulation, which, indeed, prescribes a linear variation of the
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Figure 13. Variation of the Strouhal number, Stp = fiw/U, with the aspect ratio, AR = s/w, for a fixed

Reynolds number, Re = Rec, = 22.65. Black solid line: WNL. Black circles: DNS. Inset: variation of Stz with

Re for different AR according to the WNL model. For values of Re smaller than the WNL stability boundary,
the instability does not occur and no oscillations can be observed.

dimensionless frequency with 1/AR, as displayed in figure 13. Direct numerical simulation
results agree well with the WNL model, that also provides a theoretical expression for the
slope m indicated in figure 13. In analogy with Bertsch ef al. (2020a) and Denshchikov
et al. (1978), we retrieved a factor close to 1/6.

Moreover, as shown in the inset of figure 13 (see also figure 12a), the dependence of the
frequency on the Reynolds number is much weaker (at least in the first range of Re) than
the dependence on AR, which is in agreement with the scaling law (6.7).

7. Instability mechanisms: sensitivity analysis

The presence of a stationary (y, —y) symmetry-breaking bifurcation, as revealed by the
existence of the A mode analysed in this paper bears a certain similarity with sudden
expansion flows, where the origin of the symmetry-breaking instability was found to lie
in the recirculation regions (Fani, Camarri & Salvetti 2012; Lanzerstorfer & Kuhlmann
2012; Lashgari et al. 2014). The physical mechanism associated to the symmetry breaking
is often referred to as a Coanda effect, where the shear layers surrounding the recirculation
regions are deflected towards one of the two confining walls.

The present flow however is characterized not only by two, but rather by four symmetric
recirculation regions surrounding an hyperbolic stagnation point. Note that the existence of
four recirculation regions invariant under two axial symmetries and one central symmetry
suggests also the possibility for an (x, —x) symmetry breaking, akin to the buckling of
two colliding jets at their meeting point. The presence of an hyperbolic stagnation point is
also known to give rise to the so-called hyperbolic instability (Friedlander & Vishik 1991;
Lifschitz & Hameiri 1991), which was found to contribute in the destabilization of arrays
of vortices (Sipp, Lauga & Jacquin 1999; Godeferd, Cambon & Leblanc 2001; Ortiz &
Chomaz 2011). This instability mechanism, which is best understood in the short wave
and inviscid asymptotic limits, is however known to give rise to spanwise disturbances
which cannot be active within the present 2-D framework.

Turning our attention now to the self-sustained oscillatory global mode B, we note
that the simple scaling of its intrinsic frequency with the physical parameters observed
in the 3-D microfluidic experiments and numerical simulations of Bertsch et al. (2020a)
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does not yet point clearly to a physical governing mechanism. As tentatively argued in
Bertsch et al. (2020a), the oscillatory nature of this instability suggests the presence of a
feedback mechanism, as investigated in Villermaux & Hopfinger (1994) and Villermaux,
Gagne & Hopfinger (1993). This suggests several candidates, such as the presence of
a pocket of absolute instability, or a global pressure feedback. The perturbation field
numerically extracted in Bertsch et al. (2020a) and qualitatively retrieved in the present
paper, shows a sinuous structure in the left and right outlet channels which is reminiscent
of two synchronized sinuous shear instabilities. This suggests that the Kelvin—Helmholtz
instability of the confined jet profiles prevailing in the outlet channels participates in the
self-sustained oscillation process.

We have indeed determined the dispersion relation of the streamwise velocity profiles
pertaining at different streamwise stations (x € [1, 10]) in the side arm for AR = AR¢, =
6.98 and Re = Rec, = 22.65 (see figure 15b). We have found that the sinuous mode was
indeed unstable in the region 1 < x < 5 (see appendix C for more details), while the
varicose mode remained damped. This indicates that in this region the shear is sufficiently
intense for the Kelvin—Helmholtz instability to overcome the conjugate stabilizing effect
of confinement and viscosity. Additionally, we found that the most unstable wavelength
was close to 9, in visual agreement with figure 5(d), while the associated frequency was
0.1, also in good agreement with the global mode frequency.

However, in order to translate into a self-sustained global instability, this shear layer
instability would either need to be of absolute nature, possibly because of the presence
of nearby walls, known to enhance absolute instability in confined shear flows (Juniper
2006; Healey 2009; Rees & Juniper 2010; Biancofiore & Gallaire 2011). As explained in
appendix C, our calculations however showed that the instability remains convective in the
entire unstable region x € [1, 5]. Another source of strong shear is represented by the two
facing y-velocity jets issuing from the inlets (see figure 15a). Indeed, even if isothermal
jets are usually known to be convectively unstable, the present geometry differs from a
classical free jet. The two jets face each other and collide, slowing down while redirecting
fluid towards the outlets. In this interaction region the flow is however far from weakly
non-parallel and the application of local stability analysis is therefore questionable.

Global instability of shear flows in open flows has indeed been historically studied under
the parallel flow assumption, where the local linear stability theory is applied to determine
whether the flow is absolutely unstable and, hence, a global instability is to be expected
(Huerre & Monkewitz 1985). Further progress has been made extending the analysis to
spatially developing (Chomaz, Huerre & Redekopp 1988; Huerre & Monkewitz 1990) with
the introduction of the WKBJ approximation for weakly non-parallel flows, which extends
the domain of validity of the local analysis and provides fair agreement when compared
with the LGS (Viola et al. 2016; Siconolfi et al. 2017). Meanwhile, global stability analysis
(sometimes called bi-global Theofilis 2011) has become increasingly popular in recent
years, thanks to the large memory capabilities of modern computers.

As mentioned above, the flow is strongly non-parallel in both the x- and y-directions
in the central interaction region of the X-junction, which jeopardizes the chances to
apply successfully a weakly non-parallel approach to determine the physical mechanism
governing this oscillatory instability. We thus propose to follow a different approach to
investigate the nature of the instability.

The approach proposed in this section makes use of the properties of the adjoint
eigenfunctions associated to the direct eigenmodes and it is formally known as sensitivity
analysis. Following Giannetti & Luchini (2007), Chomaz (2005) popularized the definition
of the wavemaker region as the region of the flow which is predominantly active in
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Figure 14. Structural sensitivity to a local feedback of the steady global mode A for Re = Rec, = 22.65 and
AR = ARc, = 6.98. Colour map: wavemaker region. Black lines: streamlines extracted from the steady base
flow, up. Red dashed lines: recirculation bubble edges.

sustaining the global instability. He demonstrated that the wavemaker region can be
identified as the overlapping region between the direct and adjoint global eigenvectors.
Giannetti & Luchini (2007) indeed demonstrated that the concept of the wavemaker
identifies regions of the flow where the presence of a local instantaneous feedback
produces the strongest drift of the leading eigenvalue. The wavemaker region has then been
successfully used to analyse the canonical circular cylinder wake flow (Marquet, Sipp &
Jacquin 2008; Camarri & lollo 2010; Giannetti, Camarri & Citro 2019; Giannetti, Camarri
& Luchini 2010). Meliga, Chomaz & Sipp (2009b) applied the theory to the wake of solid
disks and spheres, while Ledda et al. (2018) made use of the wavemaker definition in the
understanding of the suppression of von Kdrmdan vortex streets past porous rectangular
cylinders.

Here we apply the theory of sensitivity analysis in order to investigate both the nature of
the steady symmetry-breaking mode and to identify the physical mechanism from which
the self-sustained oscillations originate.

7.1. Core of the steady symmetry-breaking instability

As mentioned, the wavemaker region is defined by the overlapping region of the direct
and adjoint global modes. Using the results from the global stability analysis presented in
§ 4.2, the direct and adjoint velocity fields for the steady mode A, here analysed and shown
in figures 5 and 6, are used to build the wavemaker, defined as the product of the direct
and adjoint velocity magnitudes || ft‘? fflﬁ Il

The resulting wavemaker region for Re = 22.65 and AR = 6.98, normalized by its
maximum value, max (||it? ﬁ’;ﬁ ), is displayed in figure 14, together with streamlines
extracted by the steady base flow and the edge of the four symmetric recirculation bubbles.
The stagnation point in x = 0 and y = 0 is clearly highlighted by the streamlines. The
spatial distribution of the wavemaker is concentrated in the origin of the fluid domain,
perfectly coincident with the stagnation point. As shown in § 6, such instability leads to an
off-set of the stagnation point with respect to the x-axis of symmetry. While quite similar to
symmetry-breaking bifurcations in expansion flows, the physical origin of the A-instability
here therefore probably lies more in the structural instability of the stagnation point than
in a Coanda effect where the side jets are attracted towards one wall. Broadly speaking, as
one jet prevails over the other, the stagnation point is translated in either directions along
the y-axis, the streamlines are bent with the dominated jet that has less space to curve
towards the outlet channels. The size of the recirculation regions is readapted to maintain
a steady configuration.
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Figure 15. Structural sensitivity to a local feedback of the oscillating global mode for Re = Rec, = 22.65 and
AR = ARc, = 6.98. (a,b) Plots of the y- and x-base-flow velocity profiles, vy and uq, independently considered
as in the classic local parallel theory. (¢) Colour map: wavemaker region. White circles: maximum value of the
normalized wavemaker. Black contours: base-flow vorticity field. Dashed red line: maximum shear of the y-
and x-base-flow velocity profiles, vg and ug displayed in (a) and (b), respectively.

Note that a buckling-like instability of the colliding symmetric jets, in analogy with
the classic buckling typical of structural mechanics, would intuitively lead to a steady
bending of the jets which would displace the stagnation point along the y = 0 axis towards
a positive or negative x # 0 off-set. Whether the second steady mode C can be reasonably
interpreted as such is discussed in appendix B.

7.2. Physical mechanism behind the origin of the self-sustained oscillatory mode B

7.2.1. Structural sensitivity: wavemaker region

Here we apply the same technique to the oscillatory instability. The wavemaker for mode B
is thus given by || it? fl?T |I. Figure 15(c) displays as a colour map the wavemaker region
for Re = 22.65 and AR = 6.98, normalized by its maximum value. From the observation
of the wavemaker region, it can be deduced that, as expected, the origin of the oscillations
is located in the central portion of the domain, where the two facing jets strongly interact
with each other. Moreover, the structure of the wavemaker associated with the oscillating
global mode B coincides for all the aspect ratio values which have been checked, i.e.
AR € [6, 20]. Further progress in understanding the physical mechanism of this instability
can be made analysing the vorticity field and the local maximum shear. The local x- and
y-velocity profiles, independently considered as in the standard local and parallel linear
theory and shown in figures 15(a) and 15(b), have been analysed and the corresponding
loci of maximum shear, taken section by section, are plotted as red dashed lines in figure
15(c). It is seen that the local maximum shear related to the local y-velocity profiles
follows surprisingly well the region of maximum values of the wavemaker. Additionally,
the wavemaker presents four symmetric maximum intensity points (white circles in figure
15¢) which approximately coincide with the intersections of the local maximum shear for
the y- and x-velocity profiles.
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As a final comment, we can thus argue that, while the non-parallelism of the flow in
the central region precludes the use of the classic local and parallel analysis to compare
the present study and to firmly confirm the Kelvin—-Helmholtz mechanism as the origin
of the oscillatory instability, figure 15 suggests that the regions of maximum shear and
the interaction of various shear layers play an important role in the physical mechanism
engineering the global self-sustained oscillation.

7.2.2. Sensitivity to base-flow modifications

Let us now consider the sensitivity analysis to arbitrary and small-amplitude base-flow
modifications, Sug. In the linear global stability framework the parameter that defines if a
mode is stable or unstable for a certain combination of control parameters, i.e. Reynolds
number, is the growth rate, 0. We thus focus on the sensitivity of the growth rate associated
with the global mode B, V05, which is a real quantity expressed as

Vg = —Re((Vyy - i) - @%) 4+ Re(V ,ilPT - ub¥), (7.1)

Vuy 108 Vuy poB

where % stands for the real part of the complex vector field,  designates the
transconjugate, while the star * denotes the complex conjugate. For a complete and
detailed description of the method, see Bottaro, Corbett & Luchini (2003); Marquet et al.
(2008). Two different physical interpretations are inherent in the two terms appearing on
the right-hand side of (7.1) (Marquet er al. 2008). The first term, denoted by V.03,
represents the sensitivity of the growth rate op to modifications of the transport, since it
originates from the transport of the perturbations by the base flow, Vﬁ? - ug. The second
term, V,, ,0p, expresses the sensitivity to production, as it comes from the production of

the perturbation by the base flow, Vuy - ft? (see Marquet et al. 2008 for further details). An
expression analogous to (7.1) can be derived for the sensitivity of the oscillation frequency,
where the imaginary part of the complex vector field is considered. Marquet et al. (2008)
argued that this distinction between transport and production mechanism identified from
the sensitivity analysis is directly connected to the concept of convective and absolute
instability adopted in the local stability theory, where the competition of transport and
production mechanism defines the global behaviour of the flow (Huerre & Monkewitz
1990).

The sensitivity of the growth rate associated with the oscillating global mode B, op, to
modification of production and transport is shown in figures 16(a) and 16(b), respectively.
The magnitude of the two different sensitivity fields is similar, meaning that the two
mechanisms are equally important. However, an interesting aspect that can be clearly
observed in figure 16 is the decoupling of the directions in which the two mechanisms
mainly act. Indeed, the production mechanism is essentially located in the facing jets and
in the y-flow direction (pointing towards the centre), while it vanishes moving away from
the jets region. On the other hand, the transport mechanism, whose maximum intensity
is also close to the jets region, mainly acts on the x-direction of the output channels.
In other terms, if an increase of the base-flow velocity in the jets region and oriented
in the y-direction is considered, this modification will contribute to a destabilization
via the production mechanism (figure 16a), but it will involve the transport mechanism
only weakly, since the two directions of action are almost decoupled. In the same way,
considering the x-direction, if one considers a decrease of the base-flow velocity in the
central region (or alternatively an increase in the size of the recirculation regions) then
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Figure 16. Sensitivity of the growth rate op to base-flow modification for Re = Rec, = 22.65 and AR =
ARc, = 6.98. (a) Sensitivity function to modification of the production, V, ,05. (b) Sensitivity function to
modification of the transport, V, .op. Filled contours: magnitude of the two real vector velocity field. Red
arrows: vector fields orientation.

such a modification will destabilize the flow via the transport mechanism, but it will not
play together with the production mechanism because of the mentioned decoupling.

8. Different inlet velocity profiles: plug flow

We conclude our analysis examining the influence of a different inlet velocity profile, by
specifically focusing on a plug flow, inspired by Pawlowski ez al. (2006). In this study, the
authors perform a detailed stability analysis, which provides a wide-ranged stability map
in the (Re, AR)-parameter space. The very same steady symmetry-breaking and oscillatory
instabilities, as well as the existence of a codimension-2 point, were found, suggesting that
the inlet profile does not seem to qualitatively influence the nature of these instabilities.
However, from a more quantitative view point, the instability thresholds are significantly
affected when a fully developed flow is replaced by a plug flow. Interestingly, despite the
fact that the overall nature of the bifurcation nature does not change when varying the inlet
profile, Pawlowski et al. (2006) did not report the presence of any hysteretic behaviour. In
the following, we apply the weakly nonlinear theory outlined in § 5 to the case of the plug
inlet flow studied by Pawlowski ef al. (2006) and we briefly discuss their results in relation
with our analysis.

In figure 17 we propose a zoom of their stability map in the neighbourhood of the
codimension-2 point. We extracted manually values, shown as white triangles and circles
in figure 17 (in both the main figure and inset), from their stability curves (note that their
aspect ratio is defined as 1/AR = w/s). Clearly, the wide range of Re and AR and the
large thickness of the lines displayed in figure 10 of Pawlowski et al. (2006) make the
extraction procedure only approximate. We note that the value of the codimension-2 point
reported in the main text, Co = (11.2, 13.33), by Pawlowski et al. (2006) does not seem to
match the value extracted from their plot, which is instead in fairly good agreement with
our calculations, for which C; = (20.9, 10.53). If our marginal stability curve for mode
A (dark green dotted lines in the inset) matches very well their result, this is not the case
for the curve associated to mode B (blue dotted line in the inset) for AR < ARc,. Indeed,
the white circles are obtained from the linear stability analysis of the bifurcated steady
asymmetric state, while our blue dotted line is evaluated from the stability of the steady
symmetric base flow. We thus apply the WNL analysis around C, and the corresponding
weakly nonlinear stability boundaries are displayed in the inset as black solid lines. First
we notice that the WNL analysis based on the symmetric base flow captures their threshold
for the unsteady mode B correctly. Furthermore, analogously to the fully developed flow
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Figure 17. Stability map taken from figure 10 of Pawlowski ez al. (2006). White triangles and circles are the
values that we extracted manually from their curves. Inset: our weakly nonlinear map for the case of a uniform
inlet flow, where our definition of AR is adopted in the y-axis. Dark green and blue dotted lines in the inset
indicate the linear marginal stability curves obtained from our calculation for mode A and B, respectively.
Black lines in the inset represent our weakly nonlinear stability boundaries, as described in § 5. The light grey
shaded region in the inset corresponds to the hysteresis. The green filled circle indicate the position of the
codimension-2 point reported in Pawlowski ez al. (2006), while the red filled circle is the codimension-2 point
obtained from our calculation.

case, the WNL approach detects an hysteresis region, not described in Pawlowski et al.
(2006). We therefore performed DNS to confirm the WNL prediction.

In figure 18 the y-position of the stagnation point normalized by the aspect ratio, y*” /AR
(AR = 8), is used to characterize the bifurcation diagram. As in § 5, four regions, denoted
here by numbers, can be identified and the associated phase diagrams (amplitude of mode
|B| vs. A) are shown for completeness, following Kuznetsov (2013). The black solid and
dashed lines correspond to the stable and unstable branches described in figure 11 of
Pawlowski et al. (2006), while the light grey shaded region is the hysteresis detected
by our WNL model. Symbols correspond to our DNS. Pawlowski er al. (2006) started
from Re = 1 and increased Re progressively. The reason they could not detect hysteresis
is intrinsic to their continuation algorithm, which describes the transition from region 2 to
region 4 (see figure 18) following the same branch. In other words, their initial conditions
in region 3 (hysteresis) are taken from region 2 (steady asymmetric state) and, therefore,
always lie in the lower right part of the phase diagram 3. Consequently, the final solution
converges to the steady asymmetric configuration A. Indeed, the left upper part of the
phase portrait 3 can be explored only by considering progressive decreases of Re from
region 4 (oscillating regime) to 3, as in our DNS, which are in good agreement with the
WNL model prediction. Hence, the WNL model adds new information, at least in the
region of the parameter space close to the codimension-2 point, to the thorough stability
analysis proposed by Pawlowski et al. (2006).
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Figure 18. Bifurcation diagram: y-position of the stagnation point versus Re. The black solid and dashed lines
correspond to the stable and unstable branches of the bifurcation diagram shown in figure 11 of Pawlowski et al.
(2006), calculated following the path of increasing Re (AR is fixed to 8). The light grey shaded region is the
hysteresis predicted by our WNL model. Symbols indicate the DNS results (see figure 12b) for the notation).
A sketch of the phase portrait is given for each regime: 1, stable symmetric base flow; 2, steady asymmetric
configuration; 3, hysteresis; and 4, oscillating regime.

9. Conclusion

In the present paper we investigated different physical mechanisms arising in a 2-D fluidic
oscillator with two impinging jets, in a so-called 2-D X-junction. The tools of the LGS
were used to identify different global modes, whose stability properties depend on the two
main control parameters, the Reynolds number, Re, and the aspect ratio, AR. An oscillating
mode that produces self-sustained oscillations qualitatively analogous to those observed in
3-D fluidic cavities (Bertsch et al. 2020a) was retrieved. The origin of such a phenomenon
appears therefore as mainly two dimensional and due to the interaction of the two facing
jets.

In a certain range of aspect ratios, when the gap length, s, separating the two inlets
approaches the inlet width, w, the unsteady mode is seen to globally interact with a
steady symmetry-breaking instability. A WNL, based on the multiple scale technique
and showing how the system may present hysteretic behaviours depending on the
initial conditions, was formalized. The predicted normal form describes the nonlinear
interactions between global modes A (steady) and B (oscillating) and reduces the full
dynamics to a low-dimensional model, as typical of WNL formulations. For codimensions
larger than one, as in the present case, which displays a codimension-2 point, the normal
form often predicts successfully the system behaviour (Crawford & Knobloch 1991;
Meliga et al. 2009a; Zhu & Gallaire 2017). Indeed, a quantitative comparison of our WNL
results against DNS, in terms of oscillation frequency and mode amplitudes, confirms
the validity of the WNL analysis and, in particular, the existence of a narrow region of
hysteresis for AR < ARc, and Reps < Re < Resyp.

Furthermore, in analogy with the 3-D flow studied by Bertsch et al. (2020a),
the oscillation frequency associated to unsteady instability was seen to be inversely
proportional to the distance separating the two inlets, s, or, in non-dimensional terms,
to the aspect ratio, AR.

In principle, a steady symmetry-breaking condition, as the one represented by the global
mode A, and the associated hysteresis, similar to that here described in two dimensions, is
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expected to be retrieved in 3-D cavities for proper geometrical parameters, i.e. for a size
of the perpendicular z-direction sufficiently larger than the distance s. Nevertheless, the
eventual narrowness of the hysteresis region in the control parameter space could make it
hard to be experimentally detected.

A linear sensitivity analysis and the definition of the wavemaker region were then
systematically applied in order to explore the origin of the various instabilities observed.
The core of the steady instability associated to mode A, which breaks the base-flow
symmetry with respect to the x-axis, was shown to be spotted in the hyperbolic stagnation
point. We showed how the self-sustained oscillatory regime, also observed in 3-D flow
configurations (Bertsch et al. 2020a), was relying on shear instabilities. The structural
sensitivity of the unsteady mode and its accurate examination allowed us to identify the
Kelvin—Helmholtz shear instability, located in the jets interaction region, as the heart of
the physical mechanism behind the self-sustained oscillatory regime.

Lastly, we examined the effect of a different inlet velocity profile, e.g. a plug flow,
in analogy with Pawlowski et al. (2006). Similarly to the case with a fully developed
inlet flow, the WNL could detect hysteresis in a narrow region of the parameter space,
whose existence was not discussed by Pawlowski ef al. (2006). The physical nature of the
instabilities remained the same, but their thresholds can differ significantly, calling for a
sensitivity analysis of the inlet velocity profile. Indeed, in many practical situations, the
inlet profile is neither fully developed, nor uniform, but rather lies in an intermediate case.
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Appendix A. Convergence analysis for the eigenvalue calculations and the amplitude
equation coefficients

The convergence analysis for the eigenvalue calculations presented in § 4 is shown in table
1 for five different meshes M1-MS5, which differ by the vertex densities n; in the various
sub-domains displayed in figure 2.

A similar convergence analysis for the nonlinear coefficients of the normal form (5.16)
and (5.17) derived in § 5 is provided in table 2. As shown in table 1, mesh M1 is already
excellent for the linear eigenvalue problem. Moreover, the structural sensitivity presented
in §7 highlights the fluid domain region in which all the physical mechanisms occur,
suggesting that the length of the computational domain could be reduced from L,,; = 70w
up to 30w, without any influence on the eigenvalue calculation (numerically verified).
However, the weakly nonlinear problem and the calculation of the coefficient of the normal
form requires a finer mesh and an adequate domain length in order to get an optimal
convergence. Table 2 shows that when the mesh is refined from M4 to M5 the major
relative error (coefficient 174) is less than 1 %. Note that this is the numerical precision
of the calculation performed, which is not linked to the convergence of the asymptotic
expansion, whose precision increases as |[Re — Rec,| and |AR — AR, | decrease.

The expression of the various normal form coefficients are provided in the following:

o= =@\ (Dare, @ + Care, 1@t D). (A1)
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0¢-ISV €16

Re AR Mesh ni no n3 ng Nyor Nd.of. M A8

22.65 6.98 M1 145 115 75 35 240251 1098 685 —26x 1079 4+i2x 1071 3.3 x 1070 4+10.10157
M2 150 120 80 35 257110 1175053 —25x 1075 4+i7 x 10716 —7.5 x 1078 +10.10157
M3 160 130 85 40 307080 1401 813 —26x 1075 4+19 x 10710 —8.9 x 1077 4+10.10157
M4 175 145 95 45 383395 1747 633 —2.6x1075—i1x 10716 —3.3 x 107 +10.10157
M5 200 160 105 50 475963 2166 624 —2.6x 1075 —i3x 1077 —3.3 x 1070 +10.10157

Table 1. Eigenvalue convergence associated with the computational domain presented in figure 2. Tolerance on the real part of the eigenvalues A4 and A%, associated to
global modes A and B, is set to tolgey) =5 X 1073, When |Re ()| < tolge(1), the modes are considered marginally stable for such a combination of Reynolds number, Re,
and aspect ratio, AR, which will define a codimension-2 point (Rec,, ARc,). Mesh M1 ensures the convergence of the eigenvalue computations in a range of AR and Re is
explored; however, mesh M5 must be adopted to guarantee an acceptable convergence in the WNL (see table 2). Here L, is fixed to 70.
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Mesh A nA HA XA
M1 1.22 —0.257 0.157 1.01
M2 1.22 —0.256 0.157 1.01
M3 1.22 —0.256 0.157 1.01
M4 1.22 —0.257 0.157 1.01
M5 1.22 —0.257 0.157 1.01

B nB B XB
Ml 2.67 +10.0499 —0.738 +11.00 0.410 +10.0014 0.164 —i10.0963
M2 2.67 +10.0438 —0.737 +11.00 0.410 +10.0014 0.164 —10.0963
M3 2.67 +10.0505 —0.737 +11.00 0.410 +10.0014 0.164 —i0.0963
M4 2.67 +10.0489 —0.738 +11.00 0.410 +10.0014 0.164 —i10.0963
M5 2.67 +10.0490 —0.738 +11.00 0.410 +10.0014 0.164 —10.0963

Table 2. Values of the amplitude equation coefficients for global modes A and B corresponding to the case of
a fully developed inlet velocity profile and calculated for different meshes M1-MS5.

t8=—G" (Dare, @ + Carc, 18 D). (A2)

. 2 . . . A~
nA = — <q?-r, (_IE aARCZKI? + gaq? + (ga [Q(), q?] + CgARCZ [‘IA, q2])> ’ (A3)
2

- 2 . ) . B na
np = _<ql]3l’ (_@ aARCqu]g +gaq? +Cga[Qan?] +CgARC2 [qlB’qZ])>’ (A4)
2

pa = @7 Care, 1t 85 1). (AS)
2 T
ws =@ Care,18. 81+ Carc 13 D) (A6)
_ AT ~A ~|B? ~B* ~AB
Xa =@ (Care, |81, 8y 1+ Care, 1@7 - 85°D), (A7)
X6 =@ Care |3 851+ Core, 101 D). (A8)
Here, given two generic vectors a and b, CgARCz [a, b] = {C’ARC2 (a, b), 0}T, QARCZ" =

{Aarc,a, 0)T and €, la, b] = {Co (@, b), 0}", Tanrc,@ = {Aaarc,a, 07, while 44" =

{Va[fll’B, VE&?’B}T. The star * denotes the complex conjugate.

Appendix B. Flow behaviour at higher Reynolds numbers

In §4.2 the existence of a second steady global mode (denoted by C), which, from the
global stability analysis, appears to be unstable for Re = 41.5, AR = 6.5 (see figure 19¢),
was mentioned. When the threshold for mode C is met, global modes A and B are both
unstable. This evidence does not justify either the application of the linear stability tools
or the WNL (the corresponding thresholds are too far from each other). Nevertheless,
some information can still be extracted by looking at the DNS results for higher Reynolds
numbers, i.e. Re = 50, and, in particular, at the spatial structure of this mode. Figure
19(a) shows the flow configuration for Re = 50 and AR = 6.5. As can be observed, in
figure 19(b), where the magnitude of the velocity field is plotted for two symmetric
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Figure 19. Snapshot of the unsteady flow configuration in terms of dye concentrations for Re = 50 and AR =
6.5. Two slices at x = —5 and x = +5 are extracted and used to plot the magnitude of the velocity field (b).
(c) Marginal stability curves for global modes A, B and C as a function of Re and AR (as in figure 4). Here LS
denotes linearly stable and LU denotes linearly unstable. Red circle: DNS parameters for the present case.

slices at coordinates x = —5 and x = +35, for such combination of control parameters,
the symmetry of the flow (in terms of field magnitude) with respect to the y-axis is lost.

It can be argued that the cause of such a behaviour is the second steady mode, C,
which results to be unstable, with a growth rate o¢c = 0.016 (and frequency wc = 0),
for the DNS parameters here presented. Figure 20(a,b) displays the spatial structure
of the x- and y-velocity components associated with the mode. The eigenfunctions for
itlc and 131C exhibits the same symmetry properties characterizing the oscillating mode
B (see figure 5b,d). However, the steady nature of this mode leads to a double steady
symmetry-breaking condition (both axes of symmetry). The associated wavemaker region,
computed as described in § 7, is shown in figure 20(c). The overlapping region highlighted
by the structural sensitivity appears to be approximately localized at the boundaries of
the recirculation regions. The nature of this instability could be reasonably classified as a
buckling-like instability, where the symmetric configuration with two facing jets, above
a certain critical Reynolds number, which represents a measure of the jet intensities,
becomes unstable and the jets tend to bend towards opposite directions, as clearly shown
in figure 20(d). The shape and size of the four recirculation regions are then readapted to
the new steady configurations.

In the recent 3-D experimental and numerical investigation proposed by Bertsch et al.
(2020a) for straight output channels, as the 2-D one analysed in the present paper, the
self-sustained oscillatory regime, observed in a certain range of Reynolds numbers, is
seen to be strongly altered as Re is increased (Re & 100 or higher). In particular, the two
facing jets tend to suddenly switch left or right (and vice versa) and to keep that position
steadily for a while. Fast oscillations are simultaneously present and sometimes the jets
switch side. The existence of an analogous steady symmetry-breaking condition in the 3-D
problem is in principle expected and its strong nonlinear interaction with the self-sustained
oscillations for high Reynolds numbers could hypothetically and qualitatively justify the
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Figure 20. Spatial structure of the x- and y-velocity components associated with the direct global mode C for
Re = 50 and AR = 6.5, for which the base flow is marginally stable. () Plot of the x-velocity component. (b)

Plot of the y-velocity component. (¢) Colour map: structural sensitivity to a local feedback of the steady global

mode C, expressed as ||i41C|| . ||i41C+ || and normalized by its maximum value. Black contours: magnitude of the

base-flow field. Red dashed lines: boundaries of the recirculation bubbles. (d) Streamline associated with the
sum of the steady base flow and the steady unstable mode C. A fictitious amplitude of 0.25 is imposed to
the perturbation in order to get a good visualization of the streamlines modification. Red solid lines: axes of
symmetry.

flow behaviour shown in Bertsch et al. (2020a) (see associated supplemental material at
http://link.aps.org/supplemental/10.1103/PhysRevFluids.5.054202).

Appendix C. Temporal linear stability of the local velocity profiles in the lateral
channel

The wavemaker analysis proposed in § 7 suggests that the Kelvin—Helmholtz mechanism
plays an important role in the oscillatory instability. Nevertheless, the Kelvin—Helmholtz
instability has an inviscid origin, while the low Reynolds numbers encountered in this flow
suggest that viscous effects could be dominant and consequently that they could inhibit
the Kelvin—Helmbholtz instability. In this appendix we propose a temporal linear stability
of the local velocity profiles in the lateral channel (see figure 15b), which highlights that
the Kelvin—Helmholtz mechanism is actually active in the underlying process.

If we assume that the steady base flow in the right (or left, symmetric base flow)
output channel is locally parallel, i.e. we assume that the y-steady base-flow velocity
component is zero and the x-component depends only on y, ug = {ug(y), 0}T, then we
can tentatively apply the parallel stability theory. Linearizing the Navier—Stokes equation
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Figure 21. Temporal analysis of the x-velocity profiles shown in figure 15(b) and corresponding to Re =
Rec, =22.65 and AR = AR¢, = 6.98. Left plot: frequency —w versus wavenumber k. Right plot: growth rate

o versus wavenumber k. The maximum growth rate is found for x = 2 and corresponds to k & (.71 (wavelength
~8.8) and to an oscillation frequency w = 0.101.

around the locally parallel base flow and using the ansatz, u(x, y, r) = u(y) elke=1) and
p(x,y, 1) = p(y) e ™= with k spatial wavenumber, we obtain the linear system

-
0 = ikii + -2, (Cl1)
dy

Ay 1 92
— il = —ikughi — ﬁaiyo —ikp+ o (—k2 4 @) i, (C2)
i = —ikuoa— 2+ L (e 2 (€3)

— 14V = —1 - —— - ~ A Ua

Hot dy Re ay?

subjected to a no-slip boundary condition at the upper and lower walls. The system above,
formally equivalent to the Orr—Sommerfeld equation expressed in primitive variables,
reduces to a generalized eigenvalue problem in A (the real wavenumber £ is an input),
whose temporal stability associated with the base flow for each x-slice is studied
numerically using a validated Chebyshev pseudo-spectral code. A one-dimensional grid
in the y-direction made of 100 collocation points ensures convergence for the present case.
The main results are shown in figure 21.

We observe that there exists a spatial region, approximatively between x = 1 and
x =5, in which the local profiles are temporally unstable. Interestingly, the maximum
growth rate, obtained for x = 2, is characterized by a spatial wavenumber k£ ~ 0.7, which
corresponds to a wavelength ~ 9, in good agreement with the one observed in our
oscillatory global mode (see figure 5d). Furthermore, the associated oscillation frequency
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is w = 0.1, a value which matches the global frequency well. Lastly, the local temporal
analysis predicts a sinuous mode (not shown here), while varicose modes are always stable,
in agreement with global observations again.

A similar analysis can be repeated for the jet profiles selected along the y-axis (figure
15a). These profiles are also found to be temporally unstable, but the interpretation of the
results in terms of wavenumber and frequency is far from being trivial, since the features
of the instability are clearly visible only in the lateral output channels.

We then performed a spatio-temporal instability analysis, where A and k are both
complex quantities, but we found that the pocket of temporal instability is associated to
a convective instability (results not shown here).

As stated in §7 and highlighted by the wavemaker (figure 15¢), the instability
mechanism seems to be intrinsically global and due to the interaction of multiple shear
layers (jets and horizontal flows), which communicate in the central region of the
domain, where the flow is strongly non-parallel. For all these reasons, we believe that the
employment of the classic local theory is not legit in our case. Nevertheless, the temporal
analysis proposed in this appendix, together with consideration about the location of the
maximum shear made in § 7, shows that the Kelvin—Helmholtz instability is active and
that it could play a relevant role in the instability mechanism, despite the potentially high
viscous effects.
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