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In this paper, a new methodology to compare the robustness of sensor structures employed in radiofrequency design for test
(RF DFT) architectures for RF integrated circuits (ICs) is proposed. First, the yield loss and defect level of the test technique is
evaluated using a statistical model of the Circuit under Test (obtained through non-parametric statistics and copula theory).
Then, by carrying out the dispersion analysis of the sensor architecture, a figure of merit is established. This methodology
reduces the number of iterations in the design flow of RF DFT sensors and makes it possible to evaluate process dispersion.
The case study is a SiGe:C BiCMOS LNA tested by a single-probe measurement.
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I . I N T R O D U C T I O N

The study of radiofrequency design for test (RF DFT) tech-
niques has become fundamental to reach the required
quality standards for System-on-Chip (SoC), and to tackle
the high test costs of RF chips (mainly due to the usage of
expensive RF automated test equipment (ATE) and long test
time). Hence, by adding additional on-chip circuitry, the
cost of the test can be reduced [1–3].

The aim of RF DFT sensors is usually to convert high-
frequency dynamic parameters either into DC or baseband
signals that can be handled more easily. According to [4–6],
they must be robust against process and mismatch variations,
and have an accurate conversion gain, wide linearity and
dynamic range, low-integrated output noise, and high input
impedance. A small area and a low power overhead are also
desired for a higher integration capability.

On a test perspective, those extra design blocks will always
degrade the test efficiency when compared with the ideal
probe measurement. By analogy, the sensor ‘parasitic’ may
be seen as a ‘noise’ source in the ideal probing signal path.
Therefore, by taking a signal-to-noise ratio approach, a
figure of merit can be established.

I I . C A S E S T U D Y

To validate our methodology, we chose a narrowband
11.7 GHz LNA (designed in a SiGe:C BiCMOS technology)
to act as our Circuit under Test (CUT) [7, 8].

The low noise amplifier (LNA) circuit schematic used is
shown in Fig. 1, where Lb and Lc are surface-mounted induc-
tors and Cd are metal insulator metal (MIM) decoupling
capacitors. For the sake of simplicity, the biasing circuit was
omitted. From the simulation standpoint, the whole circuit
occupies a 110 547 mm2 surface (0.11 mm2) and accounts
for six bipolar junction transistor (BJT) transistors, four
surface-mounted inductors, four MIM capacitors, five comp-
lementary metal-oxide semiconductor (CMOS) transistors,
and six thin film resistors.

In our analysis, the circuit is considered ‘functional’ when all
of the following specifications are inside their +3s interval: S21

(forward power gain), S11 (input return loss coefficient), NF
(Noise Figure), CP12dB (1-dB compression point), and IP3
(third-order intercept point). As the CUT is a low-noise ampli-
fier, so a linear analog circuit, the other parameters were not
considered in statistical modeling. Due to its strong statistical
correlation with the defined specifications, we decided to esti-
mate the dispersion of the output AC peak voltage. To properly
monitor this parameter, we need to convert the AC magnitude
into a DC level signal, which is realized by employing the RF
amplitude detector described in [9].

It must be highlighted that both the circuit and the sensor
were not in fact produced. All the results in this framework
were entirely based on simulations in CADENCE environment.
Also, this analysis was solely focused on the defect coverage
enhancement provided by the sensor. Therefore, any open
parameters concerning the test itself (required power, response
time, etc.) were discarded due lack of information on ATEs.

I I I . S T A T I S T I C A L M O D E L I N G

First, a sample of N ¼ 1000 circuits was generated through
Monte Carlo’s simulation with respect to the technology process
and mismatch variations (in the CADENCE SPECTRE RF
environment). Figure 2 shows the simulation schematic.
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As a result, each one of the five targeted specification par-
ameters along with the test measure are now represented by an
N-size statistical sample set (random variables).

However, in order to have a representative sample set for the
test efficiency evaluations, our circuit sample needs to be resized
to N ¼ 106, giving thus a parts per million (ppm) precision.
Given that the Monte Carlo’s simulation time is proportional
to N and that the first simulation lasted 4 h, a million size
sample set simulation would take almost 6 months to be accom-
plished. Thus, some statistical manipulations are needed.

A) Non-parametric density estimation
By using the Parzen–Rosenblatt window method [10], which
consists of a kernel density estimator (KDE), it is possible to
estimate the marginal distribution function of each random
variable of interest (the five specifications and the measure-
ment). This way, new samples can be generated respecting
the probability distributions provided by the first simulation
samples. In this case, the KDE employed can be described
by the following function:

f
_

(x, h) = 1
nh

∑n

i=1

K
x − Xi

h

( )
, (1)

where f
_

(x, h) in the estimated marginal density function Xi is
the i–ith sample of the random variable to be estimated, h is

the window factor, and K is a kernel function. In fact,

f
_

(x, h) is found by replacing each sample of the random vari-
able by the kernel function rescaled by a factor h (Fig. 3).

In our case, an optimized bandwidth estimator based on
the Epanechnikov kernel function was employed to minimize
the integrated mean square error of each estimated function
(the same is proposed in [10]):

K(x) = 3
4

(1 − x2)( x| |≤1). (2)

B) Copula function
Previously, a KDE method was used to estimate the marginal
distribution function of each random variable. In order to take
into account the existing correlations between the different
variables, a multivariate joint distribution function is built
by using a Gaussian Copula function (due to the normal
curve resemblance of each marginal distribution) [11]:

C∑_ (u) = 1

[2p det
∑_( )

]

∫F−1(u)

−1

× du1 du2 . . . dun e
−

1
2

XT
∑_ −1

X

[ ]
, (3)

Fig. 1. LNA circuit schematic.

Fig. 2. Ideal measurement simulation schematic. Fig. 3. KDE procedure example.

516 conrado k. mesadri et al.

https://doi.org/10.1017/S1759078712000499 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078712000499


where
∑_

is the Pearson’s correlation matrix between each
random variable to be correlated. f denotes the standard
normal cumulative distribution function and x is the vector
containing all the random variables to be correlated [3].
Figure 4 gives us an example of the Copula function accuracy.

Finally, this method allowed us to generate an N ¼ 106

sample within a reasonable time frame (approximately 1 h
into the MATLAB environment). Following the same steps,
we generated a sample set of the same size for the measure-
ment including the RF DFT sensor (as shown in Fig. 5).

I V . D A T A A N A L Y S I S

Now that we have the sample sets with the desired accuracy,
the specification boundaries (+3s) are imposed to detect
the number of ‘defective’ circuits (defined as Di for the ideal
measurement and as Ds for the sensor measurement).

In addition, if taken into account the measurement quality
by establishing a cost relation between the ‘functional’ circuits
that fail the test (Fi,s

rej) and the ‘defective’ circuits that pass the
test (Di,s

pass), the optimal test limits (Ti,s
lim) can be calculated

(Fig. 6).
In our analysis, we take for granted that, from a quality per-

spective, it costs 10 times more to sell a ‘defective’ circuit than
to reject a functional one 10Di,s

pass = Fi,s
rej [12]. Hence, Table 1 is

built for illustration.
Furthermore, accordingly to [13], two useful probabilities

are defined:

Yi,s
L =

Fi,s
rej

N − Di,s
(4)

and

Di,s
L =

Di,s
pass

Di,s
pass + (N − Di,s − Fi,s

rej)
. (5)

Equation (4) represents the ratio between the number
of ‘functional’ circuits that fail the test and the number of
‘functional’ circuits and (5) represents the ratio between the
number of ‘faulty’ circuits that pass the test and the number
of circuits that pass the test (yield loss and defect level, respect-
ively). According to the definitions provided in (4) and (5), the
yield loss and defect level are presented in Fig. 7.

Note that YI
L and DI

L are not 0% since the ideal measure-
ment is not perfectly correlated with all of the target specifica-
tions. Also, we can notice that the noise and dispersion added
by the ‘real’ sensor considerably degrade both the yield loss
and the defect level (with respect to the lower limits of YS

L
and Ds

L settled by the ideal measurement).

V . F I G U R E O F M E R I T

Hence, by generalizing the above procedure, it is possible to
establish a basis of comparison among sensor architectures
by evoking the ratio between the output random variable
(obtained from the schematics shown in Fig. 2) and a new
random variable, measured at the output of the same sche-
matic but considering that the sensor is ‘ideal’ (not affected

Fig. 4. Scatter plot of Vp and NF of the original sample (blue circles) and of a recreated sample of the same size (red triangles).

Fig. 5. RF DFT sensor measurement simulation schematic. Fig. 6. Measurement quality schematic.
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by process dispersion, noise, and ripple):

F̃ = ṼR
out

Ṽ I
out

, (6)

where ṼR
out is the random variable representing the ‘real’

sensor output and ṼI
out is the random variable representing

the output of the noiseless and dispersionless sensor. By
assuming that the sensor is described by a first-order poly-
nomial (which is reasonable, if it is operating in a linear
region), F̃ may be rewritten as

F̃ = ÃṼp + B̃ + NT
S

mAṼp + mB

, (7)

where Ã and B̃are the random variables representing the
sensor gain and offset, respectively, NT

S is the total integrated

noise at the sensor output (when connected to the CUT), Ṽp is
the random variable denoting the measurement at the probing
point (ideal Vp) and mA and mB represent the statistical means
of the sensor gain and offset, respectively. Thus, by expressing
each random variable by dispersion function D̃ around his
statistical mean m

F̃ =
[mA + D̃(A)][mVp

+ D̃(Vp)] + [mB + D̃(B)] + NT
S

mA[mVp
+ D̃(Vp)] + mB

. (8)

Then, by reorganizing (8), we obtain

F̃ = 1 +
mVp

D̃(A) + D̃(A)D̃(Vp) + D̃(B) + NT
S

(mAmVp
+ mB) + mAD̃(Vp)

. (9)

As those distributions can be roughly represented by the
normal law due to their Gaussian-like form, it is straightfor-
ward to show that F̃ can be approximated as

F̃ � N(1, sF), (10)

where N(m, s) represents a normal distribution with mean m

and standard deviation s. Note that F̃ naturally results in a
Gaussian distribution function with a unitary mean and an
sF standard deviance. As an example, Fig. 8 shows the F̃ func-
tion given by the analysis of the sensor employed in our case
study (and proving the validity of the approximation).

Lastly, the figure of merit may be expressed by the follow-
ing constant:

Fm = −10 log (sF). (11)

The logarithmic operator was employed due to the low
order values of sF. Hence, for an ideal sensor, Fm � 1.
Although, in the real case, Fm will decrease as the sensor
robustness decreases. We note that as Fm reaches infinity,
the yield loss and defect level probabilities will converge on
those from the ideal measurement. Hence, it is possible to
see that Fm represents the signal-to-noise ratio between the

Table 1. Di,s, Frej
i,s , Dpass

i,s , and Tlim
i,s (for N ¼ 106).

Measurement Di,s Frej
i,s Dpass

i,s Tlim
i,s

Ideal Vp 28 963 76 437 7605 +1.59s
Sensor Vp 34 986 160 510 16 045 +1.32s

Di,s, the number of defective circuits of the ideal measure setup (i) and of
the sensor measure setup (s); Frej

i,s , functional circuits rejected by the ideal
test setup (i) or the sensor test setup (s); Dpass

i,s , defective circuits not
detected by the ideal test setup (i) or the sensor test setup (s).

Fig. 7. Defective circuits, yield losses, and defect levels for both measurements.

Fig. 8. F̃ function distribution of our case-study (example).
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dispersion of the ideal measurement and the total contri-
bution of noise and dispersion at the sensor output.

In order to further evaluate this behavior, a graph was
plotted by varying a ‘generic’ sensor dispersion, which was
mathematically achieved by adding a Gaussian noise source
at the ‘ideal’ sensor output

Ṽ sim
out (ssim) = Ṽ I

out + N(0, ssim). (12)

Therefore, by varying ssim (the sum of the simulated dis-
persion and noise amplitudes at the ideal sensor output
approximated by a normal distribution), different values of
Y sim

L and Dsim
L may be obtained. In addition, by replacing

(12) in (6), the corresponding Fm values may be obtained

F̃(ssim) = 1 + N(0, ssim)

(mAmVp
+ mS) + mAD̃(Vp)

. (13)

Note that the sensor input impedance was considered
much greater than the load impedance. Lastly, by plotting
the normalized values of Y sim

L and Dsim
L (with respect to the

ideal measurement lower limits) in function of Fm, Fig. 9 is
obtained.

As expected earlier, the curve presents an ‘ideal’ region in
which Ys

L ≈ Yi
L and Ds

L ≈ Di
L, a middle region where YS

L and
Ds

L decreases almost linearly with respect to Fm and a ‘noisy’
region where the dispersion and/or noise are so great (low
values of Fm) that the test is no longer capable of distinguish-
ing the CUT deviations from the ‘noisy’ sensor (where YS

L and
Ds

L becomes constant). Note that for our case study, there is no
benefit in increasing the sensor robustness higher than 50 dB,
so this value can be used as a prior reference in the early stages
of the DFT sensor design. Also, the Fm factor may be used to
rapidly compare DFT architectures designed exclusively for a
given application (CUT).

One may alternatively consider working with a simpler and
less precise figure of merit, which can be easier and less time
consuming to obtain (Fig. 10).

This time, the CUT is replaced by a signal source whose
output impedance equals the CUT one (or the system refer-
ence impedance) and whose peak amplitude value has a

E[VPin] ¼ min and a sin ¼ 0 (a perfect deterministic signal).
Hence, the alternative figure of merit (denoted by F̃) is
obtained by

F̃
′ = ṼR′

out

Ṽ I′
out

. (14)

Likewise, ṼR
out is the ‘real’ (noisy) sensor output and Ṽ I

out is
the ‘ideal’ sensor output (noiseless and dispersion less). Hence,
by making the same assumptions used beforehand (that the
sensor is working in a linear region and that both signals
roughly resemble Gaussian distributions), we obtain similar
results

F̃
′ � N(1, sF) (15)

and

F′
m = −10 log (sF). (16)

First, it must be highlighted that this alternative figure is
not as accurate as the first one because it does not take into
account the CUT output integrated noise and neither the
product between the CUT dispersion and the sensor gain dis-
persion (the term D̃(A)D̃(Vp) from previous analysis).

Second, even with the absence of a CUT, all the compared
sensors must be operating in the same conditions (frequency,
temperature, supply, fabrication process, etc.) in order to
make the comparison valid.

Fig. 9. Normalized yield loss and defect level with respect to Fm.

Fig. 10. Alternative figure of merit simulation schematic.
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And finally, it is not reasonable to compare values of Fm

with values of F′
m because they do not result from the same

statistical analysis.

V I . C O N C L U S I O N

One of the main difficulties found in RF DFT topologies is the
design of robust sensors (with respect to process dispersion)
that can accurately measure the CUT vital nodes while being
non-intrusive and adding as little noise as possible. In this
work, a new methodology is proposed to precisely evaluate
the noise and dispersion caused by the use of sensors in DFT
topologies. In addition, it can also be used to obtain a prior
reference for the early stages of the DFT sensor design, which
can greatly reduce the number of interactions to achieve a sat-
isfactory result during the design flow. Lastly, two figures of
merit are proposed to compare the robustness of different
DFT sensor architectures for a given test topology. Both the
proposed figures of merit can be especially useful when evalu-
ating sensor topologies and also provide a user-friendly orien-
tation in the design process. Nevertheless, special attention is
still required because they do not take into account any other
characteristic that is not related to the sensors dispersions or
noise (power overheads, surface costs, and response times).
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