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SUMMARY
This paper contributes by presenting a parameter identification procedure for n-degrees-of-freedom
flexible joint robot manipulators. An advantage of the given procedure is the obtaining of robot
parameters in a single experiment. Guidelines are provided for the computing of the joint position
filtering and velocity estimation. The method relies in the filtered robot model, for which no
acceleration measurements are required. The filtered model is expressed in regressor form, which
allows applying a parameter identification procedure based on the least squares algorithm. In order
to assess the performance of the proposed parameter identification scheme, an implementation of a
least squares with forgetting factor (LSFF) parameter identification method is carried out. In order to
assess the reliability of the tested identification schemes, a model-based trajectory tracking controller
has been implemented twice in different conditions: one control experiment using the estimated
parameters provided by the proposed scheme, and another experiment using the parameters given
by the LSFF method. These real-time control experiments are compared with respect to numerical
simulations using the estimated parameters for each identification method. For the proposed scheme,
the comparison between experiments and numerical simulations indicates better accuracy in the
torque and position prediction.

KEYWORDS: Flexible joint robot; Least squares; Parameter identification; Robot control; Real-time
experiments.

1. Introduction
Much attention has been devoted to applications of robotics in fields, such as service, health care,
space robotics, and others. Most applications in these fields require light robot arms able to perform
compliant manipulation in contact with a human environment, offering the possibility of energy
storage, lower reflected inertia, and higher force control accuracy, with less unintentional damage
to the medium.1 These performance requirements are obtained by increasing the joint flexibility in
comparison with that of conventional rigid industrial robots.2

Advanced motion controller design requires a complete and accurate dynamic model of robot
manipulators.3 The methodologies for controlling flexible joint robot (FJR) manipulators may include
state feedback controllers,4–7 passivity-based impedance control,8, 9 adaptive techniques,10–15 sliding
mode control,16 fuzzy logic control,17 higher-order differential feedback control,18 among others. In
particular, model-based control strategies for robot manipulators have confirmed their potential and
reliability even for industrial setups.19, 20 However, model-based control architectures rely on knowing
the system parameters. The need thus emerges of resorting to methods of parameter identification.
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As in ref. [21], the experimental robot identification procedure proposed in this paper follows these
steps:

• modelling,
• experimental design,
• data acquisition,
• signal processing,
• parameter estimation, and
• model validation.

Parameter identification techniques can be categorized as off-line and on-line methods.23 The off-
line methods are based on collecting all the input–output data, performing data pre-processing, and
implementing the identification algorithm. The on-line identification techniques update the estimated
parameters in real-time using the on-line measured data during robot operation. In both cases, the
robot input–output signals are recorded while the robot is tracking the desired trajectories, which is
usually done through the implementation of a robust closed-loop controller. Then, an over determined
linear system is created and solved using numerical optimization methods such as the least squares
(LS) method,22 Kalman filtering or the maximum-likelihood method.23

This paper is focused in the category of off-line techniques, using the LS algorithm, and is also
devoted to provide specific guidelines for accurate parameter identification methodology of FJR
manipulators.

In the literature, a large amount of papers have dealt with parameter identification. However, to
the best of the authors’ knowledge, complete and satisfactory results about the model of FJR are not
available. For instance in ref. [2], the parameters of a seven degrees of freedom (DOF) FJR were
split into groups, and then independent identification experiments for each group are implemented.
In ref. [22], the inertia parameters of the Staubli RX-60 robot were identified using a particle swarm
optimization technique and the LS method. Joint stiffness of a FJR was identified in ref. [25] using the
LS algorithm, including conditions for a good data processing before identification. Motion capture
was used in ref. [26] for dynamic parameter identification of a FJR, in which the identification process
is separated into two steps. In ref. [27], the parameters corresponding to the hysteresis and backlash
were identified for a FJR. The parameters corresponding to the actuator, drive train, and load of a
humanoid robot were estimated in ref. [28]. There, the authors did not obtain precise results due
to a deficient estimation of the friction model. Finally, more complex identification procedures for
parameter identification of FJR manipulators were given in refs. [29] and [30]. Specifically, in the
work,29 the elements of the gravity vector and the inertia matrix for the KUKA LWR were identified.
However, some simplifications were done, which may introduce errors in the estimations. The work in
ref. [30] reported a regressor-based methodology that allows estimating all the dynamic parameters,
but only simulations results were provided.

The previous literature review reveals that the results on parameter identification of FJR were
focused on the identification of a subset of parameters, divided the identification process using
different identification experiments, or did not provide experimental results. Then, a study presenting
an efficient parameter identification procedure, describing all the steps required to successfully
identify the parameters of a FJR manipulator, is absent. Hence, this paper aims to fill this gap by

• providing a complete systematic procedure for parameter identification of FJR manipulators, in
which all the system parameters are identified off-line in a single experiment;

• presenting experimental results in a 2-DOF FJR manipulator; and
• validating the results of the parameter identification methodology through real-time experiments.

In the novel parameter identification methodology, the robot parameters are estimated using a
filtered regressor form, in which only input torque, motor position, and link position measurements
are needed. In order to collect data, a robust controller is implemented. This controller relies in
an on-line estimation of motor and link velocities. For the identification algorithm, motor and link
velocities are computed off-line by a central differentiation algorithm. Guidelines indicating how to
perform these estimations are also given.

In order to assess the performance of the proposed identification procedure, LSFF identification
method has been implemented under the same conditions considered for the proposed parameter
identification scheme.
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The estimated parameters are validated by using a direct validation (DV) method. Besides, a torque
and position prediction approach is presented. In both cases, the experimental results are compared to
a numerical simulation using the estimated parameters. The validation stage also includes the design
of a model-based tracking controller studied in ref. [32]. The methodology to implement the controller
used in the validations is also provided in this paper. It is noteworthy to say that the validation tests
have also been performed for the estimated parameters obtained by the LSFF method. Better results
are obtained with the proposed identification procedure.

From the results obtained in the validation stage, it is concluded that the proposed methodology
allows estimating the dynamic parameters of an n-DOF FJR manipulator accurately in a single
experiment. Furthermore, the mathematical model obtained with the proposed parameter identification
procedure allows predicting the actuator torque and position of the robot manipulator with smaller
errors.

The paper is organized as follows. Section 2 presents the mathematical description of the FJR
manipulator and the proposed parameter identification procedure. Here, the construction of the
regressor, the procedure that allows identifying the system parameters with the filtered robot model
(without requiring acceleration measurements), the off-line velocity estimation, and the data pre-
processing algorithm are detailed. The experimental results for a Quanser 2-DOF FJR manipulator
are given in Section 3. The validation of the estimated parameters for the proposed identification
scheme and the LSFF method is analyzed in Section 4 by using DV and the torque and position
prediction accuracy approach. Finally, Section 5 contains some concluding remarks.

2. Parameter Identification Procedure
This Section presents the proposed procedure used to identify the parameters of a n-DOF FJR
manipulator. In the following, under the modelling assumptions given in ref. [33], the mathematical
description of the FJR manipulator is obtained.

2.1. Description of the FJR manipulator
Consider a n-DOF FJR manipulator with revolute joints actuated by direct current (DC) motors. The
elasticity of the i-th joint is modelled as a linear torsional spring with stiffness ksi , i = 1, . . . , n,
which implies that the rotor of each actuator can be modelled as an additional rigid body in the chain
with its own inertia. Furthermore, it is assumed that the elastic forces are limited to the linear range
of operation.

Figure 1 shows a schematic representation of a n-DOF elastic joint robot manipulator. In this
figure, each rotor is coupled to the link by means of a torsional spring. Variable qi , i = 1, . . . , n

corresponds to the position of link i, which is measured around the zi axis, according to the Denavit–
Hartenberg convention.34, 35 The variable φi , i = 1, . . . , n, stands for the position of rotor i after
the gear box. A counter-clockwise displacement of the rotors or the links corresponds to a positive
angular displacement of the rotor or the link, respectively.

Using the Euler–Lagrange equations of motion,35–37 the dynamic equations of a n-DOF FJR
manipulator can be written as follows:

M1(q)q̈ + CA(q, q̇)q̇ + f 1(q̇) + g(q) + K[q − φ] = 0,

M2φ̈ + f 2(φ̇) + K[φ − q] = τ , (1)

with

q = [q1 . . . qn ]T ∈ IRn,

φ = [φ1 . . . φn ]T ∈ IRn,

f 1(q̇) = Fv1q̇ + f c1(q̇),

f 2(φ̇) = Fv2φ̇ + f c2(φ̇),
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Fig. 1. Representation of a n-DOF flexible joint robot manipulator.

f c1(q̇) = [
fc1,1 tanh(βq̇1) . . . fc1,n tanh(βq̇n)

]T ∈ IRn,

f c2(φ̇) = [
fc2,1 tanh(βφ̇1) . . . fc2,n tanh(βφ̇n)

]T ∈ IRn,

τ = [
τ1 . . . τn

]T ∈ IRn, (2)

where M1(q) ∈ IRn×n is the mass matrix depending only of link displacements, M2 is the matrix
containing the rotor inertias, CA(q, q̇)q̇ ∈ IRn is the vector of centrifugal and Coriolis forces, g(q) ∈
IRn is the vector of gravitational torques or forces, K ∈ IRn×n is the matrix associated with the
spring stiffness, Fvi ∈ IRn×n, i = 1, 2, are the matrices containing the viscous friction coefficients.
The vectors f c1(q̇), f c2(φ̇) ∈ IRn correspond to the continuous version of the Coulomb friction with
β > 0 large enough; τ ∈ IRn is the torque input vector; q, φ are the link and rotor position vectors,
and q̇, φ̇ are the link and rotor velocity vectors, respectively.

We assume that the DC motors delivering torque at the joints are driven by servo amplifiers
configured in current mode.38 Hence, the torques applied at the joints are related with the motor
current as

τ (t) = Km im(t), (3)

where im ∈ IRn is the motor current vector, and Km ∈ IRn×n is a diagonal matrix containing the motor
torque constants. Considering this servo amplifier configuration, the actual motor current becomes

im(t) = id (t) = Ksau(t), (4)

with id (t) ∈ IRn being the desired motor current vector, Ksa ∈ IRn×n a diagonal matrix with the servo
amplifier gains, and u(t) ∈ IRn the servo amplifier input voltage. Therefore, from Eqs. (3) to (4), the
DC motor output torques are given by

τ (t) = KmKsau(t), (5)

indicating that the delivered torque is proportional to the input servo amplifier voltage.
In this paper, the applied torque τ (t) is considered to be measured by using the relationship

Eq. (5), under the assumption that matrices Km and Ksa are known.
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2.2. Filtered dynamic model
Model identification methods for rigid robot manipulators rely on the linear parameterization property
of the robot dynamic equations.39, 40 As a matter of fact, a similar factorization holds also for FJR
manipulators, presenting two cases:41 when only link positions q are available, and when both the
motor position φ and link position q can be measured. We consider the latter case study, whereby
Eq. (1) can be rewritten as

Y (x, ẋ, ẍ)θ = ϑ, (6)

where x = [qT , φT ]T ∈ IR2n is the composed configuration vector, Y (x, ẋ, ẍ) ∈ IR2n×p is the
regression matrix, θ ∈ IRp is the parameter vector, and

ϑ =
[

0n×1

τ

]
∈ IR2n (7)

is the input of the regressor system Eq. (6), being 0n×1 a null column vector in IRn.
Acceleration measurements in computing Y (x, ẋ, ẍ) are avoided by computing a filtered version

of the model (6). See for example ref. [42–44], where filtered models were used for parameter
identification of rigid link manipulators. With this aim, note that (6) can be rewritten as the first order
differential equation

[
d

dt
Ya(x, ẋ) + Yb(x, ẋ)

]
θ = ϑ, (8)

where

Ya(x, ẋ)θ = M(x)ẋ,

Yb(x, ẋ)θ = −Ṁ(x)ẋ + C(x, ẋ)ẋ + Fv ẋ + f c(ẋ) + G(x) + Kex,

M(x) =
[

M1(q) 0n×n

0n×n M2

]
, C(x, ẋ) =

[
CA(q, q̇) 0n×n

0n×n 0n×n

]
, G(x) =

[
g(q)
0n×1

]

Fv =
[

Fv1 0n×n

0n×n Fv2

]
, f c(ẋ) =

[
f c1(q̇)
f c2(φ̇)

]
, Ke =

[
K −K

−K K

]
,

and 0n×n is the null matrix in IRn×n.
Similarly to ref. [42], in order to obtain a filtered model of Eq. (1), we use the following low-pass

filter:

f (s) = λ

s + λ
, (9)

with λ ∈ IR+ denoting the cut-off frequency, and s being the Laplace variable.
By multiplying Eq. (8) by f (s), we obtain the so-called filtered dynamic model

Yf (x, ẋ)θ = ϑf , (10)

where

ϑf = f (s)ϑ,

Yf (x, ẋ) = Yaf (x, ẋ) + Ybf (x, ẋ),
Yaf (x, ẋ) = sf (s)Ya(x, ẋ),
Ybf (x, ẋ) = f (s)Yb(x, ẋ).

(11)
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In form of integral equation and assuming null initial conditions, the filtered signals given in
Eq. (11) can be expressed as

ϑf (t) = λ

[∫ t

0
[ϑ(σ ) − ϑf (σ )]dσ

]
,

Yaf (t) = λ

[
Ya(t) −

∫ t

0
Yaf (σ )dσ

]
,

Ybf (t) = λ

∫ t

0

[
Yb(σ ) − Ybf (σ )

]
dσ .

(12)

In practice, discrete robot motion measurements are available. Then, the filtered dynamic model
(10) can be implemented by discretizing the filter f (s) in Eq. (9) and

g(s) = sf (s), (13)

using the zero-order hold45

G0(s) = (1 − e−sT )

s
, (14)

and the relations45

Z
{
e−kT s

} = z−k, (15)

Z
{

1

s

}
= z

z − 1
, (16)

Z
{

1

s + a

}
= z

z − e−aT
, (17)

where Z{·} is the z-trasform operator, k = 0, 1, . . . is the integer time index, and T [s] is the sampling
period.

By substituting Eq. (14) into Eqs. (9) and (13) yields

f̄ (s) = G0(s)f (s) = [1 − e−T s]

[
λ

s(s + λ)

]
,

ḡ(s) = G0(s)g(s) = [1 − e−T s]

[
λ

s + λ

]
, (18)

and, by using Eqs. (15)–(17), we obtain

fD(z) = 1 − e−λT

z − e−λT
, (19)

gD(z) = λz − λ

z − e−λT
, (20)

where fD(z) in Eq. (19) and gD(z) in Eq. (20) are the discrete representation of f (s) in Eq. (9) and
g(s) in Eq. (13), respectively.

The discrete version of Yaf (t) and Ybf (t) are then given by

Yaf (kT ) = gD(z)Ya(kT ), (21)

and

Ybf (kT ) = fD(z)Yb(kT ), (22)
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Fig. 2. Block diagram representation of the derivation of the discrete filtered model (23). The block ‘auxiliary
construction’means the operations to build matrices Ya(kT ) and Yb(kT ).

In this work, the filtered model (10) was implemented using Eqs. (19) and (20) with the Matlab
function filter(A,B,D), where A,B are the coefficients of the numerator and denominator, and D
corresponds to the signal to be filtered.

2.3. Identification procedure
Now, we assume that only discrete measurements of the position x(kT ) and velocity ẋ(kT ) are
available. Then, let us consider the next discrete filtered model of the FJR manipulator

Yf (kT )θ = ϑf (kT ), (23)

where

Yf (kT ) = gD(z)Ya(kT ) + fD(z)Yb(kT ),

ϑf (kT ) = fD(z)ϑ(kT ).

Figure 2 represents the way the discrete filtered model (23) is derived. The block ‘auxiliary
construction’ includes the operations required to build the matrices Ya(kT ) and Yb(kT ).

In practice, different types of disturbances, such as quantization noise of the encoder, pulse width
modulation (PWM) switching noise of the servo amplifiers, and errors due to velocity estimation,
affect the robot. Therefore, special attention is paid to the off-line filtering of the position and
computation of the velocity.

The proposed identification method is performed off-line by using time series of the measured
input τ (kT ), required in the generalized input ϑ(kT ) in (7), and the measured positions q(kT ) and
φ(kT ), which are components of the generalized configuration vector x(kT ).

2.3.1. Controller selection. A good set of estimated parameters is obtained if an appropriate
identification experiment is performed. This experimental stage involves the design of a reference
trajectory exciting all the system dynamics. In this work, the robot dynamics is excited using the next
PD controller

τ = Kpφ̃ + Kv
˙̃φ, (24)

where Kp, Kv ∈ IRn×n are diagonal matrices. The vector φ̃ = φd − φ denotes the rotor position error,
˙̃φ = φ̇d − φ̇ is the rotor velocity error, and φd (t) ∈ IRn is the rotor reference trajectory.

Note that a PD controller provides a relative low tracking error, which is important for the excitation
of the robot dynamics in the parameter identification process. See for example ref. [46], where a PD
controller was used to generate time series of inputs and outputs for robot parameter identification.

2.3.2. On-line velocity estimation. To implement on-line the PD controller Eq. (24), a velocity
estimator is used. First, consider the polynomials given in terms of the z-transform

Q1(z−1) = 1 + z−1 + z−2 + · · · + z−p1,

Q2(z−1) = 1 + z−1 + z−2 + · · · + z−p2,
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where p1, p2 ∈ N. The averaged position φ̄(kT ) of the last p1 + 1 samples is given by

φ̄(kT ) = Q1(z−1)

p1 + 1
φ(kT ), (25)

where k is the integer time index, T [s] is the sampling period, and the product kT is the discrete time.
Thus, the dirty derivative of φ̄(kT ) is given by

˙̄φ(kT ) = 1 − z−1

T
φ̄(kT ).

Finally, the rotor velocity can be approached by averaging the last p2 + 1 samples of ˙̄φ(kT ), i.e.,

φ̇(kT ) ≈ Q2(z−1)

p2 + 1
˙̄φ(kT ). (26)

2.3.3. Quantization error. As indicated above, disturbances may affect the performance of the
identification process. In order to reduce such effects, some data pre-processing can be performed.
Note that the elements of the regression matrix Yf (kT ) in Eq. (23) depend on x(kT ), ẋ(kT ).
However, in most cases industrial robots are only equipped with optical encoders as position sensors,
which introduce quantization error. Furthermore, if Yf (kT ) and ϑf (kT ) are obtained from noisy
measurements, the parameter estimates may be far away from their actual values.

Quantization error can be reduced by filtering position measurements through a low-pass non-
causal zero-phase digital filter with cut-off frequency ωf q . This is accomplished in Matlab by using
a low-pass Butterworth filter in both the forward and reverse direction using the filtfilt function. This
filter has a flat amplitude characteristic without phase shift in the range [0, ωf q] and zero phase
distortion.

2.3.4. Off-line velocity estimation. Computation of the filtered regressor matrix Yf (x, ẋ) requires
velocity values. Velocity sensors are not usually available in manipulators. Furthermore, joint velocity
obtained by numerical differentiation amplifies the quantization error because differentiation behaves
as a high-pass filter. Then, to compute Yf (x, ẋ) we have to resort to a procedure for off-line velocity
estimation as a previous step.

A velocity estimation procedure requires a good signal-to-noise ratio and a group delay as small
as possible. In this work, the estimated velocity required for computing Yf (kT ) were obtained by
using the central differentiation algorithm

ẋ(kT ) = xf ([k + 1]T ) − xf ([k − 1]T )

2T
, (27)

where k is the integer time index, T [s] is the sampling period, and xf (kT ) ∈ IR2n is the filtered
generalized position vector, obtained after using the filtfilt function.

Using the aforementioned data pre-processing, the proposed parameter identification algorithm
can be applied to the model (23).

2.3.5. LS parameter estimation. The estimated values of the parameter vector θ ∈ IRp can be obtained
using the LS algorithm given by ref. [47]

θ̂ (kT ) =
[

k∑
i=0

YT
f (iT )Yf (iT )

]−1 k∑
i=0

YT
f (iT )ϑf (iT ), (28)

where θ̂(kT ) ∈ IRp is the estimate of θ at the discrete time instant kT , with 0 ≤ k ≤ N − 1, and N

is the number of samples.
The parameters of a n-DOF FJR manipulator described by Eq. (1) can be identified by following

all the steps described above.
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Table I. DH parameters of the 2-DOF
FJR manipulator.

Link αi−1 ai−1 di θi

1 0 0 0 q1

2 0 L1 0 q2

Fig. 3. Two representations of the flexible joint robot manipulator. (a) Approximated computed-aided design,
and (b) picture of the actual system at its home position.

It is important to remark that the initial error in tracking the desired reference for the parameter
identification experiments acts as a disturbance to the estimation error. However, this does not affect
the properties of the parameter estimation algorithm, but only affects the transient response of the
estimated parameters.48

In the next, an experimental verification of the parameter identification procedure is given.

3. Experimental Parameter Identification
The parameter identification procedure described in Section 2 is now applied to the Quanser 2-
DOF FJR manipulator31 depicted in Fig. 3. In this robot, the joints exhibit visible harmonics during
accelerations, while the links are rigid in comparison. The system has two DC motors, the Maxon
273759 and 118752 for joints 1 and 2, respectively. Each motor drives harmonic gearboxes with null
backlash in a two-bar serial linkage. Both links are rigid, the primary is coupled to the first drive
by means of a flexible joint, and it carries at its end the second harmonic drive, which is coupled
to the second rigid link via another flexible joint. The data are obtained using the data acquisition
device (DAQ) Q8-USB, which has analogue and digital inputs/outputs, encoder inputs, and PWM
outputs. This device is optimized for real-time control and allows interacting with Matlab/Simulink
using the Quanser QUARC and RPC toolkit control software. Real-time experiments are performed
through Real-Time Windows Target libraries. Both motors and flexible joints are instrumented with
quadrature optical encoders of 4096 pulses per revolution (ppr).

The motors are powered using the power amplifier Quanser AMPAQ current amplifier. The power
amplifier is equipped with current sensors, so that the actual current values are measured using the
DAQ Q8-USB. Then, by using Eq. (3), it is possible to obtain the values corresponding to the torque
vector τ (t). Measurements corresponding to the link position q(t) and the joint position φ(t) are
obtained using the system optical encoders.

Figure 3(a) shows a computer-aided model of the robot manipulator, together with the reference
frames chosen according to Denavit–Hartenberg convention.34, 35 The associated Denavit–Hartenberg
parameters are given in Table I. In this model, each rotor is coupled to the link by means of a torsional
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Table II. Parameters θi, i = 1, . . . , 15 for the 2-DOF flexible joint robot.

Parameter Definition Parameter Definition

θ1 (ml1 + mr1)l2
1 + Ilzz1 + Ilzz2 θ9 fv4

+(ml2 + mr2)(L2
1 + l2

2 ) θ10 ks1

θ2 (ml2 + mr2)L1l2 θ11 ks2

θ3 (ml2 + mr2)l2
2 + Ilzz2 θ12 fc1

θ4 r2
1 Irzz1 θ13 fc2

θ5 r2
2 Irzz2 θ14 fc3

θ6 fv1 θ15 fc4

θ7 fv2

θ8 fv3

spring. Figure 3(b) depicts the actual robot used in the identification experiments at its home position.
Note that the FJR manipulator to be identified is a planar robot moving in the horizontal plane, thus
being not affected by gravity.

Using the Euler–Lagrange equations of motion,36, 37 the robot dynamic equations can be expressed
in the form Eq.(1) with:

q = [q1 q2 ]T ∈ IR2, φ = [φ1 φ2 ]T ∈ IR2,

τ = [
τ1 τ2

]T
, θ = [

θ1 . . . θ15
]T

,

M1(q) =
[

θ1 + 2θ2 cos(q2) θ2 cos(q2) + θ3

θ2 cos(q2) + θ3 θ3

]
, M2 =

[
θ4 0
0 θ5

]
,

CA(q, q̇) =
[−θ2q̇2 sin(q2) −θ2(q̇1 + q̇2) sin(q2)

θ2q̇1 sin(q2) 0

]
,

Fv1 =
[

θ6 0
0 θ7

]
, Fv2 =

[
θ8 0
0 θ9

]
, K =

[
θ10 0
0 θ11

]
,

f c1(q̇) =
[

θ12 tanh(βq̇1)
θ13 tanh(βq̇2)

]
, f c2(φ̇) =

[
θ14 tanh(βφ̇1)
θ15 tanh(βφ̇2)

]
.

Variables q1 and q2 correspond to the position of link 1 and link 2, respectively, while φ1 and φ2

stand for the position of rotor 1 and rotor 2 after the gear box, respectively. Parameters θ ∈ IR15 are
described in Table II using the following notation:

mli mass of link i, i = 1, 2,
mri mass of rotor i, i = 1, 2,
L1 length of link 1,
li distance to the centre of gravity of link i, i = 1, 2,
Ilzzi principal inertia moment at z axis of link i, i = 1, 2,
Irzzi principal inertia moment at z axis of rotor i, i = 1, 2,
ri gear ratio of actuator i, i = 1, 2,
ksi FJR torsional stiffness of spring i, i = 1, 2,
fv1, fv2 viscous friction coefficient of link 1 and 2, respectively,
fv3, fv4 viscous friction coefficient of joint 1 and 2, respectively,
fci Coulomb friction coefficient of link i, i = 1, 2,
fc3, fc4 Coulomb friction coefficient of joint 1 and 2, respectively.
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The corresponding matrices Ya(x, ẋ), Yb(x, ẋ) ∈ IR4×15 of Eq. (8) have the following definition:

Ya = [
Ya1(x, ẋ) 04×10

]
,

Ya1 =

⎡
⎢⎣

q̇1 2(q̇1 + q̇2) cos(q2) q̇2 0 0
0 cos(q2)q̇1 q̇1 + q̇2 0 0
0 0 0 φ̇1 0
0 0 0 0 φ̇2

⎤
⎥⎦ ,

Yb = [
Yb1 Yb2 Yb3 Yb4

]
,

Yb1 =

⎡
⎢⎣

0 0 0 0
0 (q̇1q̇2 + q̇2

1 ) sin(q2) 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎦ , Yb2 =

⎡
⎢⎣

0 q̇1 0 0
0 0 q̇2 0
0 0 0 φ̇1

0 0 0 0

⎤
⎥⎦ ,

Yb3 =

⎡
⎢⎣

0 q1 − φ1 0
0 0 q2 − φ2

0 φ1 − q1 0
φ̇2 0 φ2 − q2

⎤
⎥⎦ , Yb4 =

[
diag{tanh(βqi)} 02×2

02×2 diag{tanh(βφi)}
]

,

with i = 1, 2, and diag{·} being a diagonal matrix.
The robot manufacturer provides nominal values of the parameters θ1, . . . , θ11, as indicated in

Table III. Furthermore, the motor torque constant matrix Km and servo amplifier gain matrix Ksa are
given by

Km =
[

0.119 0
0 0.0234

]
[Nm/A], Ksa =

[
0.5 0
0 0.5

]
[A/V ],

respectively. The desired value of control torque τ (t) transferred to the mechanism is obtained by
inverting the relationship Eq. (5).

The gains of the PD control Eq. (24) were set to

Kp =
[

50 0
0 5

]
[Nm/rad], Kv =

[
0.05 0

0 0.01

]
[Nm s/rad],

and the velocity values required to implement the PD control were obtained using the velocity
approximation Eq. (26) with p1 = p2 = 4.

For the identification experiments, the reference trajectory

φd (t) = 3

[
sin(2πt) + sin(πt + π

6 ) + sin(0.4πt + π
4 ))

sin(0.4πt) + sin(2πt + π
5 ) + sin(πt + π

2 )

]
[deg] (29)

was used.
Matrix Yf (·) in Eq. (10) was implemented using the value β = 100 for the hyperbolic tangent

function employed to approach the Coulomb friction vector f c1(q̇) at the links, and f c2(φ̇) at the
joints. Besides, the filters Eqs. (19)and(20) were implemented using the value λ = 30, and a sampling
period of T = 1 [ms].

In order to compare the proposed parameter identification methodology, LSFF algorithm has
been implemented on the filtered regression model (23) without any preprocessing. Specifically, by
computing in real-time the filtered regression matrix Yf (kT ), and the vector ϑf (kT ), we implemented
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Fig. 4. Estimated parameters θ̂ (kT ), θ̂LSFF (kT ) for the 2-DOF FJR manipulator obtained experimentally by
using the proposed parameter identification methodology (red line) and the LSFF identification method (dashed
blue line).

also in real-time the identification algorithm given by48

˙̂θLSFF (kT ) = P (kT )Yf (kT )eLSFF (kT ), (30)

eLSFF (kT ) = ϑf (kT ) − θ̂
T

LSFF (kT )Yf (kT ),

Ṗ (kT ) = δP (kT ) − P (kT )Yf (kT )YT
f (kT )P (kT ),

where θ̂LSFF denotes the estimated value of the parameter vector θ , δ ∈ IR+ is the forgetting factor,
P ∈ IRp×p is a symmetric, positive definite gain matrix, with P (0) = P T (0) > 0, and eLSFF is the
LSFF output-error. The values δ = 1 and P (0) = 10I15, with I15 being the identity matrix in IR15×15,
were used in the parameter identification experiments using the LSFF method in Eq. (30).

For the proposed off-line identification procedure and for the LSFF identification method in Eq.
(30), the time evolution of the parameter estimates θ̂(kT ) and θ̂LSFF (kT ) computed for each sample
kT is depicted in Fig. 4. Table III shows the nominal values provided by the robot manufacturer,
and the corresponding estimated values obtained using Eqs. (28) and (30). These estimated values
correspond to those obtained at 10[s] after starting the parameter identification experiment. This
specific time is large enough for the estimated parameters to reach the steady state. Notice that for
the proposed identification algorithm, most of the estimated parameters remain around the same
value after 5[s]. However, for the LSFF identification method, the estimated parameters behave in an
oscillatory form, which shows that this identification algorithm is more sensitive to the noise present
in the experiment.

It is worth noticing from Table III that the estimated parameters related to the inertias and viscous
friction coefficients present a remarkably deviation from the values provided by the manufacturer.

https://doi.org/10.1017/S0263574717000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000224


Parameter identification of FJR manipulators 325

Table III. Nominal and estimated values of the parameters θi, i = 1, . . . , 15 for
the 2-DOF FJR using the proposed parameter identification scheme and the LSFF

algorithm.

Parameter Nominal value Proposed method (θ̂ ) LSFF algorithm (θ̂LSFF )

θ1 0.190807 0.207184 0.140323
θ2 0.016474 0.017580 0.011038
θ3 0.010724 0.013163 0.010570
θ4 0.062800 0.216776 0.008266
θ5 0.002575 0.006842 0.004597
θ6 0.070364 0.037675 0.004189
θ7 0.028211 0.002959 −0.073912
θ8 4.5 8.435283 8.216284
θ9 0.5 0.135564 0.090998
θ10 9.0 9.358730 6.929031
θ11 4.0 4.212811 3.638719
θ12 * 0.015771 0.001516
θ13 * 0.005018 0.013101
θ14 * 1.360210 1.523355
θ15 * 0.162529 0.161235

* Not provided by the manufacturer.

In the next Section, a validation study is presented, which has the aim of supporting the accuracy
and precision of the proposed identification procedure.

4. Model Validation
A parameter identification process provides an estimated model for an intended application. In order to
assess the reliability of the parameter estimates, a validation procedure should be used. The following
methods can be used to validate the model:21, 23, 24, 42

1. Direct validation. Consists in comparing the torque τ (t) and positions q(t), φ(t) measured in the
identification experiment with respect to the corresponding torque τ̂ (t) and positions q̂(t), φ̂(t)
obtained from a numerical simulation using the estimated parameters.

2. Torque and position prediction accuracy. Consists in carrying out a validation experiment with
a reference trajectory φd (t) different from the one used in the identification experiment. Then,
the actuator torque-prediction accuracy and position-prediction accuracy are compared, i.e., the
measured torque τ (t) and position values q(t), φ(t) are compared with respect to the numerical
torque τ̂ (t) and positions q̂(t), φ̂(t) obtained from a simulated system using the estimated
parameters.

A metric of the prediction accuracy is given by the RMS values, eRMS , of the error signals

eRMS =
√√√√ 1

m

m∑
i=1

ε2(i), (31)

where ε(·) corresponds to the difference between measured and predicted torque or position, and m

is the number of samples.
A block diagram of the DV and the torque and position prediction accuracy validation is given

in Fig. 5. The torque τ (t) and position signals q(t), φ(t) from the experimental platform, and the
estimated torque τ̂ (t) and estimated position signals q̂(t), φ̂(t), are used to generate the prediction
errors as shown in Fig. 5. The block ‘eRMS calculation’ indicates the operations required to apply
formula (31) using the error signals.
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Fig. 5. Block diagram of the validation scheme. The error signals q − q̂, φ − φ̂, τ − τ̂ , generated from the
actual and the simulated robot model, are used to compute the corresponding eRMS error values.
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Fig. 6. Direct validation: Measured and estimated values of the link position q(t) and the rotor position φ(t) by
using the proposed identification method (red line) and the LSFF identification scheme (dashed blue line). The
error between the actual and simulated position values is also depicted.

4.1. Direct validation
In order to apply the DV approach, we simulated the mathematical model of the FJR manipulator
given in Eq. (1). The parameters used in this simulation correspond to the obtained from the proposed
identification procedure (denoted by θ̂), and the parameters given by the LSFF identification method
(which we represented by θ̂LSFF ). See Table III for the numerical values of the estimated parameters
θ̂ and θ̂LSFF . The simulation considered the same conditions as in the parameter identification
experiment. Then, we compared the link position, rotor position, and torque values using the numerical
data obtained from the simulation and the experimental data. Since in the LSFF identification method
θ̂7(t) is negative, we have performed the simulation with θ̂6 = 0 in the FJR model. Otherwise the
closed-loop system is unstable. Figure 6 shows the measured and simulated rotor and link position
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Fig. 7. Direct validation: Measured and estimated torques at the joints by using the proposed identification
method (red line) and the LSFF identification scheme (dashed blue line). The error between the actual and
simulated torque values is also depicted.

values denoted as φ(t), q(t) and φ̂(t), q̂(t), respectively. Figure 7 shows measured torque and simulated
torque, expressed by τ (t) and τ̂ (t), respectively. The error between measured and estimated rotor
positions, link positions and torques is also included in both Figs. 6 and 7.

We observe in Figs. 6 and 7 that small error values are obtained for the proposed identification
method, indicating that the set of estimated parameters allows constructing a model more
suitable for model-based control and dynamic task optimization. However, in order to verify the
generalization of the estimated model, the torque and position prediction accuracy approach is also
used.

4.2. Torque and position prediction accuracy
Now, the estimated parameters obtained with the proposed approach and the LSFF identification
scheme are validated by using a different reference signal and tracking controller. Towards this end,
we selected the motion controller presented in ref. [32]. This is a model-based tracking controller
based on feedforward compensation plus linear feedback of the state error. The controller design
follows the same lines given in ref. [32] and uses the model (1) without the friction terms. The goal is
to achieve asymptotic link trajectory tracking, where qd (t) ∈ IR2 denotes the desired link trajectory.
The nominal rotor trajectory, and its first and second time derivatives are given by

φd = qd + K−1wd,

φ̇d = q̇d + K−1ẇd,

φ̈d = q̈d + K−1ẅd,

where φd ∈ IR2 is the desired rotor trajectory, with

wd (t) = M1(qd )q̈d + CA(qd, q̇d )q̇d + g(qd ).
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Fig. 8. Torque and position prediction accuracy: Measured link position q(t), measured rotor position φ(t),
predicted link position q̂(t), predicted rotor position φ̂(t), link estimation error q(t) − q̂(t), and rotor estimation
error φ(t) − φ̂(t) for the proposed identification method (red line) and the LSFF identification scheme (dashed
blue line).
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Fig. 9. Torque and position prediction accuracy: Measured torque τ , predicted torque τ̂ , and torque prediction
error τ − τ̂ for the proposed identification method (red line) and the LSFF identification scheme (dashed blue
line).
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Table IV. RMS values of the direct validation method (DV) and the torque and
position prediction error (TPPE), using the estimated parameters obtained from

the proposed method and the LSFF identification scheme.

τ1 τ2 q1 q2 φ1 φ2

DV
eRMS (Proposed) 0.069 0.020 0.010 0.005 0.001 0.004
eRMS (LSFF) 0.456 0.106 0.130 0.050 0.009 0.021

TPPE
eRMS (Proposed) 0.274 0.036 0.006 0.005 0.001 0.002
eRMS (LSFF) 0.690 0.036 0.011 0.006 0.003 0.002

The nominal torque for the given trajectory qd (t) is computed in closed form using the second set
of equations in Eq. (1), i.e.,

τ d (t) = M2φ̈d + K(φd − qd ), (32)

where the friction terms have been neglected.
Therefore, the control law is

τ = τ d + F

⎡
⎢⎣

qd − q
φd − φ

q̇d − q̇
φ̇d − φ̇

⎤
⎥⎦ , (33)

where F ∈ IR2×8 is a stabilizing gain matrix. Experiments were performed using the desired link
signal

qd (t) = 10

[
sin(π

3 t) + sin(π
4 t)

sin(πt) + sin(π
2 t)

]
[deg],

and the stabilizing matrix

F =
[

50 0 300 0 5 0 0.1 0
0 15 0 40 0 0.1 0 0.1

]
.

Figure 8 shows the measured position, predicted position, and the corresponding position prediction
errors when using the controller Eq. (33), which were computed by using the estimated parameters
obtained with the proposed identification method and the LSFF identification scheme. Let us notice
that for the results using the estimated parameters provided by the novel procedure, a good link
trajectory tracking accuracy is obtained, and only small vibrations due to flexibility are exhibited.
Besides, Fig 9 depicts the measured and predicted actuator torque, and the corresponding torque
prediction errors. Finally, Table IV shows the RMS values of the actuator torque prediction error
and position prediction error for the DV method, and the torque and position prediction accuracy
approach. There, smaller numerical values for all metrics are given for the proposed identification
scheme.

Validation has shown that the model obtained with the proposed method allows predicting the
actuator torque and position. Therefore, the identified model is well suited for model-based control
and dynamic task optimization.21

In practice, it is clear that robot manipulators are affected by different types of disturbances
and noise that may compromise the identification process. Reasons for the robustness of the
proposed identification methodology are explained as follows. In order to lessen the negative
effect of the encoder noise present in the position measurements, the rotor and link velocities
are estimated on-line and off-line in the experiment for data collecting and in the identification
test, respectively, as indicated in Section 2. On the other hand, the negative effect of the PWM
switching of the servo amplifier, which introduces noise to the control action, was diminished in
the use of the filtered regression model (23) through the filter fD(z) in Eq. (19), which is a low
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pass filter. In summary, the data preprocessing stage developed for the proposed identification
methodology allows obtaining a set of reliable estimated parameters, even in the presence of
disturbances.

5. Conclusion
We have presented a systematic procedure to effectively estimate the dynamic parameters of a n-DOF
FJR manipulator. With the aim of complementing the existing works for parameter identification of
FJR manipulators, this paper has covered and explained concisely all the steps required to apply
the parameter identification process. The estimated parameters obtained by using the proposed
methodology have been shown to be reliable and accurate, which was done by a numerical
and experimental study of validation. Besides, the proposed parameter identification scheme was
compared with respect to a LSFF identification algorithm.

The proposed parameter identification methodology used a filtered model that does not require
acceleration measurements. In the motion control experiments, link and rotor velocity were
computed on-line by using an averaging estimator. On the other hand, in the proposed off-line
identification procedure, link and rotor velocity were computed with the central differentiation
algorithm.

The validation experiments showed that, despite the disturbances, the proposed methodology yields
reliable parameter estimates.

In ref. [49], the identification procedure discussed in this paper has been successfully adapted to
be used in the estimation of the model parameters of some underactuated mechanisms, such as the
Furuta pendulum and the inertia wheel pendulum.
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4. A. Albu-Schäffer and G. Hirzinger, “State Feedback Controller for Flexible Joint Robots: A Globally
Stable Approach Implemented on DLR’s Light-Weight Robots,” Proceedings of the 2000 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Takamatsu, Japan (Nov. 2000) pp. 1087–
1093, doi: 10.1109/IROS.2000.893164.

5. B. Brogliato, R. Ortega and R. Lozano, “Global tracking controllers for flexible-joint manipulators: A
comparative study,” Automatica 31(7), 941–956 (1995), doi: 10.1016/0005-1098(94)00172-F.

6. Z. H. Jiang and K. Shinohara, “Workspace Trajectory Tracking Control of Flexible Joint Robots Based on
Backstepping Method,” Proceedings of the IEEE Region 10 Conference (TENCON), Singapore (2016) pp.
3473–3476, doi: 10.1109/TENCON.2016.7848700.

7. A. H. Korayem, M. I. Rahagi, H. Babaee and M. H. Korayem, “Maximum load of flexible joint manipulators
using nonlinear controllers,” Robotica 35(1), 119–142 (2017) doi: 10.1017/S0263574715000028.
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